
Formal Modeling and Analysis of
Mobile Ad hoc Networks

Fatemeh Ghassemi Esfahani

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace at VU

https://core.ac.uk/display/152004694?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright © 2018 by Fatemeh Ghassemi Esfahani
Cover design by Mojtaba Sadeghpour.

The work reported in this thesis has been carried out at the Vrije Univer-
siteit Amsterdam.

VRIJE UNIVERSITEIT

Formal Modeling and Analysis of
Mobile Ad hoc Networks

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor aan
de Vrije Universiteit Amsterdam,

op gezag van de rector magnificus
prof.dr. V. Subramaniam,

in het openbaar te verdedigen
ten overstaan van de promotiecommissie
van de Faculteit der Bètawetenschappen

op maandag 19 maart 2018 om 15.45 uur
in de aula van de universiteit,

De Boelelaan 1105

door

Fatemeh Ghassemi Esfahani

geboren te Teheran, Iran

promotor: prof.dr. W.J. Fokkink
copromotor: dr. B. Luttik

Acknowledgments

I would like to deeply thank my supervisor Wan Fokkink for his endless support
and patience and for his guidance on my path towards becoming a professional.
It lightened my way, without it I think I could never have reached this point. His
support was as a door to survival at the hardest points of my life. I always think
about my lucky day I was introduced to him by Marjan Sirjani at a winter school
at IPM in Tehran, January 2007. I also warmly thank my co-supervisor Bas Luttik
for his constructive comments to revise and improve the thesis.

I thank Behnaz Yousefi for her enthusiasm and interest in research and col-
laboration. Without her support to implement the tool, the presented theories
would not have been applicable. This complemented our joy in doing research,
and motivated us to continue it as much as we can. Co-authors Mohammad Reza
Mousavi, Ramtin Khosravi, and Behnaz Yousefi contributed to parts of my thesis.
I enjoyed our fruitful discussions and hope to continue our cooperations in the
future. Thanks go to the Software Engineering Department of the University of
Tehran for their support in reducing my load whenever it was possible.

I gratefully acknowledge the members of the reading committee of my thesis,
Farhad Arbab, Jan Bergstra, Jan Friso Groote, Massimo Merro, and Femke van
Raansdonk, for their constructive comments and questions.

Rena Bakhshi and Cynthia Kop shared their office with me during my visit to
the Vrije Universiteit Amsterdam in October 2009. Our friendly discussions are
still a part of my best memories during this visit.

My special thanks go to my parents and Hassan’s parents. Without their sup-
port to look after Rayan I would not have been able to focus on my work. I would
like to express my highest gratitude to my beloved ones, Hassan and Rayan. They
help me tolerate all the pressures and calm down when I am fully stressed. To
Hassan, for being understanding, listening to my complaints when I encountered
a flaw in a proof, and much more... To Rayan, for tolerating my absence when
he needed me.

Contents

1 Introduction 1
1.1 Problem Statement . 2
1.2 Analysis Approaches for MANET Protocols 3
1.3 Modeling Issues and Challenges 4
1.4 Related Work . 5
1.5 Assumptions, Objective, and Results 7
1.6 Organization of Chapters . 9
1.7 Origins of the Chapters . 10

2 Preliminaries 11
2.1 Labeled Transition Systems and Semantic Equivalence Relations . 11
2.2 Semantic Model: Constrained Labeled Transition Systems 12

2.2.1 Unfolding a CLTS into an LTS 13
2.3 Computed Network Process Theory 15

2.3.1 Data Types . 15
2.3.2 CNT Syntax and Semantics 16
2.3.3 Rooted Branching Computed Network Bisimilarity 20
2.3.4 Axioms . 21
2.3.5 Symbolic Verification . 25

2.4 Actor Model and the Rebeca Language 32

3 Reliable Restricted Broadcast Process Theory 37
3.1 Extending Network Constraints 39

3.1.1 Reliable versus Unreliable Communication 39
3.1.2 Unfolding a CLTS into an LTS 40

3.2 Syntax and semantics of RRBPT 40
3.2.1 Operational Semantics . 42

3.3 Rooted Branching Reliable Computed Network Bisimilarity 44
3.4 Axioms . 46
3.5 Case Study: a Simple Routing Protocol 52

3.5.1 Protocol Specification . 52
3.5.2 Protocol Analysis . 55

3.6 Case Study: Leader Election Algorithm 58

I

3.6.1 Protocol Specification . 58
3.6.2 Tool Support . 62
3.6.3 Protocol Analysis . 65

3.7 Related Work . 65
3.7.1 Modeling Issues . 66
3.7.2 Analysis Approaches . 69

3.8 Conclusion . 70

4 Wireless Rebeca 73
4.1 Counter Abstraction . 75
4.2 Modeling Topology and Mobility 76
4.3 wRebeca: Syntax and Semantics 77

4.3.1 Syntax . 77
4.3.2 Semantics . 79

4.4 Semantic Reduction Techniques 85
4.4.1 Applying Counter Abstraction 85
4.4.2 Eliminating τ -Transitions 90

4.5 Modeling the AODVv2 Protocol 92
4.5.1 Evaluating Route Messages 96
4.5.2 Updating the Routing Table 96
4.5.3 rreq Message Server . 97
4.5.4 rrep Message Server . 100
4.5.5 rerr Message Server . 102
4.5.6 newpkt Message Server . 102

4.6 Evaluation . 102
4.6.1 State Space Generation 104
4.6.2 Tool Support . 107
4.6.3 Model Checking of the AODV Protocol Properties 108

4.7 Related Work . 111
4.8 Conclusion . 112

5 Model Checking MANETs 115
5.1 Restricting Semantics with Network Constraints 116
5.2 Constrained Action Computation Tree Logic (CACTL) 117

5.2.1 Motivating Example . 117
5.2.2 CACTL Syntax . 118
5.2.3 CACTL Semantics . 121

5.3 Model Checking Algorithms . 121
5.3.1 Model Checking EU Formulae 122
5.3.2 Model Checking AU Formulae 124
5.3.3 Model Checking EW Formulae 128
5.3.4 Model Checking AW Formulae 129

5.4 Protocol Analysis with CACTL . 129
5.4.1 Checking the Packet Delivery Property of AODV 130

II

5.4.2 Verification of the Leader Election Algorithm 131
5.5 Related Work . 132
5.6 Conclusion . 133

6 Product Line Process Theory 135
6.1 PL-CCS : Syntax and Semantics 139

6.1.1 PL-CCS: Syntax . 139
6.1.2 PL-CCS Semantics . 141

6.2 Bisimilarity for Product Line . 143
6.2.1 Equivalence Relation . 144
6.2.2 Congruence Property . 149

6.3 Equational Reasoning on PL-CCS Terms 151
6.3.1 Extending PL-CCS Framework 152
6.3.2 PL-CCS Axiomatization 152
6.3.3 Completeness of the Axiomatization for Finite-state Behav-

iors . 156
6.4 Product Line Analysis . 156

6.4.1 Deriving Products of a Family 157
6.4.2 Restructuring a Product Family 158

6.5 Logical Characterization . 160
6.5.1 Multi-Valued Modal µ-Calculus 161
6.5.2 Relation to Product Line Bisimilarity 162

6.6 Related Work . 162
6.7 Conclusions and Future Work . 164

7 Concluding Remarks 167
7.1 Results . 167
7.2 Future Work . 169

Bibliography 171

A Proofs of Chapter 3 185
A.1 Proof of Theorem 3.2 . 185
A.2 Proof of Theorem 3.5 . 189
A.3 Soundness of RCNT Axiomatization 194
A.4 Completeness of RCNT Axiomatization 196
A.5 Proofs of Section 3.5.2 . 197

A.5.1 Proof of Theorem 3.7 . 197
A.5.2 Proof of Proposition 3.8 199

B Proofs of Chapter 6 201
B.1 Proofs of Theorems 6.5, 6.10, and 6.12 201

B.1.1 Proof of Theorem 6.5 . 201
B.1.2 Proof of Theorem 6.12 . 201

III

B.1.3 Proof of Theorem 6.10 . 206
B.2 Proof of Theorem 6.13 and 6.20 209
B.3 Soundness of Axiomatization . 211
B.4 Ground-Completeness of Axiomatization 213
B.5 Proof of Theorem 6.24 . 215

Summary 219

Samenvatting 221

IV

1Introduction

Applicability of wireless communications is rapidly growing in areas such as
home networks and satellite transmissions due to their high accessibility and
low cost. Wireless communication has a broadcasting nature, as messages sent
by each node can be received by all nodes in its transmission range, called local
broadcast. Therefore, by paying the cost of one transmission, several nodes may
receive the message, which leads to lower energy consumption for the sender
and throughput improvement [43].

Mobile ad hoc networks (MANETs) consist of several portable hosts with no
pre-existing infrastructure, such as routers in wired networks or access points in
managed (infrastructure) wireless networks. Two nodes can effectively commu-
nicate if they are located in the communication range of each other. For unicas-
ting a message to a specific node beyond the transmission range of a node, it is
needed to relay the message by some intermediate nodes to reach the desired
destination. In such networks, nodes can freely change their locations, so the
network topology is constantly changing. Due to the lack of any pre-designed in-
frastructure and global network topology information, network functions such as
routing protocols are devised in a completely distributed manner and adaptive to
cope with topology changes. Topology-dependent behavior of wireless communi-
cation, distribution and adaptation requirements make the design of MANET pro-
tocols complicated and more in need of formal modeling and verification for any
possible topology and its changes so that it can be trusted to work correctly. For
instance, MANET protocols like the Ad hoc On Demand Distance Vector (AODV)
routing protocol [125] have been revised as new failure scenarios were experi-
enced or errors were found in the protocol design [25, 62, 120]. Some works
model and analyze the correctness of MANET protocols using existing formal
frameworks such as SPIN [25, 50, 151] and UPPAAL [32, 63, 80, 113, 151, 152].
The modeling approach using existing formalisms can be summarized as follows:
The underlying topology is modeled by a two-dimensional array of Booleans, mo-
bility by explicit manipulation of this matrix, and local broadcast by unicasting
to all nodes with whom the sending node is presently connected, using the con-
nectivity matrix. Verification tends to be based on model checking techniques
restricted to a pre-specified mobility scenario. Lack of support for compositional
modeling and arbitrary topology changes motivates us to develop a new ap-

1

2 Chapter 1 — Introduction

proach, tailored to the domain of MANETs, with a primitive for local broadcast
and support of arbitrary mobility to examine resistance/adaptation of MANET
protocols to changes of the underlying topology.

This chapter is structured as follows. In Section 1.1, the main problem of the
thesis is stated. In Section 1.2, the analysis approaches of MANET protocols are
explained. The main modeling challenges of MANET protocols that should be
supported are presented in Section 1.3. In Section 1.4, the works on analysis of
MANETs are explored. The main objectives followed in this thesis are introduced
in Section 1.5. Finally in Sections 1.6 and 1.7, we explain the structure and
origin of each chapter, respectively.

1.1 Problem Statement

Domain-specific modeling and verification frameworks are advantageous as they
reduce the labor of modeling by providing suitable means to specify special con-
cepts in the domain and the level of abstraction that a modeler should focus on.
The means of wireless communication in MANETs, which depends on the un-
derlying topology, together with topology changes trigger a new demand for a
domain specific framework which supports modular and compositional specifi-
cation as well as analysis of such networks. Since mobility is the intrinsic char-
acteristic of MANET nodes, a protocol should be robust in spite of any arbitrary
topology changes. Therefore, the domain specific framework should support an-
alyzing the correctness of protocols taking topology changes into account.

Regarding the Open Systems Interconnection (OSI) model, network proto-
cols can be classified into seven layers: physical, data link, network, transport,
session, presentation, and application. However, in practise, there are only four
layers: data link, network, transport, and application [59]. Each layer provides a
set of services to the layer directly above it. The tailored framework should pro-
vide suitable abstractions for the protocols on which we are going to focus our
analysis. For instance, the wireless communication service varies at the different
layers. The data link layer is responsible for transferring data across the physical
link. It consists of two sublayers: Logical Link Control sublayer (LLC) and Me-
dia Access Control sublayer (MAC). LLC is mainly responsible for multiplexing
packets to their protocol stacks identified by their IPs, while MAC manages ac-
cesses to prevent/reduce conflicts of messages that are sent simultaneously over
the shared media. In contrast, communication at the network layer uses the
service of the MAC sublayer, and hence provides point-to-point communication
between two nodes that are not directly connected through appropriate routing
of messages.

We focus on the formal modeling and analysis of protocols above the data link
layer such as routing protocols. Therefore, two main problems are distinguished:
1) the modeling of topology, its changes and its interference with the wireless
communication to minimize the problem of state space explosion for small net-

1.2. Analysis Approaches for MANET Protocols 3

works, 2) Formal analysis of a protocol taking topology changes into account
to identify scenarios leading to its malfunction. These two problems are closely
intertwined: to reduce the effect of modeling the topology on the size of the
semantic model, the level of abstraction is increased, which requires novel ideas
to either exploit existing analysis techniques or provide a tailored analysis tech-
nique. Considering protocols at the data link layer requires the modeling of
conflicts among the messages which make the framework much more complex.
Furthermore, to model a protocol at a higher level, there is a need to abstractly
specify the services of each layer. For instance, to model an application layer pro-
tocol like leader election, routing services of the network layer can be abstractly
modeled by specifying the flooding-based routing protocol as a part of the model.

1.2 Analysis Approaches for MANET Protocols

Our analysis of MANET protocols targets qualitative properties. For instance,
“Will all nodes finally have a leader which is the one with the maximum value in
their connected component?” or “Will always data sent by a source to a destina-
tion be successfully received by the destination if there exists an end-to-end route
between them for a sufficiently long period of time?”. We remark that proper-
ties satisfied by MANETs tend to be weaker than those of wired networks. This
is due to the topology-dependent behavior of communication, and consequently
the need for multi-hop communication between nodes.

Generally speaking, analysis approaches of network protocols can be classi-
fied into two classes: simulation and formal verification. Protocols applied in
MANETs are usually tested by means of simulation. In simulation, a network
of nodes is modeled and then run for a set of scenarios in a specific simulation
environment. In each scenario, the set of events generated by the nodes are
specified. The simulation environment can take into account the physical area
in which nodes are located, the time duration of simulation, the physical charac-
teristics of nodes, and a node mobility model. Such a model defines the speed
and movement direction of a node at each time. As the number of scenarios are
restricted, by simulation one cannot explore all conditions that are required to
hold for such systems. Formal verification methods can be used to model such
networks, and then verify them using (semi-)automated model checking or the-
orem prover techniques or rigorous analytical approaches.

The model checking technique is a successful approach in verifying small-
to medium-sized systems. In this approach, the desired properties of a system
are verified on the basis of a suitable model of the system. As the complexity
of a system grows, it encounters the state space explosion problem, meaning
that the state space of a system grows exponentially with the number of com-
ponents in the system. The mix of broadcast behavior and mobility in MANETs
leads to state space explosion, hampering the application of such technique for
even small-sized networks, e.g., a network of four nodes each deploying a leader

4 Chapter 1 — Introduction

election protocol. There are several formal frameworks that aid in preparing the
model of a system in such a way that the resulting state space remains small.
For instance, in actor-based modeling languages, the coarse-grained executions
of message handlers prevent unnecessary interleaving of the internal actions of
a node with others. The level of abstraction in these languages is very useful
to designers for the rapid development of MANET protocols, as they only focus
on how messages should be processed, regardless of how they are received or
queued. However, the fine-grained executions of message handlers in a process
algebraic framework make the generation of semantic models very challenging.
Furthermore, techniques like symmetry reduction [35], counter abstraction [56],
and partial-order reduction [124] alleviate the state space explosion problem.

The theorem proving technique is applicable for large networks. In this ap-
proach, a proof is derived for the desired assertion about the system, given a set
of axioms (about a system and modeling framework) and inference rules. Al-
though this approach can be mechanized by a set of available theorem prover
tools, it requires a considerable amount of user involvement. On the other hand,
the axioms about a system can be proved with the help of model checking tech-
nique with relatively little effort. For instance, a predicate about MANETs can be
verified automatically for a fixed set of topologies using a model checking tool.
The combination of model checking and theorem proving techniques allows to
prove a predicate about a MANET protocol with regard to arbitrary topologies
[25].

In a rigorous analytical approach, a mathematical model of a system is built
using a set of abstractions based on mathematical network theory, optimization,
statical mechanics, graph theory and so on. For instance, in [10] gossip protocols
are evaluated using the mean field abstraction technique [13] inspired from the-
ory of epidemics. This approach scales well when the size of a network increases,
but provides a very abstract view on the system.

1.3 Modeling Issues and Challenges

To model protocols above the data link layer, the core services of this layer, i.e.,
local broadcast as the primitive means of communication, should be supported
by the modeling language either by including a local broadcast primitive or by
being able to deal with such a notation. The same discussion holds for other
services such as unicast and multicast. To this aim, the attributes of such services
should be considered: Wireless communications at this layer are non-blocking,
i.e., the sender broadcasts irrespective to the readiness of its receivers and is
asynchronous, i.e., the received packets are buffered at the receivers, and (the
data link layer of) each node processes the packet if it is an intended destination
(in case of unicast/multicast). Thus if a node is busy processing a message, it
will receive the message and process it later.

We remark that if two disconnected nodes broadcast simultaneously with a

1.4. Related Work 5

common node in their range, the node cannot receive both messages, called the
hidden node problem. To prevent/avoid such a problem, some services are pro-
vided at the layer. Hence, unicast can be either lossy or reliable. When unicast
is reliable, the intended receiver successfully receives the packet. In other words,
message delivery is guaranteed to the ready receivers. A reliable local broadcast
can be implemented by unicasting to all the neighbors of a node. Defining the
local broadcast primitive as non-blocking in a reliable setting is not straightfor-
ward.

Another service of the data link layer is neighbor discovery, by which a node
becomes aware of its connection topology. The neighbor discovery protocol is
implemented by periodically sending hello messages and acknowledging such
messages received from a neighbor. Modeling such a service in the framework
obviates the explicit modeling of this service as a part of the specification, and
consequently makes modeling of protocols easier. Modeling such services in not
easy when the underlying topology is not explicitly modeled by the specification.

The behavior of local broadcast depends on the topology concept. Mobility is
the intrinsic characteristic of MANET nodes and network protocols have no con-
trol over the movement of MANET nodes, and hence, to analyze the behavior of a
protocol in the presence of mobility, topology changes should be arbitrary. How-
ever, arbitrary changes of topologies make state spaces grow with a factor of 2n

2

which prohibits inspection of MANETs of even small sizes. Hence, either some
suitable abreactions should be provided to avoid such a growth or some reduc-
tion techniques should be provided. The behavior of a network mainly depends
on the local knowledge of the nodes about the network. Hence, data values and
inference procedures over such data should be supported by the modeling frame-
work. However, data makes analysis of MANETs via model checking technique
challenging due to the infinite domain of data. Mobility, arbitrary changes of
topology, and data modeling are all the source of state space explosion. Hence,
providing reduction techniques to generate the semantic model is inevitable to
make model checking feasible in the domain of MANETs. Furthermore, MANET
protocols are supposed to be applied in large-scale networks. Hence, theorem
prover technique will form an important ingredient for analysis of such networks.
Providing a suitable mechanism in a modeling framework to make application of
such a technique feasible is an important issue.

1.4 Related Work

This section provides a brief overview of the formal verification techniques that
have been applied to analyze MANET protocols.

The SPIN model checker has been applied in [25, 50, 151] to verify routing
protocols in ad hoc networks, namely the Wireless Adaptive Routing Protocol
(WARP) [103], Lightweight Underlay Network Ad hoc Routing [142] (LUNAR),
and Distance Vector Routing [125] (AODV) Protocol. In a SPIN model, node

6 Chapter 1 — Introduction

connectivity is modeled with the help of PROMELA channels, one for each node.
Mobility is modeled by the case selection instruction provided by PROMELA, for
modeling nondeterminism. In the initialization section, possible links to other
neighbours are defined as different cases that all will be checked for a model.
Since it does not provide a specific technique to reduce the state space, its state
space grows very fast and it is only feasible to check small topologies. Therefore,
models would be limited to use fewer number of nodes. In [25], the theorem
prover HOL1 was used to generalize the desired properties of AODV to networks
with any number of nodes. As we mentioned earlier, this approach needs a
considerable amount of user involvement and cannot be easily exercised.

UPPAAL has been applied in [32, 63, 80, 113, 151, 152] to verify real-time
aspects of routing protocols in MANETs as a network of timed automata. In UP-
PAAL, connectivity is modeled through a set of arrays of booleans, while changing
topology is modeled by a separate automaton which manipulates the arrays. In
[151], a case study was carried out to evaluate two model checkers, SPIN and
UPPAAL. Due to state space explosion, the analysis was limited to some special
mobility scenarios (as a part of the specification).

The backoff algorithm for MANETs was verified using PEPA, a stochastic pro-
cess algebra, in [130]. In this approach the topology of the network is static and
broadcast is implemented by unicasting to all nodes connected to the sender. As
explained in [57], from a theoretical point view, compositionality is not preserved
if broadcast is encoded in calculi based on point-to-point communications.

As we explained before, existing standard tools cannot be used in a composi-
tional way, i.e., increasing the network size triggers a need for revising and ad-
justing the modeled topology and mobility scenarios. Lack of support for compo-
sitional modeling and arbitrary topology changes has motivated new approaches
with a primitive for local broadcast and support of arbitrary mobility in an alge-
braic way. These approaches include CBS# [121], CWS [117], CMAN [78, 79],
CMN [115, 116], bKlaim [122], ω-calculus [137], SCWN [81], CSDT [104],
AWN [64] and its timed extension [30], and the broadcast psi-calculi [27]. We
compare these approaches in detail in Section 3.7 and discuss how each ap-
proach tackles the modeling challenges of MANETs, as discussed in Section 1.3:
local broadcast, neighbor discovery, data, the underlying topology, mobility, and
their analysis approach.

There are different approaches [2, 51, 52] with the aim to analyze networks
with an infinite number of nodes, where nodes execute an instance of a net-
work process. A network configuration is represented as a graph in which each
individual node represents a state of the process. The behavior of a process is
modeled by an automaton. The network configuration transforms due to either
the process evolution at a network node or the topology reconfiguration. Verifica-
tion of safety properties, reaching to an undesirable configuration starting from
an initial configuration, is parameterized due to any possible number of nodes

1http://hol.sourceforge.net/

http://hol.sourceforge.net/

1.5. Assumptions, Objective, and Results 7

and connectivity among them. It is proved that the problem of parameterized
safety properties, the so-called control states reachability problem, is undecidable.
However, that problem turns out to be decidable for the class of bounded path
graphs [51, 52]. Decidability of the problem was also considered when configu-
rations evolve due to discrete/continuous clocks at processes [2]. Furthermore,
an inductive approach based on reduction to prove compositional invariants for
the dynamic process networks was presented in [119]. This approach reduces
the calculation of a compositional invariant to a smallest representative network
through setting up a collection of local symmetry relations between nodes, specif-
ically defined for each problem. The computed non-dynamic compositional in-
variant on the representative network is generalized for the entire dynamic net-
work family when the non-dynamic invariant is preserved by any reaction to a
dynamic change in the network. Another approach is based on graph transfor-
mation systems, where network configurations are hypergraphs and transitions
are specified by graph rewriting rules, modeling the dynamic behavior of a proto-
col. Safety properties are symbolically specified by graph patterns, a generalized
form of hypergraphs with negative conditions. To verify that any bad configu-
ration, specified by a pattern, is not reachable from an initial configuration, a
symbolic backward reachability analysis is introduced, which is not guaranteed to
terminate due to the undecidability of the problem [134]. In this analysis, an
over-approximation of the set of configurations preceding a bad configuration
is computed until no new preceding configuration be generated, and then it is
checked that this set contains no initial configuration. The preceding configura-
tions are approximately computed from a given pattern and a set of graph rules.
Due to the existence of negative conditions in the pattern, such a preceding set
cannot be computed exactly.

1.5 Assumptions, Objective, and Results

We explained our overall research question in Section 1.1: the formal modeling
and analysis of MANET protocols taking topology changes into account so that
their state spaces grow only moderately, and verification approaches can cope
with the topology and it arbitrary changes. To address this problem while the
mentioned challenges are covered, we formulate a number of smaller research
questions and how they are addressed in this thesis.

As network protocols have no control over the movement of MANET nodes,
topology changes cannot be specified as a part of the specification. The first
objective of this thesis is to investigate how the arbitrary mobility of nodes can be
addressed compactly at the semantic level such that not only it supports efficient
analysis of protocols through model checking, but also modeling frameworks
can be easily defined over it. To this aim, we introduce constrained labeled
transition systems (CLTSs) in which transitions are annotated by constraints over
the underlying topology, called network constraints, to restrict the behaviors of a

8 Chapter 1 — Introduction

network to those topologies that satisfy the constraints.
With the aim to design/analyze MANET protocols above the data link layer

such as routing protocols, the second objective of this thesis is providing frame-
works applicable for modeling and analyzing real-world MANET protocols above
the data link layer. To this end, two modeling approaches, which are different
in their computation model, are followed: the algebraic and actor-based ap-
proaches. The former yields an equational reasoning technique which is the best
choice when the number of nodes is infinite, to overcome the state space ex-
plosion problem. Furthermore, it can be orthogonally extended with equational
abstract data types [55], following the approach of [84, 85]. The actor-based
approach supports a higher level of abstraction due to its asynchronous compu-
tation model and efficient semantic generation due to its coarse-grained execu-
tions of message handlers. However it restricts us to model checking techniques,
which raises new objectives: how the semantic model of a specification can be
generated efficiently to make model checking techniques feasible, and how the
model checking technique can be extended to the proposed CLTSs. We cover
the former challenge by extending the counter abstraction reduction technique
[56] by considering the topological relations among the nodes in a network. The
latter objective is satisfied by introducing a new logic and its model checking
algorithm, which efficiently verifies topology-dependent behaviors of MANETs.

In both frameworks, we provide local broadcast (of the MAC layer) as the
means of communication. With the aim to detect malfunctions of a MANET
protocol caused by conceptual mistakes in the protocol design, rather than by
an unreliable communication, we consider local broadcast to be reliable and
non-blocking while message delivery is guaranteed for the ready receivers in
the range. We assume that unicast and multicast can be modeled through lo-
cal broadcast and message parameters. Furthermore, we do not consider timing
issues of protocols. We restrict our models to ones with a fixed and known num-
ber of nodes, and hence they boil down to finite-state problems, making model
checking feasible.

Software product line (SPL) engineering has become an established trend in
software development, where a family of similar software products with minor
differences, called variability, are developed in tandem, instead of developing
each specific software product separately [128]. Product Line Calculus of Com-
municating Systems (PL-CCS) [89, 90] is an extension of Milner’s Calculus of
Communicating Systems (CCS) [118] for behavioral modeling of SPLs, in which
variability can be explicitly modeled by a binary variant operator. The semantic
models of PL-CCS capture the behavior of a product family at once for all the
products whose transitions are annotated by restrictions over the configuration
of SPL. A MANET protocol can be interpreted as a product family that behaves
according to the underlying topology configuration. Similarities between the
two semantic models generate the next objective: can the results of our algebraic
framework be reused/extended to the semantic model of PL-CCS to furnish this
framework with a proper equational theory.

1.6. Organization of Chapters 9

1.6 Organization of Chapters

The thesis is organized in seven chapters. We explain in some detail the contents
of each chapter.

Chapter 2: Preliminaries. This chapter introduces our semantic model, CLTSs.
Initially, this semantic model only supports lossy communications by only consid-
ering the connectivity restrictions over the underlying network. It explains how
the mobility is implicitly and compactly addressed at the semantic model. Then,
computed network process theory (CNT), which was introduced for the modeling
and verifying MANET protocols, is briefly reviewed.

Chapter 3: Reliable Restricted Broadcast Process Theory. This chapter ex-
tends CLTSs with negative constraints over the topology. Then, it modifies the
core operators of CNT to support reliable communication, while a new operator
abstracting the neighbor discovery service is introduced. Finally to illustrate the
applicability of our framework, a leader election protocol for MANETs is speci-
fied.

Chapter 4: Wireless-Rebeca (WRebeca). This chapter introduces our actor-
based modeling framework, based on the Rebeca language. It provides two
reduction techniques to minimize semantic models to make their verification
amenable. Then, it evaluates effectiveness of the proposed reduction technique
through two routing protocols: flooding-based and AODV. It demonstrates the
usability of the framework through the modeling and analysis of AODV, and re-
ports a loop formation scenario in AODV, found by our analysis tool. This has led
to an adaptation of the AODVv2 protocol, published in version 13.

Chapter 5: Model Checking MANETSs. This chapter introduces a branching-
time temporal logic to specify the topology-dependent behaviors of MANET pro-
tocols. Then, it presents its model checking algorithm over CLTSs. The appli-
cability of the logic and its model checking algorithm is inspected through the
verification of a set of properties for the leader election and AODV protocols.

Chapter 6: Product Line Process Theory. This chapter briefly explain PL-CCS,
and studies different notions of behavioral equivalence for PL-CCS. These notions
enable reasoning about the behavior of SPLs at different levels of abstraction. It
discusses the compositionality property and the mutual relationship among these
notions. It further shows how the strengths of these notions can be consolidated
in an equational reasoning method. Finally, it formulates notions of behavioral
equivalence that are characterized by the property specification language for PL-
CCS, called multi-valued modal µ-calculus.

Chapter 7: Concluding Remarks. This chapter summarizes the main results of
this thesis and discusses future work.

Together with Chapter 2, all the Chapters 3-6 can be read separately; each

10 Chapter 1 — Introduction

includes its own specific background, related work, and conclusion.

1.7 Origins of the Chapters

Chapter 2 is based on the journal papers [73, 74], written together with Wan
Fokkink and Ali Movaghar. These journal papers are the extension of the confer-
ence papers [71, 72], respectively.

Chapter 3 is composed of the journal paper [69] together with Sections 3, 4,
and subsections 7.1.1 and 7.1.3 of the journal paper [70], both written together
with Wan Fokkink.

Chapter 4 is based on the journal paper [156], written together with Behnaz
Yousefi and Ramtin Khosravi.

Chapter 5 is composed of Sections 5, 6 and subsections 7.1.2 of the journal
paper [70].

Chapter 6 is based on the journal paper [75], written together with Moham-
mad Reza Mousavi.

2Preliminaries

In this chapter we introduce our proposed semantic model, Constrained Labeled
Transition Systems (CLTSs), suitable for modeling the behavior of MANETs. Our
semantic model is achieved by enriching the labels of Labeled Transition Systems
(LTSs), the classical semantic model of systems, with network constraints. Net-
work constraints specify restrictions over the underlying topology of the network
for which the behavior, i.e., the transition, is valid. We explain how the enriched
semantic model can abstractly address mobility and topology-dependent behav-
ior of MANETs. Next, we introduce Computed Network Process Theory (CNT),
the framework suitable for modeling and verification of MANETs in an algebraic
approach, using the notion of branching computed network bisimilarity. We pro-
vide a sound and complete axiomatization for networks with finite-state behav-
iors. Furthermore, we show how by equational theory one can reason about
MANETs consisting of a finite but unbounded set of nodes, in which all nodes
deploy the same protocol. At the end we briefly explain the Actors, a model of
concurrent computation for developing parallel, distributed and mobile systems,
and then Rebeca, an actor-based modeling language.

2.1 Labeled Transition Systems and Semantic Equivalence
Relations

Labeled transition systems are the classical semantic models used to formally
model hardware and software systems. A labeled transition system (LTS) is de-
fined by the quadruple 〈S,→, L, s0〉 where S is a set of states, →⊆ S × L × S
a set of transitions, L a set of labels, and s0 the initial state. Let s α−→ t denote
(s, α, t) ∈→. Many equivalence relations are defined over LTSs to reason about
the behaviors of two systems [147]. Strong bisimulation [118] is the finest rela-
tion which expresses that two LTSs are equivalent if they produce the same set
of actions (observable behavior) and have the same branching structure

Definition 2.1 (Strong Bisimilarity). A binary relation R ⊆ S × S is called a
strong bisimulation if and only if, for any s1, s

′
1, s2, and s′2 and α ∈ L, the

following transfer conditions hold:

11

12 Chapter 2 — Preliminaries

• s1 R s2 ∧ s1
α−→ s′1 ⇒ (∃s′2 ∈ S : s2

α−→ s′2 ∧ s′1 R s′2),

• s1 R s2 ∧ s2
α−→ s′2 ⇒ (∃s′1 ∈ S : s1

α−→ s′1 ∧ s′1 R s′2).

Two states s and t are called strongly bisimilar, denoted by s ∼ t, if and only if
there is a strong bisimulation relating s and t.

To reason about systems whose internal behaviors have been abstracted by
turning such behaviors into un-observable τ -transitions, some coarser relations
are used, which ignore such transitions. Branching bisimilarity [76] is the finest
relation. Let τ−→∗ be reflexive and transitive closure of τ -transitions:

• t
τ−→∗ t;

• t
τ−→∗ s, and s τ−→ r, then t τ−→∗ r.

Definition 2.2 (Branching Bisimilarity). A binary relation R ⊆ S × S is called a
branching bisimulation if and only if, for any s1, s

′
1, s2, and s′2 and α ∈ L, the

following transfer conditions hold:

• s1 R s2 ∧ s1
α−→ s′1 ⇒ ((α = τ ∧ s′1 R s2) ∨ (∃s′2, s′′2 ∈ S : s2

τ−→∗ s′′2
α−→

s′2 ∧ s1 R s′′2 ∧ s′1 R s′2)),

• s1 R s2 ∧ s2
α−→ s′2 ⇒ ((α = τ ∧ s1 R s′2) ∨ (∃s′1, s′′1 ∈ S : s1

τ−→∗ s′′1
α−→

s′1 ∧ s′′1 R s2 ∧ s′1 R s′2)).

Two states s and t are called branching bisimilar, denoted by s 'br t, if and only
if there exists a branching bisimulation relating s and t.

2.2 Semantic Model: Constrained Labeled Transition Systems

Communication in wireless networks tends to be based on local (also called re-
stricted) broadcast: Only nodes that are located in the transmission area of a
sender can receive messages from this sender. A node B is directly connected to
a node A if B is located within the transmission range of A. This asymmetric
connectivity relation between nodes introduces a topology concept. A topology
is a function γ : Loc → IP (Loc) with ∀` ∈ Loc (` 6∈ γ(`)), where Loc denotes a
finite set of (hardware) addresses A, B, C ranged over by `. The set Loc is ex-
tended with the unknown address ? to represent the address of a node which is
still not known or concealed from an external observer. For instance, the leader
address of a node can be initialized to this value. Furthermore, to define the
semantics of communicating nodes in terms of restrictions over the topology in
a compositional way, the semantics of receive actions can be defined through an
unknown sender, which will be replaced by a known address when the receive
actions are composed with the corresponding send action at a specific node (see
Section 2.3.2).

2.2. Semantic Model: Constrained Labeled Transition Systems 13

Constrained labeled transition systems (CLTSs) provide a semantic model for
the operational behavior of MANETs. A transition label is a pair of an action and
a network constraint, restricting the range of possible underlying topologies. A
network constraint C is a set of connectivity pairs : Loc×Loc. For instance, B
A denotes that A is connected to B directly and consequently A can receive data
sent by B (note that the direction of implies the direction of data flow), while
? A denotes that A should be in the range of a node with an unknown address
to receive data. We write {B A,C} instead of {B A, B C}. This constraint
accompanies the send action of B. Exclusion of B D from {B A,C} implies
that (1)D is not connected to B, or (2) it was connected but missed the sent data
of B due to noises in the environment, or (3) we currently don’t know anything
about D due to its failure and thus its link is of no importance. We remark that
the relation need not be reflexive, symmetric, and transitive.

Let C(Loc) denote the set of network constraints that can be defined over
the network addresses in Loc. A network constraint C is said to be well-formed
if ∀` ∈ Loc (` ? 6∈ C), because the receivers should be always known. Let
Cv(Loc) ⊆ C(Loc) denote the set of well-formed network constraints that can be
defined over the network addresses in Loc. Each well-formed network constraint
C represents the set of network topologies that satisfy the connectivity pairs in
C, i.e., Γ(C) = {γ | C ⊆ C+

Γ (γ)}, where C+
Γ (γ) = {` `′ | `′ ∈ γ(`)} extracts all

one-hop connectivity information from γ. So the empty network constraint {}
denotes all possible topologies over Loc.

Let Msg denote a set of messages communicated over a network and ranged
over by m. Let Act be the network send and receive actions with signatures
nsnd : Msg × Loc and nrcv : Msg , respectively. The send action nsnd(m, `)
denotes that the message m is transmitted from a node with the address `, while
the receive action nrcv(m) denotes that the message m is ready to be received.
Let Actτ = Act ∪ {τ}, ranged over by η.

Definition 2.3. A CLTS is defined by a tuple 〈S,Λ,→, s0〉, with S a set of states,
Λ ⊆ Cv(Loc)× Actτ ,→⊆ S × Λ× S a transition relation, and s0 ∈ S the initial

state. A transition (s, (C, η), s′) ∈→ is denoted by s
(C,η)−−−−→ s′.

Generally speaking, the transition s
(C,η)−−−−→ s′ expresses that a MANET pro-

tocol in state s with an underlying topology γ ∈ Γ(C) can perform action η to
evolve to state s′.

2.2.1 Unfolding a CLTS into an LTS

Mobility of nodes is modeled implicitly by a CLTS. For example, consider the CLTS
in left of the Fig. 2.1. In state s0, A sends a req message; in case B is connected
to A and their communication is successful, there is a transition to state s1, oth-
erwise to state s2. In other words, B may be disconnected from A, or connected
to A, but B has not successfully received the message. Thus, s1 represents that

14 Chapter 2 — Preliminaries

a message has been received by B. In this state, B sends a rep message; in case
A is connected to B and their communication is successful, there is a transition
to state s0, otherwise to state s2, which is a deadlock state. In each state, the un-
derlying topology can implicitly change, and a behavior (i.e., transition) is only
possible if the underlying topology belongs to the network constraint that the be-
havior under consideration is restricted to. Thus the CLTS models the behavior
of the MANET compactly while mobility is modeled implicitly.

s0 s1

s2

s0, γ1 s0, γ2

s0, γ4 s0, γ3

s1, γ2 s1, γ1

s1, γ3 s1, γ4

s2, γ4 s2, γ3

s2, γ2 s2, γ1

ττ

τ τ
τττ

τ

ττ

τ τ
τττ

τ

ττ

τ τ
τττ

τ

nsnd(req, A)

nsnd(req, A)

nsnd(rep, B)

nsnd(rep, B)

nsnd(req, A)
nsnd(req, A)

nsn
d(r

ep
, B

)
nsnd(rep, B)

nsnd(req, A
)

n
sn

d
(req

,
A

)

nsnd(re
p,
B)

n
sn

d
(r

ep
, B

)

({A B}, nsnd(req, A))

({}
,
n
sn

d
(req

,
A

))

({B A}, nsnd(rep, B))

({
},

n
sn

d
(r

ep
,
B

))

Figure 2.1: A CLTS and its unfolded LTS. The τ -transitions model arbitrary mobility of
nodes. The dotted transitions distinguish unsuccessful communications despite of node
connectivity.

The given CLTS is unfolded into an LTS, whereby the network constrains are
omitted and the underlying topology is made explicit in each state. Transfor-
mations of the topology are modeled by means of τ -transitions. We present the
unfolding of a CLTS into an LTS here, to clarify the meaning of CLTSs, and to
illustrate how the unfolding grows as the number of nodes in the MANET in-
creases.

Let Loc = {A,B}, so that the possible topologies are γ1 = {A 7→ {B}, B 7→ ∅},
γ2 = {A 7→ {B}, B 7→ {A}}, γ3 = {A 7→ ∅, B 7→ {A}}, and γ4 = {A 7→ ∅, B 7→ ∅}. The
three states s0, s1, s2 are paired with the four possible topologies γ1, γ2, γ3, γ4,
leading to twelve states in total, as shown in right of the Fig. 2.1. Formally
speaking, the given CLTS 〈S,Λ,→, s0〉, where Λ ⊆ Cv(Loc) × Actτ and →⊆
S × Λ × S, is unfolded into the LTS 〈S × Γ,Actτ ,→, s0 × Γ〉, where Γ is the
set of possible topologies over Loc and →⊆ S × Γ × Actτ × S × Γ is the set of

2.3. Computed Network Process Theory 15

transitions such that s, γ
η−→ s′, γ if s

C,η−−→ s′ with γ ∈ Γ(C), and s, γ
τ−→ s, γ′

for all γ′ ∈ Γ \ {γ}. As illustrated, the number of states and transitions grows
exponentially as the number of nodes increases, since the number of topologies
is exponential in the number of nodes.

2.3 Computed Network Process Theory

Computed Network Process Theory (CNT) is an extension of Restricted Broadcast
Process Theory (RBPT) [71] with so-called computed network terms and auxiliary
operators. It provides a sound and complete axiom system, modulo so-called
rooted (branching computed) network bisimilarity.

Network protocols (in particular MANET protocols) rely on data. To separate
the manipulation of data from processes, we make use of equational abstract data
types [55]. Data is specified by equational specifications: one can declare data
types (so-called sorts) and functions working upon these data types, and describe
the meaning of these functions by equational axioms. Following the approach
of [84, 85], we consider CNT with equational abstract data types. Consequently,
the set of addresses Loc, messages Msg , and network constraints C can be treated
as data sorts in CNT framework with well-defined functions over them.

The semantics of the data part (of a specification), denoted by ID, is defined
in the same way as in [85]. It should contain the Bool domain with distinct T
and F constants, Loc, Msg , and C domains.

We first explain the set of data types considered in our framework, and then
define the CNT operators and their axioms.

2.3.1 Data Types

To provide the axioms of computed network terms, we define appropriate func-
tions over the sorts Loc, Msg , and C. We use µCRL notation to define data types:
sort declares sort names, func specifies constructor and map non-constructor
functions, var declares variable names, and rew defines the behavior of non-
constructor functions by means of rewrite rules. We assume that the function
if : Bool ×D ×D → D is defined for all data sorts D, which returns the second
parameter if the boolean parameter equals true, otherwise the third parameter is
returned.

The data sort Bool is used in the conditional operator construct to allow data
values to influence the behavior of a process. This data sort is defined by two
constructors T and F . The conventional operators ∧, ∨ and ¬ can be defined
over it straightforwardly. The data sort Nat specifies the natural numbers by
two constructors functions: the constant 0 and the unary function succ. We
use 1, 2, . . . for succ(0), succ(succ(0)), The definitions of the non-constructor
functions +, >, ≥ and eq are straightforward.

16 Chapter 2 — Preliminaries

sort Msg sort Loc
func req : Loc → Msg func ? :→ Loc

rep : Loc × Loc → Msg adr : Loc→ Loc
map isTypereq : Msg → Bool map eq : Loc× Loc→ Bool

eq : Msg ×Msg → Bool >: Loc× Loc→ Bool
var `, `1, `2, `3, `4 : Loc
rew eq(req(`1), req(`2)) = eq(`1, `2) sort C

eq(rep(`1, `2), rep(`3, `4)) = func empNC :→ C
eq(`1, `3) ∧ eq(`2, `4) con : Loc × Loc × C→ C

eq(req(`1), rep(`2, `3)) = F
eq(rep(`1, `2), req(`3)) = F map union : C× C→ C
isTypereq(req(`)) = T subs : Loc × Loc × C→ C
isTypereq(rep(`1, `2)) = F include : C× C→ Bool

Figure 2.2: Data sorts used in the CNT framework.

The data sort definitions of Loc, Msg , and C are given in Fig. 2.2. The net-
work addresses are generated from the constant ? and the unary function adr .
We use A,B, . . . to denote adr(?), adr(adr(?)), The functions eq and > com-
pare two network addresses. The network constraints are generated from the
constant empNC and the con function which adds a connectivity pair to network
constraints. The function union merges two network constraints such that the re-
dundant connections are removed and the connectivity pairs are sorted in terms
of the connected addresses (i.e. the second parameter in con). The function subs
substitutes the address in its first parameter for all occurrences of the address
in its second parameter. The function include examines if the connectivity pairs
of a network constraint are included in another. We write C1 ∪ C2, C1 ⊆ C2
and C[`/`′] instead of union(C1, C2), include(C1, C2) and subs(C, `, `′), respec-
tively. We also write {}, {A B}, {A B,C} for empNC , con(A,B, empNC),
con(A,B, con(A,C, empNC)).

A message can carry data parameters. For instance, in Fig. 2.2, the message
req : Loc → Msg has one parameter of type Loc. The function eq compares
two messages. For each message name m defined in Msg , a function isTypem :
Mag → Bool is defined which examines if a message term is constructed by the
message name m.

