8 research outputs found

    Computing Nash Equilibrium in Wireless Ad Hoc Networks: A Simulation-Based Approach

    Full text link
    This paper studies the problem of computing Nash equilibrium in wireless networks modeled by Weighted Timed Automata. Such formalism comes together with a logic that can be used to describe complex features such as timed energy constraints. Our contribution is a method for solving this problem using Statistical Model Checking. The method has been implemented in UPPAAL model checker and has been applied to the analysis of Aloha CSMA/CD and IEEE 802.15.4 CSMA/CA protocols.Comment: In Proceedings IWIGP 2012, arXiv:1202.422

    Controlling a Population

    Get PDF
    We introduce a new setting where a population of agents, each modelled by a finite-state system, are controlled uniformly: the controller applies the same action to every agent. The framework is largely inspired by the control of a biological system, namely a population of yeasts, where the controller may only change the environment common to all cells. We study a synchronisation problem for such populations: no matter how individual agents react to the actions of the controller, the controller aims at driving all agents synchronously to a target state. The agents are naturally represented by a non-deterministic finite state automaton (NFA), the same for every agent, and the whole system is encoded as a 2-player game. The first player chooses actions, and the second player resolves non-determinism for each agent. The game with m agents is called the m-population game. This gives rise to a parameterized control problem (where control refers to 2 player games), namely the population control problem: can playerone control the m-population game for all m in N whatever playertwo does? In this paper, we prove that the population control problem is decidable, and it is a EXPTIME-complete problem. As far as we know, this is one of the first results on parameterized control. Our algorithm, not based on cut-off techniques, produces winning strategies which are symbolic, that i they do not need to count precisely how the population is spread between states. We also show that if the is no winning strategy, then there is a population size cutoff such that playerone wins the m-population game if and only if m< cutoff. Surprisingly, cutoff can be doubly exponential in the number of states of the NFA, with tight upper and lower bounds

    Reconfiguration and Message Losses in Parameterized Broadcast Networks

    Get PDF
    Broadcast networks allow one to model networks of identical nodes communicating through message broadcasts. Their parameterized verification aims at proving a property holds for any number of nodes, under any communication topology, and on all possible executions. We focus on the coverability problem which dually asks whether there exists an execution that visits a configuration exhibiting some given state of the broadcast protocol. Coverability is known to be undecidable for static networks, i.e. when the number of nodes and communication topology is fixed along executions. In contrast, it is decidable in PTIME when the communication topology may change arbitrarily along executions, that is for reconfigurable networks. Surprisingly, no lower nor upper bounds on the minimal number of nodes, or the minimal length of covering execution in reconfigurable networks, appear in the literature. In this paper we show tight bounds for cutoff and length, which happen to be linear and quadratic, respectively, in the number of states of the protocol. We also introduce an intermediary model with static communication topology and non-deterministic message losses upon sending. We show that the same tight bounds apply to lossy networks, although, reconfigurable executions may be linearly more succinct than lossy executions. Finally, we show NP-completeness for the natural optimisation problem associated with the cutoff

    Formal Modeling and Analysis of Mobile Ad hoc Networks

    Get PDF
    Fokkink, W.J. [Promotor]Luttik, S.P. [Copromotor

    Contribution to the verification of timed automata (determinization, quantitative verification and reachability in networks of automata)

    Get PDF
    Cette thèse porte sur la vérification des automates temporisés, un modèle bien établi pour les systèmes temps-réels. La thèse est constituée de trois parties. La première est dédiée à la déterminisation des automates temporisés, problème qui n'a pas de solution en général. Nous proposons une méthode approchée (sur-approximation, sous-approximation, mélange des deux) fondée sur la construction d'un jeu de sûreté. Cette méthode améliore les approches existantes en combinant leurs avantages respectifs. Nous appliquons ensuite cette méthode de déterminisation à la génération automatique de tests de conformité. Dans la seconde partie, nous prenons en compte des aspects quantitatifs des systèmes temps-réel grâce à une notion de fréquence des états acceptants dans une exécution d'un automate temporisé. Plus précisément, la fréquence d'une exécution est la proportion de temps passée dans les états acceptants. Nous intéressons alors à l'ensemble des fréquences des exécutions d'un automate temporisé pour étudier, par exemple, le vide de langages seuils. Nous montrons ainsi que les bornes de l'ensemble des fréquences sont calculables pour deux classes d'automates temporisés. D'une part, les bornes peuvent être calculées en espace logarithmique par une procédure non-déterministe dans les automates temporisés à une horloge. D'autre part, elles peuvent être calculées en espace polynomial dans les automates temporisés à plusieurs horloges ne contenant pas de cycles forçant la convergence d'horloges. Finalement, nous étudions le problème de l'accessibilité des états acceptants dans des réseaux d'automates temporisés qui communiquent via des files FIFO. Nous considérons tout d'abord des automates temporisés à temps discret, et caractérisons les topologies de réseaux pour lesquelles l'accessibilité est décidable. Cette caractérisation est ensuite étendue aux automates temporisés à temps continu.This thesis is about verification of timed automata, a well-established model for real time systems. The document is structured in three parts. The first part is dedicated to the determinization of timed automata, a problem which has no solution in general. We propose an approximate (over-approximation/under-approximation/mix) method based on the construction of a safety game. This method improves both existing approaches by combining their respective advantages. Then, we apply this determinization approach to the generation of conformance tests. In the second part, we take into account quantitative aspects of real time systems thanks to a notion of frequency of accepting states along executions of timed automata. More precisely, the frequency of a run is the proportion of time elapsed in accepting states. Then, we study the set of frequencies of runs of a timed automaton in order to decide, for example, the emptiness of threshold languages. We thus prove that the bounds of the set of frequencies are computable for two classes of timed automata. On the one hand, we prove that bounds are computable in logarithmic space by a non-deterministic procedure in one-clock timed automata. On the other hand, they can be computed in polynomial space in timed automata with several clocks, but having no cycle that forces the convergence between clocks. Finally, we study the reachability problem in networks of timed automata communicating through FIFO channels. We first consider dicrete timed automata, and characterize topologies of networks for which reachability is decidable. Then, this characterization is extended to dense-time automata.RENNES1-Bibl. électronique (352382106) / SudocSudocFranceF
    corecore