2.3.2 CNT Syntax and Semantics

LetD denote a data sort; u, v and d range over closed and open data terms of sort
D, respectively. We consider b is of type Bool . Let d[d1/d2] denote substitution of
d2 by d1 in the data term d; this can be extended to computed network terms. Let
A denote a countably infinite set of process names which are used as recursion
variables in recursive specifications. This set can be split into two disjoint subsets
Ap and An to denote process names for protocols and networks, respectively.

2.3. Computed Network Process Theory 17

Without loss of generality we assume that process names and messages have
exactly one parameter. The syntax of CNT is:

t ::= 0 | β.t | t+ t | [b]t � t | ∑d:D t | A(d) ,A(d : D)
def
= t | [[t]]` |

t | t | t t | t ‖ t | (ν`)t | τm(t) | ∂m(t)

0 defines a deadlock process. The prefix operator in β.t denotes a process which
performs β and then behaves as t. The action β can be of two types:

• rcv(m) and snd(m) actions, denoted by α, which model protocol receive
and send actions respectively. They model the interaction of a protocol
with its underlying MAC layer;

• (C,nrcv(m)), (C,nsnd(m, `)) and (C, τ) actions, denoted by (C, η), where
the first two actions are called the network receive and send actions re-
spectively. They model the interaction of multiple MAC layers in a MANET.
An action (C, η) represents the behavior η for the set of topologies specified
by C.

The process t1 + t2 behaves non-deterministically as t1 or t2. The conditional
construct [b]t1 � t2 behaves as t1 when ID |= b = T and as t2 when ID |= b = F .
The summation

∑
d:D t, which binds the name d to t, defines a non-deterministic

choice among t[u/d] for all closed u ∈ D. A process name is declared by A(d :

D)
def
= t, where A ∈ A, and d is a variable name that may appear free in t, mean-

ing that it is not within the scope of a sum operator in t. Computed network terms
are considered modulo α-conversion of bound names. The function fn, which re-
turns the set of free names, is defined over computed network terms as usual. A
term is closed if the set of its free names is empty. The deployment of a process
t at a network address ` 6= ? is specified as [[t]]`, which defines a single-node
MANET. The parallel composition t1 ‖ t2 defines two MANETs that communicate
by local broadcast; if there is a connectivity between nodes of t1 and t2 they may
communicate, or the send/receive actions of t1 and t2 are interleaved. CNT bor-
rows from the process algebra ACP [21] the operators left merge () and commu-
nication merge (|) to axiomatize parallel composition. Hiding (ν`)t conceals the
activities of a node with the address ` by renaming this address to ? in network
send/receive actions. For each message type m : D → Msg , the unary operators
τm and ∂m are defined; Abstraction τm(t) renames network send/receive actions
over messages of type m to τ , and encapsulation ∂m(t) forbids receiving mes-
sages of type m and renames them to 0. We use τ{m1,...,mn}(t) and ∂{m1,...,mn}(t)
to denote τm1(. . . (τmn(t)) . . .) and ∂m1(. . . (∂mn(t)) . . .) respectively. We will use
MANET, network and computed network term interchangeably.

Intuitively a computed network term is grammatically well-defined if pro-
cesses deployed at a network address, called protocols, are defined by protocol
action prefix, choice, summation, conditional, deadlock operators and process
names. We say t′ occurs in the context of an operator if t′ is a subterm of term

18 Chapter 2 — Preliminaries

t which is the operand of that operator. Formally, a computed network term t is
grammatically well-defined if the following conditions are met:

• If t ≡ [[t′]]`, then t′ has no network prefix action (C, η), deployment [[]],
parallel ‖, left merge , communication merge |, hiding (ν`), abstraction
τm, encapsulation ∂m, and process name A(d) such that A ∈ An.

• If t ≡ rcv(m(d)).t′, then it should be immediately preceded by a summation
like

∑
d:D, where m : D → Msg .

• If t ≡ α.t′, then it should be in the context of a deployment operator. This
rule prevents terms like snd(m(d)).[[t]] or snd(m(d).0 ‖ 0.

• If t ≡ A(d) where A ∈ Ap, then it should be in the context of a de-
ployment operator. Furthermore it should be defined by an equation like

A(d : D)
def
= t′ such that t′ has no network prefix action (C, η), deployment

[[]], parallel ‖, left merge , communication merge |, hiding (ν`), abstraction
τm, encapsulation ∂m, and process name B(d) such that B ∈ An. More-
over, each occurrence of A should be in the context of an α prefix action in
t′.

• If t ≡ A(d) where A ∈ An, then it should not be in the context of a de-
ployment operator. Furthermore it should be defined by an equation like

A(d : D)
def
= t′ such that t′ is well-defined.

The first, third, and forth rules ensure that protocols are only defined by protocol
action prefix, choice, summation, conditional, deadlock operators and process
names. From now on we will only consider computer network terms that are
well-defined. For example, [[X(A)]]A ‖ [[Y (B)]]B is a well-defined computed net-

work term, where X(adr : Loc)
def
= snd(req(adr)).X(adr) and Y (adr : Loc)

def
=∑

lx:Loc rcv(req(lx)).snd(rep(adr , lx)).Y (adr). The process name X defines a
protocol that sends req messages iteratively, while Y receives a req and then
sends a rep message.

The semantics of CNT is defined by using structural operational semantic
(SOS) rules, following the approach of [126]. Given some data model ID and
a MANET, the SOS rules in Table 2.1 induce a CLTS with transitions of the form

t
(C,η)−−−−→ t′, where η denotes actions of the form {nrcv(m),nsnd(m, `)} ∪ {τ}. As-

sume that α ∈ {rcv(m), snd(m)}, and β denotes either α or (C, η). We remark
that the symmetric counterparts of the rules Choice, Bro, Par , and Sync2 are
also present, but have been omitted here for brevity.

Prefix indicates execution of a prefix action. The non-deterministic behavior
of the choice operator is specified by Choice in terms of its operands. The be-
havior of the sum operator is defined by substituting any closed term in D for d,
as explained by the rule Sum. A process behaves as t1 if the condition evaluates

2.3. Computed Network Process Theory 19

Table 2.1: Semantics of CNT operators

β.t
β−→ t

: Prefix
t1

β−→ t′1

t1 + t2
β−→ t′1

: Choice
t[u/d]

β−→ t′∑
d:D t

β−→ t′
: Sum, u ∈ D

t1
β−→ t′1

[b]t1 � t2 β−→ t′1

: Then, ID |= b = T
t2

β−→ t′2

[b]t1 � t2 β−→ t′2

: Else, ID |= b = F

t
snd(m)−−−−−→ t′

[[t]]`
({},nsnd(m,`))−−−−−−−−−−−→ [[t′]]`

: Inter1

t
rcv(m)−−−−−→ t′

[[t]]`
({? `},nrcv(m))−−−−−−−−−−−−−−→ [[t′]]`

: Inter2

t1
(C1, nsnd(m,`))−−−−−−−−−−−−→ t′1 t2

(C2, nrcv(m))−−−−−−−−−−→ t′2

t1 ‖ t2
(C1∪C2[`/?], nsnd(m,`))−−−−−−−−−−−−−−−−−−−−→ t′1 ‖ t′2

: Bro

t1
(C1,nrcv(m))−−−−−−−−−−→ t′1 t2

(C2,nrcv(m))−−−−−−−−−−→ t′2

t1 ‖ t2
(C1∪C2,nrcv(m))−−−−−−−−−−−−−→ t′1 ‖ t′2

: Recv

t1
β−→ t′1

t1 ‖ t2 β−→ t′1 ‖ t2
: Par

t
(C,η)−−−−→ t′

t
(C′,η)−−−−→ t′

: Exe, C ⊆ C′ t
β−→ t′

(ν`)t
β[?/`]−−−−→ (ν`)t′

: Hid

t1
(C1,nrcv(m))−−−−−−−−−−→ t′1 t2

(C2,nrcv(m))−−−−−−−−−−→ t′2

t1 | t2
(C1∪C2,nrcv(m))−−−−−−−−−−−−−→ t′1 ‖ t′2

: Sync1

t[u/d]
β−→ t′

A(u)
β−→ t′

: Inv , A(d : D)
def
= t

t1
(C,η)−−−−→ t′1

t1 t2
(C,η)−−−−→ t′1 ‖ t2

: LExe

t1
(C1,nsnd(m,`))−−−−−−−−−−−→ t′1 t2

(C2,nrcv(m))−−−−−−−−−−→ t′2

t1 | t2
(C1∪C2[`/?],nsnd(m,`))−−−−−−−−−−−−−−−−−−−→ t′1 ‖ t′2

: Sync2

t
(C,η)−−−−→ t′

∂m(t)
(C,nrcv(m))−−−−−−−−−→ ∂m(t′)

: Encap, η 6= nrcv(m) ∨ isTypem(m) = F

t
(C,η)−−−−→ t′

τm(t)
(C,η)−−−−→ τm(t′)

: Abs1, η 6∈ {nrcv(m,nsnd(m, `))} ∨ isTypem(m) = F

t
(C,η)−−−−→ t′

τm(t)
(C,τ)−−−−→ τm(t′)

: Abs2, η ∈ {nrcv(m,nsnd(m, `))} ∧ isTypem(m) = T

20 Chapter 2 — Preliminaries

to true (Then), otherwise it behaves as t2 (Else). Inv defines the behavior of a
process name in terms of the right-hand side of its definition A(d : D)

def
= t.

Inter1 denotes that a single node can perform the send actions of a protocol
at this node under any valid topology, and its network address is appended to
this action. Inter2 denotes a single node performing a receive action, under
the restriction that the node must be connected to some sender (denoted by ?).
These two rules convert protocol actions to their corresponding network actions
by abstracting away from the service of the data link layer.

Rule Bro specifies how a communication occurs between a receiving and a
sending process. This rule combines the network constraints, while the unknown
location (in the network constraint of the receiving process) is set to the concrete
address of the sender. Rule Recv synchronizes the receive actions of processes
t1 and t2 on message m, while combining together their (dis)connectivity infor-
mation in network constraints C1 and C2. In Bro and Recv it is required that the
union of network constraints on the transition in the conclusion be well-formed.
By Par , a process evolves when a subprocess evolves. Exe explains that a behav-
ior that is possible for a network constraint, is also possible for a more restrictive
network constraint. As the communication merge operator defines a success-
ful synchronization between two computed networks, its behavior is defined by
Sync1 and Sync2, indicating synchronization between receive actions or a send
and receive action, respectively. LExe defines that in a term composed by the
left merge, the left computed network succeeds to perform the initial action, and
then the resulting term proceeds as in parallel composition.

Rule Hid replaces every occurrence of ` in the network constraint and action
of β by ?, and hence hides activities of a node with the address ` from external
observers. The encapsulation operator ∂m disallows all network receive actions
on messages of type m, as specified by Encap. According to Abs1,2, the abstrac-
tion operator τm converts all network send and receive actions with a message
of type m to τ and leaves other actions unaffected.

2.3.3 Rooted Branching Computed Network Bisimilarity

Computed network terms are considered modulo rooted branching computed
network bisimilarity [73]. To define this equivalence relation, we introduce the
following notations:

• ⇒ denotes the reflexive and transitive closure of unobservable actions:

– t⇒ t;

– if t
(C,τ)−−−−→ t′ for some arbitrary network constraint C and t′ ⇒ t′′, then

t⇒ t′′.

• t
〈(C,η)〉−−−−−→ t′ iff t

(C,η)−−−−→ t′ or t
(C[`/?],η[`/?])−−−−−−−−−−−→ t′ and η is of the form

nsnd(m, ?) for some m.

2.3. Computed Network Process Theory 21

Intuitively t⇒ t′ expresses that after a number of topology changes, t can behave
like t′. Furthermore, an action like ({? B},nsnd(req(?), ?)) can be matched to
an action like ({A B},nsnd(req(A), A)), which is its 〈−〉 counterpart.

Definition 2.4. A binary relation R on computed network terms is a branching

computed network simulation if t1Rt2 and t1
(C,η)−−−−→ t′1 implies that either:

• η is of the form nrcv(m) or τ , and t′1Rt2; or

• there are t′2 and t′′2 such that t2 ⇒ t′′2
〈(C,η)〉−−−−−→ t′2, where t1Rt′′2 and t′1Rt′2.

R is a branching computed network bisimulation if R and R−1 are branching
computed network simulations. Two terms t1 and t2 are branching computed
network bisimilar, denoted by t1 'b t2, if t1Rt2 for some branching computed
network bisimulation relation R.

Definition 2.5. Two terms t1 and t are rooted branching computed network bisim-
ilar, written t1 'rb t2, if:

• t1
(C,η)−−−−→ t′1 implies there is a t′2 such that t2

〈(C,η)〉−−−−−→ t′2 and t′1 'b t′2;

• t2
(C,η)−−−−→ t′2 implies there is a t′1 such that t1

〈(C,η)〉−−−−−→ t′1 and t′1 'b t′2.

Rooted branching computed network bisimilarity is an equivalence relation
and constitutes a congruence with respect to the CNT operators; see [73]. Intu-
itively two computed network terms are equivalent if they send and receive the
same set of messages for a set of topologies. However a receiving action which
does not change the sending behavior of a node can be removed. Therefore, an
only receiving MANET (after its first action) is equivalent to deadlock. It should
be noted that a node like [[Y (B)]]B is not branching bisimilar to the sending node

[[Y ′(B)]]B where Y ′(adr : Loc)
def
=
∑
lx:Loc snd(rep(adr , lx)).Y ′(adr), since the

latter sends iff it receives a request message while the former always sends.

2.3.4 Axioms

We define the behavior of operators through their axioms over closed terms,
which are sound with respect to rooted branching computed network bisimilar-
ity. The axioms of the choice, conditional and summation operator are given in
Table 2.2. The axioms Ch1−4, Con1−2 and Sum1−4 are standard (cf. [111]). The
axiom Ch5 is new in our framework, denoting that a network send action that
originates from a node of which the address is unknown can be removed if there
is a same action originating from a node with a known address. The axiom Ch6

explains that a smaller set of network constraints allows more behavior.
Axioms for deployment, left and communication merge, and parallel oper-

ators are given in Table 2.3. The axioms Dep3−5, Br , LM 1−4 and S1−3,5 are

22 Chapter 2 — Preliminaries

Table 2.2: Axioms for choice, conditional and summation operators.

Ch1 0 + t = t Sum1

∑
d:D t = t, d 6∈ fn(t)

Ch2 t1 + t2 = t2 + t1 Sum2

∑
d:D t =

∑
e:D t[e/d]

Ch3 t1 + (t2 + t3) = (t1 + t2) + t3 Sum3

∑
d:D t =

∑
d:D t+ t[u/d]

Ch4 t+ t = t
Sum4

∑
d:D(t1 + t2) =

∑
d:D t1 +

∑
d:D t2

Con1 [b]t1 � t2 = t1, ID |= b = T Con2 [b]t1 � t2 = t2, ID |= b = F

Ch5 (C,nsnd(m, ?)).t+ 〈(C,nsnd(m, ?))〉.t = 〈(C,nsnd(m, ?))〉.t
Ch6 (C1, η).t+ (C2, η).t = (C1, η).t, C1 ⊆ C2

standard. Dep1 expresses that when a protocol sends a message (denoted by
snd), the message is sent into the network (denoted by nsnd), irrespective of
the underlying topology (expressed by {}). Dep2 expresses that when a protocol
receives a message (denoted by rcv), it should receive it from the network (de-
noted by nrcv) while it is connected to some sender whose address is unknown
(expressed by {? `}). It should be noted that Dep5 preserves the second and
third well-definedness rule given in Section 2.3.2.

The axioms Sync1−3 explain the synchronization of two MANETs. The send-
ing MANET (C1,nsnd(m1, `)).t1 can communicate with the receiving MANET
(C2,nrcv(m2)).t2, if the receiving addresses (denoted by C2) are also connected to
the sender ` (denoted by C1 ∪ C2[`/?]). Likewise two receiving MANETs synchro-
nize on a message when the receiving addresses of both MANETs are connected
to the same unknown address (denoted by C1 ∪ C2). Two sending MANETs can-
not synchronize due to their signal collision. When a MANET is communicating
through a τ action, it cannot be synchronized with another MANET, as indicated
by axiom S4.

We return to the example at the end of Section 2.3.2. The behavior of
[[X(A)]]A ‖ [[Y (B)]]B can be calculated as follows:

[[X(A)]]A ‖ [[Y (B)]]B =
[[X(A)]]A [[Y (B)]]B + [[Y (B)]]B [[X(A)]]A + [[X(A)]]A | [[Y (B)]]B

[[X(A)]]A = ({},nsnd(req(A), A)).[[X(A)]]A
[[Y (B)]]B =

∑
lx:Loc({? B},nrcv(req(lx))).[[snd(rep(B, lx)).Y (B)]]B

[[X(A)]]A [[Y (B)]]B = ({},nsnd(req(A), A)).[[X(A)]]A ‖ [[Y (B)]]B
[[Y (B)]]B [[X(A)]]A =∑

lx:Loc({? B},nrcv(req(lx))).[[snd(rep(B, lx)).Y (B)]]B ‖ [[X(A)]]A
[[X(A)]]A | [[Y (B)]]B =

({A B},nsnd(req(A), A)).[[X(A)]]A ‖ [[snd(rep(B,A)).Y (B)]]B

The axioms of hiding and encapsulation are given in Table 2.4. The hiding
operator (ν`) conceals the address of a node with the address ` from exter-

2.3. Computed Network Process Theory 23

Table 2.3: Axioms for deployment, left and communication merge, and parallel operators
assuming d 6∈ fn(t2).

Dep1 [[snd(m).t]]` = ({},nsnd(m, `)).[[t]]` Dep4 [[0]]` = 0
Dep2 [[rcv(m).t]]` = ({? `},nrcv(m)).[[t]]` Dep5 [[

∑
d:D t]]` =

∑
d:D[[t]]`

Dep3 [[t1 + t2]]` = [[t1]]` + [[t2]]`

Dep6 [[A(u)]]` = [[t[u/d]]]`, A(d : D)
def
= t

Br t1 ‖ t2 = t1 t2 + t2 t1 + t1 | t2 S1 t1 | t2 = t2 | t1
LM 1 (C, η).t1 t2 = (C, η).(t1 ‖ t2) S2 (t1 + t2) | t3 = t1 | t3 + t2 | t3
LM 2 (t1 + t2) t3 = t1 t3 + t2 t3 S3 0 | t = 0
LM 3 0 t = 0 S4 (C, τ).t1 | t2 = 0
LM 4 (

∑
d:D t1) t2 =

∑
d:D t1 t2 S5 (

∑
d:D t1) | t2 =

∑
d:D t1 | t2

Sync1 (C1,nsnd(m1, `)).t1 | (C2,nrcv(m2)).t2 =
[eq(m1,m2)](C1 ∪ C2[`/?],nsnd(m1, `)).(t1 ‖ t2) � 0

Sync2 (C1,nrcv(m1)).t1 | (C2,nrcv(m2)).t2 =
= [eq(m1,m2)](C1 ∪ C2,nrcv(m1)).(t1 ‖ t2) � 0

Sync3 (C1,nsnd(m1, `1)).t1 | (C2,nsnd(m2, `2)).t2 = 0

nal observers. Therefore, the behavior of a hidden node deploying process X,
(νC)[[X(C)]]C , is ({},nsnd(req(?), ?)).(νC)[[X(C)]]C .

The axioms Abs1,2 rename η actions carrying messages of type m to τ . The
axiom Ecp2 explains that the encapsulation operator renames network receive
actions of messages of type m to 0. For example,

∂req([[X(A)]]A ‖ [[Y (B)]]B) =
({},nsnd(req(A), A)).∂req([[X(A)]]A ‖ [[Y (B)]]B) +
({A B},nsnd(req(A), A)).∂req([[X(A)]]A ‖ [[snd(rep(B,A)).Y (B)]]B)

Axiom T1 removes a receive action that does not affect the behavior of a network,
while T2 removes a τ action which preserves the behavior of a network after some
topology changes. The remaining axioms in this table are standard.

Each process name, defined by the equation A
def
= t, specifies some specific

processes, called solutions. The process term tA is a solution of the equation

A
def
= t if the replacement of A by tA on the both sides of the equation results in

equal terms, i.e. tA 'rb t[tA/A]. We are interested in equations with exactly one
solution. We define a guardedness criterion for network names to ensure that a

network name A specified by the equation A
def
= t has a unique solution, denoted

by recA · t. A free occurrence of a network name A in t is called guarded if this
occurrence is in the scope of an action prefix operator (not (C, τ) prefix) and not
in the scope of an abstraction operator [9]; in other words, there is a subterm
(C, η).t′ in t such that η 6= τ , and A occurs in t′. A is (un)guarded in t if (not)
every free occurrence of A in t is guarded. A CNT term t is guarded if for every

24 Chapter 2 — Preliminaries

Table 2.4: Axiomatization of hiding, abstraction and encapsulation operators.

Res1 (ν`)(t1 + t2) = (ν`)t1 + (ν`)t2 Res3 (ν`)0 = 0
Res2 (ν`)(C, η).t = (C[?/`], η[?/`]).(ν`)t Res4 (ν`)

∑
d:D t =

∑
d:D(ν`)t

Ecp1 ∂m((C,nsnd(m, `)).t) = (C,nsnd(m, `)).∂m(t)
Ecp2 ∂m((C,nrcv(m)).t) = [¬isTypem(m)](C,nrcv(m)).∂m(t) � 0

Abs1 τm((C,nrcv(m)).t) = [isTypem(m)](C, τ).τm(t) � (C,nrcv(m)).τm(t)
Abs2 τm((C,nsnd(m, `)).t) = [isTypem(m)](C, τ).τm(t) � (C,nsnd(m, `)).τm(t)
Abs3 τm(t1 + t2) = τm(t1) + τm(t2) Ecp3 ∂m(t1 + t2) = ∂m(t1) + ∂m(t2)
Abs4 τm(0) = 0 Ecp4 ∂m(0) = 0
Abs5 τm(

∑
d:D t) =

∑
d:D τm(t) Ecp5 ∂m(

∑
d:D t) =

∑
d:D ∂m(t)

T1 (C, η).((C′,nrcv(m)).t+ t) = (C, η).t
T2 (C, η).((C′, τ).(t1 + t2) + t2) = (C, η).(t1 + t2)

subterm recA · t′, A is guarded in t′. This guardedness criterion ensures that any
guarded recursive term has a unique solution. To understand why (C, τ) does
not ensure that a recursion has one solution, consider the following example:
recA · (C, τ).A has solutions like (C, τ).0 and (C, τ).(C′,nsnd(req(A), A)).0, while
they are not rooted branching computed network bisimilar.

Axioms for process names are given in Table 2.5. Unfold and Fold express

existence and uniqueness of a solution for the equation A
def
= t, which correspond

to Milner’s standard axioms, and the Recursive Definition Principle (RDP) and
Recursive Specification Principle (RSP) in ACP. Unfold states that each recursive
operator has a solution (whether it is guarded or not), while Fold states that each
guarded recursive operator has at most one solution. So [[X(A)]]A and [[Y (B)]]B
can be converted to

[[X(A)]]A = recX · ({},nsnd(req(A), A) · X
[[Y (B)]]B = recY ·∑lx:Loc({? A},nrcv(req(lx)))·

({},nsnd(rep(B, lx), B)) ·Y

Hence, the protocol names deployed on network nodes are the solutions of net-
work names in a computed network specification. Furthermore, the behavior
of [[X(A)]]A ‖ (νC)[[X(C)]]C , by application of axioms Dep1,2, Res2, Br , LM 1,
Sync1 and Ch5, equals ({},nsnd(req(A), A)).[[X(A)]]A ‖ (νC)[[X(C)]]C . This in-
dicates that [[X(A)]]A ‖ (νC)[[X(C)]]C = [[X(A)]]A, since both are a solution of

X
def
= ({},nsnd(req(A), A)).X by axiom Fold . Intuitively, the hidden node C does

not change the behavior of [[X(A)]]A from the point view of an external observer,
since it assumes the action of C belongs to A. However, a recursive term in
the scope of an abstraction would become unguarded, as we will explain be-
low. Axioms Ung , WUng1 and WUng2 make it possible to turn each unguarded
recursion into a guarded one.

2.3. Computed Network Process Theory 25

Table 2.5: Axioms for process names.

recA · t = t{recA · t/A} Unfold
t1 = t2{t1/A} ⇒ t1 = recA · t2, if A is guarded in t2 Fold
recA · (A + t) = recA · t Ung
recA · ((C, τ).((C′, τ).t′ + t) + s) = WUng1

recA · ((C, τ).(t′ + t) + s), if A is unguarded in t′

recA · ((C, ητ).(A + t) + s) = WUng2

recA · ((C, ητ).(t+ s) + s), ητ ∈ {nrcv(m), τ}
τm(recA · t) = recA · τm(t), if A is serial in t Hid

Axiom Hid expresses that the abstraction operator can be moved inside and
outside of a recursion operator, when A is serial in t. The free network name A
is serial in t, if it does not occur in the scope of parallel, communication merge,
left merge, restriction, encapsulation, and abstraction operators in t. This side
condition is required to preserve the soundness of the axiom as explained in [9]
(This axiom was also considered in [146], which needs a side condition to be
sound in the context of CCS.) It should be noted that the abstraction operator
can make a guarded recursion unguarded. Thus by applying axiom Hid , we can
move the operator inside the recursion operator and apply its effect, which may
result in unguarded recursion. Then by moving it out and applying WUng1 and
WUng2, we can convert it to a guarded one. Finally, by applying Unfold , we can
remove the abstraction operator completely.

Theorem 2.6. The axiomatization is sound, i.e. for all closed computed network
terms t1 and t2, if t1 = t2 then t1 'rb t2.

Our axiomatization is also ground-complete for terms with a finite-state CLTS.
For example, recW · ({},nsnd(req(A), A)).W ‖

∑
lx:Loc({? B},nrcv(req(lx))).W

produces an infinite-state transition system, since at each recursive call, a new
parallel operator is generated. Thus, its equality to recH · ({},nsnd(req(A), A)).H
can not be proved by our axiomatization.

Theorem 2.7. The axiomatization is ground-complete, i.e. for all closed finite-state
computed network terms t1 and t2, t1 'rb t2 implies t1 = t2.

The proofs of the above theorems are presented in [73].

2.3.5 Symbolic Verification

To verify MANET protocols for large networks, or if one needs to deal with infi-
nite data domains, model checking is not readily applicable. Since MANETs often
consist of an arbitrary set of nodes that run the same protocols, we develop a sym-
bolic verification technique for such networks within the CNT framework, based
on the cones and foci method [67, 68, 86]. This technique works on a restricted

26 Chapter 2 — Preliminaries

class of specifications, called linear computed network equations, in which the
states are data objects, and rephrases the question whether the system specifica-
tion and implementation are equivalent in terms of proof obligations on relations
between data objects. We exploit our equations to convert the parallel composi-
tion of an arbitrary number of similar processes, modulo some data parameters,
to a single linear equation using the Composition Theorem from [87]. The Com-
position Theorem however is based on the assumption that communications are
restricted to two processes. Since in our framework broadcast communication is
an essential ingredient, we generalize the Composition Theorem to this setting.
The linear equation representing the MANET of similar nodes and the desired
external behavior of this network (also expressed by a linear equation) are taken
as input to the symbolic verification technique, which reduces the question of
their behavioral equivalence to proving data equalities.

Linear Computed Network Equations and Invariants A linear computed net-
work equation (LCNE) is a computed network term consisting of only action
prefix, summation and conditional operators; it does not contain any parallel,
encapsulation, abstraction and hiding operators. An LCNE is basically a vector
of data parameters together with a list of condition, action and effect triples, de-
scribing for each state under which condition an action may happen and what is
its effect on the vector of data parameters. Each computed network term can be
transformed into an LCNE using the axioms (cf. [143]).

Without loss of generality, we assume that each message constructor has ex-
actly one parameter. Let the set of (concrete) actions be Actc, ranged over by
η(−), defined as:

Actc = {nsnd(m(−), `),nrcv(m(−))|m : Dm → Msg , ` ∈ Loc}

Definition 2.8. A linear computed network equation is a CNT specification of
the form

A(d : D)
def
=

∑
η:Actc∪{τ}

∑
e:E

[hη(d, e)](Cη(d, e), η(fη(d, e))).A(gη(d, e)) � 0

where hη : D×E → Bool , Cη : D×E → C, fη : D×E → Dm and gη : D×E → D
for each η ∈ Actc ∪ {τ}.

The LCNE in Definition 2.8 has exactly one CLTS as its solution (modulo
strong bisimilarity). In this CLTS, the states are data elements d : D, where
D may be a Cartesian product of n data types, i.e. (d1, . . . , dn), the transition
labels are the network send and receive actions of messages parameterized with
data, and the transition constraints are network constraints parameterized with
data. The LCNE expresses that state d can send/receive message η(fη(d, e)) for
the set of topologies specified by Cη(d, e) to end up in state gη(d, e) under the
condition that hη(d, e) is true.

2.3. Computed Network Process Theory 27

Definition 2.9. A mapping I : D → Bool is an invariant for an LCNE, written as
in Definition 2.8, if for all η ∈ Actc ∪ {τ}, d : D and e : E,

I(d) ∧ hη(d, e)⇒ I(gη(d, e)).

Invariants can be used to characterize the set of reachable states of an LCNE.
Namely, if I(d) and it is possible to perform η(fη(d, e)) (since hη(d, e) holds),
then I holds in the resulting state gη(d, e).

Equivalence Checking by using State Mappings The system implementation
and specification, both given in linear format, are branching computed network
bisimilar if a state mapping φ exists from implementation to specification which
satisfies the transfer conditions of a branching computed network bisimulation.
An invariant I can be imposed; then the transfer conditions only need to hold
in states where I is true, and consequently equivalence between implementation
and specification is only guaranteed to hold in states where I is true.

We omit the abstraction operator τ
M̃

to ensure that the recursive specifica-
tion of Impl has a finite-state behavior. However we consider its effect in our
equivalence relation (regarding the serial condition of the axiom Hid). The set
of communications over M̃ is defined by I

M̃
as

{nsnd(C,m, `),nrcv(C,m)|∃m ∈ M̃ · isTypem(m)}.

Recall that 〈η〉 denotes η or η[`/?] for some ` when η is of the form nsnd(m, ?).
Depending on the value of 〈η〉, for any arbitrary binary relation �, rη(e, d) �
r′〈η〉(e, d

′) holds iff rη(e, d)� r′η(e, d′) or rη(e, d)[`/?]� r′η[`/?](e, d
′) holds.

Proposition 2.10. Let the LCNE Imp be of the form

Imp(d : D)
def
=

∑
η∈Actc∪{τ}

∑
e:E

[hη(d, e)](Cη(d, e), η(fη(d, e))).Imp(gη(d, e)) � 0

Furthermore, let the LCNE Spec be of the form

Spec(d′ : D′)
def
=

∑
η∈Actc\I

M̃

∑
e:E

[h′η(d′, e)](C′η(d′, e), η(f ′η(d′, e))).Spec(g′η(d′, e)) � 0

Let I : D → Bool be an invariant for Imp, and φ : D → D′ a state mapping. If for
all η ∈ Actc \ I

M̃
and ητ ∈ IM̃ , φ satisfies the following conditions:

1. ∀e : E(hητ (d, e)⇒ φ(d) = φ(gητ (d, e)));

2. ∀e : E, hη(d, e) implies that either η is a receive action and φ(d) = φ(gη(d, e)),
or h′〈η〉(φ(d), e) holds for some 〈η〉 such that fη(d, e) = f ′〈η〉(φ(d), e),
C′〈η〉(φ(d), e) ⊆ Cη(d, e), and φ(gη(d, e)) = g′〈η〉(φ(d), e);

28 Chapter 2 — Preliminaries

3. ∀e : E, h′η(φ(d), e) implies that either η is a receive action such that φ(d) =

g′η(φ(d), e), or there exists d∗ such that d
ητ1−−→C1 . . .

ητn−−→Cn d∗, where ητ1 , . . . ,
ητn ∈ IM̃ , and for some 〈η〉, h〈η〉(d∗, e) holds with f〈η〉(d∗, e) = f ′η(φ(d), e),
C〈η〉(d∗, e) ⊆ C′η(φ(d), e), and φ(g〈η〉(d

∗, e)) = g′η(φ(d), e));

then for all d : D with I(d), τ
M̃

(Imp(d)) 'b Spec(φ(d)).

See [74] for the proof. Since each state of the specification defines the exter-
nal behavior of the implementation with regard to any possible topology changes,
the mapped state of the implementation should not be changed by τ -transitions,
as implied by the first criterion. The second criterion implies that for any re-
ceive action that does not change the behavior of the implementation, either
φ(d) = φ(gη(d, e)) holds or the specification has the same receive action that
mimics its behavior. Furthermore for send actions it implies that there exists
some action 〈η〉 in the specification which mimics the behavior of the implemen-
tation on (Cη(d, e), η(fη(d, e))) by performing (C′〈η〉(φ(d), e), 〈η〉(fη(d, e))) where
C′〈η〉(φ(d), e) ⊆ Cη(d, e). Similarly, the third criterion implies that for any receive
action of specification that does not change the behavior either φ(d) = g′η(φ(d), e)
or there exists a state d∗, reachable after a set of communications over abstracted
messages (which preserves the behavior of the implementation in the state d),
which mimics the behavior of the specification on (C′η(φ(d), e), η(f ′η(φ′(d), e))) by
performing (C〈η〉(d∗, e), 〈η〉(f ′η(φ(d), e))) where C〈η〉(d∗, e) ⊆ C′η(φ(d), e). The first
criterion together with the first part of the second and third criteria (i.e., con-
ditions on receive actions which do not change the behavior) enforce the first
transfer condition while the second part of the second and third criteria imply
the second transfer condition of branching computed network bisimulation.

Due to mobility of nodes, MANET protocols usually contain mechanisms to
examine if a node connection to some other node exists or not. For instance, a
node may examine whether it is still connected to its next hop for a destination in
a routing protocol, or to its leader in a leader election protocol. Such mechanisms
are modeled by non-deterministic behavior in the protocol specification, which
restarts some part of the process (like route discovery in a routing protocol). Due
to such mechanisms, in each state of the implementation, the observable behav-
ior may change after a set of τ -transitions. On the other hand, since we assume
arbitrary mobility for MANET nodes, each state of the specification defines the
behavior of a MANET for any possible topology change. Therefore, we lack a col-
lection of so-called focus points [68, 86]: states in the implementation that can
be matched to some state in the specification with the same observable behavior.

To illustrate the application of Proposition 2.10, let us show that ∀n : Nat ·
N(n) 'b M(n), where

N(n : Nat)
def
= [n ≥ 1]({},nsnd(data(B), A)).N(n+ 1) � 0 +

[n ≥ 1]({},nsnd(data(B), ?)).N(n+ 2) � 0

M(b : Bool)
def
= [eq(b, T)]({},nsnd(data(B), A)).M(b) � 0

2.3. Computed Network Process Theory 29

it suffices to show that φ(n) = if (n ≥ 1, T, F) satisfies the second and third
conditions of Proposition 2.10 (as there is no abstraction):

• When n ≥ 1 holds, two actions η1 ≡ nsnd(data(−), A) and η2 ≡ η1[?/A] are
possible. For the first action, fη1(n) = B, Cη1(n) = {}, and gη1(n) = n+ 1.
The we have that φ(n) = T , h′η1(T), fη1(n) = f ′η1(T), C′η1(T) ⊆ Cη1(n),
and φ(gη1(n)) = g′η1(T). For the second action, fη2(n) = B, Cη2(n) =
{}, and gη2(n) = n + 2. The only action of M is again matched to this
action, since 〈nsnd(data(−), ?)〉 = nsnd(data(−), A), fη2(n) = f ′〈η2〉(T),
C′〈η2〉(T) ⊆ Cη2(n), and φ(gη2(n)) = g′〈η2〉(T).

• The only action of M when eq(φ(n ≥ 1), T)) is η ≡ nsnd(data(−), A), and
the same action is enabled in N when n ≥ 1, with the same parameter and
network constraint.

Linearization of Uniform MANETs In practice a MANET often consists of an
arbitrary set of similar nodes: each node is identified by a unique network ad-
dress, and deploys the same protocols. In this section we show how our symbolic
verification approach can be exploited to verify such networks. To this aim, we
first provide a general recursive specification for MANETs with similar nodes,
and then derive a LCNE as a solution of the recursive specification, using the
CNT axioms, data axioms and induction. The derived linear equation is strongly
bisimilar to the original recursive equation.

Without loss of generality, we assume that each message constructor has ex-
actly one parameter. We assume that each process P (`, d) is defined using a
linear process equation (LPE) [24] of the form:

P (` : Loc, d : D)
def
=∑

m∈Msg

∑
e:Em

[hms(`, d, e)]snd(m(fms(`, d, e))).P (`, gms(`, d, e)) � 0 +

[hmr (`, d, e)]rcv(m(fmr (`, d, e))).P (`, gmr (`, d, e)) � 0
(2.1)

where hms/mr : Loc × D × Em → Bool , fms/mr : Loc × D × Em → Dm and
gms/mr : Loc ×D × Em → D for each m ∈ Msg .

As we do not want to fix the addresses of nodes in the MANET beforehand,
we use two auxiliary data sorts: LocList which is a list of network addresses
of nodes, and similar to the approach of [87], DTable which is a table indexed
by network addresses, where each entry maintains the state of the node at the
corresponding network address. We also exploit for each m ∈ Msg an auxiliary
data sort EListm, which is a list of elements of sort Em, the auxiliary data type
used in functions of messages (see equation 2.1).

The sort LocList is defined below. Lists are generated from the empty list
empL and add , which places a new address in the list. The function has examines
if an element belongs to the list; include examines if the first list is included in
the second list; remove removes an address from the list; head returns the first

30 Chapter 2 — Preliminaries

element of the list; size returns the length of the list; nodup examines if the list
has no duplicated item; and eq compares two lists.

To increase readability, we write binary functions in infix manner, and use
symbols ∅, ., ∈, ⊆, \, | | and `l[0] for empL, add , has, include, remove, size and
head(`l), respectively. The data sort EListm for m ∈ Msg is defined in the same
way as LocList , but using the constant empEm.

sort LocList
func empL :→ LocList

add : Loc × LocList → LocList
map has : Loc × LocList → Bool

include, eq : LocList × LocList → Bool
remove : LocList × Loc → LocList
head : LocList → Loc
size : LocList → Nat
nodup : LocList → Bool

var `l, `l1, `l2 : LocList , `, `1, `2 : Loc
rew has(`, empL) = F LA1

has(`1, add(`2, `l)) = if (eq(`1, `2), T, has(`1, `l)) LA2

include(empL, `l) = T LA3

include(add(`, `l1), `l2) = has(`, `l2) ∧ include(`l1, `l2) LA4

remove(empL, `) = empL LA5

remove(add(`1, `l), `2) =
if (eq(`1, `2), remove(`l, `2), add(`1, remove(`l, `2))) LA6

head(add(`, `l)) = ` LA7

size(empL) = 0 LA9

size(add(`, `l)) = size(`l) + 1 LA10

nodup(empL) = T LA11

nodup(add(`, `l)) = ¬has(`, `l) ∧ nodup(`l) LA12

eq(`l1, `l2) = include(`l1, `l2) ∧ include(`l2, `l1) LA13

Tables are generated from the constant empT and an operation upd , which
places a new entry in the table. The function get gets an entry from the table
using its index. The function upd allgm(` . `l, e . el , dt) updates the list of entries
` . `l in the table using the function gm : Loc × D × Em → D; the entry ` is
updated by gm(`, get(`, dt), e), which uses the network address `, the previous
value at the entry, and an auxiliary value e. Intuitively this function is helpful to
update a set of receiver nodes that communicate with a sender through message
m. Similarly the function and allhm,fm,f ′m(`1 . `l, `2, e2, e1 . el , dt) examines a
boolean expression on a list of entries `1 . `l using functions hm : Loc × D ×
Em → Bool and fm, f

′
m : Loc × D × Em → Dm; for each entry `1, it examines

if hm(`1, get(`1, dt), e1) evaluates to true and if f ′m(`1, get(`1, dt), e1) is equal to
fm(`2, get(`2, dt), e2). Intuitively this function is helpful to examine if a set of
nodes can synchronize with each other upon receiving a message of type m, i.e.,
whether the conditions of their actions are true (examined by hm) and their

2.3. Computed Network Process Theory 31

message parameters are equal to each other (examined by fm, f ′m).

sort DTable
func empT :→ DTable

upd : Loc ×D ×DTable → DTable
map get : Loc ×DTable → D

upd allgm : LocList × EListm ×DTable → DTable
and allhm,fm,f ′m : LocList × Loc × Em × EListm ×DTable → Bool

var `, `1, `2 : Loc, `l : LocList ,
d : D, dt : DTable,
e, e1, e2 : Em, el : EListm

rew get(`1, upd(`2, d, dt)) = if (eq(`1, `2), d, get(`1, dt)) TA1

upd allgm(empL, el , dt) = dt TA2

upd allgm(add(`, `l), add(e, el), dt) =
upd(`, gm(`, get(`, dt), e), upd allgm(`l, el , dt)) TA3

and allhm,fm,f ′m(empL, `, e, el , dt) = T TA4

and allhm,fm,f ′m(add(`1, `l), `2, e2, add(e1, el), dt) =
and(hm(`1, get(`1, dt), e1), and(eq(fm(`2, get(`2, dt), e2),

f ′m(`1, get(`1, dt), e1)), and allhm,fm,f ′m(`l, `2, e2, el , dt))) TA5

Axioms TA2−5 are schematic and can be defined for all functions gms/mr , hms/mr ,
fms/mr in equation (2.1) for any m ∈ Msg .

In the remainder we write dt[`] instead of get(`, dt). The following network
recursive specification puts nodes deploying process P at network addresses of
`l in parallel.

Manet(`l : LocList , dt : DTable)
def
=

[eq(`l, ∅)]0 � [[P (`l[0], dt[`l[0]])]]`l[0] ‖ Manet(`l \ `l[0], dt).
(2.2)

Below we present the core lemma of this section. It gives an expansion of
Manet , where all operators for parallelism have been removed. The resulting
network has the list `l and the table dt as parameters. In essence, the complexity
of the computed network Manet is now encoded using the list and table opera-
tions.

Lemma 2.11 says that in the network X, the node with network address
k ∈ `l may send the message m, parameterized by data from this node, if it is
ready to send (as indicated by hms(k, dt[k], e)) to a list `s (without duplicates)
of receiver nodes with addresses in `l \ k that are all ready to receive such a
message (examined by and allhmr ,fms ,fmr). Table entries with indices in `s and
k are updated as a result of this communication (using upd allgmr). The function
C(`, `s) = {` `′|`′ ∈ `s} specifies the network constraint for this behavior of
the network, indicating there is a communication link from ` to each node in
`s. Nodes in the network X may also receive a message m from an unknown
address ?; the receiving nodes must have network addresses in `s, where `s ⊆
`l∧¬eq(`s, ∅)∧nodup(`s), and must be ready to receive such a message (examined

32 Chapter 2 — Preliminaries

by and allhmr ,fmr ,fmr). All table entries with indices in `s are updated as a result
of this receive action (using upd allgmr).

Lemma 2.11. The MANET Manet as defined in equations 2.1 and 2.2 is a solution
for the MANET X in equation 2.3 below.

X(`l : LocList , dt : DTable)
def
=∑

m∈Msg

∑
k:Loc

∑
`s:LocList

∑
e:Em

∑
el:EListm

[k ∈ `l ∧ `s ⊆ `l \ k ∧ nodup(`s) ∧ |`s| = |el |∧
hms(k, dt[k], e) ∧ and allhmr ,fms ,fmr (`s, k, e, el , dt)]

(C(k, `s),nsnd(m(fms(k, dt[k], e)), k)).
X(`l, upd(k, gms(k, dt[k], e), upd allgmr (`s, el , dt))) � 0 +∑

m∈Msg

∑
`s:LocList

∑
el:EListm

[`s ⊆ `l ∧ ¬eq(`s, ∅) ∧ nodup(`s) ∧ |`s| = |el |∧
and allhmr ,fmr ,fmr (`s, `s[0], el [0], el , dt)]

(C(?, `s),nrcv(m(fmr (`s[0], dt[`s[0]], el [0])))).
X(`l, upd allgmr (`s, el , dt)) � 0.

(2.3)

See [74] for the proof. The following Composition Theorem is a corollary of
Lemma 2.11 and the axiom Fold .

Theorem 2.12. Manet(`l, dt) = X(`l, dt).

2.4 Actor Model and the Rebeca Language

The actor model [4, 93] has been introduced for the purpose of modeling con-
current and distributed applications. It is an agent-based language introduced by
Hewitt [93], extended by Agha to an object-based concurrent computation model
[4]. An actor model consists of a set of actors communicating with each other
through unicasting asynchronous messages. Each computation unit, modeled by
an actor, has a unique address and mailbox. Messages sent to an actor are stored
in its mailbox. Each actor is defined through a set of message handlers, called
methods, to specify the actor behavior upon processing of each message (see Fig.
2.3). In this model, message delivery is guaranteed but is not in-order. This
policy implicitly abstracts from effects of the network, i.e., delays over different
routing paths, message conflicts, etc., and consequently makes it a suitable mod-
eling framework for concurrent and distributed applications. Another semantic
property of this model is atomic execution of methods and fairness in scheduling
actors. Intuitively, the time to execute a method is considered negligible com-
pared to the delay of the network. Consequently, instructions of methods are not
interleaved, and hence execution of methods becomes atomic in the semantic
model.

Rebeca [139] is an actor-based modeling language which aims to bridge the
gap between formal verification techniques and the real-world software engi-
neering of concurrent and distributed applications. It provides an operational

2.4. Actor Model and the Rebeca Language 33

DRAFT
Actors

Rajesh K. Karmani, Gul Agha
Open Systems Laboratory

Department of Computer Science
University of Illinois at Urbana-Champaign

{rkumar8, agha}@illinois.edu

I. DEFINITION

Actors is a model of concurrent computation for devel-
oping parallel, distributed and mobile systems. Each actor
is an autonomous object that operates concurrently and
asynchronously, receiving and sending messages to other
actors, creating new actors, and updating its own local state.
An actor system consists of a collection of actors, some of
whom may send messages to, or receive messages from,
actors outside the system.

II. PRELIMINARIES

An actor has a name that is globally unique and a
behavior which determines its actions. In order to send
an actor a message, the actor’s name must be used; a
name cannot be guessed but it may be communicated in a
message. When an idle is idle, and it has a pending message,
the actor accepts the message, and does the computation
defined by its behavior. As a result the actor may take
three types of actions: send messages, create new actors,
and update its local state. An actor’s behavior may change
as it modifies its local state. Actors do not share state:
an actor must explicitly send a message to another actor
in order to affect the latter’s behavior. Each actor carries
out its actions concurrently (and asynchronously) with other
actors. Moreover, the path a message takes, as well as
network delays it may encounter, are not specified. Thus the
arrival order of messages is indeterminate. The key semantic
properties of the standard Actor model are encapsulation of
state and atomic execution of a method in response to a
message, fairness in scheduling actors and in the delivery
of messages, and location transparency enabling distributed
execution and mobility.

A. Advantages of the Actor Model:

In the object-oriented programming paradigm, an object
encapsulates data and behavior. This separates the interface
of an object (what an object does) from the its representation
(how it does it). Such separation enables modular reasoning
about object-based programs and facilitates their evolution.
Actors extend the advantages of objects to concurrent com-
putations by separating control (where and when) from the
logic of a computation.

msg

create

Figure 1. Actors are concurrent objects which communicate through
messages and may create new actors. An actor may be viewed as an
object augmented with its own control, a mailbox and a globally unique,
immutable name.

The Actor model of programming [1] allows programs to
be decomposed into self-contained, autonomous, interactive,
asynchronously operating components. Due to their asyn-
chronous operation, actors provide a model for the nonde-
terminism inherent in distributed systems, reactive systems,
mobile systems, and any form of interactive computing.

B. History:

The concept of actors has developed over three decades.
The earliest use of the term actors was in Carl Hewitt’s
Planner [2] where the term referred to rule-based active
entities which search a knowledge base for patterns to match,
and in response, trigger actions. For the next two decades,
Hewitt’s group worked on actors as agents of computation,
and it evolved as a model of concurrent computing. A brief
history of actor research can be found in [3]. The commonly
used definition of actors today follows the work of Agha
(1985) which defines actors using a simple operational
semantics [1].

Figure 2.3: Each actor has its own thread of control, mailbox, and address. Upon pro-
cessing a message, it may create a new actor, send messages to other actors, or update its
state variables [100].

interpretation of the actor model through a Java-like syntax, which makes it easy
to learn and use. Rebeca is supported by a robust model checking tool, named
Afra1, which takes advantage of various reduction techniques [97, 133] to make
efficient verification possible. Due to its design principle it is possible to extend
the core language based on the desired domain [138]. For example, different ex-
tensions have been introduced in various domains such as probabilistic systems
[149], real-time systems [131], software product lines [132], and broadcasting
environment [155]. With the aim of reducing the state space, message delivery
is considered in-order, and thus each actor mailbox is modeled through a FIFO
queue.

In Rebeca, actors are the computation units of the system, called rebecs (short
for reactive objects), which are instances of the defined reactive classes in the
model. Rebecs communicate with each other only through asynchronous mes-
sage passing. Every sent message eventually will be received and processed by
its potential receivers. In Rebeca, the rebecs defined as the known rebecs of a
sender, the sender itself using the “self” keyword, or the sender of the message
currently processed using the keyword “sender” are considered as the potential
receivers.

Every reactive class has three major parts, first the known rebecs to specify
the neighbors of the rebec, second the state variables to maintain the state of
the rebec, and third the message servers to indicate the reactions of the rebec
on received messages. The local state of a rebec is defined in terms of its state
variables together with its message queue. Whenever a rebec receives a message

1http://www.rebeca-lang.org/wiki/pmwiki.php/Tools/Afra

http://www.rebeca-lang.org/wiki/pmwiki.php/Tools/Afra

34 Chapter 2 — Preliminaries

1 reactiveclass MNode
2 {
3 knownrebecs
4 {
5 MNode next;
6 }
7 statevars
8 {
9 int my i;

10 boolean done;
11 }

13 msgsrv initial (int j ,
boolean starter)

14 {
15 my i = j;
16 if (starter) {
17 done = true;
18 next.send(my i);
19 } else
20 done = false;
21 }

23 msgsrv send(int i)
24 {
25 if (i < my i) {
26 if (!done) {
27 done = true;
28 next.send(my i);
29 }
30 } else {
31 my i = i;
32 done = true;
33 }
34 }
35 }
36 main
37 {
38 MNode n1(n2):(1,false);
39 MNode n2(n3):(2,false);
40 MNode n3(n4):(3,true);
41 MNode n4(n1):(4,false);
42 }

Figure 2.4: An example in Rebeca: Max-algorithm with 4 nodes in a ring topology.

which has no corresponding message server to respond to, it simply discards the
message. Each rebec has at least one message server called “initial”, which acts
like a constructor in object-oriented languages and performs the initialization
tasks.

A rebec is said to be enabled if and only if it has at least one message in its
queue. The computation takes place by removing a message from the queue and
executing its corresponding message server atomically, after which the rebec pro-
ceeds to process the other messages in its queue (if any). Processing a message
may have the following consequences:

• it may modify the value of the state variables of the executing rebec, or

• some messages may be sent to other rebecs.

Each Rebeca model consists of two parts, the reactive classes part and the main
part. In the main part the instances of the reactive classes are created initially
while their known rebecs and local variables are initialized.

As an example, Figure 2.4 illustrates a simple max finding algorithm modeled
in Rebeca, referred to as “Max-Algorithm”. Every node in the network with a ring
topology contains an integer value and they intend to find the maximum value
of all nodes in a distributed manner. Each node knows its next neighbour in the

2.4. Actor Model and the Rebeca Language 35

ring topology. The initial message server has a parameter, named starter.
The rebec with the starter value true initiates the algorithm by sending the
first message to its next neighbour. Whenever a node receives a value from its
preceding neighbour, it compares this value with its current value and one of the
following scenarios happens:

• if it has not sent its value yet and its value is greater than the received one,
it sends its value to its next neighbour;

• if its current value is less than the received one, it gives up sending its value
and updates its current value to the received one;

• if it has already sent its value, it only checks whether it must updates its
value.

This protocol does not work on MANETs as nodes give up to resend their value
after their first send. The Max-Algorithm should find the maximum value among
the connected nodes in MANETs. To this aim, if a node moves and connects to
new nodes, it has to re-send its value as its value may be the maximum value in
the currently connected nodes.

3Reliable Restricted
Broadcast Process Theory

Most frameworks for the formal analysis of mobile ad hoc network (MANET)
protocols, such as [64, 78, 79, 81, 104, 115, 121, 122, 137] similar to CNT, focus
on protocols above the data link layer; hence they support the core services of this
layer, which means that local broadcast is the primitive means of communication.
Wireless communication at this layer is non-blocking, i.e., the sender broadcasts
irrespective of the readiness of its receivers, and is asynchronous, i.e., received
packets are buffered at the receiver. The data link layer of a node processes the
packet if it is an intended destination. While a node is busy processing a message,
it can still receive messages, buffer them and process them later. However, if two
different nodes broadcast simultaneously with a common node in their range,
the latter node cannot receive both messages and drops one of them, which is
called the hidden node problem. We say that wireless communication is reliable
if the intended receivers successfully receive the packet. In other words, message
delivery is guaranteed to all connected neighbors.

Although lossy communication is an integral part of MANETs, mimicking it
faithfully in a formal framework can hamper the formal analysis of MANET pro-
tocols. To obtain a deeper understanding of a malfunctioning of such a protocol
due to a conceptual mistakes in its design rather than unreliable communica-
tion, it may be helpful to consider communication reliable, meaning that the
possibility of the hidden node problem is omitted from the framework [62, 64].
Therefore we modify the core of CNT by considering communication among the
nodes in the network to be reliable and refer to the process algebra as Reliable
Restricted Broadcast Process Theory (RRBPT).

Somewhat surprisingly, all the results do not carry over in a straightforward
fashion from CNT to RRBPT. In a lossy setting, the non-blocking property of local
broadcast communication is an immediate consequence of the rule Par and its
counterpart in Table 2.1 for the parallel composition expressing that if a node
is not ready to participate in a communication, then we can assume that either
it was disconnected from the sender or it was connected but has lost the mes-
sage. However, in the reliable setting, to guarantee the non-blocking property,
nodes should always be input-enabled. The input-enabledness feature is ensured

37

38 Chapter 3 — Reliable Restricted Broadcast Process Theory

through the RRBPT SOS rules, where the main difference between RRBPT and
RBPT is: in RRBPT, nodes lose a communication only when they are discon-
nected and are always input-enabled. To express such conditions, we extend net-
work constraints with disconnectivity pairs. The introduction of such information
makes it possible to reason about topology-dependent behaviors of MANETs at
CLTS-level through model checking techniques, as will be discussed in Chapter
5. RRBPT provides a sensing operator which allows to change the control flow
of a process depending on the status of node connectivity with other nodes. This
operator abstracts away from the neighbor discovery service by which a node
becomes aware of its connection topology. The neighbor discovery protocol is
implemented by periodically sending hello messages and acknowledging such
messages received from a neighbor. The novel sensing operator, inspired by the
work in [104], obviates the explicit modeling of this service, and consequently
makes modeling of protocols using such a service easier. The neighbor discovery
service is modeled implicitly in the semantics in [104]. To this aim, an arbitrary
subset of a node’s neighbors is considered as the neighbors discovered by such
a protocol. We highlight challenges of bringing input-enabledness feature in the
semantics of RRBPT in the presence of the sensing operator. Furthermore, the be-
havioral equivalence relation of CNT setting is not a congruence with respect to
parallel composition anymore. To support the desired distinguishing power, we
provide a new bisimulation relation which guarantees the congruence property
for MANETs.

The reliable framework, RRBPT, can be extended in the same way as RBPT
with computed network terms and the auxiliary operators left merge () and
communication merge (|) to provide a sound and complete axiomatization for the
parallel composition. However, the input-enabledness feature and the new sens-
ing operator require new auxiliary operators to assist their axiomatization (which
enable linearization of processes at the syntactic level to take benefit of symbolic
verification). To this aim, we discuss the appropriate axioms of RRBPT. We utilize
our axioms to analyze the correctness of protocols at the syntactic level. To this
aim, we facilitate the specification of the protocol behaviors preconditioned to
multihop constraints and then introduce a new notion of refinement among pro-
tocol implementations and their specifications. Such a relation abstracts away
from a sequence of multi-hop communications, leading to an application-level
action preconditioned by a multi-hop constraint over the topology. Therefore,
the correctness of a protocol (with a finite-state behavior) is accomplished by
proving that the implementation rewritten into a recursive specification by our
axiomatization (made of only dynamic operators) refines the specification. We
demonstrate the applicability of our framework by analyzing and proving the
correctness of a simple routing protocol inspired by the AODV protocol.

This chapter is organized as follows. Section 3.1 extends the network con-
straints with negative pairs, and explains how they are helpful in giving seman-
tics to the reliable communication. Section 3.2 introduces the syntax and seman-
tics of RRBPT. Sections 3.3 and 3.4 provide the appropriate notion of behavioral

3.1. Extending Network Constraints 39

equivalence and axioms in the reliable setting, respectively. We demonstrate the
applicability of our axioms by analyzing a simple routing protocol in Section 3.5.
Later, we study a leader election protocol devised for MANETs in Section 3.6 and
discuss how its semantic model can be derived by mCRL2 toolset and to what
extend it can be analyzed. We review and compare the related process algebraic
frameworks in depth in Section 3.7 before concluding the chapter.

3.1 Extending Network Constraints

A network constraint C is a set of connectivity pairs : Loc × Loc and discon-
nectivity pairs 6 : Loc × Loc. In this setting, non-existence of (dis)connectivity
information between two addresses implies lack of information about this link
(which can e.g. be helpful when the link has no effect on the evolution of the
network). For instance, B A denotes that A is connected to B directly and
consequently A can receive data sent by B as before, while B 6 A denotes that A
is not connected to B directly and consequently cannot receive any message from
B. We write {B A,C, B 6 D,E} instead of {B A, B C, B 6 D, B 6 E}.

A network constraint C is said to be well-formed if ∀`, `′ ∈ Loc (` `′ 6∈
C ∨ ` 6 `′ 6∈ C). Let Cv(Loc) denote the set of well-formed network constraints
that can be defined over the network addresses in Loc. We define an ordering on
network constraints. We say that C1 4 C2 iff C2 ⊆ C1 or ∃ ` ∈ Loc (C2[`/?] ⊆ C1),
where d[d1/d2] denotes the substitution of d1 for d2 in d; this can be extended
to process terms. For instance, {B A} 4 {? A} and {B A, B C} 4
{B A}. Each well-formed network constraint C represents the set of network
topologies that satisfy the (dis)connectivity pairs in C, i.e., Γ(C) = {γ | CΓ(γ) 4
C} where CΓ(γ) = {` `′ | `′ ∈ γ(`)} ∪ {` 6 `′ | `′ 6∈ γ(`)} extracts all one-hop
(dis)connectivity information from γ. So the empty network constraint {} still
denotes all possible topologies over Loc. The negation ¬C of network constraint
C is obtained by negating all its (dis)connectivity pairs. Clearly, if C is well-formed
then so is ¬C.

3.1.1 Reliable versus Unreliable Communication

Different behaviors for the communication primitives can be defined with the
help of appropriate network constraints (see Fig. 3.1). Suppose that node A
sends a message, and B is the only neighbor (waiting to receive). If B is con-
nected to A and communication is reliable, then B will receive the message, as
indicated in Fig. 3.1c. If on the other hand communication is unreliable, then B
may or may not receive the message, as modeled in Fig. 3.1b. In this case we can
infer the possible neighbors of A that did not receive the message. Such infor-
mation can be hidden by merging information A B and A 6 B and using the
general network constraint {}, as in Fig. 3.1a. By using appropriate SOS rules,
either of the three behaviors in Fig. 3.1 can be defined. In the CNT framework,
the behavior of communication is as the one depicted in Fig. 3.1a.

40 Chapter 3 — Reliable Restricted Broadcast Process Theory

s0 s1

s2

({}
, n

sn
d(m

, A
))

({A B}, nsnd(m, A))

(a) Unreliable communi-
cation, no knowledge of
neighbors

s0 s1

s2

({A
6
B}
, n

sn
d(m

, A
))

({A

B}
, n

sn
d(m

, A
))

({A B}, nsnd(m, A))

(b) Unreliable communica-
tion

s0 s1

s2

({A
6
B}
, n

sn
d(m

, A
))

({A B}, nsnd(m, A))

(c) Reliable communication

Figure 3.1: Modeling different communication behaviors: s0 represents a state in which
A broadcasts its data, s1 a state after a successful transmission of data from A to B, and
s2 a state after an unsuccessful communication.

3.1.2 Unfolding a CLTS into an LTS

Mobility of nodes is still modeled implicitly through the semantic models. How-
ever, in this setting, the network constraint at each transition implying a send
action subsumes (dis)connectivity information between the sender and other net-
work nodes (see Fig. 3.1c). Hence, the CLTS of Fig. 2.1 is revised as the one in
Fig. 3.2a. State s1 still represents that a message has been received by B. The
CLTS indicates that the network moves to the deadlock state s2 if either B is dis-
connected from A at the moment that A is transmitting req or A is disconnected
from B at the moment that B is transmitting rep. The corresponding unfolded
LTS is shown in Fig. 3.2b for Loc = {A,B}. Thus, the possible topologies are
γ1 = {A 7→ {B}, B 7→ ∅}, γ2 = {A 7→ {B}, B 7→ {A}}, γ3 = {A 7→ ∅, B 7→ {A}}, and
γ4 = {A 7→ ∅, B 7→ ∅}. The three states s0, s1, s2 are paired with the four possible
topologies γ1, γ2, γ3, γ4, leading to twelve states as before.

3.2 Syntax and semantics of RRBPT

Recall that Msg denotes a set of messages communicated over a network, ranged
over by m. Furthermore, A denotes a countably infinite set of process names
which are used as recursion variables in recursive specifications. Recall that
nsnd : Msg × Loc and nrcv : Msg represent network send and network receive
actions and snd , rcv : Msg protocol send and protocol receive actions. Let IAct be
a set of internal actions, ranged over by i. The syntax of RRBPT is given by the
following grammar, where ` ranges over Loc:

t ::= 0 | α.t | t+ t | [[t]]` | t ‖ t | A, A def
= t |

sense(`, t, t) | (ν`)t | τm(t) | ∂m(t)

3.2. Syntax and semantics of RRBPT 41

s0 s1

s2

({A B}, nsnd(req, A))

({
A
6
B
}
,
n
sn

d
(req

,
A

))

({B A}, nsnd(rep, B))

({
B
6
A
},

n
sn

d
(r

ep
,
B

))

(a) A CLTS.

s0, γ1 s0, γ2

s0, γ4 s0, γ3

s1, γ2 s1, γ1

s1, γ3 s1, γ4

s2, γ4 s2, γ3

s2, γ2 s2, γ1

ττ

τ τ
τττ

τ

ττ

τ τ
τττ

τ

ττ

τ τ
τττ

τ

nsnd(req, A)

nsnd(req, A)

nsnd(rep, B)

nsnd(rep, B)

nsnd(req, A)

nsnd(req, A)

nsn
d(r

ep
, B

)
nsnd(rep, B)

(b) The corresponding unfolded LTS.

Figure 3.2: A CLTS and its unfolded LTS. The τ -transitions model mobility of nodes.

We recall from Section 2.3.2 that the deadlock process is modeled by 0. The
process α.t performs action α and then behaves as process t, where α is either
an internal action or a protocol send/receive action snd(m)/rcv(m). We remark
that RRBPT does not include computed network terms in comparison with CNT,
so prefixed-actions of the form (C, η) are not supported. Internal actions are
useful in modeling the interactions of a process with other applications running
on the same node. Protocol send/receive actions specify the interaction of a
process with its data-link layer protocols: these protocols are responsible for
transferring messages reliably throughout the network. These actions are turned
into their corresponding network ones via the semantics (see Section 3.2.1): the
send action nsnd(m, `) denotes that the message m is transmitted from a node
with the address `, while the receive action nrcv(m) denotes that the message m
is ready to be received.

The process t1+t1 behaves non-deterministically as t1 or t2. The simplest form
of a MANET is a node, represented by the deployment operator [[t]]`, denoting
process t deployed on a node with the known network address ` 6= ? (where ?
denotes the unknown address). A MANET can be composed by putting MANETs
in parallel using ‖; the nodes communicate with each other by reliable restricted

broadcast. A process name is specified by A
def
= t where A ∈ A is a name.

As a running example, P
def
= init .snd(req).rcv(rep).succ.P denotes a process

that recursively broadcasts a message req after performing the internal action

init , waits to receive a rep and then performs an internal action succ; and Q
def
=

rcv(req).snd(rep).Q a process that recursively receives a message req and then
replies by sending rep. The internal action init represents initialization of a route
discovery from an upper layer application, and succ a route discovery notification

42 Chapter 3 — Reliable Restricted Broadcast Process Theory

to an upper layer application. The network process [[P]]A ‖ [[Q]]B specifies an ad
hoc network composed of two nodes with network addresses A and B deploying
processes P and Q, respectively.

MANET protocols may behave based on the (non-)existence of a link. A neigh-
bor discovery service can be implemented at the network layer, by periodically
sending hello messages and acknowledging such messages received from a neigh-
bor. The sensing operator sense(`′, t1, t2) examines the status of the link from the
node with address `′ to the node, say with address `, that the sensing is executed
on; in case of its existence it behaves as t1, and otherwise as t2. For instance,
the term [[sense(`′, t1, t2)]]` examines the existence of the link `′ `, and then be-
haves accordingly. The hide operator (ν`)t conceals the address ` in the process t,
by renaming this address to ? in network send/receive actions. For each message
m ∈ Msg , the abstraction operator τm(t) renames network send/receive actions
over message m to τ , and the encapsulation operator ∂m(t) forbids receiving the
message m. Let τ{m1,...,mn}(t) and ∂{m1,...,mn}(t) denote τm1

(. . . (τmn(t)) . . .) and
∂m1

(. . . (∂mn(t)) . . .).
For example, τMsg(∂Msg([[P]]A ‖ [[Q]]B)) specifies an isolated MANET that cannot

receive any message from the environment, while its communications (i.e. send
actions) are abstracted away.

Terms should be grammatically well-defined, meaning that each process de-
ployed at a network address should be only defined by action prefix, choice, sense
and process names.

3.2.1 Operational Semantics

Let PAct and NAct denote the set of protocol and network send and receive
actions respectively, and IAct the set of internal actions. We assume that α ∈
PAct ∪ IAct , η ∈ NAct ∪ IAct ∪ {τ}, i ∈ IAct , and ι ∈ IAct ∪ {τ}. The
SOS rules in Table 3.1 together with the rules Prefix , Choice, Inv , Encap, Abs1,2,

Exe, Recv , and Bro of Table 2.1 induce a CLTS with transitions of the form t
β−→ t′,

where β ∈ Cv(Loc)× (NAct ∪ IAct ∪{τ}). In these rules, t 6 (C, rcv(m))−−−−−−−−−→ denotes

that there exists no t′ such that t
(C′, rcv(m))−−−−−−−−−→ t′ and C′ 4 C. Rules Int and Sen1,2

are new in comparison with the rules of CNT framework. Table 3.1 replaces the
rule Inter1 of Table 2.1 by Snd and Inter2 by Rcv1−3. Furthermore, it overwrites
rule Par for only unobservable and internal actions and extends application of
the rule Exe to (C, α)-like actions by the rule Exe ′.

Rule Prefix ′ assigns an empty network constraint to each prefixed action,
which may be accumulated by further constraints through application of rules
Rcv1,2 or Sen1,2. We remark that the rule Prefix of Table 2.1 is still valid for
computed network terms. The rule Int indicates that a node progresses when the
deployed process on the node performs an internal action. Interaction between
the process t and its data-link layer is specified by the rule Snd and Rcv1−3: when
t broadcasts a message, it is delivered to the nodes in its transmission range

3.2. Syntax and semantics of RRBPT 43

Table 3.1: Semantics of RRBPT operators.

α.t
({},α)−−−−→ t

: Prefix ′
t1

(C,α)−−−−→ t′1

sense(`, t1, t2)
({? `}∪C,α)−−−−−−−−−−−−→ t′1

: Sen1

t 6 (C, rcv(m))−−−−−−−−−→
[[t]]`

(C[`/?], nrcv(m))−−−−−−−−−−−−−→ [[t]]`
: Rcv3

t2
(C,α)−−−−→ t′2

sense(`, t1, t2)
({? 6 `}∪C,α)−−−−−−−−−−−−→ t′2

: Sen2

t
(C, rcv(m))−−−−−−−−→ t′

[[t]]`
(C[`/?]∪{? `}, nrcv(m))−−−−−−−−−−−−−−−−−−−−−→ [[t′]]`

: Rcv1

t
(C, i)−−−−→ t′

[[t]]`
(C, i)−−−−→ [[t′]]`

: Int

t
(C, snd(m))−−−−−−−−−→ t′

[[t]]`
(C[`/?], nsnd(m,`))−−−−−−−−−−−−−−−→ [[t′]]`

: Snd
t1

(C,ι)−−−→ t′1

t1 ‖ t2
(C,ι)−−−→ t′1 ‖ t2

: Par

t
(C,α)−−−−→ t′

t
(C′,α)−−−−→ t′

: Exe ′, C′ 4 C t
(C, rcv(m))−−−−−−−−→ t′

[[t]]`
(C[`/?]∪{? 6 `}, nrcv(m))−−−−−−−−−−−−−−−−−−−−−→ [[t]]`

: Rcv2

disregarding their readiness. Rcv1 specifies that a process t with an enabled
receive action can perform it successfully if it has a link to a sender (not currently
known). In contrast, an enabled receive action cannot be performed if the node
is disconnected from the sender (not currently known). However, to make the
node input-enabled and consequently non-blocking, the node still performs its
receive action but its state is unchanged, as explained in Rcv2. If a protocol
does not have any enabled receive action rcv(m) for the network constraint C,
then receiving the message has no effect on the node behavior, as explained by
Rcv3. Consequently, this rule makes nodes input-enabled, meaning that a node
not ready to receive a message will drop it. Therefore, [[P]]A has a ({},nrcv(rep))-
transition by application of this rule.

Rules Sen1,2 explain the behavior of the sense operator. In case there is a link
to the node with the address ` from the node that is running the sense operator,
and currently its address is unknown, then it behaves like t1; in case this link is
not present, it behaves like t2. Therefore, the link status is combined with the
network constraint C generated by its first or second term argument, as given by
Sen1,2 respectively. For instance, sense(B, rcv(req).0, snd(req).0) generates two
transitions: by Prefix ′ and Sen1, it generates a ({? B}, rcv(req))-transition,
and by Prefix ′ and Sen2, a ({? 6 B}, snd(req))-transition.

In rules Snd and Rcv1, the network constraint C may have unknown ad-
dresses due to the sensing operators, which are replaced by the address of de-
velopment operator, i.e., C[`/?]. Therefore, by application of Prefix ′, Sen1, and

44 Chapter 3 — Reliable Restricted Broadcast Process Theory

Rcv1, the following transition results:

[[sense(B, rcv(req).0, snd(req).0)]]A
({A B, ? A}, nrcv(req))−−−−−−−−−−−−−−−−−−−−−−−→ [[0]]A.

We remark that the rule Exe ′ is essential for the rule Rcv3. Without such a
rule, Rcv3 would derive a self-loop with the label ({B 6 A}, rcv(req)) for [[Q]]B

as Q 6 ({B6 A},rcv(req))−−−−−−−−−−−−−−−→. While [[Q]]B also has a ({? B},nrcv(req))-transition
leading to the behavior [[y]]B , where y ≡ snd(rep).Q, by the application of Rcv1.
For topologies that are in common between the two network constraints, {? B}
and {B 6 A}, [[Q]]B have a non-deterministic behavior on receiving req (it may
process it or drop it). By Exe ′, Q induces a ({B 6 A, ? B}, rcv(req))-transition
leading to the behavior y. Finally, {B 6 A, ? B} � {B 6 A} makes that the

premise Q 6 ({B6 A},rcv(req))−−−−−−−−−−−−−−−→ does not hold, and hence the behavior of [[Q]]B
is deterministic on receive actions.

The SOS rules of receive actions and parallel composition have been modified
compared to the lossy framework [73, 74]: Rcv1−3 specify the locality of a re-
ceiver node with respect to the sender (connected, disconnected, unknown). Par
prevents evolution of sub-networks on network actions and enforces all nodes to
specify their localities with respect to the sender before evolving the whole net-
work via Recv or Bro rules. By Par , a process evolves when a subprocess evolves
by performing only an internal or silent action. The symmetric counterpart of
the rule Par holds.

For instance, the MANET [[sense(B, rcv(req).0, snd(req).0)]]A ‖ [[snd(req).0]]B
can generate the ({B A}, nsnd(req , B)) transition induced by the deduction
tree below, where x ≡ sense(B, rcv(req).0, snd(req).0) and z ≡ snd(req).0:

:Prefix ′

rcv(req).0
({}, rcv(req))−−−−−−−−−−→ 0

:Sen1

x
({? B}, rcv(req))−−−−−−−−−−−−−−−→ 0 :Rcv1

[[x]]A
({A B, ? A}, nrcv(req))−−−−−−−−−−−−−−−−−−−−−−−→ [[0]]A

:Bro,Snd
[[x]]A ‖ [[z]]B

({B A,A B}, nsnd(req,B))−−−−−−−−−−−−−−−−−−−−−−−−−−→ [[0]]A ‖ [[0]]B

The derived CLTS of our running example ∂Msg([[P]]A ‖ [[Q]]B) is given in Fig.
3.3.

3.3 Rooted Branching Reliable Computed Network
Bisimilarity

It can be easily shown that rooted branching computed network bisimilarity does
not constitute a congruence with respect to the RRBPT operators. We still want
that a receiving MANET (after its first action) be equivalent to deadlock. In this

3.3. Rooted Branching Reliable Computed Network Bisimilarity 45

s1 s2

s3

s4s0
({}, init) ({A B}, nsnd(req, A))

({A 6 B}, nsnd(req, A))

({B A}, nsnd(rep, B))

({B 6 A}, nsnd(rep, B))

({}, succ)

Figure 3.3: The CLTS associated to ∂Msg([[P]]A ‖ [[Q]]B).

setting, still [[0]]A 'b [[rcv(m).0]]A, but [[0]]A ‖ [[snd(m).0]]B 6'b [[rcv(m).0]]A ‖
[[snd(m).0]]B , since by application of Rcv1,2, Snd , and Bro:

[[rcv(m).0]]A ‖ [[snd(m).0]]B
({B6 A},nsnd(m,B))−−−−−−−−−−−−−−−−−→ [[rcv(m).0]]A ‖ [[0]]B

[[rcv(m).0]]A ‖ [[snd(m).0]]B
({B A},nsnd(m,B))−−−−−−−−−−−−−−−−−→ [[0]]A ‖ [[0]]B

while by application of Rcv3, Snd , Bro:

[[0]]A ‖ [[snd(m).0]]B
({},nsnd(m,B))−−−−−−−−−−−−→ [[0]]A ‖ [[0]]B

which cannot be matched to any transition of [[rcv(m).0]]A ‖ [[snd(m).0]]B ac-
cording to the second condition of Definition 2.4. However, we observe that
the ({},nsnd(m, B))-transition can be matched to the transition sets of actions
({B 6 A},nsnd(m, B)) and ({B A},nsnd(m, B)), as the network constraints
{B 6 A} and {B A} provide a partitioning of {} while the resulting states of
their corresponding transitions are equivalent. Thus, we revise our Definition 2.4
by generalizing its second condition.

Intuitively, two MANETs are equivalent if they have the same observable be-
haviors for all possible underlying topologies. In the lossy setting, the observable
behaviors exclude receive actions, as the node [[rcv(a).snd(a).0]]A can be distin-
guished from [[rcv(a).0]]A due to its capability to send a after its receipt. However,
the capability of receiving messages implicitly defines a restriction on the under-
lying topology. For instance, the sending action snd(a) in [[rcv(a).snd(a).0]]A is
only possible if the node in question was previously connected to a sender and
successfully received a. Thus to distinguish [[rcv(a).snd(a).0]]A from [[snd(a).0]]A,
receive actions are included in the observables in the reliable setting. Further-
more, as dropping a message may have the same effect as its processing (as ex-
plained above), a transition cannot be matched in the same way as in Definition
2.4 and it may be matched to multiple transitions.

A partitioning of a network constraint C consists of network constraints C1,
. . . , Cn such that ∀i, j ≤ n (i 6= j ⇒ Γ(Ci) ∩ Γ(Cj) = ∅) ∧ ⋃nk=1 Γ(Ck) = Γ(C)
where Γ(C) denotes the set of topologies represented by the network constraint
C. Recall that 〈(C, η)〉 is the counterpart of (C, η), meaning that it denotes (C, η)
or (C[`/?], η[`/?]) if η is of the form nsnd(m, ?). We use 〈C〉 to denote C or C[`/?].

46 Chapter 3 — Reliable Restricted Broadcast Process Theory

Definition 3.1. A binary relation R on computed network terms is a branch-

ing reliable computed network simulation if t1Rt2 and t1
(C,η)−−−−→ t′1 implies that

either:

• η is a τ action, and t′1Rt2; or

• there are s′′1 , . . . , s
′′
k and s′1, . . . , s

′
k for some k > 0 such that ∀i ≤ k(t2 ⇒

s′′i
〈(Ci,η)〉−−−−−→ s′i, with t1Rs′′i and t′1Rs′i), and 〈C1〉, . . . , 〈Ck〉 constitute a par-

titioning of 〈C〉.

R is a branching reliable computed network bisimulation if R and R−1 are
branching reliable computed network simulations. Two terms t1 and t2 are
branching reliable computed network bisimilar, denoted by t1 'br t2, if t1Rt2
for some branching reliable computed network bisimulation relation R.

Theorem 3.2. Branching reliable computed network bisimilarity is an equivalence.

Trivially (t1 'b t2) ⇒ (t1 'br t2).

Definition 3.3. Two terms t1 and t are rooted branching reliable computed net-
work bisimilar, written t1 'rbr t2, if:

• t1
(C,η)−−−−→ t′1 implies there is a t′2 such that t2

〈(C,η)〉−−−−−→ t′2 and t′1 'br t′2;

• t2
(C,η)−−−−→ t′2 implies there is a t′1 such that t1

〈(C,η)〉−−−−−→ t′1 and t′1 'br t′2.

Corollary 3.4. Rooted branching reliable computed network bisimilarity is an equiv-
alence.

See Section A.1 for the proof of Theorem 3.2. Corollary 3.4 is an immediate
result of Theorem 3.2 and Definition 3.3.

Theorem 3.5. Rooted branching reliable computed network bisimilarity is a con-
gruence for RRBPT operators.

See Section A.2 for the proof.

3.4 Axioms

To provide a sound and complete axiomatization for closed RRBPT terms with
respect to rooted branching reliable computed network bisimilarity, the frame-
work should be extended with the computed network terms, i.e., (C, η).t which
expresses that action η is possible for topologies belonging to C. This prefix
operator is helpful to transform protocol send/receive actions into their corre-
sponding network ones (see axioms Dep1,2 in Section 2.3.4). Furthermore, it

3.4. Axioms 47

should contain the operators left merge () and communication merge (|) to ax-
iomatize parallel composition. Note that the interleaving semantics for parallel
composition is only valid for internal and unobservable actions (see SOS rule
Par). Furthermore, we need the conditional and sum operators to enforce input-
enabledness. To axiomatize the behavior of nodes while being input-enabled, we
also exploit two novel auxiliary operators.

RRBPT is extended with new operators and called Reliable Computed Network
Process Theory (RCNT). Its syntax contains:

t ::= 0 | β.t | t+ t | A ,A
def
= t | t | t | t t | t ‖ t | recA · t

sense(`, t, t) | (ν`)t | τm(t) | ∂m(t) | ` : t : t | C B t | [[t]]`

The prefix operator in β.t again denotes a process which performs β and then
behaves as t. The action β can now be of two types: either an internal action
or a send/receive action snd(m)/rcv(m), denoted by α, or actions of the form
(C,nrcv(m)), (C,nsnd(m, `)) and (C, τ), denoted by (C, η), where the first two
actions are called the network receive and send actions, respectively. The new
operator ` : t1 : t2, so-called local deployment, defines the behavior of process t2
deployed at the network address ` while it only considers the input-enabledness
feature with regard to the behavior of t1. In cases that it should drop a message
(i.e., processing the message has not been defined by t2), it behaves as t1. This
operator is helpful to axiomatize the behavior of the deployment operator in the
reliable setting. To axiomatize the behavior of the sense operator, the framework
is extended with the topology restriction operator CBtwhich restricts the behavior
of t by taking restrictions of C into account.

Due to the input-enabledness feature of nodes, their behavior is recursive:
upon receiving a message for which no receive action has been defined, a node
drops the message. To this aim, we exploit the recursion operator recA · t, which

specifies the solution of the process name A, defined by the equation A
def
= t. As

we are interested in equations with exactly one solution, we define a guardedness
criterion for network names similar to CNT (see Section 2.3.4). A free occurrence
of a network name A in t is called guarded if this occurrence is in the scope of an
action prefix operator (not (C, τ) prefix) and not in the scope of an abstraction
operator [9]; in other words, there is a subterm (C, η).t′ in t such that η 6= τ , and
A occurs in t′. A is (un)guarded in t if (not) every free occurrence of A in t is
guarded. A RCNT term t is guarded if for every subterm recA · t′, A is guarded
in t′. This guardedness criterion ensures that any guarded recursive term has a
unique solution.

A term is grammatically well-defined if its processes deployed at a network
address through either a network or local deployment operator, are only defined
by action prefix, choice, sense, and process names.

The SOS rules of the new operators are given in Table 3.2 together with the

rules Sync1,2 of Table 2.1. In these rules, t 6nrcv(m)−−−−−−→ denotes that there exists no

48 Chapter 3 — Reliable Restricted Broadcast Process Theory

t′ such that t
(C′, nrcv(m))−−−−−−−−−−→ t′ for some network constraint C′. The behavior of

the local deployment operator is almost similar to the deployment operator. Its
rules Inter ′1 and Inter ′2 are almost the same as Snd and Rcv1, respectively. How-
ever, it substitutes Inter ′3 for Rcv2 by which it only adds transitions containing
the disconnectivity pair ? 6 ` for those possible receive actions of t2 (generated
by Rcv1). Rules Choice ′, Inv ′, and Sen ′1,2 are also the same as Choice, Inv , and
Sen1,2, receptively. The difference between the rules of the deployment and local
deployment is that the behavior of the deployment operator is derived regarding
the behavior of the deployed protocol by the rules Snd and Rcv1−3 while the
behavior of the local deployment is defined in terms of the structure of the de-
ployed protocol. Rules Sen ′3,4 make the behavior of sense(`′, t1, t2) input-enabled
toward receive actions that are possible by t1 but not t2 and vice versa. The con-
straints of the topology restriction operator CB t is added to the behaviors of t as
explained by the rule TR.

The main differences of extended RCNT with CNT are that its deployed nodes
are input-enabled and its communication primitive is reliable. We use the no-
tation

∑
m∈M t to define t[m1/m] + . . . + t[mk/m], where M = {m1, . . . ,mk}.

Furthermore, if (b, t1, t2) behaves as t1 if the condition b holds and otherwise as
t2.

The axioms regarding the deployment, left and communication merge, and
parallel operators are given in Table 3.3. The axioms Br , LM 2,3 and S1−4 are
standard (cf. [111]). The axiom Ch5 denotes that a network send action whose
sender address is unknown can be removed if its counterpart action exists. The
axiom Ch6 explains that a more liberal network constraint allows more behav-
ior. Axioms Dep0−7, LM ′

1,2, and TRes1−5 are new in comparison with the lossy
setting of CNT. The axiom (C, η).t1 t2 = (C, η).(t1 ‖ t2) has been replaced by
LM ′

1,2 which only allow internal or unobservable actions of the left operand to
be performed.

To axiomatize the behavior of a node considering the input-enabledness fea-
ture, we need to find the messages that it cannot currently respond to and then
add a summand which receives those message without processing them. To this
aim, axiom Dep0 expresses the behavior of [[t]]` as a recursive specification which
drops messages that it does not handle with the help of the auxiliary function
Message(t,S), and the behavior of t with the help of the local deployment oper-
ator ` : Q : t. The function Message(t,S) returns the set of messages that can be

3.4. Axioms 49

Table 3.2: Semantics of the new operators of RCNT

` : t1 : snd(m).t2
({}, nsnd(m,`))−−−−−−−−−−−−→ [[t2]]`

: Inter ′1

` : t1 : rcv(m).t2
({? `}, nrcv(m))−−−−−−−−−−−−−−−→ [[t2]]`

: Inter ′2

` : t1 : rcv(m).t2
({? 6 `}, nrcv(m))−−−−−−−−−−−−−−−→ t1

: Inter ′3
t

(C′,η)−−−−→ t′

C B t (C′∪C,η)−−−−−−−→ t′
: TR

` : t3 : ti
(C, η)−−−−→ t′i i ∈ {1, 2}

` : t3 : t1 + t2
(C,η)−−−−→ t′i

: Choice ′
t[recA · t/A]

(C,η)−−−−→ t′

recA · t (C,η)−−−−→ t′
: Rec

` : t1 : t2
(C, η)−−−−→ t′2

` : t1 : A
(C,η)−−−−→ t′2

: Inv ′, A
def
= t2

t1
(C,ι)−−−→ t′1

t1 t2
(C,ι)−−−→ t′1 ‖ t2

: LExe

` : t3 : t1
(C,η)−−−−→ t′1

` : t3 : sense(`′, t1, t2)
({` `′}∪C,η)−−−−−−−−−−−−→ t′1

: Sen ′1

` : t3 : t2
(C,η)−−−−→ t′2

` : t3 : sense(`′, t1, t2)
({` 6 `′}∪C,η)−−−−−−−−−−−−→ t′2

: Sen ′2

` : t3 : t1 6
nrcv(m)−−−−−−→ ` : t3 : t2

(C, nrcv(m))−−−−−−−−−→ t′2

` : t3 : sense(`′, t1, t2)
({` `′}, nrcv(m))−−−−−−−−−−−−−−−→ t3

: Sen ′3

` : t3 : t1
(C, nrcv(m))−−−−−−−−−→ t′1 ` : t3 : t2 6

nrcv(m)−−−−−−→
` : t3 : sense(`′, t1, t2)

({` 6 `′}, nrcv(m))−−−−−−−−−−−−−−−→ t3

: Sen ′4

50 Chapter 3 — Reliable Restricted Broadcast Process Theory

currently processed by t and is defined using structural induction:

Message(0,S) = ∅
Message(i.t,S) = ∅, i ∈ IAct
Message(snd(m).t,S) = ∅
Message(rcv(m).t,S) = {m}
Message(t1 + t2,S) = Message(t1,S) ∪Message(t2,S)
Message(sense(`, t1, t2),S) = Message(t1,S) ∪Message(t2,S)

Message(A,S) = Message(t,S ∪ {A}), A 6∈ S,A def
= t

Message(A,S) = ∅, A ∈ S

where S keeps track of process names whose right-hand definitions have been
examined. We remark that Dep0 extends the deployment behavior of the lossy
setting with the input-enabledness feature with the help of operator ` : Q : t.
The axioms Dep1−7 specify the behavior of the operator ` : t1 : t2. Axiom Dep1

defines the interaction between the network and data link layers. The protocol
send action (at the network layer) is transformed into its network version (at
the data link layer). Axiom Dep2 indicates that when ` is connected to a sender
(which is unknown yet), the receive action is successful and its behavior proceeds
as [[t]]`. Otherwise, the receive action is unsuccessful and its behavior is defined
by t′. Axioms Dep3,4,5 express the effect of the local deployment on choice,
deadlock, and process names, respectively while axioms Dep6,7 define its effect
on the prefixed internal actions and sense operator, respectively.

The behavior of the topology restriction operator is defined by the axioms
TRes1−5 in Table 3.3. Axiom TRes1 considers the restrictions of C1 by integrat-
ing its restrictions with C2 in the computed network term (C2, η).t if C1 ∪ C2 is
well-formed. Axiom TRes2 defines that topology restriction can be distributed
over the choice operator. Axiom TRes3 expresses that the topology restriction op-
erator can be moved inside and outside of a recursion operator. Axioms TRes4,5

explain that the topology restriction operator has no effect on a process name
and deadlock, respectively.

For instance, the behavior of the MANET [[sense(B, rcv(req).0, snd(req).0)]]A,
where Msg = {req , rep}, can be simplified as:

[[sense(B, rcv(req).0, snd(req).0)]]A =Dep0

recQ · ({},nrcv(rep)).Q +A : Q : sense(B, rcv(req).0, snd(req).0) =Dep8

recQ · ({},nrcv(rep)).Q + ({B 6 A},nrcv(req)).Q+

{B A}BA : Q : rcv(req).0 + {B A}BA : Q : snd(req).0 =Dep1,2

recQ · ({},nrcv(rep)).Q + ({B 6 A},nrcv(req)).Q+

{B A}B (({? A},nrcv(req)).[[0]]A + ({? 6 A},nrcv(req)).Q)+

{B 6 A}B ({},nsnd(req , A)).[[0]]A =TRes1,2

recQ · (({},nrcv(rep)).Q + ({B 6 A},nrcv(req)).Q+

3.4. Axioms 51

Table 3.3: Axioms for the choice, deployment, left and communication merge, and
parallel operators. The sets M1 and M2 denote Message(t2, ∅) \ Message(t1, ∅) and
Message(t1, ∅) \Message(t2, ∅) respectively.

Dep0 [[t]]` = recQ ·
∑

m′ 6∈Message(t,∅)({},nrcv(m′)).Q + ` : Q : t

Dep2 ` : t′ : rcv(m).t = ({? 6 `},nrcv(m)).t′ + ({? `},nrcv(m)).[[t]]`
Dep7 ` : t3 : sense(`′, t1, t2) =

∑
m′∈M1

({` `′},nrcv(m′)).t3
+
∑

m′∈M2
({` 6 `′},nrcv(m′)).t3 + {` `′}B ` : t3 : t1

+{` 6 `′}B ` : t3 : t2

Dep1 ` : t′ : snd(m).t = ({},nsnd(m, `)).[[t]]` Dep6 ` : t′ : i.t = ({}, i).[[t]]`
Dep3 ` : t3 : t1 + t2 = ` : t3 : t1 + ` : t3 : t2 Dep4 ` : t : 0 = 0

Dep5 ` : t′ : A = ` : t′ : t, A
def
= t

TRes1 C1 B (C2, η).t = (C1 ∪ C2, η).t, if C1 ∪ C2 ∈ Cv(Loc)
TRes2 C B (t1 + t2) = (C B t1) + (C B t2) TRes4 C BA = A
TRes3 C B recA · t = recA · (C B t) TRes5 C B 0 = 0

Br t1 ‖ t2 = t1 t2 + t2 t1 + t1 | t2 S1 t1 | t2 = t2 | t1
LM ′1 (C, η).t1 t2 = 0, η 6∈ IAct ∪ {τ} S2 (t1 + t2) | t3 = t1 | t3 + t2 | t3
LM 2 (t1 + t2) t3 = t1 t3 + t2 t3 S3 0 | t = 0
LM 3 0 t = 0 S4 (C, η).t1 | t2 = 0, η ∈ IAct ∪ {τ}
LM ′2 (C, η).t1 t2 = (C, η).(t1 ‖ t2), η ∈ IAct ∪ {τ}

Sync1 (C1,nsnd(m1, `)).t1 | (C2,nrcv(m2)).t2 =
if ((m1 = m2), (C1 ∪ C2[`/?],nsnd(m1, `)).t1 ‖ t2, 0)

Sync2 (C1,nrcv(m1)).t1 | (C2,nrcv(m2)).t2 =
if ((m1 = m2), (C1 ∪ C2,nrcv(m1)).t1 ‖ t2, 0)

Sync3 (C1,nsnd(m1, `1)).t1 | (C2,nsnd(m2, `2)).t2 = 0

({B A, ? A},nrcv(req)).[[0]]A+

({B A, ? 6 A},nrcv(req)).Q + ({B 6 A},nsnd(req , A)).[[0]]A)

Furthermore, the following should be added to the axioms:

T3 (C′, η).((C1, η).t+ (C2, η).t+ t′) = (C′, η).((C, η).t+ t′)
iff ∃`, `′ ∈ Loc,∃C ∈ Cv(Loc) · (C1 = C ∪ {` `′} ∧ C2 = C ∪ {` 6 `′}

which accumulates the network constraints that constitute a partitioning.
It is not hard to see that the axioms Ch1−6 of Table 2.2, Table 3.3, Table 2.4

extended with the axiom T3 while T1 has been excluded, and Table 2.5 (while
ητ in the axiom WUng2 only implies to τ) provide a sound axiomatization of
RCNT. This can be checked by verifying soundness for each axiom individually.
Furthermore, our axiomatization is also ground-complete for terms with a finite-
state CLTS, but not for infinite-state CLTSs. See sections A.3 and A.4 for the
proofs of the soundness and completeness of our axiomatization respectively.

52 Chapter 3 — Reliable Restricted Broadcast Process Theory

3.5 Case Study: a Simple Routing Protocol

In MANETs, nodes communicate through others via a multi-hop communication.
Hence, nodes act as routers to make the communication possible among not
directly connected nodes. We illustrate the applicability of our axioms in the
analysis of MANET protocols through a simple routing protocol inspired by the
AODV protocol.

3.5.1 Protocol Specification

The protocol consists of three processes P , M , and Q, each specifying the behav-
ior of a node as the source (that finds a route to a specific destination), middle
node (that relays messages from the source to the destination), and destination.
The description of these process are given in Figure 3.4.

P
def
= sense(B, snd(dataB).P, snd(req).P1)

P1
def
= [rcv(repC).P2 + rcv(repB).P + snd(req).P1]

P2
def
= sense(C, rcv(error).P + snd(dataC).P2, snd(req).P1)

M
def
= rcv(req).snd(req).M1

M1
def
= rcv(repB).snd(repC).M2 + snd(req).M1

M2
def
= sense(B, rcv(dataC).snd(dataB).M2, snd(error).snd(req).M1)

Q
def
= rcv(req).snd(repB).Q+ rcv(dataB).deliver.Q

Figure 3.4: The specification of processes P , M , and Q as a part of our simple routing
protocol.

Process P , deployed at the address A, uses the neighbor discovery service of
the data link layer to examine if it has a direct link to the destination with the
address B. If it is connected, then it sends its data directly by broadcasting the
message dataB; otherwise, it initiates the route discovery procedure by sending
the message req , then behaving as P1. This process waits until it receives a reply
from a middle name with the address C or B. In the former case, it behaves as
P2 which indicates that A sends it data through C as long as C is connected to
A. In the latter case, it behaves as P which indicates that A sends it data as long
as B is directly connected to A.

Process M relays req messages to find a route to B and then behaves as M1.
This process waits until it receives a reply. To model waits with a timeout, it
non-deterministically sends a request again. Upon receiving a reply from C it
behaves as M2, indicating that it relays data messages of A as long as it has a

3.5. Case Study: a Simple Routing Protocol 53

link to C. Finally, process Q sends a reply upon receiving a request message and
receives data messages.

To simplify the route maintenance procedure of AODV, the middle node takes
advantage of the sensing operator when it behaves as M2. Whenever it finds out
that it has no link to C, it sends an error message to its upstream node, i.e., A, to
inform it that its route to B through C is not valid. After sending and receiving
the error message, they both initiate the route discovery procedure by sending a
request message.

The network with the three nodes of a source, middle, and destination is
specified by

N ≡ τMsg(∂Msg([[P]]A ‖ [[M]]C ‖ [[Q]]B)).

Analyzing (νA)(νB)(νC)N , whose network addresses have been abstracted away,
reveals that it is rooted branching bisimilar to a process with livelock behavior1.
Possibly a livelock occurs where data is not delivered to B as no route can found
to B. Such behavior may be the result of a conceptual mistake in the proto-
col design or the impossibility of communication between A and B due to their
disconnectivity. We propose a technique in Section 3.5.2 to discover only those
faulty behaviors that are due to an incorrect protocol design.

The network ∂Msg([[P]]A ‖ [[M]]C ‖ [[Q]]B) can be simplified as:

∂Msg([[P]]A ‖ [[M]]C ‖ [[Q]]B) = (3.1)

({A B},nsnd(dataB , A)).∂Msg([[P]]A ‖ [[M]]C ‖ [[deliver .Q]]B)+

({A 6 B,A C},nsnd(req , A)).∂Msg([[P1]]A ‖ [[snd(req).M1]]C ‖ [[Q]]B)+

({A 6 B,A 6 C},nsnd(req , A)).∂Msg([[P1]]A ‖ [[M]]C ‖ [[Q]]B).

Next, we simplify ∂Msg([[P1]]A ‖ [[snd(req).M1]]C ‖ [[Q]]B) as

∂Msg([[P1]]A ‖ [[snd(req).M1]]C ‖ [[Q]]B) = (3.2)

({A B},nsnd(req , A)).∂Msg([[P1]]A ‖ [[snd(req).M1]]C ‖ [[snd(repB).Q]]B)+

({A 6 B},nsnd(req , A)).∂Msg([[P1]]A ‖ [[snd(req).M1]]C ‖ [[Q]]B)+

({C B},nsnd(req , C)).∂Msg([[P1]]A ‖ [[M1]]C ‖ [[snd(repB).Q]]B)+

({C 6 B},nsnd(req , C)).∂Msg([[P1]]A ‖ [[M1]]C ‖ [[Q]]B).

Now, we continue by extending ∂Msg([[P1]]A ‖ [[M1]]C ‖ [[snd(repB).Q]]B):

∂Msg([[P1]]A ‖ [[M1]]C ‖ [[snd(repB).Q]]B) =

({ },nsnd(req , A)).∂Msg([[P1]]A ‖ [[M1]]C ‖ [[snd(repB).Q]]B)+

({ },nsnd(req , C)).∂Msg([[P1]]A ‖ [[M1]]C ‖ [[snd(repB).Q]]B)+

({B A,C},nsnd(repB , B)).∂Msg([[P]]A ‖ [[snd(repC).M2]]C ‖ [[Q]]B)+

1The network has been specified in the mCRL2 language [82], as it is explained in Section 3.6.2.
The code and its derived transition system modulo branching bisimilarity by the mCRL2 toolset is
available at fghassemi.adhoc.ir/codeFI17.zip

fghassemi.adhoc.ir/codeFI17.zip

54 Chapter 3 — Reliable Restricted Broadcast Process Theory

({B A,B 6 C},nsnd(repB , B)).∂Msg([[P]]A ‖ [[M1]]C ‖ [[Q]]B)+

({B 6 A,B C},nsnd(repB , B)).∂Msg([[P1]]A ‖ [[snd(repC).M2]]C ‖ [[Q]]B).

By simplifying the term ∂Msg([[P]]A ‖ [[snd(repC).M2]]C ‖ [[Q]]B), which indicates
that A and C have found a direct route to B, we reach ∂Msg([[P]]A ‖ [[M2]]C ‖
[[Q]]B):

∂Msg([[P]]A ‖ [[snd(repC).M2]]C ‖ [[Q]]B) =

({ },nsnd(repC , C)).∂Msg([[P]]A ‖ [[M2]]C ‖ [[Q]]B)+

({A B},nsnd(dataB , A)).∂Msg([[P]]A ‖ [[snd(repC).M2]]C ‖ [[deliver .Q]]B)+

({A 6 B},nsnd(req , A)).∂Msg([[P1]]A ‖ [[snd(repC).M2]]C ‖ [[Q]]B).

By extending ∂Msg([[P]]A ‖ [[M2]]C ‖ [[Q]]B), we have:

∂Msg([[P]]A ‖ [[M2]]C ‖ [[Q]]B) =

({A B},nsnd(dataB , A)).∂Msg([[P]]A ‖ [[M2]]C ‖ [[deliver .Q]]B)+

({A 6 B},nsnd(req , A)).∂Msg([[P1]]A ‖ [[M2]]C ‖ [[Q]]B).

Finally extending ∂Msg([[P1]]A ‖ [[M2]]C ‖ [[Q]]B) results:

∂Msg([[P1]]A ‖ [[M2]]C ‖ [[Q]]B) =

({A B},nsnd(req , A)).∂Msg([[P1]]A ‖ [[M2]]C ‖ [[snd(repB).Q]]B)+

({A 6 B},nsnd(req , A)).∂Msg([[P1]]A ‖ [[M2]]C ‖ [[Q]]B)+

({C 6 B},nsnd(error , C)).∂Msg([[P1]]A ‖ [[snd(req).M1]]C ‖ [[Q]]B).

The following scenario, found by above equations, is valid for a topology in
which A has only a multi-hop link to B via C, but B has a direct link to A:

∂Msg([[P]]A ‖ [[M]]C ‖ [[Q]]B)
({A6 B,A C},nsnd(req,A))−−−−−−−−−−−−−−−−−−−−−−−−→ ∂Msg([[P1]]A ‖ [[snd(req).M1]]C ‖ [[Q]]B)

({C B},nsnd(req,C))−−−−−−−−−−−−−−−−−−→ ∂Msg([[P1]]A ‖ [[M1]]C ‖ [[snd(repB).Q]]B)
({B A,C},nsnd(repB ,B))−−−−−−−−−−−−−−−−−−−−−−→ ∂Msg([[P]]A ‖ [[snd(repC).M2]]C ‖ [[Q]]B)

({ },nsnd(repC ,C))−−−−−−−−−−−−−−−→ ∂Msg([[P]]A ‖ [[M2]]C ‖ [[Q]]B)
({A6 B},nsnd(req,A))−−−−−−−−−−−−−−−−−−→ ∂Msg([[P1]]A ‖ [[M2]]C ‖ [[Q]]B)
({A6 B},nsnd(req,A))−−−−−−−−−−−−−−−−−−→ ∂Msg([[P1]]A ‖ [[M2]]C ‖ [[Q]]B)

. . .

The reason is found in the specification of M2 which does not handle request
messages, and hence, for such a topology no data will be received by B although
there is a path form A to B and from B to A. Therefore, we revise M2 as:

M2
def
= sense(B, rcv(dataC).snd(dataB).M2 + rcv(req).snd(repC).M2,

snd(error).snd(req).M1)

3.5. Case Study: a Simple Routing Protocol 55

The path above also exists in the lossy setting, but with all disconnectivity
pairs removed from the network constraints. However, an exhaustive and there-
fore expensive inspection of this path is needed to determine that it is due to a
design error. The first transition carries the label ({A 6 B,A C},nsnd(req , A))
in the reliable setting, meaning that B is not ready to receive, and the label
({A C},nsnd(req , A)) in the lossy setting. The latter label indicates that either
B was not ready to receive or it was not connected to A. So in the lossy setting
one has to examine the origin state to find out if B had an enabled receive action
or not. The concept of not being ready to receive is treated in the same way as a
lossy communication. Since only the former may be due to a conceptual design
in the protocol, finding design errors is not straightforward in the lossy setting.
In general the lossy setting will produce a large number of possible error traces
that all need to be examined exhaustively, while the reliable setting will produce
no spurious error traces.

3.5.2 Protocol Analysis

The properties of wireless protocols, specially MANETs, tends to be weaker in
comparison with wired protocols. For instance, the simple property of packet
delivery from node A to B is specified as “if there is a path from A to B for a long
enough period of time, any packet sent by A, will be received by B” [64]. The
topology-dependent behavior of communication, and consequently the need for
multi-hop communication between nodes, make their properties preconditioned
by the existence of some paths among nodes.

To investigate the topology-dependent properties of MANETs by equational
reasoning, it is necessary to enrich our process theory RCNT to specify behaviors
constrained by multi-hop constraints. To this aim, we extend the action prefix
operator of RCNT with actions that are paired with multi-hop constraints.

Viewing a network topology as a directed graph, a multi-hop constraint is
represented as a set of multihop connectivity pairs 99K: Loc×Loc and 699K: Loc×
Loc. For instance, A 99K C denotes there exists a multi-hop connection from
A to C, and consequently C can indirectly receive data from A while A 699K C
denotes that there exists no multi-hop connection from A to C and hence C can
not receive data from A. Let M(Loc) denote the set of multi-hop constraints that
can be defined over network addresses in Loc, ranged over by M. Each multi-
hop constraintM represents the set of network topologies that satisfy multi-hop
connectivity pairs inM, i.e. γ ∈ Γ(M) iff for each ` 99K `′ inM there is a multi-
hop connection from ` to `′ in γ, and for each ` 699K `′ inM, there is no multi-hop
connection from ` to `′ in γ.

We extend RCNT with terms like (M, ι).t, where ι ∈ IAct ∪ {τ}, denotes that
the action ι is possible if the underlying topology belongs to the multi-hop net-
work constraintM. To define a well-formed RCNT term, the rule which restricts
the application of the new prefixed-actions to sequential processes, is added to
the previous ones. Furthermore, a term cannot have two summands such that

56 Chapter 3 — Reliable Restricted Broadcast Process Theory

one is prefixed by an action of the form (C, η) and the other by an action of the
form (M, ι). So terms with an action of the form (M, ι) only contain action
prefix (with multi-hop constraints), choice and recursion operators.

To reason about the correctness of a MANET protocol, its behavior can be
abstractly specified by observable internal actions with the required conditions
on the underlying topology, i.e., ι-actions with multi-hop constraints. Intuitively,
each communication of a protocol implementation triggers an internal action.
Such communications are abstracted away by τ -transitions. Therefore, we de-
fine a novel preorder relation to examine if a protocol refines its specification.
To this aim, a sequence of τ -transitions is allowed to precede an action that is
matched to an action of the specification, as long as the accumulated network
constraints of the τ -transitions satisfy the multi-hop network constraint of the
matched action. By accumulating network constraints, it is ensured that the set
of the links that make the multi-hop connections indicated by the multi-hop con-
straint hold, will be stable during the communications. Hence our preorder rela-
tion is parametrized by a network constraint to reflect such accumulated network
constraints.

To provide such a relation, we use the notation C
=⇒ which is the reflexive and

transitive closure of τ -relations while their network constraints are accumulated:

• t
{ }
=⇒ t;

• if t
(C,τ)−−−−→ t′ for some arbitrary network constraint C and t′

C′
=⇒ t′′, then

t
C′∪C
===⇒ t′′, where C′ ∪ C is well-formed.

Furthermore, the network constraint C satisfies the multi-hop constraint C, de-
noted by C |= M iff ∃ γ ∈ Γ(C) (γ |= M). We remark that a network constraint
like {A 6 B} may satisfy both multi-hop constraints {A 99K B} and {A 699K B},
but {A B} only satisfies {A 99K B}.
Definition 3.6. A binary relation RC on RCNT terms is a refinement relation if
t RC s implies:

• if t
(C′,η)−−−−→ t′, where C ∪ C′ ∈ Cv(Loc), then

– η = τ and t′ RC∪C′ s, or

– there is an s′ such that s
(C,η)−−−−→ s′, and t′ RC∪C′ s′, or

– η = ι for some ι ∈ IAct ∪ {τ} and there is an s′ such that s
(M,ι)−−−−→ s′

with C ∪ C′ |=M and t′ RC∪C′ s′;

• if s
(M,ι)−−−−→ s′, then there are t′′ and t′ such that t C

′

=⇒ t′′
(C′′,ι)−−−−→ t′ with

C ∪ C′ ∪ C′′ |=M and t′ RC∪C′∪C′′ s′ where C ∪ C′ ∪ C′′ ∈ Cv(Loc);

• if s
(C,η)−−−−→ s′, then there is a t′ such that t

(C′,η)−−−−→ t′ with t′ RC∪C′ s′.

3.5. Case Study: a Simple Routing Protocol 57

The protocol t refines the specification s, denoted by t v s, if t R{ } s holds for
some refinement relation R{ }.

Theorem 3.7. Refinement is a preorder relation and has the precongruence prop-
erty.

See Section A.5 for its proof. The following proposition is helpful to prove
refinement between two processes:

Proposition 3.8. Suppose ι ∈ IAct . The following rules holds

(C, τ).t v (M, ι).s⇔ C B t v (M, ι).s ∧ C |=M
(C, ι).t v (M, ι).s⇔ C B t v s.

These rules correspond to the transfer conditions of Definition 3.6, and their
proofs are discussed in Section A.5. Instead of finding a refinement relation and
showing that it satisfies the transfer conditions of Definition 3.6 that its proof pro-
cess is managed at the semantic level, we propose a proof process at the syntactic
level. To show that t v s, where s and t are closed terms for the specification and
implementation, by our axiomatization, both s and t are rewritten into a set of
summands like (C1, ι1).t1 + . . .+ (Cn, ιn).tn and (M1, ι

′
1).s1 + . . .+ (Mm, ι

′
m).sm

for some n ≥ 0 and m ≥ 0. The proof of t v s can be reduced to proving that:

∀i ≤ n , Ci ∈ Cv(Loc) (∃! j ≤ m (ιi = ι′j ∧ Ci |=Mj ∧ Ci B ti v sj)
∨(Ci B ti v s))

using the precongruence property of our refinement for the choice operator and
the rules of Proposition 3.8. The first disjunct represents the third case of the
first transfer condition while the second disjunct represents the first conditions
of both transfer conditions of Definition 3.6. This proof process proceeds until
we reach to a predicate C′B t′ v s′ to prove for which either we have previously
examined C′′ B t′ v ′s′ where C′ 4 C′′, or it holds trivially.

To analyze the correctness of our simple routing protocol, we investigate
if it has the packet delivery property. To this end, we verify whether N ≡
τMsg(∂Msg([[P]]A ‖ [[M]]C ‖ [[Q]]B)) refines S, where S is defined as:

S ≡ recO · ({A 99K B,B 99K A}, deliver).O + ({A 699K B}, τ).0
+({A 99K B,B 699K A}, τ).0.

Therefore, we exploit the provided equations in Section ?? to prove such a re-
finement at the syntactic level. To this aim, we match all the resulting terms of
τ -transitions to S as long as their accumulated network constraints do not ex-
clusively satisfy one of the multi-hop constraints {A 99K B,B 99K A}, {A 99K
B,B 699K A} or {A 699K B}. Otherwise, if the accumulated network constraint of
a τ -transition only satisfies {A 699K B} or {A 99K B,B 699K A}, the resulting term
of the τ -transition will be matched to 0.

58 Chapter 3 — Reliable Restricted Broadcast Process Theory

Thus, we use Equation 3.1 to show that:

τMsg(∂Msg([[P]]A ‖ [[M]]C ‖ [[Q]]B)) v S⇔
{A B}B τMsg(∂Msg([[P]]A ‖ [[M]]C ‖ [[deliver .Q]]B)) v S∧
{A 6 B,A C}B τMsg(∂Msg([[P1]]A ‖ [[snd(req).M1]]C ‖ [[Q]]B)) v S∧ (3.3)

{A 6 B,A 6 C}B τMsg(∂Msg([[P1]]A ‖ [[M]]C ‖ [[Q]]B)) v 0

To prove the refinement relation 3.3, we use the Equation 3.2 to show that

{A 6 B,A C}B τMsg(∂Msg(P1]]A ‖ [[snd(req).M1]]C ‖ [[Q]]B)) v S⇔
{A 6 B,A C,C B}B τMsg(∂Msg([[P1]]A ‖ [[M1]]C ‖ [[snd(repB).Q]]B)) v S∧
{A 6 B,A C,C 6 B}B τMsg(∂Msg([[P1]]A ‖ [[M1]]C ‖ [[Q]]B)) v 0 (3.4)

The refinement relation (3.4) trivially holds as it can be proved with the help
of our axiomatization, especially the rules Fold and TRes1,2, that {A 6 B,A
C,C 6 B} B τMsg(∂Msg([[P1]]A ‖ [[M1]]C ‖ [[Q]]B)) is the answer to the equation

Q
def
= ({A 6 B,A C,C 6 B}, τ).Q, and trivially

recQ · ({A 6 B,A C,C 6 B}, τ).Q v 0.

So, it can be easily proved that τMsg(∂Msg([[P]]A ‖ [[M]]C ‖ [[Q]]B)) v S .

3.6 Case Study: Leader Election Algorithm

To illustrate the applicability of our framework, we specify a leader election pro-
tocol for MANETs introduced in [150] and discuss how its corresponding CLTS
can be derived to analyze the protocol using the existing model checking tools.
To this aim, RRBPT is extended with abstract data types, similar to CNT, and its
messages and process names are parameterized with data. We add two opera-
tors that intertwine processes with data: sum to let receive actions range over the
data values of their message parameters (to be able to receive any value from the
environment), and condition to let behaviors depend on data values. The process∑
d:D t is equivalent to t[u1/d] + t[u2/d] + . . . for any values u1, u2, . . . over the

data domain D. The process [b]t1 � t2 behaves as t1 if b evaluates to true, and
otherwise as t2.

3.6.1 Protocol Specification

Leader election algorithms aim at electing a unique leader from a fixed set of
nodes. In the context of MANETs, such protocols must consider arbitrary topol-
ogy changes and aim at finding a unique leader within a strongly connected
component (SCC) [150].

The algorithm operates by first “growing” and then “shrinking” a spanning
tree rooted at the source node that initiates the election algorithm, using the so-
called echo algorithm [31, 66]. After the spanning tree has shrunk completely,

3.6. Case Study: Leader Election Algorithm 59

the source node will have the required information to elect the leader. The span-
ning tree is constructed by broadcasting an election message from the source
node to the leaf nodes. The parent of each node in the spanning tree is the node
from whom it receives the election message for the first time. After receiving
the election message, the node broadcasts election to its other neighbors. The
spanning tree is shrunk by broadcasting ack messages from the leaf nodes to the
source node. Each node after gathering ack messages from all its children, deter-
mines the node with the highest value in its subtree, and sends this information
to its parent through an ack message. Since nodes may crash, each node keeps
track of the status of children from whom it should still receive an ack , by peri-
odically sending and receiving probe and reply messages. The source node can
determine the leader when it has gathered ack messages from all its children. It
announces the leader by means of a leader message, which is forwarded down
the spanning tree.

Due to node crashes and mobility of nodes, a spanning tree may be parti-
tioned or two spanning trees may merge. A node triggers a fresh leader election
process when it gets disconnected from its leader or restarts from the crash state.
Thus more than one node can initiate the leader election process independently,
leading to concurrent computations. In [150], concurrent computations are han-
dled by requiring that at any time each node participates in at most one com-
putation. To achieve this, each spanning tree is identified by a pair of its source
node identifier id and a sequence number num, which is incremented each time
a node starts a fresh computation, called computation index, and all messages
except leader are tagged with 〈id ,num〉. A total order is defined on compu-
tation indices. Each node belongs to a spanning tree from which it received
the election message with the highest computation index. When two disjoint
MANETs connect, the algorithm allows MANETs to terminate their ongoing com-
putations and then exchange their leader through leader messages; the combined
MANET adopts the leader with the higher value.

In the specification and verification of the protocol, we abstracted away ex-
changes of probe and reply messages: each node may non-deterministically con-
clude that it has received ack messages from all its children and stop processing
subsequent ack messages. Furthermore, with the help of the sensing operator,
each node adapts its behavior in case it gets disconnected from its parent. To
make the state space finite we assume that each node can disconnect from its
leader only once. We define a total order on the network addresses of nodes and
for simplicity assume that the value of a node is the same as its network address.

Our specification uses as abstract data types the Booleans Bool (with domain
values T and F), addresses Loc, natural numbers Nat , and computation indices
CompInd . The variables maintained by each node are: elec and ack of type
Bool , where elec is true while the node is involved in a computation, and ack
is true if the node has not yet sent an ack message to its parent; lid , max and
parent of type Loc, where lid denotes the address of the supposed leader (which
is updated when the node receives a leader message), max is the highest value

60 Chapter 3 — Reliable Restricted Broadcast Process Theory

the node has encountered in a computation, and parent the address of the node’s
parent in the spanning tree; src defines the computation index of the spanning
tree of which the node currently is a member. Values of CompInd are pairs of
a sequence number and an address, paired by the constructor function dc. To
access the items of src, for the sake of readability, we use a dot notation like
src.id ; num of type Nat denotes the node’s sequence number.

The specification of the algorithm is given in Fig. 3.5. The pre-conditions to
send and receive election, ack and leader messages and parameter updates match
with the specification given in [150] with two minor differences. We elaborate on
each summand of the specification, and highlight points where our specification
differs from [150].

In the first summand, in case a node has a leader different from itself (denoted
by (id 6= lid) ∧ (lid 6= ?)) and is disconnected from its leader (examined by
the sense operator), the node initiates the election algorithm by broadcasting
a leader message. The conjunct “num < 1” prevents an infinite growth of the
state space due to an increase of num values within computation indices. An
election process is also initiated, as indicated by the second summand, when a
node has no leader and is not already participating in an election process (i.e.,
¬elec ∧ (lid = ?)). This is the case when a node restarts from the crash state.
After sending the message election, elec and ack are set to true, while max is set
to the node’s identifier. Furthermore, parent and lid are set to unknown, while
src is set to dc(num, id).

The third summand specifies how a node handles received election messages.
Such a message is processed if the receiving node has not sent its ack yet and
the message belongs to an election process with a higher computation index
than what the node has seen so far (i.e., elec ∧ dc(num1 , id1) > src ∧ ack), or
the node has just recovered from a crash and hence has no leader and has not
participated in an election process yet (i.e., ¬elec ∧ (lid = ?)). In those cases the
node joins the election process, by setting its src to dc(num1 , id1), and setting
its parent to the node id2 it received the message from.

The fourth summand specifies when a node sends its ack message. A non-
root node that has not sent its ack message before (indicated by (src.id 6=
id) ∧ ack) announces the maximum identifier max it knows by sending the mes-
sage ack(src,max), where src identifies the election process in which the node is
involved. Then ack is set to false.

Upon receiving an ack message, as specified by the fifth summand, it is pro-
cessed if the receiving node has not previously sent its ack and the value con-
tained in the ack message (i.e., mid) is greater than the maximum value the
node has seen so far. Then the node updates its maximum identifier from max to
mid . (Although max is updated upon receipt of an ack message, in [150] a node
announces the maximum value it knows by sending the message ack(src, lid).)

The sixth summand specifies that a root node announces the node with the
largest value it knows as the leader, if it has not previously announced it (i.e.,

3.6. Case Study: Leader Election Algorithm 61

node(id : Loc, elec : Bool , ack : Bool , lid : Loc,max : Loc, parent : Loc,

src : CompInd ,num : Nat)
def
=

[(id 6= lid) ∧ (lid 6= ?) ∧ num < 1]
sense(lid ,node(id , elec, ack , lid ,max , parent , src,num),

snd(election(dc(num, id), id)).
node(id ,T ,T , ?, id , ?, dc(num, id),num + 1)) � 0 +

[¬elec ∧ (lid = ?) ∧ num < 1]
snd(election(dc(num, id), id)).

node(id ,T ,T , ?, id , ?, dc(num, id),num + 1) � 0 +∑
num1 :Nat

∑
id1 :Loc

∑
id2 :Loc rcv(election(dc(num1 , id1), id2)).

[(¬elec ∧ (lid = ?)) ∨ (elec ∧ dc(num1 , id1) > src ∧ ack)]
snd(election(dc(num1 , id1), id)).

node(id ,T ,T , lid , id , id2 , dc(num1 , id1),num)�
node(id , elec, ack , lid ,max , parent , src,num) +

[ack ∧ (src.id 6= id)](snd(ack(src,max)).
node(id , elec,F , lid ,max , parent , src,num))) � 0 +∑

mid:Loc rcv(ack(src,mid)).[ack ∧ (mid > max)]
node(id , elec, ack , lid ,mid , parent , src,num)�
node(id , elec, ack , lid ,max , parent , src,num) +

[(src.id = id) ∧ ack](snd(leader(max)).
node(id ,F ,F ,max ,max , parent , src,num)) � 0 +

[(parent 6= ?) ∧ ¬ack ∧ elec]
sense(parent ,node(id , elec, ack , lid ,max , parent , src,num),

snd(leader(max)).node(id ,F ,F ,max ,max , id , src,num)) � 0 +∑
li:Loc rcv(leader(li)).([¬elec ∧ lid > li)]
snd(leader(lid)).node(id , elec, ack , lid ,max , parent , src,num) � (

[(¬ack ∧ elec ∧ li ≥ max) ∨ (¬elec ∧ li > lid)]
snd(leader(li)).node(id ,F , ack , li ,max , parent , src,num)�
node(id , elec, ack , lid ,max , parent , src,num))) +

[(lid 6= ?) ∧ ¬elec]finish(lid , id).node(id , elec, ack , lid ,max , parent , src,num) � 0 +

[(lid 6= ?) ∧ (lid 6= id) ∧ ¬elec]
sense(lid , snd(leader(lid)).node(id , elec, ack , lid ,max , parent , src,num),

node(id , elec, ack , lid ,max , parent , src,num)) +

[lid = id]snd(leader(lid)).node(id , elec, ack , lid ,max , parent , src,num) � 0

Figure 3.5: Specification of the leader election algorithm for MANETs [150].

62 Chapter 3 — Reliable Restricted Broadcast Process Theory

(src.id = id)∧ack). Then it sets its lid to max and terminates the election process
by setting elec and ack to false.

The seventh summand specifies the case that a node previously sent ack and
is waiting to receive the leader from its parent (i.e., (parent 6= ?) ∧ ¬ack ∧ elec),
but gets disconnected from its parent (examined by the sense operator). The
node then acts as the root of its subtree by announcing the leader.

The eighth summand specifies how a node handles received leader messages.
In case such a message contains an identifier higher than the node’s leader and
the node’s maximum value (after it informed its parent about this maximum
value, i.e., ¬ack ∧ elec), it adopts that identifier as its leader, and announces the
new leader to inform its neighbors. Otherwise it announces its own leader to the
sender.

With the aim of model checking certain properties, to observe the leader of
a node, a self-loop is added to states with the termination status (i.e., (lid 6=
?) ∧ ¬elec). It performs the action finish, parameterized with the node’s leader
and identifier. This is specified by the ninth summand.

The tenth summand specifies that non-leader nodes periodically announce
their leader, if they are still connected to their parent (examined by the sense
operator), Owing to these messages, if two spanning trees are joined, nodes in
one spanning tree are informed about the leader of the other spanning tree. As
specified by the eighth summand, the leader with the higher identifier is selected
as the leader of the merger of the two spanning trees.

Similarly, leader nodes periodically announce their existence, as specified by
the last summand. (In [150], upon receiving a leader(li) message while ¬elec ∧
lid > lid , the node wrongly sends leader(max) instead of leader(lid).)

A MANET of four nodes is specified by the parallel composition of [[node(`, F,
F, ?, `, ?, dc(0, ?), 0)]]` for ` ∈ {A,B,C,D}. Furthermore, we close the network
on all message types and abstract away communication actions:

τMsg(∂Msg([[node(A,F, F, ?, ?, ?, dc(0, ?), 0)]]A ‖ . . . ‖
[[node(D,F, F, ?, ?, ?, dc(0, ?), 0)]]D))

3.6.2 Tool Support

We exploit the mCRL2 toolset [83] to convert RRBPT specifications into LTSs,
where actions are parameterized by network constraints. Hence, existing model
checker tools can be used to inspect desired properties over the resulting LTSs.
The framework of mCRL2 integrates process and abstract data specifications.
Network constraints and calculations over them can thus be specified as data
terms and functions, respectively.

The main differences between mCRL2 and RRBPT are on the deployment and
sensing operators of RRBPT and their parallel composition. For an RRBPT process

3.6. Case Study: Leader Election Algorithm 63

term t deployed at address `, assume encode(t, `, C) denotes the corresponding
code in mCRL2, defined inductively by:

encode(t1 + t2, `, C) = encode(t1, `, C) + encode(t2, `, C)
encode([b]t1 � t2, `, C) = b→ encode(t1, `, C) � encode(t2, `, C)
encode(0, `, C) = 0

where b→ t1�t2 behaves as t1 if b evaluates to true, and otherwise as t2. We post-
pone the explanation of the parameter C until the explanation of the encoding of
the action prefix and sense operator.

To model pairs of network constraints and actions in the semantics of RRBPT,
we parameterize network send and receive actions in mCRL2 with network con-
straints as follows. In mCRL2, actions α and β are synchronized if their synchro-
nization is defined, denoted by α | β = γ, and they agree on the number and
values of their parameters. By contrast, in RRBPT two actions are synchronized if
they are either two nrcv actions or an nrcv and an nsnd action, and they agree on
the message part, while some calculations are performed on their network con-
straints (see rules Bro and Recv). To model the effect of rules Snd and Rcv1−3,
and take care of computations over network constraints defined by rules Bro and
Recv , we define a set of actions nsnd j ,nrcv j : C ×Msg × Loc, where 1 ≤ j ≤ n
with n the number of nodes. For network addresses Loc, assume Lc, Ld and `
such that Loc = Lc ∪ Ld ∪ {`} and Lc ∩ Ld = ∅ and ` 6∈ Lc ∪ Ld. Furthermore,
let C(Lc, Ld, `) denote the network constraint {` `′ | `′ ∈ Lc} ∪ {` 6 `′ | `′ ∈ Ld},
and |S| the size of set S. The action nrcv j(C(Lc, Ld, `),m, `), where |Lc| = j, de-
notes that when the message m is sent by the node with address `, j nodes with
addresses in Lc are ready to receive it because they are connected to the sender,
while nodes with addresses in Ld cannot receive it as they are disconnected from
the sender. And nsnd j(C(Lc, Ld, `),m, `), where |Lc| = j, denotes that the node
with address ` has sent the message m, while j nodes with addresses in Lc have
received it, but nodes with addresses in Ld cannot receive it as they are discon-
nected from the sender.

In encoding RRBPT processes in mCRL2, deployment operators are removed,
and protocol send and receive actions are modeled by calling sndProcess(m, `, C)
and rcvProcess(m, `, C) respectively, which are defined below. Here ` is the ad-
dress of deployment and network constraint C defines the status of the links in
the network; as a result the network behavior is restricted accordingly. This lat-
ter parameter is set to empty to allow any possible behavior of the network. The
processes unfold send and receive actions regarding how the node that runs the

64 Chapter 3 — Reliable Restricted Broadcast Process Theory

actions can be synchronized in the network.

encode(rcv(m).t, `, C) = rcvProcess(m, `, C).encode(t, `, {})
encode(snd(m).t, `, C) = sndProcess(m, `, C).encode(t, `, {})
rcvProcess(m, `, C′) =

∑
`′∈Loc(` = `′)→

(
∑
Lc⊆Loc(`′∈Lc)

∑
Ld⊆Loc

∑
`′′∈Loc(`′′ 6=`′)

∑
j>0

(¬C′ ∩ C(Lc, Ld, `′′) = ∅)→ nrcv j(C(Lc, Ld, `′′),m, `′′) � 0) � 0

sndProcess(m, `, C′) =
∑
`′∈Loc(` = `′)→

(
∑
Lc⊆Loc

∑
Ld⊆Loc

∑
j≥0(¬C′ ∩ C(Lc, Ld, `′) = ∅)→

nsnd j(C(Lc, Ld, `′),m, `′) � 0) � 0

To model the process term sense(`′, t1, t2) deployed at the node with address
`, a sense action is performed, parameterized by a network constraint indicating
the link status. Furthermore, the appropriate link status is added to the network
constraint to encode t1 and t2:

encode(sense(`′, t1, t2), `, C) = sense({`′ `}).encode(t1, `, C ∪ {`′ `})+
sense({`′ 6 `}).encode(t2, `, C ∪ {`′ 6 `})

The accumulated network constraints restrict communication of the network as
explained in encoding the receive actions. The sense action of a node is synchro-
nized with sensed actions of other nodes to ensure that all nodes adhere to the
same restrictions on the network. To this aim, a set of sensed actions with differ-
ent network constraints is added to each process name definition. For instance,

the process definition X(d : D)
def
= t is encoded as:

X(d : D,x : Loc, c : C) = encode(t, x, c) +∑
`,`′∈Loc sensed({` `′}).X(d, x, {` `′})+

sensed({` 6 `′}).X(d, x, {` 6 `′}).

Consequently, encode(X(u), `, C) = X(u, `, C).
The RRBPT term ∂Msg([[t1]]`1 ‖ . . . ‖ [[tn]]`n), where Msg is the set of all messages

and tis are input-enabled, is modeled by the mCRL2 operators renaming ρ, allow
∂, and parallel ‖, where ρ{a→b} renames the action name a to b, and ∂A renames
action a 6∈ A to deadlock:

ρ{∀i≤n(nsndii→nsnd,csensen→sense)}(∂{∀j≤n(nsndj),csensen,finish}

((encode(t1, `1, {}) ‖ . . . ‖ encode(tn, `n, {}))))

where the synchronization set is defined by nsnd j | nrcv j | . . . | nrcv j = nsnd jj
and sense | sensed | . . . | sensed = csensen, and the number of actions nrcv j and

3.7. Related Work 65

sensed should be j and n− 1, respectively. The LTS resulting from this encoding
contains labels of the form nsnd(C,m, `), sense(C), and internal actions.

We encoded the leader election case study from Section 3.6.2

3.6.3 Protocol Analysis

We can verify properties like “all the nodes eventually have a leader” over the
generated LTSs using the mCRL2 toolset. However, we cannot inspect that “each
selected leader is the one with the highest index in the SCC of the node”. To verify
such a property (with any classical model checker), the specification of the node
should be revised to maintain the list of its neighbors. Such a revision makes
the state space explode as each node has 2n−1 possibilities for its neighbors and
hence, the state space grows with a factor of (2n−1)n for a network with n nodes.
Table 3.4 expresses the size of the generated state space when the mobility is
modeled implicitly through the semantics. Revising the protocol specification for
the networks with three and four nodes yields state spaces that are 43 and 84

times larger, respectively. We remark that to inspect such a property with the
technique of Section 3.5.2, we have to provide a specification which defines the
leader for each pattern of SCCs.

Another approach is modeling the underlying topology as a part of the seman-
tic states, while mobility is addressed by explicit manipulation of the topology
(similar to the unfolded CLTS). Thus, the number of states grows with the factor
of 2n

2−n which denotes the number of topologies among n nodes. Therefore,
this approach yields state spaces that are 8 and 64 times larger in the number of
states for the network of three and four nodes, respectively.

Table 3.4: The size of state space for MANETs deploying the leader protocol modulo strong
bisimilarity.

no. nodes no. states no. transitions
3 4, 278 33, 536
4 357, 024 3, 928, 890

Before reduction modulo strong bisimilarity, our approach yields state spaces
with 37, 992 states and 381, 912 transitions and 11, 922, 272 states and 150, 908, 802

transitions for the network of three and four nodes, respectively.
To verify properties that depend on the topological arrangements of nodes,

we introduce a new logic and its model checking algorithm in Chapter 5.

3.7 Related Work

Related calculi to ours are CBS# [121], CWS [117], CMAN [78, 79], CMN and
its timed version [115, 116], bKlaim [122], ω-calculus [137], SCWN [81],

2This encoding is available at http://fghassemi.adhoc.ir/leaderelection.zip.

http://fghassemi.adhoc.ir/leaderelection.zip

66 Chapter 3 — Reliable Restricted Broadcast Process Theory

CSDT [104], AWN [64] and its timed extension [30], and the broadcast psi-
calculi [27]. We shortly go through these calculi, with a focus on their approach
in specifying a node, modeling topology and mobility, and supporting the neigh-
bor discovery service. Furthermore, we discuss their capabilities to faithfully
support the properties of wireless communication at this layer, i.e., being non-
blocking and asynchronous. Finally, we examine their purpose of verification,
and compare our behavioral equivalence relation to those with a reliable setting.

3.7.1 Modeling Issues

CBS# [121], an extension of Calculus of Broadcasting Systems [129], provides
a framework for specification and security analysis of communication protocols
for MANETs. In this approach, the mobility is modeled implicitly in the seman-
tics. The operational semantics is parameterized by a set of connectivity graphs,
each imposing a set of connections between nodes in a network. Each transi-
tion of a MANET is parameterized by a connectivity graph. In other words, the
connectivity graph defines the behavior of a network at each step, while in our
approach the behavior of a network defines the set of topologies under which
such a behavior can occur. Consequently we merge all transitions, and their
corresponding topologies leading to the same state, into a transition labeled by
network constraints. Thus our approach results in a more compact LTS.

CWS [117] (Calculus for Wireless Systems) is a channel-based algebra for
modeling MAC-layer protocols, for which interferences are an essential aspect.
In this approach the physical characteristics of nodes such as their physical loca-
tion and transmission ranges are considered, while locations of nodes are static.
CMN [115] (Calculus of Mobile ad hoc Networks), inspired by CWS to model
MANETs above the MAC-layer, concerns modeling the mobility of nodes explic-
itly in the semantics. To this aim, for each node a physical location is specified
and the underlying topology is derived by a function d, which takes two loca-
tions and computes their distance. If the distance is smaller than a pre-defined
value, nodes at those locations are connected. Mobility is modeled by changing
the location of the node to an arbitrary location, which may lead to state space
explosion if locations are drawn from a real coordinate system.

CMAN [78] (Calculus of Mobile Ad hoc Networks) provides an approach for
modeling of MANETs where for each node a connectivity set (its neighbors) is
specified. Mobility of a node is modeled explicitly in the semantics by manipula-
tion of the connectivity set of all effected nodes, by adding/removing this node
to/from their connectivity set. Later, in [79], CMAN was equipped by a static
location binding operator to limit the arbitrary mobility of nodes in the scope of
the operator, so that a MANET can be verified for a specific mobility scenario.

bKlaim [122], centered around the tuple space paradigm, provides a process
calculus with asynchronous local broadcast; broadcast messages are output into
the tuple spaces of neighboring nodes to the sending node. This framework
has no specific networking paradigm in mind, and provides a simple calculus

3.7. Related Work 67

for a more general study of broadcast. Following the same principle as CBS#
in modeling topology changes, it constructs mobility-preserving finite abstract
transition systems as the semantic model using the notion of exposed actions (at
each state) which are the immediately available actions and visible data. A state
represents the behavior of networks whose exposed action is a preorder of that
state’s exposed action.

The ω-calculus [137], a conservative extension of the π-calculus, provides an
approach to specify MANETs in the same vein as CMAN, but models connectiv-
ity information, called process interface, at the specification level by the group
concept; a group is a maximal clique in a connectivity graph, and two nodes
can communicate if they belong to the same group. Node mobility is captured
through the dynamic creation of new groups and dynamically changing process
interfaces, using appropriate rules in the semantics. By defining a mobility in-
variant which constrains node mobilities, one can derive the model of a MANET
and verify it against a mobility scenario. In contrast, using our approach, one
can verify the model of a MANET against different mobility scenarios by defining
predicates over network constraints.

In [81], a simple process calculus with a broadcast operator was extended by
realistic mobility models in an orthogonal way, so-called SCWN (a Simple Calcu-
lus for Wireless Networks). This approach, which can be understood as a gen-
eralization of CWS, is appropriate to verify properties under a specific mobility
model, in contrast to the arbitrary mobility model. To this aim, the specification
of a node is equipped with a mobility function which determines the movement
trajectories of a node over time and consequently its neighbors; the semantics
incorporates a notion of global time passing and is parameterized by a mobility
model which manipulates the mobility function of a node. This method is based
on computations of the transmission range of a sender using physical locations
of nodes to derive the real underlying topology. This approach suffers from state
space explosion because of its real-time delay transitions, which may be resolved
by using a discrete time delay (as proposed by its inventors).

CSDT [104] was inspired by previous works on issues such as broadcasting,
movement and separating between a node’s control and topology information.
However, it provides two additional features: broadcasting at multiple trans-
mission ranges, i.e., normal and high, and neighbor discovery so that nodes re-
main aware of their connection topology to successfully complete their tasks. To
mimic the behavior of a neighborhood-discovery protocol at the semantics, for
each node, an arbitrary subset of the node’s neighbors is associated as the be-
lieved neighbors; these sets are updated due to topology changes. Topology and
its changes are modeled in the same way as CMN with the difference that the
notions of locations and their interconnections are captured as a graph.

AWN [64] is a process algebra for specification and verification of wireless
routing protocols with a set of rich data structures to support necessary data
types of mesh routing protocols like routing tables, conditional unicast and local
broadcast. Each node is specified by parallel composition of two processes, one

68 Chapter 3 — Reliable Restricted Broadcast Process Theory

is responsible for message handling and maintaining the protocol data such as
routing tables while the other manages the queuing of messages as they arrive.
Hence, the node is naturally always input-enabled, and local broadcast is deliber-
ately non-blocking. However, it is discussed how AWN can be make non-blocking
by using a semantic rule as Rcv2 in our case (or the rules of CBS#).

Broadcast psi-calculus [27] extends the psi-calculus [17], a parametric frame-
work for extensions of the π-calculus, with primitives for broadcast communica-
tion, namely broadcast channels and connectivity predicates to regulate which
channel can send or receive from which broadcast channel. It allows to specify
arbitrary data structures and logical assertions for facts about data. Connectivity
among node can be specified as assertions using connectivity predicates which
can be inquired in the specification (neighbor discovery). Similarly, mobility can
be modeled by generation of assertions as a part of the specification (a so-called
topology controller). Hence, standard mobility models over a discretized finite
space can be specified by a user. However, due to its parameters and involve-
ment of user to specify mobility and connectivity assertions, its application is
cumbersome.

Table 3.5: Comparison between related algebras: n refers to the name of the node, ` to
the logical address, l to the physical location, s to the data store, r to the transmission
range, σ to the connectivity set, and g to the connected groups of a node. Finally, f
denotes the mobility function, which defines the location of a node at time t, and T is a
timeout when the mobility function is updated. N and H are believed normal-range and
high-range neighbors, and Γ is the topology controller specified by guarded assertions.

Node Comm. Conn. Mobility Neighbor
specification of nodes discovery

CBS# `[p, s] reliable − implicit -
CWS n[p]cl,r reliable d(l, l′) − -
CMN n[p]cl,r lossy d(l, l′) explicit -
CMAN [p]σ` lossy σ explicit -
bKlaim ` :: p ‖ ` :: s reliable - implicit -
ω-calculus p : g lossy g explicit -
SCWN `[p]Tf lossy arean(f(t)) explicit -
CSDT p : [[n, l,N,H]] reliable range(l) explicit semantics
AWN ` : p : σ reliable σ explicit -
bpsi-calculi p | Γ lossy Γ Γ syntax
RRBPT [[p]]` reliable − implicit syntax

In Table 3.5, we have compared our core algebra, RRBPT, with the related
ones in terms of node specification, how connectivity information is specified or
derived, and how mobility is modeled. We classify these approaches in address-
ing mobility into three groups: explicit, implicit, and syntax. In explicit modeling
of mobility in the semantics, the underlying topology is modeled as a part of

3.7. Related Work 69

the semantics state, and mobility is modeled by performing transitions (with an
unobservable action) between states, by the application of mobility rules which
manipulate the topology model. In implicit modeling, each state is a represen-
tative of all possible topologies a network can meet and a network can be at
any of these topologies. CLTSs model mobility implicitly, and as explained in
Section 3.1.2, they are unfolded by explicitly modeling mobility at the semantic
level. Finally, by syntax, we mean topology changes are specified as a part of the
specification.

Among all these approaches, only [122] is intrinsically asynchronous. The
non-blocking property is a consequence of either nodes being input-enabled or
the communication primitives being lossy. In the former case, the asynchronous
property is achieved through abstract data specifications [55] in line with the
approach from [84, 85], in which the sum operator plays a pivotal role. Each
process is then parametrized by a variable of the queue type with a summand
which receives all possible messages (if the queue is empty). Conversely, this
property of the communication cannot be obtained in the frameworks with a
lossy communication primitive such as CMN, CMAN, ω-calculus, SCWN, and the
broadcast psi-calculi.

To make a process input-enabled while communication is synchronous, three
approaches are followed. In the first approach, followed by AWN, the semantics
is equipped with a rule similar to our Rcv2 with a negative premise which ex-
presses that if a node is not ready to receive, the message is simply ignored [64].
Due to our implicit modeling of topology, the negative premise of our rule is more
complicated to characterize the unreadiness of nodes regarding the underlying
topology. In the second approach, followed by CSDT, counterparts for the rules
Bro and Recv are defined with negative premises to cover cases when a process
cannot participate in the communication message [104]. The third approach,
provided by CBS#, eliminates negative premises, to remain within the de Si-
mone format of structural operational semantics [64], in favor of actions which
discard messages [121]. Therefore, the semantics is augmented by rules that
trigger the ignore actions for any sending node, receiving nodes for disconnected
locations, and deadlock. Furthermore, the rules Bro and Recv are modified to
cover cases when a process ignores a message.

3.7.2 Analysis Approaches

The analysis techniques supported by these frameworks, except bKlaim and AWN,
are based on a behavioral congruence relation. However, only equations between
networks were defined by using structural congruence in these approaches. None
of them provides a complete axiomatization for their algebra of MANETs which
are helpful in linearizing a given specification to be symbolically verified when
the number of nodes is unbounded (see Section 2.3.5). Among the reliable set-
tings, only CSDT provides a behavioral equivalence relation, based on the notion
of observational congruence: the receive and send actions are observable while

70 Chapter 3 — Reliable Restricted Broadcast Process Theory

transitions changing the underlying topology are treated as unobservable. How-
ever, due to implicit modeling of topology and mobility, our behavioral equiva-
lence relation has been parametrized with network constraints while it considers
the branching structure of MANETs.

A compositional framework for proving invariant properties is given in [29].
To this aim, global invariants stated at the level of individual nodes are lifted to
the network of nodes. Therefore, AWN framework and their compositional tech-
nique can be mechanized in Isabelle/HOL. The resulting framework was applied
in [28] to prove loop freedom of the AODV routing protocol. The properties of
AODV, expressed as state/transition invariants, were proved for a network with
a bounded number of nodes by checking that they are preserved under any exe-
cution of any line of the specification [148].

CBS# and bKlaim are supported by control flow analysis to establish the se-
curity properties of a broadcast network. In this approach, specifications are
statically inspected to predict approximations to the set of values which may be
transmitted/stored by nodes during their executions. The difference in these two
works is that analysis of CBS# is restricted to one specific connectivity graph and
hence, the influence of topology changes is not exposed in its results.

Model checking is used as a diagnostic tool to locate conceptual design er-
rors in finite representations of a MANET, and hence complements other formal
methods-based protocol modeling and verification techniques, such as process
algebra. Since physical locations are considered in CMN and SCWN, they suffer
from the state space explosion problem even for a simple network. However, in
approaches with explicit modeling of topology changes the same problem exists,
as the topology changes randomly. As an example, the state space of the simple
leader election protocol in Section 3.6 yields 37, 992 states and 381, 912 transi-
tions and 11, 922, 272 states and 150, 908, 802 transitions for the network of three
and four nodes in the compact form of CLTS, respectively. Hence, to apply model
checking in the context of these approaches, the arbitrary mobility should be re-
stricted, which is possible in ω-calculus using its mobility invariant concept. We
will discuss in Section 5.5, how model checking is applied to AWN, which can be
also extended to algebras, e.g. CMAN, ω-calculus, and CSDT. bKlaim introduces
a new logic to support efficient model checking over its semantic model, i.e.,
abstract transition systems. We postpone further explanation about its logic to
Section 5.5, after providing our logic.

3.8 Conclusion

We introduced the reliable framework RRBPT, suitable to specify and verify MANETs,
with the aim to catch errors in design decisions. We discussed the required
changes at the semantic model by extending the network constraints with nega-
tive connectivity links. Furthermore, we revised the equivalence relation of the
lossy setting to preserve required behavior in the reliable framework. Then we

3.8. Conclusion 71

demonstrated which axioms should be revised/added/removed for the reliable
setting. We provided an analysis approach at the syntactic level, exploiting a pre-
congruence relation and our axiomatization. We applied our analysis approach
to a simple routing protocol to prove that it correctly finds routes among con-
nected nodes. Implementation of the framework using mCRL2 was discussed. At
the end, a comparison among related calculi was given.

4Wireless Rebeca

As we discussed in the previous chapter, the synchronous spirit of communica-
tion primitives in process calculi prevents natural modeling of nodes: either the
modeler needs to ensure their input-enabledness in the specifications or input-
enabledness should be built into the semantics. From the verification point of
view, in a computational model based on actors, the coarse-grained execution of
message handlers reduces the state space of a model substantially. This policy,
inherited from the world of object-oriented languages, is justified by the fact that
the internal computation and intermediate values of variables are not observable
due to encapsulation of objects. These considerations motivate our direction to-
wards actor-based modeling frameworks.

To reap the benefits of the distributed and asynchronous concurrent com-
putation model of actors, we considered the Rebeca language to model such
networks. However, the only means of communication in Rebeca (see Section
2.4) is the pair-wise communication between two known nodes. We interpret
the known-rebec concept as existence of a one-hop link to initially set up the
underlying topology: if A is known to B, then there is a directed communication
link from B to A, and so B can send messages to A. In synchronous algebraic
frameworks, unicast could be easily simulated by broadcast communication and
messages that are parametrized by the receiver address; a receiver handles a mes-
sage if it is the intended address of the message. However in Rebeca, as a result of
a broadcast communication, its message is added to the queue of rebecs that are
currently connected to the sender. Therefore, simulating unicast with broadcast
causes the state space to grow unnecessarily. Hence, we extend Rebeca not only
with asynchronous reliable local broadcast but also with multicast and unicast
communications to abstract away from the data link layer services. The reliable
unicast communication service of the data link layer provides feedback (to its
upper layer applications) in case of (un)successful delivery. Therefore, the new
framework provides conditional unicast to support modeling protocol behaviors
in each scenario (in the semantic model, the status of the underlying topology
defines the behavior of actors). The result is a formalism that we call it wRebeca.

Since in wRebeca only one-hop communications are considered (in contrast
to the original actor model), the assumption about the unpredictability of multi-
hop communications (with different delays) is not valid anymore, and thus the

73

74 Chapter 4 — Wireless Rebeca

message delivery is in-order and is guaranteed for connected receivers. Conse-
quently, each actor mailbox is modeled through a queue. The core language of
wRebeca was first introduced in [153] as an extension of broadcast Rebeca [155]
in which each actor mailbox was modeled by a bag. Using bags instead of FIFO
may result in spurious counterexamples during model checking which cannot
occur in reality. We have extended and revised its syntax and provided its for-
mal semantics by two-tiered operational rules (in terms of the semantics of the
statements) to not only faithfully support the extension but also fix the flaws.

The resulting framework provides a suitable means to model the behavior
of ad hoc networks without the need to consider asynchronous communications
handled by message storages in the computation model. However, to minimize
the effect of message storages on the growth of the state space, we exploit tech-
niques to reduce it. Since nodes can communicate through broadcast and a lim-
ited form of multicast/unicast, it is possible to consider actors that have the same
neighbors and local states as identical according to the counter abstraction tech-
nique [11, 56, 127]. Therefore, the states whose number of actors with the same
neighbors and local state are the same for each local state value, will be aggre-
gated, thus the state space is reduced considerably. The reduced semantics is
strongly bisimilar to the original one.

To examine resistance and adaptation of MANET protocols to changes of the
underlying topology, we address mobility via arbitrary changes of the topology
at the semantic level. However, these random changes make the state space
grow exponentially and the model checking technique infeasible even for small
networks while the proposed counter abstraction technique becomes invalid. To
this end, we consolidate next states which are only different in their topologies,
and consequently derive CLTSs (see Section 2.2 and 3.1). We establish that the
reduced semantics (i.e., CLTS) is branching bisimilar to the original one, and con-
sequently a set of properties such as ACTL-X [48] are preserved. Therefore, our
framework becomes applicable to verify some important properties of real-world
MANET protocol, e.g., loop freedom, in the presence of mobility in a unified
model (versus generating a model for each mobility scenario).

We illustrate the applicability of our approach through the specification and
verification of two MANET protocols, namely a simple flooding-based protocol
and AODV. We present a complete and accurate model of the core functionalities
of a recent version of AODVv2 protocol (version 11), and investigate its proper-
ties like loop freedom. We detect scenarios over which the loop freedom property
is violated due to maintaining multiple unconfirmed next hops for a route with-
out checking them to be loop free. We have communicated this scenario to the
AODV group and they have confirmed it. In response, their route information
evaluation was modified, published in version 13 of the draft.1 More specifically,
the rule for adding a new route if current routes to the same address have an
“Unconfirmed” status, was changed. Furthermore, we verify the monotonic in-

1 https://tools.ietf.org/html/draft-ietf-manet-aodvv2-13.

https://tools.ietf.org/html/draft-ietf-manet-aodvv2-13

4.1. Counter Abstraction 75

crease of sequence numbers and packet delivery properties using existing model
checkers.

The chapter is structured as follows. Section 4.1 briefly explains the idea be-
hind the counter abstraction technique and its relation to the symmetry reduction
technique. Section 4.2 discusses how the main modeling challenges of MANETs
are addressed in wRebeca. Section 4.3 presents our extension to Rebeca for mod-
eling MANETs. In Section 4.4, we generate the state space compactly with the
aim of efficient model checking. To illustrate the applicability of our approach,
we specify the core functionalities of AODVv2-11 in Section 4.5. Then, in Sec-
tion 4.6, we exemplify the efficiency of our state space generation by means of
two case studies: the AODV and the flooding-based routing protocol. We illus-
trate our tool and analysis of the models through verification of AODV. Finally,
we conclude the chapter by comparing the actor-based framework with the alge-
braic ones in Section 4.8.

4.1 Counter Abstraction

Since model checking is the main approach of verification in Rebeca, we need
to overcome state space explosion. One way to tackle this problem is through
applying reduction techniques such as symmetry reduction [35] and counter ab-
straction [56]. Counter abstraction is a form of symmetry reduction and, in case
of full symmetry, it can be used to avoid the constructive orbit problem, according
to which finding a unique representative of each state is NP-hard [35]. The idea
of using counters and counter abstraction in model checking was first introduced
in [56].However, the term of counter abstraction was first presented in [127] for
the verification of parameterized systems and further used in different studies
such as [11, 101].

The idea of counter abstraction is to record the global state of a system as
a vector of counters, one for each local state. Each counter denotes the num-
ber of components currently residing in the corresponding local state. In our
work, by “components” we mean the actors of the system. This technique turns
a model with an exponential size in n, i.e. mn, into one of a size polynomial

in n, i.e.
(
n+m− 1

m

)
, where n and m denote the number of components and

local states, respectively. Two global states S and S′ are considered identical
up to permutation if for every local state s, the number of components residing
in s is the same in the two states S and S′, as permutation only changes the
order of elements. For example, consider a system which consists of three com-
ponents that each have only one variable vi of boolean type. Three global states
(true, true, false), (false, true, true), and (true, false, true) are equivalent and can
be abstracted into one global state represented as (true : 2, false : 1).

76 Chapter 4 — Wireless Rebeca

n3

n2

n4

n1

(a) The network

MNode n1 (n2, n3, n4) : (1, false)
MNode n2 (n1, n4) : (2, false)
MNode n3 (n1, n4) : (3, true)
MNode n4 (n2, n3, n1) : (4, false)

(b) Syntactic definition during instantiation

Figure 4.1: A sample of an initial topology and its corresponding syntactic and semantic
representations

4.2 Modeling Topology and Mobility

In this section, we discuss issues brought up by extending Rebeca to model and
verify MANETs, and our solutions to overcome these challenges. We assume that
the number of nodes is fixed (to make the state space finite as explained in [52]).

Every rebec represents a node in the MANET model. A node can communicate
only with those located in its communication range, so-called connected nodes.
In this approach, we consider the topology as a part of the states and randomly
change the underlying topology at the semantic level. Recall that a topology is
modeled by a function γ : Loc → IP (Loc) with ∀` ∈ Loc (` 6∈ γ(`)). For simplicity,
we assume that the transmission ranges of all nodes are equal. Therefore, con-
nectivity is a bidirectional concept, and hence, the resulting topology modeled
by the function γ will be symmetric; if ` ∈ γ(`′) ⇔ `′ ∈ γ(`). We remark that
the presented framework and techniques in this chapter are also valid for asym-
metric communications. Changing the topology is considered an unobservable
action, modeled by a τ -transition, which alters the topology function. Hence,
each τ -transition represents a set of (bidirectional) link setups/breakdowns in
the underlying topology.

To set up the initial topology of the network, the known-rebecs definitions,
provided by the Rebeca language, are extended to address the connectivity of
rebecs. Fig. 4.1a shows the communication range of the nodes in a simple net-
work. To configure the initial topology of this network, known-rebecs of each
rebec should be defined as shown in Fig. 4.1b during its instantiation (cf. Fig.
2.4).

For a network of n nodes, there are 2((n×n)−n)/2 possible (symmetric) topolo-
gies. Considering all these topologies may lead to state space explosion. Hence,
we use network constraints to characterize the set of possible topologies. A topol-
ogy γ is called valid for the network constraint C, denoted as γ � C, if γ ∈ Γ(C).

If the only valid topology for a network constraint is equal to the initial topol-

4.3. wRebeca: Syntax and Semantics 77

ogy, then the underlying topology will be static. This case can be useful for
modeling WMNs with stable mesh routers with no mesh clients.

4.3 wRebeca: Syntax and Semantics

In this section, we extend the syntax of Rebeca introduced in Section 2.4, with
conditional unicast and multicast, topology constraint, and known rebecs to set
up the initial topology. Next, we provide the semantics of wRebeca models in
terms of LTSs.

4.3.1 Syntax

The grammar of wRebeca is presented in Fig. 4.2. It consists of two major
parts: reactive classes and main part. The definition of reactive classes is al-
most similar to the one in Rebeca. However, the main part is augmented with the
ConstraintPart, where constraints are introduced to reduce all possible topolo-
gies in the network. The instances of the declared reactive classes are defined
in the main part, before the ConstraintPart, by indicating the name of a reac-
tive class and an arbitrary rebec name along with two sets of parentheses di-
vided by the character “:”. The parameters between the first couple of paren-
theses define the neighbors of the rebec in the initial topology. The param-
eters between the second couple of parentheses is pass values to the initial
message server. Rebecs here communicate through broadcast, multicast, and
unicast. In the broadcast statement, we simply use the message server name
along with its parameters without specifying the receivers of a message. In
contrast, when unicasting/multicasting a message, we also need to specify the
receiver/receivers of the message. However, there is no delivery guarantee, de-
pending on the location of the receiver. In case of unicasting, the sender can
react based on the delivery status. Let unicast(Rec,M(List(Expr))) indicate
unicast(Rec,M(List(Expr))) succ :{} unsucc :{} when the delivery status has no
effect on the rebec behavior.

In addition to communication statements, there are assignment, conditional,
and loop statements. The first one is used to assign a value to a variable. The sec-
ond is used to branch based on the evaluation of an expression: if the expression
evaluates to true, then the if part, and otherwise the else part will be executed.
Let if (Expr) Block denote if (Expr) Block else { }. Finally, the third is used to ex-
ecute a set of statements iteratively as long as the loop condition, i.e., the boolean
expression Expr, holds. Furthermore, break can be used to terminate its near-
est enclosing loop statement and transfer the control to the next statement. For
the sake of readability, we use for (T x = Expr1; Expr2; Expr3){ Statement∗ }
to denote T x = Expr1;while (Expr2){ Statement∗ Expr3 }. A variable can be
defined in the scope of message servers as a statement similar to programming
languages.

78 Chapter 4 — Wireless Rebeca

Model ::= ReactiveClass+ Main

Main ::= main {RebecDecl+ ConstraintPart }
List(X) ::= 〈X, 〉∗X | ε

RebecDecl ::= C R (List(R)) : (List(Expr));

ConstraintPart ::= constraint {Constraint}
Constraint ::= ConstrainDec | ! ConstrainDec |

and(Constraint , Constraint)

ConstrainDec ::= con(R , R) | true
ReactiveClass ::= reactiveclass C { StateVars MsgServer∗ }

StateVars ::= statevars { VarDecl∗ }
MsgServer ::= msgsrv M(List(T V)) { Statement∗ }

VarDecl ::= T V ;

Statement ::= VarDecl | Assign | Conditional | Loop | Broadcast |
Multicast | Unicast | break;

Assign ::= V = Expr;

Conditional ::= if (Expr) Block else Block

Block ::= Statement | { Statement∗ }
Loop ::= while(Expr) Block

Broadcast ::= M(List(Expr));

Multicast ::= multicast(V ,M(List(Expr)));

Unicast ::= unicast(Rec ,M(List(Expr))) succ : Block unsucc : Block

Rec ::= self | V

Figure 4.2: wRebeca language syntax: Angle brackets (〈 〉) are used as metaparentheses.
Superscript * indicates zero or more times repetition. The symbols C, R, T , M , and
V denote the set of classes, rebec names, types, message server and variable names,
respectively. The symbol Expr denotes an expression, which can be an arithmetic or a
boolean expression.

4.3. wRebeca: Syntax and Semantics 79

A given wRebeca model is called well-formed if no state variable is also de-
clared in the scope of a message server as a local variable, no two state variables,
message servers or rebec classes have identical names, identifiers of variables,
message servers and classes do not clash, and all rebec instance accesses and
variable accesses occur over declared/specified ones. Furthermore, a message
can be sent to a specific/all rebec(s) if its corresponding message handler has
been defined in the receiver rebec(s) and the number and type of actual param-
eters correctly match the formal ones in the message server specification. Each
break should occur within a loop statement. Furthermore, the initial topology
should satisfy the network constraint and be symmetric, i.e., if n1 is the known
rebec of n2, then n2 should be the known rebec of n1. By default, the network
constraint is true if no network constraint is defined, and all the nodes are dis-
connected if no initial topology is defined.

Example: Fig. 4.3 illustrates a revised version of Max-Algorithm introduced in
2.4. Every node in the network contains an integer value and intends to find the
maximum value of all nodes in its vicinity in a distributed manner by flooding
the value. The MNode message server acts as a constructor and has a parameter,
named starter. The rebec with the starter value true initiates the algorithm by
broadcasting the first message. Whenever a node receives a value, it updates its
value if it is less then the received one. Furthermore, it rebroadcast the its value
if the received one is different. To reduce the number of transferred messages,
each message contains a counter, called hopNum, which shows how many times
it has been re-broadcast. If the hopNum is more than the specified bound, it quits
re-broadcasting.

4.3.2 Semantics

The formal semantics of a well-formed wRebeca model is expressed as an LTS.
In the following, we formally define the states, transitions, and initial states of
the semantic model generated for a given wRebeca specification. To this aim,
the given specification is decomposed into its constituent components, i.e., rebec
instances, reactive classes, initial topology, and network constraint represented
by the wRebeca modelM. The topology silently transforms while satisfying the
given network constraint. As explained in Section 2.4, message server execu-
tions are atomic; their executions are not interleaved with executions of message
servers of other rebecs. Intuitively, the global states of a wRebeca model are de-
fined by the local states of its rebecs and the underlying topology. Consequently,
a state transition occurs either upon atomic execution of a message server (i.e.,
when a rebec processes its corresponding message in its queue), or at a random
change in the topology (modeled through unobservable τ -transitions).

Let V denote the set of variables ranged over by x, and Val denote the set of
all possible values for the variables, ranged over by e. Furthermore, we assume
that the set of types T consists of the integer and boolean data types, i.e., T =

80 Chapter 4 — Wireless Rebeca

1 reactiveclass MNode
2 {
3 statevars
4 {
5 int my i;
6 }

8 msgsrv MNode(int j, boolean
starter)

9 {
10 my i = j;
11 if (starter) send(my i,0);
12 }
13 msgsrv send(int i , int

hopNum)
14 {
15 if (i != my i){
16 if (i>my i) my i = i;
17 if (hopNum<3) {

18 hopNum++;
19 send(my i,hhopNum);
20 }
21 }
22 }
23 main
24 {
25 MNode n1(n2,n3,n4):
26 (1, false);
27 MNode n2(n1,n4):(2,false);
28 MNode n3(n1,n4):(3,true);
29 MNode n4(n2,n3,n1)
30 :(4, false);

32 constraint
33 {
34 and(con(n1,n2),!con(n1,n3))
35 }
36 }

Figure 4.3: Revised max-algorithm in a network consisting of four nodes

{int , bool}. We consider the default value 0 ∈ Val for the integer and boolean
variables since the boolean values true and false can be modeled by 1 and 0
in the semantics, respectively. The variable assignment in each scope can be
modeled by the valuation function V → Val ranged over by θ. An assignment
can be extended by writing θ∪{y 7→ e}. This can only be done if θ is not defined
on y. To manage value assignments regarding scope management, we specify
the set of all environments as Env = Stack(V → Val), ranged over by υ. Let
upd(υ, {y 7→ e}) extend the variable assignments of the current scope, i.e, the
top of the stack, by {y 7→ e} if the stack is not empty. Assume Stack() denotes
an empty environment. By entering into a scope, the environment υ is updated
by push(θ, υ) where θ is empty if the scope belongs to a block (which will be
extended by the declarations in the block). Upon exiting from the scope, it is
updated by pop(υ) which removes the top of the stack. Let eval(expr , υ) denote
the value of the expression expr in the context of environment υ, and υ[x := e]
the environment identical to υ except that x, which belongs to the domain of the
topmost assignment of υ, is updated to e.

Assume Seq(D) denotes the set of all sequences of elements in D; we use
notations 〈d1 . . . dn〉 and ε for a non-empty and empty sequence, respectively.
Note that the elements in a sequence may be repeated. A FIFO queue of elements
of D can be viewed as a Seq(D). For instance, 〈2 3 2 4〉 ∈ Seq(N) denotes a FIFO
queue of natural numbers where its head is 2. For a given FIFO queue f : Seq(D),
assume f .d denotes the sequence obtained by appending d to the end of f , while

4.3. wRebeca: Syntax and Semantics 81

d . f denotes the sequence with head d and tail f .
A wRebeca model is defined through a set of reactive classes, rebec instances,

an initial topology, and a network constraint. Let C denote the set of all reactive
classes in the model ranged over by c, R the set of rebec instances ranged over
by r, and C the set of network constraints ranged over by C. Assume Γ is the
set of all topologies ranged over by γ. Each reactive class c is described by a
tuple c = 〈Vc,Mc〉, where Vc is the set of class state variables and Mc the set of
message types ranged over by m that its instances can respond to. We assume
that for each class c, we have the state variable self ∈ Vc, and initial ∈ Mc

which can be seen as its constructor in object-oriented languages. For the sake
of simplicity, we assume that messages are parameterized with one argument,
so Msgc, where Mc = Val → Msgc defines the set of all messages that rebec in-
stances of the reactive class c can respond to. The formal parameter of a message
can be accessed by fm : Mc → V . Let Statement denote the set of statements
ranged over by σ, δ (we use σ∗, δ∗ to denote a sequence of statements), and
body : Mc → Seq(Statement) specify the sequence of statements executed by
a message server. A block, denoted by β, is either defined by a statement or a
sequence of statements surrounded by braces.

A rebec instance r is specified by the tuple 〈c, e0〉 where c ∈ C is its reactive
class, and e0 defines the value passed to the message c which is initially put in the
rebec’s queue. We assume a unique identifier is assigned to each rebec instance.
Let I = {1 . . . n} denote a finite set of all rebec identifiers ranged over by i and j.
Furthermore, we use ri to denote the rebec instance r with the assigned identifier
i. A rebec in wRebeca, like Rebeca, holds its received messages in a FIFO queue.

All rebecs of the model form a closed system, denoted byM = 〈‖i∈Iri, C, γ0, C〉,
where ri = 〈c, ei0〉 for some c ∈ C and C ∈ C. By default, C = true and ∀i, j ≤
n((i 6= j ⇒ j ∈ γ0(i) ∧ i ∈ γ0(j)) if no network constraint and initial topology
were defined. The (global) state of the M is defined in terms of rebec’s local
states and the underlying topology.

Definition 4.1. The semantics of a wRebeca model M = 〈‖i∈Iri, C, γ0, C〉 is
expressed by the LTS 〈S,L,→, s0〉 where

• S ⊆ S1× . . .×Sn×Γ is the set of global states such that (s1, . . . , sn, γ) ∈ S
iff γ � C, and Si = Env×FIFO i is the set of local states of rebec ri = 〈c, ei0〉
where FIFO i = Seq(Msgc) models a FIFO queue of messages sent to the
rebec ri. Therefore, each si can be denoted by the pair (νi, fi). We use the
dot notations si.ν and si.f to access the environment and FIFO queue of
rebec i, respectively.

• L = Act ∪ {τ} is the set of labels, where Act =
⋃
c∈C Msgc.

• The transition relation → ⊆ S × L × S is the least relation satisfying the
SOS rules in Tables 4.1 and 4.2.

82 Chapter 4 — Wireless Rebeca

Table 4.1: wRebeca SOS rules

Term: νi, f1, . . . , fn, ε γ νi, f1, . . . , fn,>

Assign: νi, f1, . . . , fn, x := expr ; γ νi[x := eval(expr , νi)], f1, . . . , fn,>

VDecl : νi, f1, . . . , fn, T x; γ upd(νi, {x 7→ 0}), f1, . . . , fn,>

Block :
push(∅, νi), f1, . . . , fn, σ

∗ γ ν
′
i, f
′
1, . . . , f

′
n, ζ

νi, f1, . . . , fn, {σ∗} γ pop(ν′i), f
′
1, . . . , f

′
n, ζ

Cond1:
eval(expr , νi) = true νi, f1, . . . , fn, β1 γ ν

′
i, f
′
1, . . . , f

′
n, ζ

νi, f1, . . . , fn, if expr β1 else β2 γ ν
′
i, f
′
1, . . . , f

′
n, ζ

Cond2:
eval(expr , νi) = false νi, f1, . . . , fn, β2 γ ν

′
i, f
′
1, . . . , f

′
n, ζ

νi, f1, . . . , fn, if expr β1 else β2 γ ν
′
i, f
′
1, . . . , f

′
n, ζ

Loop1:

eval(expr , νi) = true
νi, f1, . . . , fn, β γ ν

′
i, f
′
1, . . . , f

′
n,>

ν′i, f
′
1, . . . , f

′
n,while(expr) β γ ν

′′
i , f

′′
1 , . . . , f

′′
n ,>

νi, f1, . . . , fn,while(expr) β γ ν
′′
i , f

′′
1 , . . . , f

′′
n ,>

Loop2:

eval(expr , νi) = true
νi, f1, . . . , fn, β γ ν

′
i, f
′
1, . . . , f

′
n,⊥

νi, f1, . . . , fn,while(expr) β γ ν
′
i, f
′
1, . . . , f

′
n,>

Loop3:
eval(expr , νi) = false

νi, f1, . . . , fn,while(expr) β γ νi, f1, . . . , fn,>

Seq1:

νi, f1, . . . , fn, σ1 γ ν
′
i, f
′
1, . . . , f

′
n,>

ν′i, f
′
1, . . . , f

′
n, σ

∗
2 γ ν

′′
i , f

′′
1 , . . . , f

′′
n , ζ

νi, f1, . . . , fn, σ1σ
∗
2 γ ν

′′
i , f

′′
1 , . . . , f

′′
n , ζ

Seq2: νi, f1, . . . , fn, break ; σ∗ γ νi, f1, . . . , fn,⊥

Handle:

si.f = m(e) . fi ∧ ∀k 6= i(fk = sk.f)
νi = push({fm(m) 7→ e}, si.ν)

νi, f1, . . . , fn, body(m) γ ν′i, f
′
1, . . . , f

′
n,>

(s1, . . . , sn, γ)
m(e)−−−→ (s′1, . . . , s

′
n, γ)

, where

∀k 6= i(s′k = (sk.ν, f
′
k)) ∧ s′i = (pop(ν′i), f

′
i)

Mov (s1, . . . , sn, γ)
τ−→ (s1, . . . , sn, γ

′) , where γ′ |= C

4.3. wRebeca: Syntax and Semantics 83

Table 4.2: SOS rules of communication in wRebeca

BCast: νi, f1, . . . , fn,m(expr); γ νi, f
′
1, . . . , f

′
n,> , where

[∀k ≤ n(k 6= i ∧ (k ∈ γ(i))⇒
f ′k = fk . m(eval(expr , vi))][f

′
k = fk])

MCast: νi, f1, . . . , fn,multicast(rcvs, expr); γ νi, f
′
1, . . . , f

′
n,> , where

∀k ≤ n(k ∈ rcvs ∧ k ∈ γ(i))⇒
[f ′k = m(eval(expr , vi)) . fk][f ′k = fk])

UCast1:

(j ∈ γ(i))
f ′j = fj . m(eval(expr , vi)) ∧ ∀k 6= j(f ′k = fk)

νi, f
′
1, . . . , f

′
n, β1 γ ν

′
i, f
′′
1 , . . . , f

′′
n , ζ

νi, f1, . . . , fn, unicast(j,m(expr)) succ : β1 unsucc : β2 γ

ν′i, f
′′
1 , . . . , f

′′
n , ζ

UCast2:
(j 6∈ γ(i)) νi, f1, . . . , fn, β2 γ ν

′
i, f
′
1, . . . , f

′
n, ζ

νi, f1, . . . , fn, unicast(j,m(expr)) succ : β1 unsucc : β2 γ

ν′i, f
′
1, . . . , f

′
n, ζ

• s0 is the initial state, and is defined as the combination of initial states
of rebecs and the initial topology, i.e., s0 = (s1

0, . . . , s
n
0 , γ0), where for the

rebec ri = 〈c, ei0〉, si0 = (push(θ0, stack()), 〈c(ei0)〉) which denotes that the
class variables (i.e., Vc) are initialized to the default value, denoted by θ0,
and its queue includes only the message c(ei0), and γ0 � C.

To describe the semantics of transitions in wRebeca in Table 4.1, we exploit an
auxiliary transition relation γ⊆ (Env ×FIFO1× . . .×FIFOn×Seq(Statement))→
(Env × FIFO1 × . . . × FIFOn × {>,⊥}) to address the effect of statement execu-
tions on the given environment of the rebec (which executes the statements) and
the queue of all rebecs. Upon execution, the statements are either successfully
terminated, denoted by >, or abnormally terminated, denoted by ⊥. Let ζ range
over {>,⊥}. Rule Term explains that an empty statement terminates success-
fully. The effect of an assignment statement, i.e., x := expr ;, is that the value
of variable x is updated by eval(expr , νi) in νi as explained by the rule Assign.
The variable declaration T x; extends the variable valuation corresponding to the
current scope by the value assignment x 7→ 0, where 0 is the default value for the
types of T , as explained in the rule VDecl . The behavior of a block is expressed
by the rule Block , based on the behavior of the statements (in its scope) on the
environment push(∅, νi), where the empty valuation function may be extended
by the declarations in the scope (by rule VDecl). Thereafter, to find the effect of
the block, the last scope is popped from the environment. Rules Cond1,2 specify
the effect of the if statement: If eval(expr , νi) evaluates to true, its effect is de-
fined by the effect of executing the if part, otherwise the else part. Rules Loop1−3

84 Chapter 4 — Wireless Rebeca

explain the effect of the while statement; if the loop condition evaluates to true,
the effect of the while statement is defined in terms of the effect of its body by the
rules Loop1,2, otherwise it terminates immediately as specified by the rule Loop3.
If the body of the while statement terminates successfully, the effect of the while
statement is defined in terms of the effect of the while statement on the resulting
environment and queues of its body execution as explained by Loop1. Rule Loop2

expresses that if the body of the while statement terminates abnormally (due to
a break statement) while its condition evaluates to true, then it terminates suc-
cessfully while taking the effect of its body execution into account. The effect of
a sequence of statements is specified by the rules Seq1,2. Upon successful execu-
tion of a statement, the effect of its next statements is considered (rule Seq1). A
break statement makes all its next statements be abandoned (rule Seq2).

The rule Handle expresses that the execution of a wRebeca model progresses
when a rebec processes the first message of its queue. In this rule, the message
m(e) is processed by the rebec ri as si.f = m(e) . fi. To process this message, its
corresponding message server, i.e. body(m) is executed. The effect of its execu-
tion is captured by the transition relation γ on the environment of ri, updated
by the variable assignment {fm 7→ e} for the scope of the message server of m,
and the queue of all rebecs while message m(e) is removed from the queue of ri.
The rule Mov specifies that the underlying topology is implicitly changed at the
semantic level, and the new topology satisfies C.

The semantics of communication statements is given in Table 4.2. The expres-
sion b ⇒ [C1][C2] in the side conditions of rules BCast and MCast abbreviates
(b ⇒ C1) ∧ (¬b ⇒ C2). The effects of broadcast and multi-cast communica-
tions are specified by the rules BCast and MCast , respectively: the message
m(eval(expr , νi)) is appended to the queue of all connected nodes to the sender
in case of broadcast, and all connected nodes among the specified receivers (i.e.,
rcvs) in case of multi-cast. Rules UCast1,2 express the effect of unicast commu-
nication upon its delivery status. If the communication was successful (i.e., the
sender was connected to the receiver), the message is appended to the queue of
the receiver while the effect of the succ part is also considered (rule UCast1),
otherwise only the effect of the unsucc part is considered (rule UCast2).

Example: Consider the global state (s1, s2, s3, s4, γ) such that s1 = (({{my i 7→
3}}, ε), s2 = ({{my i 7→ 2}}, ε), s3 = ({{my i 7→ 3}}, ε), s4 = ({{my i 7→ 3}}, 〈send(3, 0)〉),
and γ as the one defined in Fig. 4.1a for the wRebeca model in Fig. 4.3 where
{{my i 7→ i}} denotes push({myi 7→ i},Stack()). Regarding our rules, the fol-
lowing transition is derived:

ν2,
−→ε , hopNum + + γ ν3,

−→ε ,>
ν3,
−→ε , send(4, 1) γ ν3,

−−−−−−−−→
〈send(4, 1)〉, ε,>

Seq1

ν2,
−→ε , hopNum + +; send(4, 1); γ ν3,

−−−−−−−−→
〈send(4, 1)〉, ε,>

Block

ν1,
−→ε , {hopNum + +; send(4, 1)} γ ν4,

−−−−−−−−→
〈send(4, 1)〉, ε,> : (∗)

4.4. Semantic Reduction Techniques 85

The following inference tree uses the result of the first tree, denoted by (∗),
as a part of its premise to derive the result (∗∗). This result is used by the next
tree as a part of its premise to derive the transition.

eval(hopNum < 3, ν1) = true (∗)
Cond1

ν1,
−→ε , if (hopNum < 3) . . . γ ν4,

−−−−−−−−→
〈send(4, 1)〉, ε,>

ν1,
−→ε , if (i > my i) . . . γ ν1,

−→ε ,>
Seq1,Block

ν1,
−→ε , {if (i > my i) . . .} γ ν4,

−−−−−−−−→
〈send(4, 1)〉, ε,> : (∗∗)

eval(i! = my i , ν1) = true (∗∗)
Cond1

ν1,
−→ε , if (i! = my i . . . γ ν

′
1,
−−−−−−−−→
〈send(4, 1)〉, ε, ε,>

Handle

(s1, s2, s3, s4, γ)
send(4,1)−−−−−−−→ (s′1, s

′
2, s
′
3, s
′
4, γ)

where −→ε and
−−−−−−−−→〈send(4, 1)〉 abbreviate ε, ε, ε, ε (i.e., all the queues are empty) and

〈send(4, 1)〉, 〈send(4, 1)〉, 〈send(4, 1)〉, respectively, ν1 = push({i 7→ 3, hopNum 7→
0, }, {{my i 7→ 3}}), ν2 = push(∅, ν1), ν3 = ν2[hopNum := 1], ν4 = pop(ν3), ν′1 =
pop(ν4), s′1 = ({{my i 7→ 3}}, 〈send(4, 1)〉), s′2 = ({{my i 7→ 2}}, 〈send(4, 1)〉),
s′3 = ({{my i 7→ 3}}, 〈send(4, 1)〉), and s′4 = ({{my i 7→ 4}}, ε). By the rule
Handle, the message send(3, 0) in the queue of n4 is processed. To this aim,
the body of its message server, i.e., if (i! = my i is executed. Since eval(i! =
my i , ν1) = true, by the rule Cond1, the true part (i.e., the sequence of if (i >
my i) . . . and if (hopNum < 3) . . .) is executed. Due to eval(hopNum < 3, ν1) =
true, by the rule Cond1, the if part is executed.

4.4 Semantic Reduction Techniques

We extend application of the counter abstraction technique to wRebeca models
when the topology is static. To this end, the local states of rebecs and their
neighborhoods are considered. Later, we inspect the soundness of the counter
abstraction technique in the presence of mobility. As a consequence, we propose
a reduction technique based on removal of τ -transitions. Recall that the topology
is static when the only valid topology of the network constraint is equal to the
initial topology.

4.4.1 Applying Counter Abstraction

Assume Sc is the set of local states that the instances of the reactive class c can
take (i.e., Sc = Env c × FIFOc) and I is the set of rebec identifiers. To apply
counter abstraction, rebecs with an identical local state and neighbors that are
topologically equivalent are counted together. Two nodes i, j ∈ I are said to be
topologically equivalent, denoted by i ≈γ j, iff ∀k ∈ I \ {i, j}(k ∈ γ(i) ∧ k ∈ γ(j).
Intuitively, two topologically equivalent nodes have the same neighbors (except

86 Chapter 4 — Wireless Rebeca

themselves). So if either one broadcasts, the same set of nodes (except them-
selves) will receive, and if they are also connected to each other, their counterpart
(that is symmetric to the sender) will receive. In a set of pairwise topologically
equivalent nodes, all nodes are either all connected to each other, or all discon-
nected, because they have the same neighbors (except themselves). Therefore, a
set of pairwise topologically equivalent nodes will affect the same nodes when ei-
ther one broadcasts. Hence, a set of pairwise topologically equivalent nodes with
an identical local state can be aggregated. To this aim, nodes of the underlying
topology are partitioned into the maximal sets of pairwise topologically equiv-
alent nodes, denoted by N1, . . . ,N`. We define the set of distinct local states as
Sd =

⋃
c∈C Sc, and the set of topology equivalence classes as T = {N1, . . . ,N`}.

Consequently, each global state (s1, . . . , sn, γ) is abstracted into a vector of ele-
ments (sdi ,Ni) : ci where sdi ∈ Sd, Ni ∈ T, and ci is the number of nodes in
the topology equivalence class Ni that reside in the very local state sdi . The re-
duced global state, called abstract global state, is presented as follows, where n
and m denote the number of all rebecs and distinct local states (i.e., m =

∣∣Sd∣∣),
respectively:

S = ((sd1,N1) : c1, . . . , (s
d
k,Nk) : ck), ∀i ≤ k(ci > 0 ∧Ni ∈ T),

k∑
i=1

ci = n, k ≤ n

For instance, nodes n1, n4, and n2, n3 in Fig. 4.1a have the same neighbors, so if
their state variables and queue contents are the same, then they can be counted
together.

Recall that when the underlying topology is static, a global state may only
change upon processing a message by a rebec, since in wRebeca the bodies of
message servers execute atomically. Thus, its corresponding abstract global state
may also only change upon processing a message by a rebec.

Counting abstraction is beneficial when the reactive classes do not have a
variable that will be assigned uniquely to its instances, such as “unique address”
as a state variable. (Note that in the semantics, rebecs have identifiers which are
not a part of their local states.) For example, counter abstraction is effective on
the specification of the max-algorithm given in Fig. 4.3.

The reduction takes place on-the-fly while constructing the state space. To
this end, each global state (s1, . . . , sn, γ) is transformed into the form ((sd1,N1) :
n1, (s

d
2,N2) : n2, . . . , (s

d
k,Nk) : nk) such that ni ⊆ Ni is the set of node identifiers

that are pairwise topologically equivalent with the local state equal to sdi , where
Ni ∈ T. This new presentation of the global state is called transposed global
state. The sets ni are leveraged to update the states of the potential receivers
(known by the underlying topology) when a communication occurs. To gener-
ate the abstract global states, each transposed global state is processed by taking
an arbitrary node from the set assigned to a distinct local state and a topology
equivalence class if the distinct local state consists of a non-empty queue. The
next transposed global state is computed by executing the message handler of

4.4. Semantic Reduction Techniques 87

(

({{my i 7→ 4}}, ε),
({{my i 7→ 2}}, 〈send(4, 1)〉),
({{my i 7→ 4}}, ε),
({{my i 7→ 4}}, ε),

γ)

(a) Before applying counter abstraction

(
(({{my i 7→ 4}}, ε), {1, 3}) : {1, 3},
(({{my i 7→ 2}}, 〈send(4, 1)〉), {2, 4}) : {2},
(({{my i 7→ 4}}, ε), {2, 4}) : {4}

)

(b) After applying counter abstraction

Figure 4.4: A global state and its corresponding transposed global state: assume {{i 7→ e}}
denotes push({i 7→ e},Stack())

.

the head message in the queue. This is repeated for all the pairs of a distinct
local state and a topology equivalence class of the transposed global state. Af-
ter generating all the next transposed global states of a transposed state, the
transposed state is transformed into its corresponding abstract global state by
replacing each ni by |ni|. A transposed global state is processed only if its corre-
sponding abstract global state has not been previously computed. During state
space generation, only the abstract global states are stored. Fig. 4.4 illustrates
a global state and its corresponding transposed global state, where γ is defined
as in Fig. 4.1a. It is assumed that the network consists of four nodes of the re-
active class MNode as specified in Fig. 4.3. Each row in Fig. 4.4a represents a
local state, i.e., valuation of the local state variable and message queue, while
each row in Fig. 4.4b represents a distinct local state and a set of pairwise topo-
logically equivalent identifiers together with those nodes of the set that reside
in that distinct local state. As the topology is static, it can be removed from the
abstract/transposed global states. Furthermore, each topology equivalence class
of nodes can be represented by its unique representative, e.g., the one with the
minimum identifier.

The following theorem states that applying counter abstraction preserves se-
mantic properties of the model modulo strong bisimilarity. To this aim, we prove
that states that are counted together are strongly bisimilar. For instance, the
global state similar to the one in Fig. 4.4a except that the distinct local states of
nodes 2 and 4 are swapped, is mapped into the same abstract global state that
corresponds to Fig. 4.4b.

Theorem 4.2 (Soundness of Counting Abstraction). Assume two global states S1

and S2 such that for every pair of a distinct local state sd ∈ Sd and a topology
equivalence class N ∈ T, the number of pairwise topologically equivalent nodes of
N that have the local state sd are the same in S1 and S2. Then S1 and S2 are strong
bisimilar.

Proof. Since the topology is static, the only transitions of these states are the re-

sult of processing messages in their rebec queues. Suppose S1
m(e)−−−→ S′1 since

there is a node i with the local state (νi, fi) in the topology equivalence class N ,

88 Chapter 4 — Wireless Rebeca

where m(e) is the head of fi using the semantic rule Handle in Table 4.1. As-
sume that i belongs to the set of pairwise topologically equivalent nodesN1 ⊆ N ,
where ((νi, fi),N) : N1 is an element of the transposed global state correspond-
ing to S1. Due to the assumption, there exists a set of pairwise topologically
equivalent nodes N2 ⊆ N in S2 with the distinct local state (νi, fi) where |N1| =
|N2|. We choose an arbitrary node j in N2 and prove that it triggers the same
transition as i. We claim that for each pair of distinct local state sdk and topology
equivalence class N ′, the number of nodes nbi ⊆ N ′ that are a neighbor of i
and reside in the local state sdk, is the same to the number of nodes nbj ⊆ N ′
that are a neighbor of j with the local state sdk. Assume for the arbitrary trans-
posed global state element (sdl ,N ′′) that, without loss of generality, nbi has more
pairwise topologically equivalent nodes than nbj in (sdl ,N ′′). As the links are
bidirectional, due to the definition of abstract/transposed global states, i is the
neighbor of nodes in N ′′. Furthermore, as the topology is the same for S1 and
S2 and i, j ∈ N , then j is also the neighbor of nodes in N ′′. However, due to the
assumption, the number of pairwise topologically equivalent nodes of N ′′ in S1

and S2 that have the distinct local state sdl are the same. So there are a set of
pairwise topologically equivalent nodes of N ′′ with the local state sdl that are not
in nbj , which contradicts the fact that j is the neighbor of nodes in N ′′.

As both i and j handle the same message, they execute the same message
server, and consequently the effects on their own local state and their neighbors

will be the same. Therefore, S2
m(e)−−−→ S′2 while ∀(sdo,N ∗) the number of pairwise

topologically equivalent nodes from the equivalence class N ∗ in S′2 that reside
in the distinct local state sdo is the same as the number of pairwise topologically
equivalent nodes from the equivalence class N ∗ in S′1 that reside in the distinct

local state sdo. The same argument holds when S2
m(e)−−−→ S′2.

As mentioned before, the reduction is only applicable if the network is static.
This is due to the fact that if node neighborhoods may change, then nodes which
are in the same equivalence class in some state may no longer be equivalent
in the next state. Consider the max-algorithm protocol (Fig. 4.3) for the two
topologies shown in Fig. 4.5a and Fig. 4.5b (satisfying the network constraint in
Fig. 4.5c). Nodes N2 and N3 are topologically equivalent under topology 1, but
not under topology 2.

To illustrate that counter abstraction is not applicable to systems with a dy-
namic topology, Fig. 4.6 shows a part of the state space of the max-algorithm
with a change in the underlying topology (from Fig. 4.5a (γ1) to Fig. 4.5b (γ2)
with/without applying counter abstraction, where only these two topologies are
possible. As predicted, the reduced state space (on the left) is not strongly bisim-
ilar (see Section 2.1 for the definition) to the original state space (on the right).
During transposed global state generation, the next state is only generated for
node 2 with the distinct local state ({{my i 7→ 3}}, 〈send(4, 0)〉) from the equiv-
alence class {2, 3}. Therefore, it is obvious that the next states in the left LTS

4.4. Semantic Reduction Techniques 89

n1

({{my i 7→ 1}}, ε)

n2

({{my i 7→ 3}}, 〈send(4, 0)〉)
n3

({{my i 7→ 3}}, 〈send(3, 0)〉)

n4

({{my i 7→ 4}}, ε)

(a) Topology 1

n1

({{my i 7→ 1}}, ε)

n2

({{my i 7→ 3}}, 〈send(4, 0)〉)

n3

({{my i 7→ 3}}, 〈send(4, 0)〉)

n4

({{my i 7→ 4}}, ε)

(b) Topology 2

and(con(n1, n2), and(con(n1, n3),
and(con(n3, n4), and(!con(n1, n4), !con(n2, n3)))))

(c) An example of network topology constraint

Figure 4.5: Two possible topologies for the given constraint on the max-algorithm protocol

(

({{my i 7→ 1}}, ε),
({{my i 7→ 3}}, 〈snd0〉),
({{my i 7→ 3}}, 〈snd0〉),
({{my i 7→ 4}}, ε),

γ1

(

({{my i 7→ 1}}, 〈snd1〉),
({{my i 7→ 4}}, ε),
({{my i 7→ 3}}, 〈snd0〉),
({{my i 7→ 4}}, 〈snd1〉),

γ1)

(

({{my i 7→ 1}}, 〈snd1〉),
({{my i 7→ 4}}, ε),
({{my i 7→ 3}}, 〈snd0〉),
({{my i 7→ 4}}, 〈snd1〉),

γ2)

(

({{my i 7→ 1}}, 〈snd0, snd1〉),
({{my i 7→ 4}}, ε),
({{my i 7→ 4}}, ε),
({{my i 7→ 4}}, 〈snd0, snd1〉),

γ2)

(

({{my i 7→ 1}}, 〈snd1〉),
({{my i 7→ 3}}, 〈snd0〉),
({{my i 7→ 4}}, ε),
({{my i 7→ 4}}, 〈snd1〉),

γ1)

(

({{my i 7→ 1}}, 〈snd1〉),
({{my i 7→ 3}}, 〈snd0〉),
({{my i 7→ 4}}, ε),
({{my i 7→ 4}}, 〈snd1〉),

γ2)

(

({{my i 7→ 1}}, 〈snd0, snd1〉),
({{my i 7→ 4}}, ε),
({{my i 7→ 4}}, ε),
({{my i 7→ 4}}, 〈snd0〉),

γ2)

sn
d 0

τ

snd0

snd
0

τ

snd0

(
(({{my i 7→ 1}}, ε), {1, 4}) : {1},
(({{my i 7→ 3}}, 〈snd0〉), {2, 3}) : {2, 3},
(({{my i 7→ 4}}, ε), {1, 4}) : {4}

)

(

(({{my i 7→ 1}}, 〈snd1〉), {1, 4}) : {1},
(({{my i 7→ 4}}, ε), {2, 3}) : {2},
(({{my i 7→ 3}}, 〈snd0〉), {2, 3}) : {3},
(({{my i 7→ 4}}, 〈snd1〉), {1, 4}) : {4}

)

(

(({{my i 7→ 1}}, 〈snd1〉), {1}) : {1},
(({{my i 7→ 4}}, ε), {2}) : {2},
(({{my i 7→ 4}}, 〈snd0〉), {3}) : {3},
(({{my i 7→ 4}}, 〈snd1〉), {4}) : {4}

)

(

(({{my i 7→ 1}}, 〈snd0, snd1〉), {1}) : {1},
(({{my i 7→ 4}}, ε), {2}) : {2},
(({{my i 7→ 4}}, ε), {3}) : {3},
(({{my i 7→ 4}}, 〈snd0, snd1〉), {4}) : {4}

)

snd0

τ

snd0

Figure 4.6: Comparing a part of the max-algorithm ’s state space with/without applying
counter abstraction in a dynamic network. The two states enclosed by a dashed border
(in the right) are not strongly bisimilar to the one in the left since in the right figure there
is a global state (dotted bordered) in which only one node has snd0, snd1 messages in
its queue while in the left figure there are two nodes with queues containing snd0, snd1

messages. Note that snd0 and snd1 stand for send(4, 0) and send(4, 1), respectively.

of Fig. 4.6 can be matched to the states with the solid borders in the right LTS.
However, the solid bordered states are not strongly bisimilar to the dotted ones
in the right LTS. The reduced LTS should be strongly bisimilar to its original one
to preserve all properties of its original model.

To take a better advantage of the reduction technique, the message storages

90 Chapter 4 — Wireless Rebeca

s

s′

t

r

α
β

χ

s, γi

s, γj

s, γk

τ

τ
τ

t, γjβ

s′, γi α

r, γkχ

. . .

τ
. . . τ

. . .

τ

T0 T1

Figure 4.7: Relation R matches states (s, γ) of T0 to s of T1.

can be modeled as bags. However, such an abstraction results in more interleav-
ing of messages which do not necessarily happen in reality, and hence, an effort
to inspect if a given trace (of the semantic model) is a valid scenario in reality is
needed. This effort is only tolerable if the state space reduces substantially.

4.4.2 Eliminating τ -Transitions

Instead of maintaining the underlying topology as a part of states to derive the
MANET behavior and modifying it at each state, modeled by τ -transitions, the
behavior of a MANET can be derived with respect to all possible topologies while
no topology is kept in the states. To this end, all τ -transitions are eliminated and
only those that correspond to processing of messages are kept. The following the-
orem expresses that removal of τ -transitions and topology information from the
global states preserves properties of the original model modulo branching bisim-
ulation, such as ACTL-X [48]. In fact, by exploiting a result from [48] about
the correspondence between the equivalence induced by ACTL-X and branching
bisimulation, the ACTL-X fragments of µ-calculus and CACTL, which will be intro-
duced in Chapter 5, are also preserved. We show in Section 4.6.3 that important
properties of MANET protocols can be still verified over reduced state spaces.

Theorem 4.3 (Soundness of τ -Transition Elimination). For an LTS T0 ≡ 〈S ×
Γ,→, L, (s0, γ0)〉, assume that (s, γ)

α−→ (t, γ′) ⇒ (γ = γ′) ∨ (α = τ ∧ s = t),
and ∀γ, γ′ ∈ Γ : (s, γ)

τ−→ (s, γ′). If T1 ≡ 〈S,→′, L, s0〉, where →′= {(s, α, t) |
((s, γ), α, (t, γ)) ∈→}, then (s0, γ0) 'br s0.

Proof. Construct R = {((s, γ), s)|s ∈ S, γ ∈ Γ} as shown in Figure 4.7. We show
that R is a branching bisimulation. To this aim, we show that it satisfies the
transfer conditions of Definition 2.2. For an arbitrary pair ((s, γ), s) ∈ R, assume
(s, γ)

α−→ (t, γ′).

4.4. Semantic Reduction Techniques 91

If α = τ , then two cases can be distinguished: (1) either γ 6= γ′, and hence
by definition of T0, s = t holds which concludes (t, γ′) R s, (2) or γ = γ′ and by

definition of T1, s
α

−→′ t, and (t, γ′) R t.
If α 6= τ , then by definition of T0, γ = γ′ and hence by definition of T1,

s
α

−→′ t, and (t, γ′) R t. Whenever s
α

−→′ t, then by definition of T1 there exists γ′

such that (s, γ′)
α−→ (t, γ′) and hence, (t, γ′) R t. Consequently R is a branching

bisimulation relation.

N1

({{}}, ε)

N2

({{}}, ε)

N3

({{}}, 〈msg〉)

(a) Topology γ1

N1

({{}}, ε)

N2

({{}}, ε)

N3

({{}}, 〈msg〉)

(b) Topology γ2

N1

({{}}, ε)

N2

({{}}, ε)

N3

({{}}, 〈msg〉)

(c) Topology γ3

Figure 4.8: All possible topologies considered during state space generation of Fig. 4.9

As an example, consider a network which consists of three nodes, which are
the instances of a reactive class with no state variable and only one message, msg .
The message server msg has only one statement to broadcast the message msg
to its neighbors. We assume that the set of all possible topologies is restricted by
a network constraint to the three topologies depicted in Fig. 4.8. Consider the
global state in which only N3 has one msg in its queue.

The state space of the above imaginary model before reduction is presented
in Fig. 4.9a, where transitions take place by processing messages or changing
the topology. Fig. 4.9b illustrates the state space after eliminating τ -transitions
and topology information. Connectivity information is removed from the global
states, as in each state its transitions are derived for all possible topologies. In this
approach, transition labels are paired with the topology to denote the topology-
dependent behavior of transitions. The two transitions labeled with γ2 and γ3

can be merged by characterizing the links that make communication from N3

to N1 and N2; i.e., from the sender to the receivers. Such links can be charac-
terized by the network constraints depicted in Fig. 4.9c. In this model, a state
is representative of all possible topologies. The resulting semantic model is a
CLTS, introduced in Section 2.2, with extended network constraints, introduced
in Section 3.1.

92 Chapter 4 — Wireless Rebeca

(
({{}}, ε),
({{}}, ε),
({{}}, 〈msg〉),

1 1 0
1 1 0
0 0 1

)

(
({{}}, ε),
({{}}, ε),
({{}}, 〈msg〉),

1 1 1
1 1 1
1 1 1

) (
({{}}, ε),
({{}}, ε),
({{}}, 〈msg〉),

1 0 1
0 1 1
1 1 1

) (
({{}}, ε),
({{}}, ε),
({{}}, ε),

1 1 0
1 1 0
0 0 1

)

(
({{}}, 〈msg〉),
({{}}, 〈msg〉),
({{}}, ε),

1 1 1
1 1 1
1 1 1

) (
({{}}, 〈msg〉),
({{}}, 〈msg〉),
({{}}, ε),

1 0 1
0 1 1
1 1 1

)

τ τ
msg

τ

msg

τ

τ
msg

τ

(a) State space before reduction

(
({{}}, ε),
({{}}, ε),
({{}}, 〈msg〉)

)

(
({{}}, 〈msg〉),
({{}}, 〈msg〉),
({{}}, ε)

) (
({{}}, 〈msg〉),
({{}}, 〈msg〉),
({{}}, ε)

) (
({{}}, ε),
({{}}, ε),
({{}}, ε)

)

γ 2
: m

sg
γ
1 : m

sgγ3 : msg

(b) Reduced state space after eliminating
τ -transitions and topology information

(
({{}}, ε),
({{}}, ε),
({{}}, 〈msg〉)

)

(
({{}}, 〈msg〉),
({{}}, 〈msg〉),
({{}}, ε)

) (
({{}}, ε),
({{}}, ε),
({{}}, ε)

)

and(con(N3, N1),
con(N3, N2)) : msg

and(!con(N3, N1),
!con(N3, N2)) : msg

(c) Reduced state space with labels charac-
terized by network constraints

Figure 4.9: State space before and after applying reduction

4.5 Modeling the AODVv2 Protocol

To illustrate the applicability of the proposed modeling language, the AODVv2-
112 protocol has been modeled3. The AODV is a popular routing protocol for
wireless ad hoc networks, first introduced in [125], and later revised several
times.

In this algorithm, routes are constructed dynamically whenever requested.
Every node has its own routing table to maintain information about the routes
of the received packets. When a node receives a packet (whether it is a route
discovery or data packet), it updates its own routing table to keep the shortest
and freshest path to the source or destination of the received packet. Three dif-
ferent tables are used to store information about neighbors, routes and received
messages:

• neighbor table: keeps the adjacency states of the node’s neighbors. The
neighbor state can be one of the following values:

2https://tools.ietf.org/html/draft-ietf-manet-aodvv2-11
3The specification of AODVv2-11 in [153] maintains only one route for each destination and it

abstracts away from the neighbor table and the state of a route.

https://tools.ietf.org/html/draft-ietf-manet-aodvv2-11

4.5. Modeling the AODVv2 Protocol 93

– Confirmed: indicates that a bidirectional link to that neighbor exists.
This state is achieved either through receiving a rrep message in response
to a previously sent rreq message, or a RREP Ack message as a response
to a previously sent rrep message (which requested an RREP Ack) to that
neighbor.

– Unknown: indicates that it is currently unknown whether there is a link
to that neighbor. Initially, the states of the links to the neighbors are
unknown.

– Blacklisted: indicates that the link to that neighbor is unidirectional.
When a node has failed to receive the RREP Ack message in response
to its rrep message to that neighbour, the neighbor state is changed to
blacklisted. Hence, it stops forwarding any message to it for an amount
of time, ResetTime. After reaching the ResetTime, the neighbor’s state
will be set to unknown.

• route table: contains information about discovered routes and their status.
The following information is maintained for each route:

– SeqNum: destination sequence number

– route state: the state of the route to the destination which can have one
of the following values:

* unconfirmed: when the neighbor state of the next hop is unknown;

* active: when the link to the next hop has been confirmed, and the
route is currently used;

* idle: when the link to the next hop has been confirmed, but it has
not been used in the last active interval;

* invalid: when the link to the next hop is broken, i.e., the neighbor
state of the next hop is blacklisted.

– Metric: indicates the cost or quality of the route, e.g., hop count, the
number of hops to the destination

– NextHop: IP address of the next hop to the destination

– Precursors (optional feature): the list of the nodes interested in the route
to the destination, i.e., upstream neighbors.

• route message table, also known as RteMsg Table: contains information
about previously received route messages such as rreq and rrep, so that it
can be determined whether the new received message is worth processing
or redundant. Each entry of this table contains the following information:

– MessageType: which can be either rreq or rrep

– OrigAdd: IP address of the originator

– TargAdd: IP address of the destination

94 Chapter 4 — Wireless Rebeca

– OrigSeqNum: sequence number of the originator
– TargSeqNum: sequence number of the destination
– Metric

When one node, the source, intends to send a package to another, the des-
tination, it looks in its routing table for a valid route to that destination, i.e., a
route of which the route state is not invalid. If there is no such route, it initiates
a route discovery procedure by broadcasting a rreq message. The freshness of
the requested route is indicated through the sequence number of the destination
that the source is aware of. Whenever a node initiates a route discovery, it in-
creases its own sequence number, with the aim to define the freshness of its route
request. Every node upon receiving this message checks its routing table to find
a route to the requested destination. If there is such a path or the receiver is
in fact the destination, it informs the sender through unicasting a rrep message.
However, an acknowledgment from the receiver (of rrep) is requested whenever
the neighbor state of the next hop is unconfirmed. Otherwise, it re-broadcasts the
rreq message to examine if any of its neighbors has a valid path. Meanwhile, a
reverse forwarding path is constructed to the source over which rrep messages
are going to be communicated later. In case a node receives a rrep message,
if it is not the source, it forwards the rrep after updating its routing table with
the received route information. Whenever a node fails to receive the requested
acknowledgment, it uses a rerr message to inform all its neighbors intending to
use the broken link to forward their packets.

In our model, each node is represented through a rebec (actor), identified by
an IP address, with a routing table and a sequence number (sn). In addition,
every node keeps track of the adjacency status to its neighbors by means of a
neighbor table, through the neigh state array, where neigh state[i] = true indi-
cates that it is adjacent to the node with the IP address i, while false indicates
that its adjacency status is either unknown or blacklisted (since timing issues are
not taken into account, these two statuses are considered the same). As the
destinations of any two arbitrary rows of a routing table are always different, the
routing table has at most n rows, where n is the number of nodes in the model. It
should be noted that more than one next hop for each destination is maintained
to increase the probability of packet delivery; if one route gets broken, there may
be other routes that can be used as an alternative. Therefore, the routing table
is modeled by a set of arrays, namely, dsn, route state, hops, nhops, and pres, to
represent the SeqNum, route state, Metric, NextHop, and Precursors columns of
the routing table, respectively. The arrays dsn and route state are of size n, while
the arrays hops, nhops, and pers are of size n× n.

• dsn: destination sequence number, for instance, dsn[i] keeps the sequence
number of the destination with IP i

• route state: an integer that refers to the state of the route to the destination
and can have one of the following values:

4.5. Modeling the AODVv2 Protocol 95

– route state[i] = 0: all the routes to the destination i are unconfirmed;

– route state[i] = 1: there is a valid route via a next hop that its link
has been confirmed, the route state in the protocol is either active or
idle; since we abstract from the timing issues, these two states are
depicted as one. Although there can exist more than one unconfirmed
route to each destination, there can be only one valid route to each
destination. When a route state to a destination gets changed to valid,
all the routes to the same destination are removed from routing table;

– route state[i] = 2: all the routes to the destination i are invalid, their
links to the next hops are broken;

• hops: the number of hops to the destination for different routes, for exam-
ple hops[i][j] indicates the number of hops to the destination i from over
the j-th route.

• nhop: IP address of the next hop to the destination for different routes,for
instance nhops[i][j] contains the next hop of the j-th route to the destina-
tion with the IP address i.

• pres: an array that indicates which of the nodes are interested in the routes
to the destination, for example pres[i][j] = true indicates that the node
with the IP address j is interested in the routes to the node with the IP
address i.

Since we have considered a row for each destination in our routing table, to in-
dicate whether the node has any route to each destination until now, we initially
set dsn[i] to −1 which implies that the node has never known any route to the
node with the IP address i. We refer to all the arrays mentioned above as routing
arrays. Initially all integer cells of arrays are set to−1 and all boolean cells are set
to false. To model expunging a route, its corresponding next hop and hop count
entries in the arrays nhops and hops are set to−1. Since we have only considered
one node as the destination and one node as the source, the information in rreq
and rrep messages has no conflict and consequently the route message table can
be abstracted away. In other words, the routing table information can be used
to identify whether the newly received message has been seen before or not, as
the stored routes towards the source represent information about rreqs and the
routes towards the destination represent rreps.

Note that rreq and rrep, i.e., all route messages, carry route information to
their source and destination, respectively. Therefore, a bidirectional path is con-
structed while these messages travel through the network. Whenever a node re-
ceives a route message, it processes incoming information to determine whether
it offers any improvement to its known existing routes. Then, it updates its rout-
ing table accordingly in case of an improvement. The processes of evaluating and
updating the routing table are explained in the following subsections.

96 Chapter 4 — Wireless Rebeca

4.5.1 Evaluating Route Messages

Every received route message contains a route and consequently is evaluated to
check for any improvement. Note that a rreq message contains a route to its
source while a rrep message contains a route to its destination. Therefore, as the
routes are identified by their destinations (denoted by des), in the former case,
the destination of the route is the originator of the message (i.e., des = oip), and
in the latter, it is the destination of the message (i.e., des = dip). The routing
table must be evaluated if one of the following conditions is realized:

1. no route to the destination has existed, i.e., dsn[des] = −1

2. there are some routes to the destination, but all their route states are un-
confirmed

3. there is a valid or invalid route to the destination in the routing table and
one of following conditions holds:

• the sequence number of the incoming route is greater than the existing
one

• the sequence number of the incoming route is equal to the existing
one, however the hop count of the incoming route is less than the
existing one (the new route offers a shorter path).

4.5.2 Updating the Routing Table

The routing table is updated as follows:

• if no route to the destination has existed, i.e., dsn[des] = −1 , the incoming
route is added to the routing table.

• if the route states of existing routes to the destination are unconfirmed, the
new route is added to the routing table.

• if the route state of the existing route is valid while the next hop’s neighbor
state of the incoming route is unknown, the new route is added to the
routing table since it may offer an improvement in the future and turn into
confirmed.

• if the existing route state is invalid and the neighbor state of the next hop of
the incoming route is unknown, the existing route should be updated with
information of the received one.

• if the next hop’s neighbor state of the incoming route is confirmed, the
existing route is updated with new information and all other routes with
the route state unconfirmed are expunged from the routing table.

4.5. Modeling the AODVv2 Protocol 97

As described earlier, there are three types of route discovery packets: rreq ,
rrep and rerr. There is a message server for handling each of these packet types:

• rec rreq is responsible for processing a route discovery request message;

• rec rrep handles a reply request message;

• rec rerr updates the routing table in case an error occurs over a path and
informs the interested nodes about the broken link.

There are also two message servers for receiving and sending a data packet.
All these message servers will be discussed thoroughly in the following subsec-
tions.

4.5.3 rreq Message Server

This message server processes a received route discovery request and reacts
based on its routing table, shown in Fig. 4.12. The rreq message has the following
parameters: hops and maxHop as the number of hops and the maximum number
of hops, dsn as the destination sequence number, and oip , osn , dip, and sip
respectively refer to the IP address and sequence number of the originator, the
IP address of the destination, and the IP address of the sender. Whenever a node
receives a route request, i.e., rec rreq(hops , dip , dsn , oip , osn , sip ,maxHop)
message, it checks incoming information with the aim to improve the existing
route or introduce a new route to the destination, and then updates its routing
table accordingly (see also Sections 4.5.1 and 4.5.2). During processing a rreq
message, a backward route, from the destination to the originator is built by ma-
nipulating the routing arrays with the index oip . Similarly, while processing a
rrep message, it constructs a forwarded route to the destination by addressing
the routing arrays with the index dip . Therefore, the procedure of evaluating
the new route and updating the routing table is the same for both rreq and rrep
messages, except for different indices oip and dip , respectively.

Updating the routing table: Fig. 4.10 depicts this procedure which includes both
evaluating the incoming route and updating the routing table (the code is the
body of if -part in the line 7 of Fig. 4.12). If no route exists to the destination, the
received information is used to update the routing table and generate discovery
packets, lines (1-12). The route state is set based on the neighbor status of
the sender: if its neighbor status is confirmed, the route state is set to valid,
otherwise to unconfirmed. The next hop is set to the sender of the message, i.e.,
nhop[oip][0] = sip . If a route exists to the destination (i.e., oip), one of the
following conditions happens:

• the route state is unconfirmed, lines (15-44): it either updates the routing
table if there is a route with a next hop equal to the sender, or adds the
incoming route to the first empty cells of nhop and hops arrays. If the

98 Chapter 4 — Wireless Rebeca

neighbor status of the sender is confirmed, then all other routes with the
same destination are expunged while the route state is set to valid, lines
(28-37).

• the route state is invalid or it is valid, but the neighbor status of the sender
is confirmed, lines (48-60): if the incoming message contains a greater se-
quence number, or an equal sequence number with a lower hop count, then
it updates the current route while a new discovery message is generated.

• the route state is valid and the neighbor status of the sender is unknown,
lines (64-72): the incoming route is added to the routing table and a new
discovery message is generated if it provides a fresher or shorter path.

In these cases, if a new discovery message should be generated (when the
node has no route as fresh as the route request), the auxiliary boolean variable
gen msg is set to true. In Fig. 4.12, after updating the routing table, if a new
message should be generated, indicated by if (gen msg = true), it rebroadcasts
the rreq message with the increased hop count if the node is not the destination,
lines (51-54). Otherwise, it increases its sequence number and replies to the
next hop(s) toward the originator of the route request, oip , based on its routing
table. Before unicasting rrep messages, next hops toward the destination, dip ,
and the sender are set as interested nodes to the route toward the originator,
oip , lines (17-23). It unicasts each rrep message to its next hops one by one
until it gets an ack from one, lines (24-44); ack reception is modeled implicitly
through successful delivery of unicast, i.e., the succ part. If it receives an ack,
it updates the route state to valid and the neighbor status of the next hop to
confirmed and stops unicasting rrep messages. If it doesn’t receive a RREP Ack
message from the next hop when the route state is valid, it initiates the error
recovery procedure.

Error Recovery Procedure: The code for this procedure is illustrated in Fig.
4.11 (its code is the body of if -part in line 44 of Fig. 4.12). As explained earlier,
this procedure is initiated when a node doesn’t receive a RREP Ack message
from the next hop of the route with state valid. Then, it updates its route state
to invalid and adds the sequence number of the originator to the array of in-
validated sequence numbers, denoted by dip sqn. Furthermore, it adds all the
interested nodes in the current route to the list of affected neighbors, denoted
by affected neighbours, lines (3-7). It invalidates other valid routes that use the
same broken next hop as their next hops, adds their sequence numbers to the
invalidated array and sets the nodes interested in those routes as affected neigh-
bors, lines (8-26). Finally, it multicasts a rerr message which contains the desti-
nation IP address, the node IP address, and the invalidated sequence numbers to
the affected neighbors, line 27.

4.5. Modeling the AODVv2 Protocol 99

1 if (dsn[oip]==−1) {
2 dsn[oip]=osn ;
3 if (neigh state[sip]==true) { route state[oip]=1; }
4 else { route state[oip]=0; }
5 hops[oip][0]=hops ;nhop[oip][0]=sip ;
6 gen msg = true;
7 } else {
8 if (route state[oip]==0) {
9 dsn[oip]=osn ;

10 route num = 0;
11 for(int i=0;i<4;i++){
12 if (nhop[oip][i]==−1 || nhop[oip][i]==sip) {
13 route num = i; break; }}
14 if (neigh state[sip]==true) {
15 route state[oip]=1;
16 for(int i=0;i<4;i++) {
17 hops[oip][i]=−1;nhop[oip][i]=−1;}
18 hops[oip][0]=hops ;nhop[oip][0]=sip ;
19 } else {
20 route state[oip]=0;
21 hops[oip][route num]=hops ;
22 nhop[oip][route num]=sip ; }
23 } else {
24 if (route state[oip]==2 || neigh state[sip]==true) {
25 /* update the existing route */
26 if ((dsn[oip]==osn && hops[oip][0]>hops) || dsn[oip]<osn){
27 dsn[oip]=osn ;
28 if (neigh state[sip]==true) route state[oip]=1;
29 else route state[oip]=0;
30 hops[oip][0]=hops ;
31 nhop[oip][0]=sip ;
32 gen msg = true; }
33 } else {
34 route num = 0;
35 for(int i=0;i<4;i++){
36 if (nhop[oip][i]==−1 || nhop[oip][i]==sip){
37 route num = i; break;}}
38 if ((dsn[oip]==osn && hops[oip][0]>hops) || dsn[oip]<osn) {
39 dsn[oip]=osn ;
40 hops[oip][route num]=hops ;
41 nhop[oip][route num]=sip ;
42 gen msg = true;}}}}

Figure 4.10: Updating the routing table

100 Chapter 4 — Wireless Rebeca

1 if (route state[oip]==1){
2 route state[oip]=2;
3 dip sqn[oip]=dsn[oip];
4 for(int k=0;k<4;k++){
5 if (pre[oip][k]==true) { affected neighbours[k]=true; } }
6 for(int j=0;j<4;j++){
7 for(int r=0;r<4;r++){
8 if (nhop[oip][r]!=−1 && nhop[j][0]==nhop[oip][r]) {
9 route state [j]= 2;

10 dip sqn[j]=dsn[j];
11 for(int k=0;k<4;k++){
12 if (pre[j][k]==true) { affected neighbours[k]=true; } }
13 break;}
14 }
15 }
16 multicast(affected neighbours, rec rerr (dip , ip ,dip sqn));
17 }

Figure 4.11: The error recovery procedure

4.5.4 rrep Message Server

This message server, shown in Fig. 4.13, processes the received reply messages
and also constructs the route forward to the destination. At first, it updates the
routing table and decides whether the message is worth processing, as previously
mentioned for rreq messages, and constructs the route, but this time to the desti-
nation (its code is similar to the one in Fig. 4.10 except that dip is used instead
of oip , and is given at line 6 of Fig. 4.13). This message is sent backwards till
it reaches the source through the reversed path constructed while broadcasting
the rreq messages. When it reaches the source, it can start forwarding data to
the destination. In case the node is not the originator of the route discovery
message, it updates the array of interested nodes, lines (17-23). Then, it uni-
casts the message to the next hop(s), on the reverse path to the originator, lines
(24-42). Based on the AODVv2 protocol, if connectivity to the next hop on the
route to the originator is not confirmed yet, the node must request a Route Reply
Acknowledgment (RREP Ack) from the intended next hop router. If a RREP Ack
is received, then the neighbor status of the next hop and route state must be
updated to confirmed and valid, respectively, lines (30-36), otherwise the neigh-
bor status of the next hop remains unknown, lines (37-40). This procedure is
modeled through conditional unicast which enables the model to react based on
the delivery status of the unicast message so that succ models the part where the
RREP Ack is received while unsucc models the part where it fails to receive an
acknowledgment from the next hop. In case the unicast is unsuccessful and the

4.5. Modeling the AODVv2 Protocol 101

1 msgsrv rec rreq(int hops ,int dip , int dsn , int oip , int osn , int sip , int
maxHop)

2 {
3 int[] dip sqn=new int[4];
4 int route num;
5 bool[] affected neighbours=new bool[4];
6 bool gen msg = false;
7 if (ip!=oip){
8 //evaluate and update the routing table
9 }

10 if (gen msg==true){
11 if (ip==dip){
12 bool su = false;
13 pre[dip][sip]=true;
14 for(int i=0;i<4;i++){
15 int nh = nhop[dip][i];
16 if (nh!=−1) { pre[oip][nh]=true; }
17 }
18 for(int i=0;i<4;i++){
19 if (nhop[oip][i]!=−1){
20 int n hop = nhop[oip][i];
21 sn = sn+1;
22 /* unicast a RREP towards oip of the RREQ */
23 unicast(n hop,rec rrep(0 , dip , sn , oip , self))
24 succ:{
25 route state[oip]=1;
26 neigh state[n hop]=true;
27 su = true;
28 break;
29 }
30 unsucc:{neigh state[n hop]=false;}
31 }
32 }
33 if (su==false && route state[oip]==1){
34 /* error recovery procedure */
35 }
36 } else {
37 hops = hops +1;
38 if (hops <maxHop) { rec rreq(hops ,dip ,dsn ,oip ,osn ,self,maxHop); }
39 }
40 }
41 }

Figure 4.12: The rreq message server

102 Chapter 4 — Wireless Rebeca

route state is valid, the error recovery procedure will be followed, lines (43-46).

4.5.5 rerr Message Server

This message server, shown in Fig. 4.14, processes the received error messages
and informs those nodes that depend on the broken link. When a node receives a
rerr message, it must invalidate those routes using the broken link as their next
hops and sends the rerr message to those nodes interested in the invalidated
routes. This message has only two parameters: sip which indicates the IP ad-
dress of the sender, and rip rsn, which contains the sequence number of those
destinations which have become unaccessible from the sip .

For all the valid routes to the different destinations, it examines whether the
next hop of the route to the destination is equal to sip and the sequence number
of the route is smaller than the received sequence number, line 10. In case the
above conditions are satisfied, the route is invalidated, lines (11-19), and a rerr
message is sent to the affected nodes, line 21.

4.5.6 newpkt Message Server

Whenever a node intends to send a data packet, it creates a rec newpkt which
has only two parameters, data and dip . The code for this message server is
shown in Fig. 4.15. If it is the destination of the message, it delivers the message
to itself, lines (4-7). Otherwise, if it has a valid route to the destination, it sends
data using that route, lines (12-16). If it has no valid route, it increases its
own sequence number and broadcasts a route request message, lines (18-26). In
addition, if a route to the destination is not found within RREQ WAIT TIME ,
the node retries to send a new rreq message after increasing its own sequence
number. Since we abstracted away from time, we model this procedure through
the resend rreq message server which attempts to resend a rreq message while
the node sequence number is smaller than 3 (to make the state space finite).

4.6 Evaluation

In this section, we will review the results obtained from efficiently constructing
the state spaces for the two wRebeca models, the flooding and AODV protocol.
Also, we briefly introduce our tool and its capabilities. Then, the loop freedom
invariant is defined and one possible loop scenario is demonstrated. Finally, two
properties that must hold for the AODV protocol are expressed and checked with
regard to the AODV model.
Example:The flooding protocol is one of the earliest methods used for routing
in wireless networks. The flooding protocol modeled in wRebeca is presented in
Fig. 4.16. Every node upon receiving a packet checks whether it is the packet’s
destination. If so it processes the message, otherwise it broadcasts the message
to its neighbors.

4.6. Evaluation 103

1 msgsrv rec rrep(int hops , int dip , int dsn , int oip , int sip) {
2 int[] dip sqn=new int[4];
3 bool[] affected neighbours=new bool[4];
4 bool gen msg = false;
5 int n hop,route num;
6 /*evaluate and update the routing table */
7 if (gen msg==true){
8 if (ip==oip){
9 /* this node is the originator of the corresponding RREQ */

10 /* a data packet may now be sent */
11 } else {
12 hops = hops +1;
13 bool su = false;
14 pre[dip][sip]=true;
15 for(int i=0;i<4;i++){
16 int nh = nhop[dip][i];
17 if (nh!=−1){ pre[oip][nh]=true; }
18 }
19 for(int i=0;i<4;i++){
20 if (nhop[oip][i]!=−1){
21 n hop = nhop[oip][i];
22 unicast(n hop,rec rrep(hops ,dip ,dsn ,oip , self))
23 succ:{
24 route state[oip]=1;
25 neigh state[n hop]=true;
26 su = true;
27 break;
28 }
29 unsucc: {neigh state[n hop]=false;}
30 }
31 }
32 if (su==false && route state[oip]==1){
33 /* error recovery procedure */
34 }
35 }
36 }
37 }

Figure 4.13: The rrep message server

104 Chapter 4 — Wireless Rebeca

1 msgsrv rec rerr(int source , int sip , int[] rip rsn) {
2 int[] dip sqn=new int[4];
3 bool[] affected neighbours=new bool[4];
4 if (ip!=source) {
5 //regenerate rrer for invalidated routes
6 for(int i=0;i<4;i++){
7 int rsn=rip rsn[i];
8 if (route state[i]==1 && nhop[i][0]==sip && dsn[i]<rsn && rsn!=0){
9 route state [i]= 2;

10 dip sqn[i]=dsn[i];
11 for(int j=0;j<4;j++){
12 if (pre[i][j]==true){ affected neighbours[j]=true; }
13 }
14 }
15 }
16 multicast(affected neighbours, rec rerr (source , self ,dip sqn));
17 }
18 }

Figure 4.14: The rerr message server

4.6.1 State Space Generation

Static Network . Consider a network with a static topology, in other words the
network constraint is defined so that it leads to only one valid topology. We
illustrate the applicability of our counter abstraction technique on the flooding
routing protocol. In contrast to the intermediate nodes on a path (the ones ex-
cept the source and destination), the source and destination nodes cannot be
aggregated with other nodes, due to their local states. However, in the case of
the AODV protocol, no two nodes can be counted together due to the unique
variables of IP address and routing table of each node. As the number of inter-
mediate nodes with the same neighbors increases, more reduction takes place.
We have chosen four fully connected network topologies to show the power of
our reduction technique when the number of intermediate nodes increases from
one to four.

Table 4.3 shows the number of states when running the flooding protocol on
different networks with different topologies, distinguished by different number of
intermediate nodes. By applying counter abstraction reduction, the intermediate
nodes are aggregated as they have the same role in the protocol. However, the
effectiveness of this technique depends on the network topology and the modeled
protocol.

Dynamic network. In this case, the topology is constantly changing, in other
words there is more than one possible topology. The resulting state spaces before

4.6. Evaluation 105

1 msgsrv rec newpkt(int data ,int dip) {
2 int[] dip sqn=new int[4];
3 bool[] affected neighbours=new bool[4];
4 if (ip==dip){
5 /* the DATA packet is intended for this node */
6 }
7 else{
8 /* the DATA packet is not intended for this node */
9 store[dip]=data;

10 if (route state[dip]==1){
11 /* valid route to dip*/
12 /* forward packet */
13 }else{
14 /* no valid route to dip*/
15 /* send a new rout discovery request*/
16 if (sn<3){
17 sn++;
18 unicast(self ,resend rreq(dip));
19 rec rreq(0,dip ,dsn[dip], self ,sn, self ,4) ;
20 }
21 }
22 }
23 }
24 msgsrv resend rreq(int dip){
25 if (sn<3){
26 sn++;
27 unicast(self ,resend rreq(dip));
28 rec rreq(0,dip ,dsn[dip], self ,sn, self ,4) ;
29 }
30 }

Figure 4.15: The rec newpkt message server

Table 4.3: Comparing the size of states (St.) and transitions (Tr.) with/without applying
counter abstraction reduction for different number of intermediate (inter.) nodes

No. of St. after Tr. after St. before Tr. before
inter. nodes reduction reduction reduction reduction

1 24 24 36 36
2 226 133 574 276
3 3,689 912 13,197 2,441
4 71,263 6,649 321,419 21,466

106 Chapter 4 — Wireless Rebeca

1 reactiveclass Node
2 {
3 statevars
4 {
5 boolean destination;
6 }
7 msgsrv initial (boolean

source,boolean dest)
8 {
9 destination=dest;

10 if (source==true)
11 relay packet(55,0);
12 }
13 msgsrv relay packet(int

data, int hopNum)
14 {
15 if (destination==true)
16 deliver packet(data);
17 else if (hopNum<3)
18 {
19 hopNum++;
20 relay packet(data,hopNum);

21 }
22 }
23 msgsrv deliver packet(int data)
24 {
25 // do nothing
26 }
27 }

29 main
30 {
31 Node node0 (node1)
32 :(true, false);
33 Node node1
34 (node0,node2,node3)
35 :(false , false);
36 Node node2 (node1,node3)
37 :(false , false);
38 Node node3 (node1,node2)
39 :(false ,true);

41 }

Figure 4.16: The flooding protocol [153]

and after eliminating τ -transitions are compared for the two case studies while
the topology is constantly changing for networks of 4 and 5 nodes, as shown in
Table 4.4. Table 4.5 depicts the constraints used to generate the state spaces and
the number of topologies that each constraint results in. Constraints are chosen
randomly here, just to show the effectiveness of our reduction technique. To this
aim, we have randomly removed a (fixed) link from the network constraints.
Nevertheless, constraints can be chosen wisely to limit the network topologies
to those which are prone to lead to an erroneous situation, i.e., violation of a
correctness property like loop freedom. However, it is also possible to check
the model against all topologies by not defining any constraint. In other words,
a modeler at first can focus on some suspicious network topologies and after
resolving the raised issues check the model for all possible topologies. There
are also some networks that have certain constraints on how the topology can
change, e.g., node 1 can never get into the communication range of node 2.
These restrictions on topology changes can be reflected by constraints too. The
sizes of state spaces are compared under different network constraints resulting
in different numbers of valid topologies. Eliminating τ -transitions and topology
information manifestly reduces the number of states and transitions even with-
out restriction on the possible topologies. Therefore, it makes MANET protocol
verification possible in an efficient manner. Note that in case the size of the net-

4.6. Evaluation 107

Table 4.4: Comparing the size of states (St.) and transitions (Tr.) before/after applying
τ -transition elimination reduction for different numbers of nodes and valid topologies
(topo.)

No. of nodes Valid St. before Tr. before St. after Tr. after
topo. reduction reduction reduction reduction

Flooding 4 4 2,119 11,724 541 1,652
protocol 4 8 4,431 42,224 567 1,744

4 16 10,255 179,936 655 2,192
4 32 22,255 747,200 710 2,765
4 64 44,495 2,917,728 710 3,145

AODV 4 4 3,007 16,380 763 1,969
protocol 4 8 12,327 113,480 1,554 3,804

4 16 35,695 610,816 2,245 5,549
4 32 93,679 3,097,792 2,942 7,596
4 64 258,447 16,797,536 4,053 10,629
5 16 - - 165,959 598,342

Table 4.5: Applied network constraints

No. of No. of valid constraint
nodes topologies

4 4 and(and(con(node0, node1), con(node0, node3)),
and(con(node2, node3), con(node1, node3)))

4 8 and(and(con(node0, node1),
con(node0, node3)), con(node2, node3))

4 16 and(con(node0, node1), con(node2, node3))
4 32 con(node0, node1)
5 16 and(and(con(node0, node1), and(con(node0, node3),

con(node4, node1))), and(con(node2, node3),
and(con(node1, node3), con(node2, node4))))

work was increased from four to five, we couldn’t generate its state space without
applying reduction due to the memory limitation on a computer with 8GB RAM.

4.6.2 Tool Support

The presented modeling language and reduction techniques are supported by
a tool, implemented in Java4. A screen-shot of this tool is given in Fig. 4.17.
After opening a model, the tool extracts the information of the reactive classes,
such as the state variables and message servers, and also the main part including

4The tool and the source codes of examples are available at https://github.com/b-yousefi/
wRebeca

https://github.com/b-yousefi/wRebeca
https://github.com/b-yousefi/wRebeca

108 Chapter 4 — Wireless Rebeca

Figure 4.17: A screen-shot of the wRebeca tool with the compilation info window to con-
figure the state space generator

the rebec declarations and the network constraint. Then it generates several
classes in the Java language based on the obtained information and compiles
them together with some abstract and base classes (common in all models), for
example global state and topology, to build an engine that constructs the model
state space upon its execution. Before compiling, a user can select the reduction
method. To take advantage of all hardware capabilities, we have implemented
our state space generation algorithm in a multi-threaded way to leverage the
power of multi-core CPUs.

During state space generation, information about the state variables and tran-
sitions are stored as an LTS in the Aldebaran format5. This LTS can be evaluated
by tools such as the mCRL2 toolset6. For example, one can express desired prop-
erties in µ-calculus [112] and verify them. Also, as explained in Section 4.4,
labels are extended with network constraints as defined in Section 3.6.2 so that
the reduced LTS is turned into a CLTS.

4.6.3 Model Checking of the AODV Protocol Properties

There are different ways to check a given property on a wRebeca model. In-
variant properties can be evaluated while generating the state space by checking

5http://cadp.inria.fr/man/aldebaran.html
6http://www.mcrl2.org/

http://cadp.inria.fr/man/aldebaran.html
http://www.mcrl2.org/

4.6. Evaluation 109

each reached global state against defined invariants. Furthermore, the resulting
state space can be model checked by tools supporting the Aldebaran format such
as mCRL2.

Checking the loop freedom invariant Loop freedom is one of the well-known
properties which must hold for all routing protocols such as the AODV protocol.
For example, consider the routes to a destination x in the routing tables of all
nodes, where node0 has a route to x with the next hop node1, node1 has a route
to x with the next hop node2, and node2 has a route to x with the next hop node0.
The given example constructs a loop which consists of the three nodes, node0,
node1, and node2. A state is considered loop free if the collective routing table
entries of all nodes for each pair of a source and destination do not form a loop.
As was mentioned earlier in AODVv2-11, each route may have more than one
next hop when the adjacency states of the next hops are unconfirmed. Therefore,
while the loop freedom of a state is checked, one must take into account all next
hops stored for each route. Then, for each next hop it must be checked whether
it leads to a loop or not. A routing protocol deployed on a network is called loop
free if all of its states are loop free. In other words, the loop freedom property of
a protocol is an invariant (which can be easily specified by the ACTL-X fragment
of µ-calculus, and hence, is preserved by the τ -elimination reduction method).
To facilitate checking such invariants, we extend our state space generator en-
gine (produced by our tool) to check the loop freedom property of each newly
generated global state on-the-fly. To this aim, we specified a recursive function to
determine whether in a global state the next hops in different nodes collectively
lead to a loop scenario, as shown in Fig. 4.18, as a part of the state genera-
tor class. Whenever a new state is reached, before proceeding any further, it is
checked whether no loop is formed on the forward/backward routes between
the source and destination, by calling loop freedom(4, 1,new Set〈int〉(1)) and
loop freedom(1, 4,new Set〈int〉(4)), as node4 and node1 are the destination and
source respectively. If the loop freedom condition is violated, the loop freedom
function returns false, and the state generator engine doesn’t process the new
global state and it returns a path which has led to that global state. The function
loop freedom has three parameters: des refers to the destination of the route, cur
refers to the IP address of the current node which is going to be processed, and
visited is the list of IP addresses of those nodes which have been processed.

Although keeping more than one next hop for each route may increase the
route availability, it compromises the validity of the routing tables by violating
the loop freedom invariant in a network of at least four nodes with a dynamic
topology. Consider the network topology shown in Fig. 4.1a. The following
scenario explains steps that lead to the invariant violation.

1. node2 initiates a route discovery procedure for destination node3 by broad-
casting a rreq message.

110 Chapter 4 — Wireless Rebeca

1 bool loop freedom(des:int, cur: int , visited :Set<int>){
2 for(int i=0; i<n; i++)
3 if ((state .node(cur).nhops[des][i]!=−1) &&
4 (! visited .contains(state .node(cur).nhops[des][i]))&&
5 loop freedom(des,i, visited .add(i)))
6 return true;
7 else
8 return false ;
9 }

Figure 4.18: Checking the loop freedom property on a global state: we have used a dot
notation to access the array nhops of the rebec with the identifier i, i.e., state.node(i),
where state is the newly generated global state

2. node1 and node4 upon receiving the rreq message, add a route to their
routing tables towards node2 and store node2 as their next hop. Since it
is the first time that these nodes have received a message from node2, the
neighbor state of node2 is set to unconfirmed. Therefore, the route state is
unconfirmed.

3. As node1 and node4 are not the intended destination of the route request,
they rebroadcast the rreq message.

4. node1 receives the rreq message sent by node4 and since the route to node2

is unconfirmed it adds node4 as a new next hop to node2.

5. node4 also adds node1 as the new next hop towards node2 after processing
the rreq sent by node1. At this point a loop is formed between node1 and
node4.

6. node3 receives the rreq message sent by node1 and since it is the destina-
tion, it sends a rrep message towards node1.

7. node2 moves out of the node1 and node4 communication ranges.

8. node1 receives the rrep message sent by node3 and as the route state to-
wards node2 is unconfirmed it multicasts the rrep message to the existing
next hops, node2 and node4. Since node4 is adjacent to node1, it receives
the message and then sends an ack to node1. Therefore, node1 sets the
neighbor state of node4 to confirmed and subsequently the route state to-
wards node2 to valid. Then it expunges the next hop node2 from which it
has not received an ack.

4.7. Related Work 111

9. node4 by receiving the rrep message from node1 multicasts it to its next
hops towards node1 and node2, and similar for node1. It updates its routing
table by validating node1 as its next hop to node2.

The scenario was found for the first time in the wRebeca model with the net-
work constraint resulting in four topologies as indicated in Table 4.5. During the
state-space generation of this model whose state-space generator was extended
with the function loop freedom, it stopped immediately when such a scenario
was found. We remark that this scenario can be also found by other models in
the table with different number of topologies if their state-space generators are
extended accordingly. However, the chance of finding a loop scenario is larger
in networks with more nodes. Furthermore, we can generalize the scenario to
all networks with the same connectivity when the communications occur, and
the same mobility scenario. This scenario proves that this version of AODV is
incorrect, reported by us to the AODV group. We have also modeled and veri-
fied the next two versions, AODVv2-13 and AODVv2-16, and they still violate the
loop-freedom property as reported in [154].

We believe that other loop scenarios of different classes can be found if the
state-space generator continues when the given invariant is violated.

Checking the properties by mCRL2 Sequence numbers are used frequently
by the AODV protocol to evaluate the freshness of routes. Therefore, it is im-
portant that each node’s sequence number increases monotonically. To this end,
we manually configured the state-space generator to add two self-loops to each
state, one with the label src sn(x) and the other with the label info i dsn(y, z).
The former monitors the sequence number of the source node, where x is sn of
the source node. The latter traces the destination sequence number of routes
to the source and destination for each node i (i.e., the backward and forward
routes to the destination of our model), where y and z are dsn[src] and dsn[dst]
of node i, respectively. Properties, specifying the monotonic increase of sequence
numbers, are expressed through the ACTL-X fragment of µ-calculus as shown in
Fig. 4.19. The first formula asserts a monotonic increase of the source sequence
number. The second formula assures the destination sequence numbers stored
in the routing table of nodei are increased monotonically, and must hold for all
nodes in the model.

4.7 Related Work

There are several studies that verify the loop-freedom property of AODV and its
variants. A scenario leading to a loop was first discovered in [25].

The algebraic framework AWN [64] has been used in [54, 96, 144, 148] to
model and analyze different versions of AODV. In [54], dynamic MANET on-
demand (DYMO) routing protocol (also known as AODVv2) is modeled, it is
shown that how it solves some problems discovered in AODV and how it fails to

112 Chapter 4 — Wireless Rebeca

∀x, y : N((x > 0 ∧ x < 4 ∧ y > 0 ∧ y < x)⇒ [src sn(x).true∗.src sn(y)]false)

∀x, y,m, n : N((x ≥ 0 ∧ x < 4 ∧ y ≥ 0 ∧ y < 4∧
m ≥ 0 ∧m < 4 ∧ n ≥ 0 ∧ n < 4∧
(m < x ∨ n < y))⇒

[true∗.info i dsn(x, y).true∗.info i dsn(m,n)]false)

Figure 4.19: µ-calculus properties verified by mCRL2

address all the shortcomings. In [96], some ambiguities in the AODV RFC are
discussed to show which interpretations are loop free. In [144] it is shown that
monotonically increasing sequence numbers, by themselves, do not guarantee
loop freedom. In [30] a timed extension of AWN is used to show that AODV is
not loop-free as data required for routing can expire.

The loop freedom of AODVv2-04 for an arbitrary number of nodes was ex-
amined in [120] through an inductive and compositional proof: It provides an
inductive invariant and proves that it is held initially and also preserved by ev-
ery action, either a protocol action or a change in the network, similar to the
approach of [148]. They have reported two loop-formation scenarios due to in-
appropriate setting of timing constants and accepting any valid route when the
current route is broken without any further evaluation.

There are number of works that evaluate the performance of AODV and its
variants using UPPAAL and its statistical model checking (SMC) extension [42,
61, 95]. In [98] the looping property of AODVv2-16, a recent version of AODV,
is investigated and furthermore, its performance is compared to DYMO using
UPPAAL SMC model checker [46].

4.8 Conclusion

We conclude this chapter by comparing the actor-based framework with the re-
lated process calculi as discussed in Section 3.7. To this aim we extend Table
3.5 with the row of Table 4.6. wRebeca includes all advantages of AWN by pro-
viding an asynchronous framework, while queues which manage messages are
handled by the underlying computation model. Furthermore, it subsumes ad-
vantages of RRBPT by providing an automated tool which generates CLTSs, and
hence reduces state spaces. The threat of state space explosion is more reduced
in comparison with RRBPT as it generates CLTSs for coarse-grained execution of
wRebeca models. Due to inheriting input-enabled nodes and reliable commu-
nication in this framework, properties like packet delivery of protocols can be
easily inspected, as opposed to in algebraic frameworks.

We remark that bRebeca was introduced in [155] as an extension to Rebeca,
to support broadcast communication which abstracts the global broadcast com-

4.8. Conclusion 113

Table 4.6: Characteristic of wRebeca

Node Comm. Conn. Mobility Neighbor
specification of nodes discovery

wRebeca 〈c, ei0〉, reliable − explicit/ -
c = 〈Vc,Mc〉 implicit

munications [23]. To abstract away from the effect of the network, the order
of receipts for two subsequent broadcast communications is not necessarily the
same as their corresponding sends in an actor model. Hence, each actor mailbox
was modeled by a bag. The resulting framework is suitable for modeling and
efficient verification of broadcasting protocols above the network layer, but not
appropriate for modeling MANETs in two respects. Firstly the topology is not de-
fined, and every actor (node) can receive all messages, in other words all nodes
are connected to each other. Secondly, as there is no topology defined, mobility
cannot be expressed.

The reliable asynchronous communications, and implicit support of message
storages make our framework suitable to analyze MANETs with respect to differ-
ent mobility scenarios. To overcome the state space explosion, we leveraged the
counter abstraction technique to analyze ad hoc networks with static topologies.
Our reduction technique performs well on protocols with no specific state vari-
able that distinguish each rebec, and topologies with many topologically equiva-
lent nodes. We demonstrated the effectiveness of our approach on the flooding
protocol in different network settings. However, mobility ruins the soundness of
our counter abstraction. To this end, we eliminated τ -transitions while topology
information was removed from global states to considerably reduce the size of
the state space. The proposed reduction techniques were integrated into a tool
customizable in verifying wRebeca models for different topology dynamism. In-
variants can be checked during the state space generation while the resulting
output can be fed into existing model checking tools such as mCRL2 and CADP.

Our resulting framework was used successfully to verify real-world and com-
plex protocols such as AODVv2-11. The coarse-grained semantics together with
topology abstraction make the model checking technique feasible with regard to
such applications. For instance, for a network of four nodes, the state space of
AODVv2-11 which implicitly models arbitrary changes of the underlying topology
consists of 4, 053 states and 10, 629 transitions (see Table 4.4). The erroneous sce-
nario violating loop freedom, which depends on topology changes, is very hard to
find with informal approaches such as simulation or existing formal approaches
due to the exhaustive number of topology changes and the state space explosion
problem. The wRebeca formal framework with a Java-like syntax and an actor-
based computational model (which simplifies the specifications) can be adopted
by protocol designers to formally verify their protocols in the early phases of their
development.

5Model Checking MANETs

Properties of MANETs tend to be weaker than of wired networks. This is due
to the topology-dependent behavior of communication, and consequently the
need for multi-hop communication between nodes. For instance, the important
property of packet delivery in routing or information dissemination protocols in
the context of MANETs becomes: if there exists an end-to-end route between two
nodes A and B for a sufficiently long period of time, then packets sent by A will
eventually be received by B [64]. To verify such properties using an existing
temporal logic such as CTL [34], a preprocessing step is required to enrich states
with propositions that indicate restrictions over the underlying topology. The
large number of topologies and mobility scenarios leads to an exponential blow-
up if they are considered explicitly and individually. In [63] this bottleneck was
circumvented by considering only specific mobility scenarios.

To remove efforts prior to verification, improve memory usage, gain efficiency,
and extend verification to arbitrary mobility changes, we introduce the temporal
logic Constrained Action Computation Tree Logic (CACTL), which is interpreted
over CLTSs. It extends ACTLW [114] (which in turn is based on Action CTL
[48]) with topological constraints. In CACTL, the path quantifier operator All is
parameterized by a constraint on the underlying topologies, so that only paths
are considered for which the constraint is satisfied, for example that a multi-hop
connection is present. This extension can in principle be employed with regard
to any temporal logic.

The new dimension of topology restrictions in the logic requires that the
model checking algorithm is modified appropriately. We present a model check-
ing algorithm for CACTL. This approach is flexible and efficient for the specifica-
tion and verification of mobile behavior, compared to existing approaches. As an
example we show how properties of AODV and the leader election protocol can
be verified.

The chapter is structured as follows. Section 5.1 explains how network con-
straints are used to restrict the paths of a semantic mode. Section 5.2 discusses
our motivation first and then introduces the syntax and semantics of CACTL. Sec-
tion 5.3 provides a model checking algorithm and discusses its implementation.
Section 5.4 illustrates the expressiveness of CACTL in the analysis of MANET

115

116 Chapter 5 — Model Checking MANETs

protocols. Section 5.5 provides an overview on existing approaches to model
checking MANETs regarding mobility. Finally, Section 5.6 concludes the chapter.

5.1 Restricting Semantics with Network Constraints

As explained in Section 2.2.1, states in a CLTS do not hold information about the
underlying topology. E.g., the transition t0

({A B, A 6 C},η1)−−−−−−−−−−−−−−−−−−→ t1 implies that
at the very moment when t1 is reached, B is connected to A, and C is not con-
nected to A. In t0 before this transition and in t1 after this transition, there is no
restriction on the underlying topology. The arbitrary mobility implicitly modeled
by the semantics can be restricted through a network constraint ζ ∈ C(Loc). As a
result, the CLTS is restricted to transitions that conform to ζ, meaning that their
network constraints do not include (dis)connectivity information that contradicts
ζ. Conformance between network constraints C and ζ means that ¬C ∩ ζ = ∅.

In this chapter we only consider positive multi-hop network constraints as
we are interested in behaviors that depend on the existence of such connections
rather than their non-existence. Hence, a multi-hop network constraint is a set of
multi-hop connectivity pairs like ` 99K `′ indicating topologies in which there is a
multi-hop connection from ` to `′ (See Section 3.5.2). By a multi-hop constraint
M, the arbitrary mobility can be restricted in the semantics in two ways. First,
topology changes in states are restricted to those defined byM. The behavioral

model then only allows transitions
C,η−−→ for which there exists a topology γ ∈

Γ(C) ∩ Γ(M). Thus, starting from a topology inM in the initial state, each state
in any transition sequence has associated with it one or more topologies fromM.
Second, the links making a topology satisfy M are restricted to be the same in
all associated topologies. A path t0(C1, η1)t1(C2, η2)t2 . . . is said to be valid for a
multi-hop constraintM if there exists a sequence γ, γ1, γ2, . . . ∈ Γ(M) such that
γi ∈ Γ(Ci) and γ is a subgraph of γi for all i = 1, 2, C+

Γ (γ) ∩ ¬Ci = ∅ means
the links of γ, extracted by C+

Γ , are not required to be disconnected in topologies
satisfying Ci, and consequently there exists a γi ∈ Ci such that γ is a subgraph
of γi. For instance, with the first approach the path t0

({A B, A 6 C},η1)−−−−−−−−−−−−−−−−−−→
t1

({B6 A, B6 C},η2)−−−−−−−−−−−−−−−−−→ t2 is allowed for {A 99K C}, since both {A B, A 6 C}
and {B 6 A, B 6 C} have a topology in common with {A 99K C}. But it is
not allowed with the second approach, since the constraint of the first transition
forbids a direct connection from C to A, while the constraint of the second transi-
tion forbids an indirect connection from C to A via B. The second interpretation
of topology restrictions leads to more realistic verifications: a temporal property
can be examined under the assumption that a stable multi-hop connection exists.

5.2. Constrained Action Computation Tree Logic (CACTL) 117

5.2 Constrained Action Computation Tree Logic (CACTL)

As the behavior of a MANET depends on the topology of the underlying network,
the properties of a MANET protocol may depend on constraints on this topology.
In verifying whether a temporal logic formula holds for a certain MANET, we
may only want to explore paths that satisfy certain connectivity conditions with
regard to the underlying topology, such as a direct link between two nodes, or the
existence of a multi-hop connection between two nodes. CLTSs provide a suitable
platform to verify topology-dependent properties, using the (dis)connectivity in-
formation encoded in transition labels. Transitions are traversed to investigate
a behavioral property as long as (dis)connectivity information implies topology
requirements on which the property depends. To this aim single- and multi-hop
constraints are used, taking mobility into account in different ways. Single-hop
constraints limit the one-step movements of nodes and hence, restrict transitions
that can be traversed, while multi-hop constraints limit the mobility scenarios of
nodes and thus, restrict the paths that need to be investigated (see Section 5.1).
Since a CLTS is unfolded to an LTS in which mobility is modeled explicitly by pair-
ing a state with its underlying topology (see Section 3.1.2), a behavioral property
can be decorated with connectivity conditions while the topology is captured by
atomic propositions on states (cf. [64]).

Action Computational Tree Logic (ACTL) [48] parameterizes the temporal
operators next X and until U from CTL [34] with a set of actions. It provides
a general framework for verifying properties in process algebra [47]. ACTLW
[114] further enriches the until operator from ACTL and adds an (enriched)
unless operator W. We note that in the action-based logic settings, in contrast
to CTL, EW cannot readily be defined in terms of AU. In Section 5.2.2 we will
define a temporal logic for MANETs in which the until and unless operators from
ACTLW are preceded by either the path quantifier Exists E or All A from ACTLW
decorated with multi-hop constraints.

5.2.1 Motivating Example

Consider the CLTS of ∂Msg([[P]]A ‖ [[Q]]B), where Q
def
= rcv(req).snd(rep).Q and

P
def
= init .snd(req).rcv(rep).succ.P , in Fig. 3.3. The internal action init denotes

a request from an application at node A that initializes a route discovery process
to node B, and succ denotes the successful termination of that route discovery
process. To verify correctness of the route discovery protocol, taking into account
mobility of nodes, any route discovery initialization must terminate successfully
whenever there is a multi-hop connection from A and B as well as from B to
A. This property can be specified by: for all mobility scenarios in which A 99K B
and B 99K A are valid for a sufficiently long period of time, each occurrence of init
is eventually followed by an occurrence of succ. This property is satisfied by the
CLTS in Fig. 3.3. In particular, consider the following two paths, where s3 is a

118 Chapter 5 — Model Checking MANETs

deadlock:

s0({}, init)s1({A 6 B},nsnd(req , A))s3

s0({}, init)s1({A B},nsnd(req , A))s2({B 6 A},nsnd(rep, B))s3.

Although in both paths init is not followed by an occurrence of succ, these paths
do not violate the property above. Namely, to satisfy A 99K B and B 99K A in
a network of two nodes, A and B should be directly connected to each other.
However, these links get disconnected by the network constraint {A 6 B} in the
first and {B 6 A} in the second path. Therefore, these paths are not valid for the
multi-hop constraint {A 99K B,B 99K A}.

Suppose a regulator node [[R]]C with

R
def
= rcv(req).snd(req).R+ rcv(rep).snd(rep).R

is added. The resulting network ∂Msg([[P]]A ‖ [[Q]]B ‖ [[R]]C) still satisfies the above
property. However, if R is replaced by the erroneous protocol

E
def
= rcv(req).snd(req).E + rcv(req).E + rcv(rep).snd(rep).E + rcv(rep).E

that may drop a packet it receives, then the new MANET does not satisfy the prop-
erty. For example, the path which ends in the deadlock state ∂Msg([[rcv(rep).P]]A ‖
[[Q]]B ‖ [[E]]C

∂Msg([[P]]A ‖ [[Q]]B ‖ [[E]]C)

({}, init)∂Msg([[snd(req).rcv(rep).P]]A ‖ [[Q]]B ‖ [[E]]C)

({A C, A 6 B},nsnd(req , A))∂Msg([[rcv(rep).P]]A ‖ [[Q]]B ‖ [[E]]C)

satisfies the multi-hop constraint {A 99K B, B 99K A} in a network of three
nodes, namely A, B and C, but the occurrence of init is not followed by an oc-
currence of succ. For instance, with regard to the topology γ = {A 7→ {C}, B 7→
{C}, C 7→ {A,B}} in {A 99K B, B 99K A} (note that the network constraints {}
and {A C, A 6 B} agree with γ), C may drop the req packet.

5.2.2 CACTL Syntax

The temporal logic Constrained Action Computation Tree Logic (CACTL) allows to
express topology-dependent properties of MANET protocols. The path quantifier
All is parameterized by a multi-hop constraint over the topology, which specifies
the pre-condition required for paths of a state to be inspected (for its evalua-
tion). A typical example of such a constraint is the existence of a (topological)
path between two nodes. A pre-condition restricts mobility scenarios, implic-
itly modeled in the semantics. Therefore, the evaluation of a state formula is
restricted to those mobility scenarios satisfying the pre-condition. Such an eval-
uation only considers the paths of a states that are valid for the given mobility

5.2. Constrained Action Computation Tree Logic (CACTL) 119

scenarios. However, the path quantifier Exists is defined as before and inspects
all paths of a state to find at least one satisfying the specified (path) property.
By combining All and Exists path quantifiers, the decorated version of Exists, pre-
conditioned by a multi-hop constraint, can be specified to also include states that
have no path for which the pre-condition holds. In other words, if a state has no
path for which the pre-condition holds, then it satisfies the formula vacuously.

Moreover, to restrict mobility scenarios in a more concrete way, the satis-
faction relation is parameterized with single-hop constraints. This parameter ex-
presses the (non-)existence of communication links; nodes can only move in such
a way that the specified links do not change. This is achieved by only traversing
transitions that conform to the specified links.

A CACTL formula may include constants true and false, actions η ∈ Actτ ,
standard Boolean operators ¬, ∧ and ∨, path quantifiers Aµ parameterized by
constraints over topologies and E, and temporal operators U and W.

Let η ∈ Actτ , and `, `′ ∈ Loc. Action formula χ, topology formula µ, state
formula φ (also called CACTL formula), and path formula ψ are defined by the
grammars:

χ ::= true | η | ¬χ | χ ∧ χ′

µ ::= true | ` 99K `′ | µ ∧ µ′

φ ::= true | ¬φ | φ ∧ φ′ | Eψ | Aµψ

ψ ::= φ χUχ′ φ
′ | φ χWχ′ φ

′

Each temporal operator should be preceded by a path quantifier, forming a
CACTL operator. Action and path formulae are the same as in ACTLW [114].
Using topology formulae to restrict state formulae and require multi-hop connec-
tions are novel. Each topology formula induces the multi-hop constraint made
of multi-hop connections participating in the topology formula under consider-
ation. In the reminder of this chapter, we use the notions of topology formula
and multi-hop constraint interchangeably. For the topology formula µ and topol-
ogy γ, assume γ ∈ µ denotes γ ∈ Γ(M), where M is the multi-hop constraint
induced by µ.

Let T ≡ 〈S,Λ,→, s0〉 be a CLTS. A path π in T from a state t0 ∈ S is an alter-
nating sequence of states and constraint-action (transition) pairs t0(C1, η1)t1(C2,
η2)t2 . . . where ∀i ≥ 1 ((ti−1, (Ci, ηi), ti) ∈→). A path is said to be maximal if
it either is infinite or ends in a deadlock state, meaning that it has no outgoing
transitions. Given a network constraint ζ ∈ Cv(Loc), a path is called a ζ-path if Ci
conforms to ζ, i.e., ∀i ≥ 1(¬Ci ∩ ζ = ∅). State and path formulae are interpreted
with regard to a network constraint ζ, meaning that only maximal ζ-paths are
considered in the evaluation of such formulae. A network constraint C′ ∈ C(Loc)
is said to be invalid for (or violate) µ, if ∀γ ∈ µ(C+

Γ (γ) ∩ ¬C′ 6= ∅). We say a path
violates µ in state ti, if the accumulated network constraints before reaching ti
violates µ, i.e., ∀γ ∈ µ(C+

Γ (γ) ∩ ¬⋃1≤j≤i Cj 6= ∅). A path is said to be invalid for
µ (or violate µ), if it is invalid in some state over the path.

120 Chapter 5 — Model Checking MANETs

The path quantifier E requires that the given path formula is satisfied for
at least one maximal ζ-path starting in the given state, while Aµ requires the
property holds for all ζ-paths that are valid for the multi-hop constraint induced
by the topology formula µ.

A state t that satisfies a CACTL formula φ is called a φ-state, and a transition
with an action from χ is called a χ-transition. A χ-transition that ends in a
φ-state is called a (χ, φ)-transition. A path with an initial φ-state and only (χ, φ)-
transitions is called a (χ, φ)-path. The until operator φ χUχ′ φ′ is satisfied by
maximal ζ-paths that start with an initial φ-state and perform a finite sequence
of (χ, φ)-transitions, until a (χ′, φ′)-transition is performed. The unless (or weak
until) operator φ χWχ′ φ

′ extends φ χUχ′ φ′ by moreover allowing infinite ζ-paths
that are a (χ, φ)-path. We note that, in contrast to CTL, EW cannot readily be
defined in terms of AU, because the states satisfying φ and φ′ must be visited by
transitions carrying actions from χ and χ′ respectively.

For example, the correctness of the route discovery protocol explained in Sec-
tion 5.2.1 can be verified by the state formula

A true(true ¬initWinit A
A99KB∧B99KA(true τUsucc true))

which indicates that an action init is always eventually followed by an action
succ, possibly after some communications (specified by τ), under the condition
that from the moment that init occurs there exists a multi-hop connection from
A to B and from B to A. This formula is satisfied by the initial state of the CLTS
given in Fig. 3.3 after all communications have been turned into τ with the help
of abstraction operator, i.e., by τMsg(∂Msg([[P]]A ‖ [[Q]]B)).

Other CACTL formulae can be derived from E, A, U and W following the
approach of [114]:

EXχφ = E(true falseUχ φ) AXχφ = A true(true falseUχ φ)

EFχφ = E(true trueUχ φ) AFµχφ = Aµ(true trueUχ φ)

EGχφ = E(φ χWfalse false) AGµ
χφ = Aµtrue(φ χWfalse false)

Intuitively, AXχφ is satisfied by states of which all maximal ζ-paths start with
a (χ, φ)-transition, AFµχφ by states of which all maximal ζ-paths either contain
a (χ, φ)-transition or in some state violate µ, and AGµ

χφ by states of which all
maximal ζ-paths visit only φ-states and perform only χ-transitions as long as µ is
valid.

We define Eµ by combining E and Aµ as Eµϕ = Eϕ ∨ Aµϕ. Intuitively, Eµϕ
is satisfied by a state that either has at least one maximal ζ-path that satisfies
the path formula ϕ, or all maximal ζ-paths violate µ. Consequently, EFµχφ is
satisfied by a state that either has at least one maximal ζ-path which contains a
(χ, φ)-transition or all its maximal ζ-paths are invalid for µ.

5.3. Model Checking Algorithms 121

5.2.3 CACTL Semantics

Let T ≡ 〈S,Λ,→, s0〉 be a CLTS. For a path π of T , assume πsi , π
C
i and πηi denote

the ith state, network constraint and action on path π, while len(π) denotes the
number of transitions in π (which is ∞ if π is infinite). So a finite path π is
of the form πs0(πC1 , π

η
1)πs1 · · · (πClen(π), π

η
len(π))π

s
len(π). Recall that C+

Γ (γ) extract all
connectivity relations in topology γ.

Satisfaction by η ∈ Actτ of action formula χ (written η |= χ), by state t of
state formula φ under network constraint ζ (written t |=ζ φ), and by maximal
path π of path formula ψ under network constraint ζ (written π |=ζ ψ), is defined
inductively below.

η |= true always

η |= η′ iff η = η′

η |= ¬χ iff η 2 χ
η |= χ ∧ χ′ iff η |= χ ∧ η |= χ′

t |=ζ true always

t |=ζ ¬φ iff t 2ζ φ
t |=ζ φ ∧ φ′ iff t |=ζ φ ∧ t |=ζ φ

′

t |=ζ Eψ iff there exists a maximal ζ-path π such that t = πs0 ∧ π |=ζ ψ

t |=ζ A
µψ iff for all maximal ζ-paths π with t = πs0 either π |=ζ ψ,

or assume ψ ≡ φ χVχ′ φ′, where V ∈ {U,W}, πs0 |=ζ φ∧
∃1 ≤ j ≤ len(π) (∀ 1 ≤ i ≤ j (πsi |=ζ φ ∧ πηi |= χ)∧
∀γ ∈ µ (C+

Γ (γ) ∩
⋃ j
k=1¬π

C
k 6= ∅))

π |=ζ φ χUχ′ φ
′ iff πs0 |=ζ φ and ∃1 ≤ j ≤ len(π) (

∀ 1 ≤ i < j (πsi |=ζ φ ∧ πηi |= χ) ∧ (πsj |=ζ φ
′ ∧ πηj |= χ′))

π |=ζ φ χWχ′ φ
′ iff either π |=ζ φ χUχ′ φ

′,

or πs0 |=ζ φ and ∀1 ≤ i ≤ len(π) (πsi |=ζ φ ∧ πηi |= χ)

The semantics of the until operator in ACTL, ACTLW and CACTL is somewhat
different from CTL: E(φχUχ′φ

′) in ACTLW requires to perform at least one action
from χ′ to reach a state satisfying φ′, while E(φUφ′) in CTL is also satisfied if the
first state already satisfies φ′. Similar to ACTL but in contrast to ACTLW, our
semantics of the until operator explicitly distinguishes silent from visible actions.

5.3 Model Checking Algorithms

We adapt the CTL model checking algorithm (see [36, 53]) to CACTL. Model
checking a CACTL formula ϕ on a CLTS under ζ ∈ C starts with the smallest sub-

122 Chapter 5 — Model Checking MANETs

formulae and works outwards toward ϕ. The procedure ModelCheck(CLTS , ϕ, ζ)
returns those states in CLTS that satisfy ϕ under ζ. The pseudo code of the model
checking algorithm’s backbone, where each syntactic form of CACTL’s grammar
is provided with a dedicated subcall, is given in Fig. 5.1. In the following subsec-
tions, we explain the details of each subcall.

Procedure ModelCheck(CLTS , ϕ, ζ)
Output: The states in CLTS that satisfy ϕ under ζ
switch ϕ do

case φ ∧ φ′
T1 := ModelCheck(CLTS , φ, ζ);
T2 := ModelCheck(CLTS , φ′, ζ);
return T1 ∩ T2;

case E(φ χUχ′ φ
′)

return CheckEU (CLTS , χ, φ, χ′, φ′, ζ)
case Aµ(φ χUχ′ φ

′)
return CheckAU (CLTS , µ, χ, φ, χ′, φ′, ζ)

. . .
endsw

Figure 5.1: Backbone of the model checking algorithm.

5.3.1 Model Checking EU Formulae

We explain the idea of the subcall CheckEU for the EU operator. A φ-state
satisfies E(φ χUχ′ φ

′) under ζ if it has a ζ-path that consists of (χ, φ)-transitions
until a (χ′, φ′)-transition is performed. Our model checking algorithm is based on
the CTL model checking algorithm for EU [53], where the analysis starts from
φ′-states and proceeds in a backward fashion over φ-states.

First, recursively, the states are determined that satisfy φ as well as those that
satisfy φ′. Then, φ-states with an outgoing (χ′, φ′)-transition which conforms
to ζ are searched for. Later, we move backward over (χ, φ)-transitions which
conform to ζ in a breadth-first fashion. Backward movement is stopped when no
new φ-state can be explored. All φ-states visited in the backward analysis satisfy
E(φ χUχ′ φ

′) under ζ. The pseudocode of the algorithm is given in Fig. 5.2.
The FIFO queue explore initially contains the states from which the backward

analysis starts: φ-states with an outgoing (χ′, φ′)-transition that conforms to ζ.
Backward movement over (χ, φ)-transitions that conform to ζ is assisted by ini-
tially finding such transitions, denoted by transition relation →′. States visited
during backward movement are stored in the set visited . The correctness of the
algorithm is implied by the fact that ∀s ∈ explore (s |=ζ E(φ χUχ′ φ

′)).
As an example we verify E(true a∨τUbE(true a∨τUc true)) under the empty con-

straint {} over the CLTS given in Fig. 5.3. First the states satisfying E(true a∨τUc true)

5.3. Model Checking Algorithms 123

Procedure CheckEU (CLTS , χ, φ, χ′, φ′, ζ)
Output: The states that satisfy E(φ χUχ′ φ

′) under ζ in
CLTS ≡ 〈S,Λ,→, s0〉

Tφ := ModelCheck(CLTS , φ, ζ);
Tφ′ := ModelCheck(CLTS , φ′, ζ);
explore := {s ∈ Tφ | (s, (C, η), t) ∈→, t ∈ Tφ′ , η |= χ′, ζ ∩ ¬C = ∅};
visited := ∅;
→′ := {(t, (C, η), t′) ∈→| t, t′ ∈ Tφ, η |= χ, ζ ∩ ¬C = ∅};
while explore 6= ∅ do

t0 := dequeue(explore);
visited := visited ∪ {t0};
for all (s, (C, η), t0) ∈→′ do

if s 6∈ explore ∪ visited then enqueue(s, explore);
return visited ;

Figure 5.2: Model checking EU formulae.

are found. The breadth-first backward search starts from s7, as this is the only
state with an outgoing c-transition. The transitions from s4 to s6 and from s7 to
s9 are removed because they do not carry an action from {a, τ}. The verification
of the inner EU formula ends with visited = {s6, s7}. To verify the outer EU
formula, the breadth-first backward analysis starts from s4, because from this
state there is a b-transition to s6 where the inner EU formula holds. Again the
transitions from s4 to s6 and from s7 to s9 are removed. The search computes
visited = {s0, s1, s2, s4, s5}, which is returned as the result of the verification of
the outer EU formula.

s0 s1 s2 s3

s4s5 s6

s7

s8

s9s10
({}, a)

(

{
D C,
D 6 A,B

}
, τ) (

{
C A,D,
C 6 B

}
, τ)

(

{
C A,B,
C 6 D

}
, τ)

(

{
D A,B,
D 6 C

}
, τ)

({}, b)
(

{ B

C
,

B
6
A
,D

} , τ
)

({B 6 A,C,D}, τ)

({}, c)

(

{
A B,
A 6 C,D

}
, τ)

({B A,C,D}, τ)

Figure 5.3: The CLTS to be checked for E(true a∨τUbE(true a∨τUc true)).

The worst-case time and memory complexity to check an EU formula is
O(V +E), where V and E are the number of states and transitions of the under-
lying CLTS. By contrast, model checking such a CTL formula using the standard
algorithm with the approach of [64], where the topology is modeled as a part

124 Chapter 5 — Model Checking MANETs

of states, has a worst-case time and memory complexity of O(4
n2−n

2 × (V +E)),
where n is the number of nodes; 4 originates from the four types of links, and
n2−n

2 is the number of possible links among the n nodes. We note however that
our model checking algorithm for AU formulae, which will be explained in the
next section, faces a similar exponential blow-up.

A bottleneck for the performance can be the check whether s 6∈ explore ∪
visited . In general the generated state space is so large that the bulk of it has
to be stored on disk, and disk accesses to perform the aforementioned check are
very expensive. In line with [91], this overhead can be alleviated considerably
by exploiting a Bloom filter to reduce the number of redundant disk accesses in
cases where the state s was not yet generated, i.e., is not present on disk.

5.3.2 Model Checking AU Formulae

The procedure CheckAU model checks the AU operator. In general a φ-state sat-
isfies a formula Aµ(φ χUχ′ φ

′) under ζ if all its ζ-paths consist of (χ, φ)-transitions
until either a (χ′, φ′)-transition is performed or the topology formula µ is violated.
Paths that violate the AU formula can be searched for with a backward analysis
in a depth-first fashion. A state t may be visited for different values of net-
work constraints, gathered over different paths. The backward analysis should
be redone for each network constraint C, except when t was visited earlier for a
network constraint C′ with C′ ⊆ C.

We start the backward search from φ-states that violate the AU formula be-
cause they have either (1) an outgoing transition (which conforms to ζ) that is
neither a (χ′, φ′)- nor a (χ, φ)-transition, or (2) no outgoing transition, or (3)
an infinite (χ, φ)-path that does not violate µ (and conforms to ζ). All preced-
ing states on backward (χ, φ)-paths that do not violate µ (with transitions that
conform to ζ) violate Aµ(φ χUχ′ φ

′). Furthermore, ¬φ-states trivially violate this
formula.

For the sake of efficiently finding φ-states of type (3), we assume strong fair-
ness, meaning that we only consider infinite paths on which each infinitely often
enabled transition is infinitely often executed. Considering only (χ, φ)-transitions
that conform to ζ, we determine terminal strongly connected components (SCCs)
(i.e., SCCs from which no other SCC can be reached). Owing to strong fairness,
each infinite (χ, φ)-path is guaranteed to end up in such a terminal SCC, and
traverse each transition in this SCC. We check for each terminal SCC whether its
accumulated network constraints do not violate µ.

The pseudocode of the algorithm is given in Fig. 5.4. The procedure Clean
removes all transitions that do not conform to ζ, and turns states that can perform
a transition (which conforms to ζ) that is neither a (χ′, φ′)- nor a (χ, φ)-transition
into deadlock states, by removing all their outgoing transitions. This way φ-states
of type (1) are cast to type (2).

The procedure TSCC computes the terminal SCCs of (χ, φ)-transitions, and

5.3. Model Checking Algorithms 125

Procedure CheckAU (CLTS , µ, χ, φ, χ′, φ′, ζ)
Output: The states that satisfy Aµ(φ χUχ′ φ

′) under ζ in
CLTS ≡ 〈S,Λ,→, s0〉

Tφ := ModelCheck(CLTS , φ, ζ);
Tφ′ := ModelCheck(CLTS , φ′, ζ);
→′ := Clean(CLTS , χ, Tφ, χ

′, Tφ′ , ζ);
constraint := TSCC (→′, χ, Tφ);
start := Start(→′, µ, χ, Tφ, χ′, Tφ′ , constraint);
violate := start;
visited := {t 7→ {γ ∈ µ | C+

Γ (γ) ∩ ¬constraint(t) = ∅} | t ∈ start} ∪ {(t 7→
∅) | t 6∈ start};
while start 6= ∅ do

choose a t0 ∈ start;
start := start \ {t0};
explore := {(t0, {γ ∈ µ | C+

Γ (γ) ∩ ¬constraint(t) = ∅})};
while explore 6= ∅ do

(t1,Γ1) := pop(explore);
violate := violate ∪ {t1};
for all (t2, (C2, η), t1) ∈→′ do

Γ := {γ ∈ Γ1 | C+
Γ (γ) ∩ ¬C2 = ∅};

if Γ 6⊆ visited(t2) ∧ Γ 6= ∅ then
push((t2,Γ \ visited(t2)), explore);
upd(visited , t2,Γ);

return Tφ \ violate;

Figure 5.4: Model checking AU formulae.

simultaneously collects the network constraints on the transitions in each such
terminal SCC. It returns a function constraint that maps each state in a terminal
SCC of (χ, φ)-transitions to the accumulation of all network constraints on the
transitions in this terminal SCC; states that are not in such a terminal SCC are
mapped to the empty network constraint. Next the procedure Start returns the
set start of states that are in a terminal SCC of (χ, φ)-transitions in which (I)
none of the states can perform a (χ′, φ′)-transition, and (II) the accumulation of
all network constraints on the transitions do not violate µ.

The backward movement, which every time starts from a state in start, is
performed in a depth-first fashion over (χ, φ)-transitions which conform to ζ.
During this backward movement, network constraints on transitions are accu-
mulated. The backward search proceeds as long as the accumulated network
constraints do not violate µ. Visited states violate the AU formula; they are
stored in the set violate, which initially consists of the states in start. We remark
that the accumulated network constraint C1 ∪ C2 does not violate µ, implied by

126 Chapter 5 — Model Checking MANETs

∃γ ∈ µ (C+
Γ (γ) ∩ ¬(C1 ∪ C2) = ∅), if and only if ∃γ ∈ {γ′ ∈ µ | C+

Γ (γ′) ∩ ¬C1 =
∅} (C+

Γ (γ) ∩ ¬C2 = ∅). Hence, instead of accumulating network constraints over
the paths and then checking whether they do not violate µ, the topologies that
lead to the satisfaction of µ are initially computed and refined while passing a
transition. Therefore, the function visited maps each visited state to the set of
topologies for which the backward analysis was performed; states that have not
yet been visited are mapped to the empty set. Hence, the backward search pro-
ceeds as long as the set of topologies (which makes µ true along the path) is not
empty. Furthermore, the backward analysis is redone for each visited state s with
the set of topologies Γ if Γ 6⊆ visited(s).

Each backward search is coordinated by means of the stack explore, which ini-
tially consists of the state t0 in start where the search starts, paired with topolo-
gies that make µ true with respect to the accumulation constraint(t0) of network
constraints in the terminal SCC of t0. Repeatedly the top (t1,Γ1) of explore is
popped, and t1 is added to violate. Furthermore, for each incoming transition
(t2, (C2, η), t1) of t1, Γ1 is refined into Γ with respect to C2 to denote the topologies
for which the state t2 has been visited. Then, it is checked whether state t2 has
been visited for a new topology. If this is the case, then the pair (t2,Γ\visited(s))
is added to the stack explore, where Γ\visited(s) is the set of newly visited topolo-
gies for which the backward analysis should be redone. Furthermore, visited is
updated by the new topologies for t2, denoted by upd(visited , t2,Γ).

Finally, when the backward search has been performed exhaustively, mean-
ing that start has become empty, all states in Tφ that are not in violate satisfy
Aµ(φ χUχ′ φ

′) under ζ.
The correctness of our algorithm is established based on the following asser-

tions, which are straightforward to prove:

1. The states on the explore stack form a (χ, φ)-path in the semantic model
that conforms to ζ;

2. ∀(s,Γ) ∈ explore (Γ 6= ∅).

3. The sets of topologies on the stack constitute a chain, i.e., for any two
consecutive elements (s1,Γ1) directly above (s2,Γ2) on the stack, Γ1 ⊆ Γ2

and s1 is a descendant of s2.

For each s ∈ violate, there was (s,Γ) on the top of the stack before s was being
added to violate. The first assertion implies that there exists a (χ, φ)-path that
conforms to ζ from s to the state at the bottom of the stack, which belongs to
start . The second assertion implies that Γ 6= ∅. Therefore, the third assertion
implies that the accumulated network constraint over this path does not violate
µ. Hence, s indeed violates Aµ(φ χUχ′ φ

′) under ζ. Conversely, we can be easily
shown that if a state violates Aµ(φ χUχ′ φ

′), then it will be in the set violate as it
has a path to a state in start .

5.3. Model Checking Algorithms 127

Our model checking algorithm is inspired by the CTL model checking algo-
rithm for EGφ formulae [36], where the backward search starts from SCCs with
φ-states, i.e., states satisfying EGφ. We remark that the states in our terminal
SCCs violate AU. Furthermore, the classical CTL model checker for AU formu-
lae is based on a forward analysis in a depth-first fashion; a state satisfies AU if
none of its successors violates AU [53]. However, fairness conditions cannot be
addressed during the forward analysis. To this end, the framework is extended
with predicates over states. Then states with a fair-path, i.e., a path over which
each fairness predicate is infinitely many times satisfied, are labeled with the aux-
iliary predicate Q (through a backward analysis from fair-SCCs, i.e., SCCs with at
least one state satisfying each fairness predicate). The AU formulae with fairness
conditions are found using the EU- and EG-algorithms. The former considers
Q-labels while the latter starts the backward search from fair-SCCs with φ-states.

Each state is in the worst case visited for all possible accumulated network
constraints. If the set Loc contains n addresses, there are

(
n−2

2

)
(dis)connectivity

pairs, and consequently the number of possible accumulated network constraints
is 2n

2−n. Hence, each state is visited at most 2n
2−n times. This means model

checking of AU formulae is only feasible in case of a small number of ad-
dresses. However, since interesting mobility scenarios typically require only few
addresses, this is not a serious limitation of our approach.

The time complexity of AU model checking is O(2n
2−n × (V + E)), with

memory usage O(V + E). Since the time and space complexities are linear with
respect to the number of states and transitions, model checking MANET protocols
with arbitrary mobility is feasible. We recall that model checking CTL formula
over semantic models where topology is modeled as a part of states, following
the approach of [64], has a time complexity of O(2n

2−n× (V +E)) with memory
usage O(2n

2−n× (V +E)). Note that we have not considered the memory usage
of visited in favor of the space needed to store topologies as part of states in the
latter approach.

As an example, we check the formula AD99KB(true a∨τUbE(true a∨τUc true))

under {} over the CLTS given in Fig. 5.3, using our model checking algorithm.
First transitions from s4 to s6 and from s7 to s9 are removed because they do not
carry an action from {a, τ}. The terminal (χ, φ)-SCCs of which the accumulated
network constraints do not violate D 99K B, found by procedure FindSCC , are
{s3, s10}, {s8} and {s9}. Therefore, they are collapsed as shown in Fig. 5.5, while
visited(SCC 0) = {{A B, A 6 C,D, B A,C,D}}, visited(SCC 1) = {{}}, and
visited(SCC 2) = {{}}. Furthermore, the relation SCC is set to {(SCC 0, {s3, s10}),
(SCC 1, {}), (SCC 2, {})}. The set end contains {s7,SCC 0,SCC 1,SCC 2}, since s7

contains a transition which is neither from {a, τ} nor from {b}. The backward
analysis starts from SCC 0 for head(visited(SCC 0)). Upon movement to s2, the
accumulated network constraints are {A B, A 6 C,D, B A,C,D, C
A,D, C 6 B} are valid for D 99K B, and consequently it is added to visited(s2).
The backward analysis proceeds to s0, while temp = {SCC 0, s2, s1, s0}. The

128 Chapter 5 — Model Checking MANETs

backward analysis from states SCC 1 and s7 stops at state s6, while visited(s6) =
{{B C, B 6 A,D}, {B 6 A,C,D}} and states SCC 1, s7, and s6 are added to
temp. The backward analysis from SCC 2 stops immediately, while it is added to
temp. Consequently states {s4, s5} are returned by the algorithm. Note that the
path s0({}, a)s1({D 6 A,B, D C}, τ)s2({C A,D, C 6 B}, τ)s3({A B, A 6
C,D}, τ)s10 is a valid path for the multi-hop constraint D 99K B that does not
end with a (b,E(true a∨τUB99KC ctrue))-transition.

s0 s1 s2 SCC0

s4s5 s6

s7

SCC1

SCC2

({}, a)
(

{
D C,
D 6 A,B

}
, τ) (

{
C A,D,
C 6 B

}
, τ)

(

{
C A,B,
C 6 D

}
, τ)

(

{
D A,B,
D 6 C

}
, τ)

(

{ B

C
,

B
6
A
,D

} , τ
)

({B 6 A,C,D}, τ)

Figure 5.5: The CLTS used during backward analysis to check
AD99KB(true a∨τUbE(true a∨τUc true)): the white and gray states are of the first
and second types respectively.

5.3.3 Model Checking EW Formulae

Formula E(φ χWχ′ φ
′) is satisfied by φ-states that (1) either have a ζ-path of

(χ, φ)-transitions that end with a (χ′, φ′)-transition, or (2) have a (χ, φ) ζ-path.
States of first type are found by calling procedure CheckEU . To find states of

second type, terminal SCCs made of (χ, φ)-transitions are search for. Preceding
states over (χ, φ)-transitions that conform to ζ satisfy E(φ χWχ′ φ

′). To this aim,
CLTS is restricted to φ-states that were not found by CheckEU and χ-transitions
which conform to ζ. The resulting CLTS is decomposed into SCCs, while each
SCC is collapsed into a single state. A backward analysis in a breath-first fashion
is performed from each terminal state. States visited during backward analysis
satisfy E(φ χWχ′ φ

′) under ζ and so do states within visited collapsed SCCs.
The pseudocode of the algorithm is given in Fig. 5.6. The procedure CollapSCC

(1) computes the SCCs of a CLTS, (2) collapses each SCC to a single state, (3)
adds a mapping from each (collapsed) SCC to its states in the relation SCC .
The FIFO queue explore initially contains the states where the backward analysis
starts from: φ-states with a (χ, φ)-path whose transitions conform to ζ. State
visited during backward movement are stored in the set visited . A φ-states satis-
fies E(φ χWχ′ φ

′) if either is in visited or within an SCC. The correctness of the
algorithm is implied by the correctness of the EU model checking algorithm and
the fact that ∀s ∈ explore (s |=ζ E(φ χWχ′ φ

′)).

5.4. Protocol Analysis with CACTL 129

Procedure CheckEW (CLTS , φ, χ, χ′, φ′, ζ)
Output: The states that satisfy E(φ χWχ′ φ

′) under ζ in
CLTS ≡ 〈S,Λ,→, s0〉

Tφ := ModelCheck(CLTS , φ, ζ);
Tφ′ := ModelCheck(CLTS , φ′, ζ);
visited := CheckEU (CLTS , φ, χ, χ′, φ′, ζ);
→′ := {(t, (C, η), t′) ∈→| t, t′ ∈ Tφ \ visited , η |= χ, ζ ∩ ¬C = ∅};
→′′ := CollapSCC (→′);
explore := {s | s has no outgoing transition ∈→′′};
while explore 6= ∅ do

t0 := head(explore);
visited := visited ∪ {t0};
dequeue(explore);
for all (s, (C, η), t0) ∈→′′ do

if s 6∈ explore ∪ visited then enqueue(s, explore);
result := {t ∈ Tφ | t ∈ visited ∨ ∃ s (t ∈ SCC (s))};
return result;

Figure 5.6: Model checking EW formulae.

The time complexity to check an EW formula is O(V + E). However model
checking CTL formula over semantic models where topology is modeled as a part
of states, following the approach of [64], has a time complexity ofO(2n

2−n×(V +
E)).

5.3.4 Model Checking AW Formulae

Model checking AW is similar to AU. In general a φ-state satisfies a formula
Aµ(φ χWχ′ φ

′) under ζ if all its ζ-paths consist of (χ, φ)-transitions as long as
either a (χ′, φ′)-transition is performed or the topology formula µ is violated.
A φ-state trivially violates this property if it has an outgoing transition (which
conforms to ζ) that is neither a (χ′, φ′)- nor a (χ, φ)-transition. Preceding states
over a (χ, φ)-path that does not violate µ, and its transitions conform to ζ, violate
Aµ(φ χWχ′ φ

′) and so do ¬φ-states. Such states can be searched similar to AU.

5.4 Protocol Analysis with CACTL

We have implemented the model checking algorithms explained in Section 5.3
in Java1. CACTL model checker can be used to express and verify interesting
properties of MANET protocols on CLTSs. In this section, we go through two

1The codes are available at https://github.com/fghassemi/CACTL

https://github.com/fghassemi/CACTL

130 Chapter 5 — Model Checking MANETs

case studies over the AODVv2-11 specified in Section 4.5 and the leader election
algorithm specified in Section 3.6.

5.4.1 Checking the Packet Delivery Property of AODV

The important property of packet delivery in routing or information dissemination
protocols in the context of MANETs is: if there exists an end-to-end route (multi-
hop communication path) between two nodes A and C for a sufficiently long
period of time, then packets sent byAwill eventually be received by C [62]. To be
able to specify such a property, inspired by [62] we will extend our specification
in Section 4.5 to include data packet handling (to forward the packet to its next
hop towards the destination) in addition to the route discovery packets and their
corresponding handlers. Furthermore, whenever a source node discovers a route
to an intended destination, it starts forwarding its data packet through the next
hop, specified in its routing table. The data packet is forwarded by intermediate
nodes to their next hops. When the data packet reaches the intended destination,
it delivers the data to itself by unicasting the deliver message to itself. In case an
intermediate node fails to forward the message, the error recovery procedure is
initiated as explained in Section 4.5. Consequently, using the following formula,
we can verify packet delivery property:

A true(true ¬rec newpkt(0,4)Wrec newpkt(0,4) A
n199Kn4∧n499Kn1(true τUdeliver() true))

It expresses that as long as there is a stable multi-hop path from n1 to n4 and
vice versa (specified by n1 99K n4 ∧ n4 99K n1), any rec newpkt(0, 4) message is
followed by a delivery() message after passing τ -transitions which abstract away
from other message communications. By model checking the resulting CLTS of
the AODVv2 model, we found a scenario in which the above property does not
hold. We explain this scenario (which is part of a counterexample to the above
formula) in a network of three nodes N1, N2 and N3, where node N3 is always
connected to the nodes N1 and N2, while the connection between the nodes N1

and N2 is transient. Thus, the mobility of nodes leads to the topologies shown in
Fig. 4.8b and Fig. 4.8c. Assume the topology is initially as the one in Fig. 4.8b:

• Node N1 unicasts a rec newpkt(data, N2) to itself, indicating that it wants
to send data to node N2.

• Node N1 initiates a route discovery procedure by broadcasting an rreqN1,0

message to its neighbors, i.e., nodes N3 and N2. Note that rreqa,i refers
to an rreq message received from node a with the hop count of i. Each
rreq message has more parameters but here only these two parameters are
of interest and the other parameters are assumed to be equal for all the
rreq messages, i.e., the destination and source sequence numbers, and the
source and destination IPs.

5.4. Protocol Analysis with CACTL 131

• Node N3 processes the rreqN1,0 and since it is not the destination and has
no route to N2 in its routing table, rebroadcasts the rreqN3,1 message to its
neighbors, nodes N1 and N2, after increasing the hop count. At this point,
node N2 has two messages in its queue, rreqN1,0 and rreqN3,1.

• Node N1 moves out of the communication range of node N2, resulting the
network topology shown in Fig. 4.8c.

• Node N2 takes rreqN1,0 from the head of its queue and updates its routing
table by setting N1 as the next hop in the route towards N1. As node N2

is the intended destination for the route discovery message, it unicasts an
rrep message towards the originator, N1, indicating that the route has been
built and it can start forwarding the data.

• Since the connection between the nodes N1 and N2 is broken, it fails to
receive an ack from N1 and marks the route as invalid.

• Node N2 then takes rreqN3,1 from its queue and since the route state to-
wards N1 is invalid, it evaluates the received route to update the routing
table. Since the hop count of the received message is greater than the exist-
ing one, it does not update the existing route and the message is discarded.

Although the route through node N3 to node N1 seems to be valid, the pro-
tocol refuses to employ it to prevent possible loop formation in the future. As we
have reported in [154], the packet delivery property is still violated in AODVv2-
16 in a scenario different from the above mentioned one.

5.4.2 Verification of the Leader Election Algorithm

The leader election algorithm for MANETs presented in Section 3.6 requires that
eventually every node is in a stable state, i.e. has a unique leader which is the
highest-valued node in its SCC. We show by means of our model checking algo-
rithm that a MANET with four nodes, each deploying the protocol from [150],
has a weak form of stabilization: if nodes stay strongly connected, then the al-
gorithm converges to a desired state. Assume four node identifiers A < B <
C < D. We investigate the property that “all nodes eventually choose D as their
leader, if they are continuously in the same SCC”, specified by the CACTL formula

p1 ≡ AFµ1

true(
∧
x∈Loc EXfinish(D,x)true)

where µ1 ≡ A 99K B ∧B 99K C ∧ C 99K D ∧D 99K A.
We note that the strong fairness assumption in the CACTL model checking

algorithm is essential for AU formulae to guarantee that executions will always
escape from the self-loops of finish actions.

Next we examine merging scenarios of the protocol: when two distinct SCCs
merge, nodes adopt the node with the highest value in both as their leader. We

132 Chapter 5 — Model Checking MANETs

can verify the property “if an SCC consisting of A and B is connected to an SCC
consisting of C and D, then D becomes the leader of all nodes” with the help of
the CACTL formula

p2 ≡ AGtrue
true((

∧
x∈{A,B}EXfinish(B,x)true) ∧ (

∧
y∈{C,D}EXfinish(D,y)true)

⇒ AFµ1

true(
∧
z∈Loc EXfinish(D,z)true))

The formula expresses that first nodes A,B and nodes C,D elect B and D as
their leaders, respectively. As nodes nodes electing the same leader are in the
same SCC, it can be inferred that first nodes A,B and nodes C,D elect belong
to the same SCC. If these two SCCs merge (indicated by AFµ1), then they will
eventually converge to the same leader D. The property becomes more complex
by examining a scenario in which three SCCs merge. We can verify the property
“if an SCC consisting of A and C is first connected to D and later to B, then D
becomes the leader of all nodes” with the help of the CACTL formula

p3 ≡ AGtrue
true((

∧
x∈{A,C}EXfinish(C,x)true) ∧ (

∧
y∈{B,D}EXfinish(y,y)true)

⇒ AFµ2

true((
∧
z∈{A,C,D}EXfinish(D,z)true)

⇒ AFµ1

true(
∧
w∈Loc EXfinish(D,w)true)))

where µ2 ≡ A 99K C ∧ C 99K D ∧D 99K A.
We can investigate scenarios in which a node gets disconnected from its par-

ent or leader during or after the leader election phase respectively. One can verify
that “a node will not change its leader as long as it is connected to it”, specified
by the CACTL formula

p4 ≡ AF
A 99K D ∧D 99K A

finish(D,A) (AG
D 99K A

¬(leader(A,A)∨leader(B,A)∨leader(C,A)) true)

meaning that after D was selected as the leader of A when A 99K D ∧ D 99K A
(specified by the outer AF formula), A never chooses another leader (A, B or
C), unless it gets disconnected from D.

We verified properties p1−4; these properties are all satisfied by our model.
We used the mCRL2 tool to generate the state space, modulo strong bisimilarity,
as explained in Section 3.6.2. The generated LTSs by mCRL2 include network
constraint information, and hence can be viewed as CLTSs. Table 5.1 illustrates
the verification time on a Corei7 CPU with 8GB RAM.

5.5 Related Work

To investigate properties of MANETs, two approaches are followed in the litera-
ture: either a compact semantic model and a new logic are provided, or existing

5.6. Conclusion 133

Table 5.1: Verification times of the CACTL model checker.

No. of No. of No. of
nodes states transitions p1 p2 p3 p4

3 4, 278 33, 536 0.303s 0.358s 0.369s 0.275s
4 357, 024 3, 928, 890 36.554s 53.204s 62.763s 91.190s

logics are used while arbitrary mobility is restricted to tackle the state space ex-
plosion problem.

The asynchronous process algebra bKlaim [122] follows the first approach
similar to ours, based on finite abstract labeled transition systems where the in-
fluence of the network topology is preserved: each state, denoted by a multi-set
of actions and data, represents networks whose multiplicity of each immediately
available action and visible data is at most equal to that state. A variant of CACTL
is proposed whose temporal operators are parametrized with a set of topologies
to determine which properties hold if movement of nodes is restricted. To cope
with the abstraction in the semantics, each logic formula is interpreted to ei-
ther true/false, or unknown which evaluates to true/false on concrete transition
systems. However, topology-dependent behaviors cannot be checked unless all
topologies that satisfy the multi-hop condition are provided by the user.

Conversely, AWN [64] verifies topology-dependent behavior properties using
CTL [34], by special treatment of (dis)connectivity information in transition la-
bels. This approach can be extended to algebras, e.g. CMAN and ω-calculus, with
(dis)connectivity information on transition labels. However, this approach needs
auxiliary strategies to extract predicates from the states and transitions, to re-
strict connectivity changes during model checking and thus limit the state space.
These challenges are also tackled with the help of the model checker UPPAAL,
by transforming AWN specifications to automata and exploiting an auxiliary au-
tomaton, similar to [113], which statically restricts topologies to at most 5 nodes
with up to one topology change, and scenarios with two new data packets.

5.6 Conclusion

We presented a branching-time temporal logic CACTL, which is interpreted over
CLTSs. It is aimed at expressing topology-dependent behavioral properties of
MANET protocols. We moreover introduced a model checking algorithm for
CACTL that investigates the temporal behavior of MANETs, while taking into
account the underlying topology, represented symbolically by means of network
constraints. Scenarios like after a route found and after two distinct SCCs are
merged can be investigated with the help of multi-hop constraints over topolo-
gies, which in CACTL are specified on top of path quantifiers.

Advantages of our approach are the flexibility in verifying topology-dependent
behavior (without changing the model), and the facility to restrict the mobility

134 Chapter 5 — Model Checking MANETs

scenarios considered. By nesting path quantifiers, a set of specific topological
paths can be specified with the help of topology constraints (without a need
to specify how a topology constraint should be inferred). The (dis)connectivity
information in CLTS transitions makes it possible to restrict the generality of mo-
bility as desired.

6Product Line Process
Theory

Software product line (SPL) engineering has become an established trend in soft-
ware development, where a family of similar software products with minor dif-
ferences are developed in tandem, instead of developing each specific software
product separately [128]. SPL engineering benefits from systematic reuse through-
out the system life cycle and enables mass development and customization of
numerous products. Hence, the development cost and the time to market for
an SPL is substantially decreased, compared to the cumulative development cost
and time of the isolated products [135]. To this aim, various software engineer-
ing activities have to be adapted to cope with the differences among the artifacts
for different products, called variability. Variability introduces a new complexity
dimension and hence, this calls for a genuine treatment of variability in different
artifacts (such as requirement specification, architectural design, detailed design,
and implementation artifacts). Such a treatment should also allow for a collec-
tive analysis of product line behavior (e.g., in testing and verification [58, 140])
to deal with the inherent complexity of SPLs.

At the highest level of abstraction, an SPL can be specified by a set of features
that satisfy the specific needs of a particular market segment or mission [40].
A feature identifies “a prominent or distinctive unit of requirement which can
be either a user-visible behavior, aspect, quality, or characteristic of a software
system” [99]. Hence, a product can be specified by a subset of features. To spec-
ify an SPL, the features are organized in a hierarchical model, called a feature
model. It identifies commonalities and differences among the products of the
SPL in terms of their features and it identifies suitable relations among features,
such as optional, mandatory, or mutually exclusive. More concrete specifications
capture structural and behavioral aspects of an SPL. For instance, the architec-
ture description languages Koala [123] and xADL [45] concentrate on structural
modeling of SPLs. Modal transition systems (MTSs) [107] and featured transi-
tion systems (FTSs) [38], however, concentrate on behavioral modeling (we refer
to [20] for an overview of such behavioral models). MTSs capture the behavior
of SPLs by defining state transitions as optional or mandatory, while FTSs anno-
tate transitions with a set of features. Behavioral models typically come equipped

135

136 Chapter 6 — Product Line Process Theory

with a product derivation method; e.g., a product, derived from a feature model,
can project an FTS onto an LTS.

Formal verification techniques provide strong tools to analyze complex sys-
tems to guarantee their correctness. Product Line Calculus of Communicating
Systems (PL-CCS) [89, 90] is an extension of Milner’s Calculus of Communicat-
ing Systems (CCS) [118]. PL-CCS extends CCS by adding the binary variant
operator ⊕i to model behavioral variability in SPLs. More specifically, process
term p1 ⊕1 p2, where p1 and p2 are CCS process terms, specifies a family of two
alternative products, namely p1 or p2 (the index i in ⊕i is used to designate re-
peated choices that have to be made in the same way; when no repetition of
indices is present, the indices can be safely ignored). The semantics of a PL-
CCS specification is given in terms of three different models: the flat semantics,
the unfolded semantics, and the configured-transition semantics [90]. A PL-CCS
specification can be turned into a product, specified by a CCS term, by resolving
the variability points, i.e., the variant operators, by deciding on whether their
right or left process is chosen. The flat semantics of a PL-CCS term is given
in terms of the semantics of all derivable products, denoted by CCS terms. A
product family LTS (PF-LTS) is an extension of an LTS, where labels and states
are paired with configuration vectors that maintain the configuration of vari-
ants. PF-LTSs provide the unfolded semantics of PL-CCS terms and are derived
through a set of structural rules in a systematic way. The structural rules given
in [90] work on a restricted set of PL-CCS terms in order to be compositional.
The configured-transition semantics is defined over the unfolded semantics by
merging all states that only differ in their configuration parts. This provides the
most succinct model of PL-CCS terms. Hence, in the developments to come, we
mostly focus on the configured-transition semantics of PL-CCS. In particular, we
provide a set of structural rules that derive a configured-transition semantics for
PL-CCS terms directly.

Equational reasoning is the cornerstone of the algebraic approach to process
theory. To furnish PL-CCS with a proper equational theory, we study a number
of notions of behavioral equivalence, based on strong bisimilarity. A summary
of these notions, their properties and the results establishing their relationship is
depicted in Fig. 6.1. We start with a set of axioms that we expect to be sound for
a model of PL-CCS and define the notion of strict strong bisimilarity, which is a
natural extension of strong bisimilarity in the SPL setting. Namely, strict strong
bisimilarity requires bisimilar product lines to behave bisimilarly for all common
configurations. This turns out to be a fully compositional notion for PL-CCS, but
too strong a notion for some of our intuitive axioms. For example, strict strong
bisimilarity rejects the intuitive axiom p ⊕i q = q ⊕i p as it is sensitive to the
placement of the processes in a binary variant composition. Subsequently, we
introduce a coarser notion, called product line bisimilarity, which does satisfy
the desired axioms of PL-CCS. However, this notion is shown to satisfy a weaker
compositionality property. Namely, it is compositional for a subset of PL-CCS
terms, called fully expanded terms. To remedy the latter issue, we show that

137

Strict Strong Bisimilarity (≈PL)

• Compositional for PL-CCS
• Too fine, the most distinguishing
• Quantifies over all configurations

Product Line Bisimilarity ('PL)

• Compositional for fully expanded PL-CCS
• Right model for intuitive axioms
• Quantifies over all configurations

Configuration Bisimilarity ('C)

• Compositional for fully expanded PL-CCS
• Right model for intuitive axioms
• Considers the lumped PL-CCS behavior

Full expansion
(Theorem 5)

Identity
(Theorem 2)

Theorems 2 and 5

Figure 6.1: Our Notions of Behavioral Equivalence for PL-CCS Specifications

all PL-CCS terms can be rewritten into this subset using a sound transformation,
thanks to the strong compositional notion of strict strong bisimilarity. Since strict
strong bisimilarity implies product line bisimilarity this transformation is also
sound for the latter notion and hence, resolves its compositionality issue.

Owing to the fact that a MANET protocol can be interpreted as a product
family that behaves according to the underlying topology configuration, there is
a similarity between the semantic models of MANETs and product families, i.e.,
CLTSs and PF-LTSs (or configured-transition systems): the network constraint of
a transition enumerates the topologies for which a behavior is valid while the
configuration vector enumerates the configurations of a family. We take advan-
tage of our experience with CLTSs to define configuration bisimilarity, which is
an alternative yet equivalent notion for product line bisimilarity. The main mo-
tivation for introducing configuration bisimilarity is that it allows for reasoning
about the product line behavior as a whole and hence, dispenses with scrutiniz-
ing individual product behaviors.

Our axiomatization is useful to identify common parts (i.e., the mandatory
parts) among the products of a family, to reorganize the functionality of a fam-
ily specification to behaviors for which appropriate components exist, to derive
products of a family to validate a model in terms of its intended systems (where
each product is specified by a CCS term), and to manipulate functionalities as-
signed to products of a product line at the syntactic level.

Regarding an equational theory for PL-CCS, our work improves upon [89],
where a number of algebraic laws to restructure a product line specification were
given. However, we are not aware of any complete axiomatization of PL-CCS to
date. For example, the laws of [89] are restricted to families with the same
number of variants and exclude intuitive equalities like p ⊕i q = q ⊕i p and

138 Chapter 6 — Product Line Process Theory

p ⊕i p = p. It is worth noting that our notion of configuration bisimilarity is
reminiscent of the notion of branching bisimilarity introduced in [16].

PL-CCS also comes equipped with a property specification language that is a
variant of the multi-valued modal µ-calculus [90]. A configured transition sys-
tem can also be viewed as a multi-valued modal Kripke structure [90] and hence,
formulae in the multi-valued modal µ-calculus can be evaluated naturally in this
semantic domain. The corresponding model checking method verifies a family
at once, and its result defines the set of products that meet the given property.
We show that the multi-valued modal µ-calculus of [90] is the logical character-
ization of our notion of product line bisimilarity (and hence, also our notion of
configuration bisimilarity). This provides another evidence of suitability for our
main notions of behavioral equivalence.

The contributions of this chapter can be summarized as follows:

• We introduce a means to specify product lines with infinite behavior, follow-
ing the approach of [9], by extending PL-CCS with recursive specifications.

• We provide a set of structural rules to derive the configured-transition se-
mantics of PL-CCS directly.

• We study different notions of bisimilarity over the configured-transition se-
mantics. To this end, we provide a set of intuitive axioms that should be
satisfied. We prove different compositionality (congruence) results for the
notions of bisimilarity and relate them to each other.

• We provide a sound axiomatization of PL-CCS terms modulo product line
bisimilarity, which additionally allows one to derive any sound equation on
closed terms with finite-state behavior (in technical terms, it is a ground-
complete axiomatization).

• We show that the multi-valued modal µ-calculus is the characterizing logic
for our product line bisimilarity.

The rest of this chapter is structured as follows. Section 6.1 introduces the PL-
CCS syntax and semantics. Section 6.2 defines our notions of behavioral equiva-
lence and relates them. Section 6.3 provides a set of sound and ground-complete
axioms to syntactically manipulate product lines. Section 6.4 illustrates the ap-
plicability of our axiomatization in the analysis of product lines. Section 6.5
presents the multi-valued modal µ-calculus as well as a logical characterization
of product line bisimilarity. Section 6.6 provides an overview of existing ap-
proaches on modeling and verification of SPLs. Finally, Section 6.7 concludes the
chapter.

6.1. PL-CCS : Syntax and Semantics 139

6.1 PL-CCS : Syntax and Semantics

To our knowledge, PL-CCS [89, 90] is the first process algebra introduced to for-
mally specify and verify product lines in an algebraic manner. To give a semantics
to PL-CCS terms in [89, 90], the binary variant operators are assigned an index
in a pre-processing step. Following the same principle, we index the binary vari-
ant operator of PL-CCS with a natural number. This allows for defining a unique
semantic model for each PL-CCS term and also specifies multiple variation points
that should be resolved in the same manner. Moreover, any unnumbered PL-CCS
term can be considered an indexed PL-CCS term by assigning arbitrary distinct
natural numbers to each and every binary variant operator.

To specify product lines with infinite behavior, we extend PL-CCS with the
recursion operator 〈X|E〉 taken from [9]. It encompasses both the CCS recursion

operator recX ·t (which is specified in our syntax as 〈X|X def
= t〉) and the standard

way to express recursion in ACP.

6.1.1 PL-CCS: Syntax

Let A be the set of process names which are used as recursion variables in re-
cursive specifications and ranged over by A and B. Moreover assume that Σ a
finite set of input action labels, Σ = {a | a ∈ Σ} is the set of output actions, and
τ 6∈ Σ ∪ Σ the unobservable action. Then, the set of all actions Act is defined as
Σ ∪ Σ ∪ {τ}. By definition, we have that a = a.

The syntax of PL-CCS comprises deadlock 0, action prefix a.− (for each a ∈
Act), choice +, binary variant ⊕i where i ∈ N, and parallel composition ‖. It also
includes process renaming [f] where f : Act 7→ Act is a renaming function with
f(a) = f(a), and f(τ) = τ , and restriction \L where L ⊆ Act . Additionally, it has
process names, and recursion operators 〈A|E〉 where E is a recursive specification
overA, denoted byE(A) for short andA ∈ A. A recursive specification is defined
by a set of recursive equations that contains precisely one recursive equation

A
def
= tA for each process name A ∈ A, where tA is a term over the PL-CCS

signature and process names from A. The PL-CCS syntax is summarized by the
following grammar:

t ::= 0 | a.t | t+ t | t⊕i t | t ‖ t | t[f] | t \ L | A | 〈A|E〉

Process term a.t denotes the process that first performs action a and then
behaves as t. Alternative composition t1 + t2 nondeterministically behaves as t1
or t2. Variant operator ⊕i defines a behavioral variation point. Family t1 ⊕i t2
consists of the two alternative families specified by t1 and t2. PL-CCS terms can
be composed using the parallel composition operator ‖. Process term t1 ‖ t2
denotes the concurrent execution of two processes t1 and t2, of which the actions
can be interleaved or synchronized whenever t1 and t2 are ready to execute an
input and the corresponding output action simultaneously. The process term

140 Chapter 6 — Product Line Process Theory

t[f] behaves as t, with every action renamed according to the renaming function
f . The process term t \ L can perform any action that is not included in L.
The recursion operator 〈A|E〉 represents a solution of the recursive specification
E(A) where A acts as the initial variable. A solution of a recursive specification
E(A) is a set of process terms {sA | A ∈ A} such that if for all A ∈ A, sA
is substituted for A, the equations of E correspond to equal elements (in the

model of our equational theory), i.e., sA = t{sX/X|X ∈ A}, where A
def
= t ∈ E.

The guardedness criterion which will be explained in Section 6.3, for recursive
specifications ensures that this solution is unique. As far as unguarded recursions
are concerned, following the approach of CCS and [9], we consider the solution
that has the least set of transitions. In the remainder of this chapter, we use the
notions of process term, product line, and family interchangeably.

Note that the term defining process name A in a recursive specification may
include recursive specifications. A term is called closed, if every process name A
occurs in the scope of a binding recursive specification E(A) such that A ∈ A.

For instance, in the closed term 〈X|{X def
= a.0⊕1 b.〈Y |{Y def

= Y + c.X}〉}〉, X is
bound by the outer recursive specification. As usual, we use the notation t{s/A}
to denote the substitution of a closed term s for every free occurrence of process
name A in t. We use 〈t|E〉, where E is a recursive specification over A, to denote
t{〈A|E〉/A | A ∈ A}, i.e., t where, for all A ∈ A, all free occurrences of A in t
are replaced by 〈A|E〉.

By adopting 〈A|E〉 instead of the CCS recursion operator, we can easily spec-

ify SPLs in which a process name definition is shared. For instance, 〈p1|{p1
def
=

p2 ‖ p2, p2
def
= b.0⊕1 c.0}〉 is equivalent to the CCS notation µX.(µY.b.0⊕1 c.0 ‖

µY.b.0⊕1 c.0).
Intuitively, an index is bound in a term if it either occurs directly in the term

or indirectly in the definition of any recursion variable occurring in the term.
The bound indices of term t, denoted by bi(t), can be found with the help of the
auxiliary function fbi :

fbi(0,S) = ∅ fbi(t \ L,S) = fbi(t,S)
fbi(a.t,S) = fbi(t,S) fbi(t[f],S) = fbi(t,S)
fbi(t1 + t2) = fbi(t1,S) ∪ fbi(t2,S) fbi(t1 ‖ t2,S) = fbi(t1,S) ∪ fbi(t2,S)
fbi(t1 ⊕i t2,S) = {i} ∪ fbi(t1,S) ∪ fbi(t2,S) fbi(A,S) = ∅
fbi(〈A|E ∪ {A def

= t}〉,S) = fbi(〈t|E ∪ {A def
= t}〉,S ∪ {A}), if A 6∈ S

fbi(〈A|E ∪ {A def
= t}〉,S) = ∅, if A ∈ S.

An index i is free in t iff it is not bound. We denote by t[i/j] the term that is
obtained by replacing all ⊕j by ⊕i in t (we dispense with the inductive definition
as it is straightforward).

6.1. PL-CCS : Syntax and Semantics 141

6.1.2 PL-CCS Semantics

Intuitively, the behavior of a product line family is defined by the cumulative be-
havior of its products. These products are obtained by resolving the choice in the
binary variant operators. The resolution may take place at various points of exe-
cution and hence, to record such choices the semantics needs to record whether
the choice is unresolved (denoted by ?), resolved in favor of the left-hand-side
product (denoted by L), or resolved in favor of the left-hand-side product (de-
noted by R). Also resolving one instance of a binary variant operator may resolve
the choice for other instances. For instance, configuring the variant j as R in
(a.0⊕i b.0)⊕j c.0, makes it unnecessary to configure the variant i. The configura-
tion status of variation points bound in a process term with maximum index n are
recorded in a configuration vector ν ∈ {L,R, ?}n, where the ith element of the
vector is denoted by ν|i. We denote by Config the set of all possible configuration
vectors, ranged over by ν and λ. Expression ν|i/x denotes the result of replacing
the ith element of ν by x ∈ {L,R}. A configuration is called full when all its
elements are configured, i.e., are in {L,R}. Two configurations ν and λ that do
not have any conflict on a variation point are called consistent. This concept is
formalized below.

Definition 6.1 (Consistent configuration vectors [90]). Configuration vectors
ν, λ ∈ {L,R, ?}n are consistent, denoted by ν � λ, if and only if ∀i ∈ {1, ..., n} :
((ν|i =?) ∨ (λ|i =?) ∨ (ν|i = λ|i)).

Given two consistent configuration vectors ν and λ, their unification, denoted
by ν�λ merges the configurations of their variation points as follows: (ν�λ)|i =
X ∈ {L,R, ?} iff either ν|i = X ∧ λ|i =? or ν|i =? ∧ λ|i = X or ν|i = λ|i = X.

Configuration vector ν′ is more concrete than ν (or ν is more abstract than ν′),
denoted by ν v ν′, iff ∀i ∈ {1, ..., n} : ((ν|i =?) ∨ (ν|i = ν′|i)) [90]. Hence, each
configuration vector ν represents a set of configuration vectors {ν′ | ν v ν′}.

We briefly explained the three different semantic models of PL-CCS terms:
the flat semantics, the unfolded semantics, and the configured-transition semantics
[90]. Since our equivalence relation and the multi-valued modal µ-calculus are
defined over the configured-transition semantics, we next elaborate on how this
semantics is derived directly using our SOS rules.

The configured-transition semantics induces an LTS, in which the labels are
pairs in Act × Config . Formally, a configured-transition system (CTS) is a tuple
〈S, s0,Act × Config ,→〉, where S is a set of states, s0 ∈ S is an initial state and
→ ⊆ S ×Act × Config × S is a set of transition relations. The notation s

α,ν−−→ s′

is used for (s, (α, ν), s′) ∈ → and is representative for all transitions s
α,ν′−−−→ s′,

where ν v ν′. The CTS semantics of a PL-CCS term t has the set of all terms as
its states, t as the initial state, and the least relation satisfying the rules in Fig.
6.2 as its transition relation.

The rule Prefix indicates the execution of a prefix action, where ν? denotes
a configuration vector in which no element is configured. Choice specifies the

142 Chapter 6 — Product Line Process Theory

a.t
a,ν?−−−→ t

: Prefix
t1

a,ν−−→ t′1

t1 + t2
a,ν−−→ t′1

: Choice

t
a,ν−−→ t′ a 6∈ L

t \ L a,ν−−→ t′ \ L
: Res

t1
a,ν−−→ t′1 ν|i 6= R

t1 ⊕i t2
a,ν|i/L−−−−−→ t′1

: Select

t1
a,ν−−→ t′1

t1 ‖ t2 a,ν−−→ t′1 ‖ t2
: Par

〈t|E〉 a,ν−−→ t′ A
def
= t ∈ E

〈A|E〉 a,ν−−→ t′
: Call

t1
a,ν−−→ t′1 t2

a,ν′−−−→ t′2 ν � ν′

t1 ‖ t2 τ,ν�ν′−−−−−−→ t′1 ‖ t′2
: Sync

t
a,ν−−→ t′

t[f]
f(a),ν−−−−−→ t′[f]

: Rename

Figure 6.2: Operational Semantics to derive configured-transition systems

non-deterministic behavior of the choice operator in terms of its operands. Res
defines that term t \ L is only allowed to do actions that are not in L. Select
defines the behavior of a family in terms of its products, by deciding about the
ith variant operator. The side condition prohibits any reconfiguration, if it was
previously configured. Call defines the behavior of 〈A|E〉 in terms of the behav-

ior of the right-hand side of the equation A
def
= t in the recursive specification

E. Par explains that a process in a parallel composition can proceed indepen-
dent of the other parallel component. Sync states that two processes in a parallel
composition can be synchronized on an action, if both are ready to perform in-
put and output counterparts simultaneously. Since t1 and t2 resolve variants in
their scopes, their resolutions are unified for their parallel composition in Sync.
Finally, Rename renames all actions using a function f .

The symmetric versions of rules Choice, Select (while each occurrence of R
and L should be reversed), and Par are not given explicitly here for the sake of
brevity.

Example 6.2. Using the rules in Fig. 6.2, the configured-transition semantics of

〈X|E〉, where E = {X def
= (a.(b.X⊕1 c.0)+d.0)⊕2 e.0}, is given in Fig. 6.3a. The

derivation tree inducing the transition labeled by a, 〈?, L〉 is given below:

:Prefix
a.(b.〈X|E〉 ⊕1 c.0)

a,〈?,?〉−−−−−→ b.〈X|E〉 ⊕1 c.0
:Choice

a.(b.〈X|E〉 ⊕1 c.0) + d.0
a,〈?,?〉−−−−−→ b.〈X|E〉 ⊕1 c.0

:Select
(a.(b.〈X|E〉 ⊕1 c.0) + d.0)⊕2 e.0

a,〈?,L〉−−−−−→ b.〈X|E〉 ⊕1 c.0
:Call

〈X|E〉 a,〈?,L〉−−−−−→ b.〈X|E〉 ⊕1 c.0

Other transitions are derived in a similar way. On deriving the transitions of
b.〈X|E〉 ⊕1 c.0 with the help of Prefix and Select , only the first variant point can

6.2. Bisimilarity for Product Line 143

be configured, and consequently it returns to state 〈X|E〉 with the action b, 〈L, ?〉
or state 0 with the action c, 〈R, ?〉, as shown in Fig. 6.3a.

Returning to state 〈X|E〉 in Example 6.2, makes it possible to reconfigure any
previously configured variant. For the sake of compositionality, resolutions of
variants are open to any possible configuration in our SOS rules. However, as it
is explained in the next paragraph and Section 6.2.1, in deriving the behavior of
a product/a set of related products only consistent resolutions are followed.

〈X|E〉

b.〈X|E〉 ⊕1 c.0

0a, 〈?, L〉 b, 〈L, ?〉

e, 〈?, R〉

c, 〈R,
?〉

d, 〈?, L〉

(a) 〈X|E〉

a

d

b

(b) 〈L,L〉

a d

c

(c) 〈R,L〉

b e

(d) 〈L,R〉

e

c

(e) 〈R,R〉

Figure 6.3: The configured-transition system of 〈X|E〉, and Π(〈X|E〉, ν) for the given
configuration vectors

The semantic model of each product of t, identified by the full configuration
νf , can be derived by removing the transitions from t whose configuration vector
is not consistent with νf . Let Π(t, νf) denote the resulting LTS. Formally speak-
ing, Π(t, νf)

a−→ Π(t′, νf) iff t
a,ν−−→ t′ and ν v νf . Therefore, only resolutions

that are consistent with the full configuration, i.e., ν v νf , are allowed and con-
sequently reconfiguration is prohibited. See Fig. 6.3b, 6.3c, 6.3d, and 6.3e for
the semantic models of products derived from X for the given configuration vec-
tors 〈L,L〉, 〈R,L〉, 〈L,R〉, and 〈R,R〉 respectively (initial states are highlighted
in gray). It should be noted that the semantic models derived for the configura-
tion vectors 〈L,R〉 and 〈R,R〉 have only one reachable state from the initial state
through the action e.

6.2 Bisimilarity for Product Line

Following the approach of ACP [22], we define a set of axioms (as the main part
of our process theory or equational theory) as primary and then investigate the
models that they have. The most intuitive model of a process theory is the alge-
bra of closed terms (the algebra with the same operators of equational theory)
modulo a congruence. In this section, we first discuss different equivalence rela-
tions to reason about product lines. Next, we discuss the congruence property of
the previously defined relations.

144 Chapter 6 — Product Line Process Theory

Table 6.1: The axioms that product line bisimilarity should support.

p⊕i q = q ⊕i p, i 6∈ bi(p) ∪ bi(q) A1 (p⊕i q) + r = (p+ r)⊕i (q + r) A5

(p⊕i q)⊕j r = p⊕i (q ⊕j r), A2 r + (p⊕i q) = (r + p)⊕i (r + q) A6

i 6∈ bi(r) ∧ j 6∈ bi(p)
p⊕i p = p A3 r ‖ (p⊕i q) = (r ‖ p)⊕i (r ‖ q) D1

a.(p⊕i q) = a.p⊕i a.q A4 (p⊕i q) ‖ r = (p ‖ r)⊕i (q ‖ r) D2

Table 6.1 lists the axioms we have in mind for PL-CCS. We shall look for an ap-
propriate notion of bisimilarity that supports the given equations. Axioms A1−3

define commutativity, associativity and idempotency for the binary variant oper-
ator. Axioms A1,2 ensure that two families are equivalent when they produce the
same set of products, irrespective of their orders in variant operators. However,
their application is restricted: i should be free in p and q for A1, while i should
be free in r and j should be free in p for A2. For instance, a.0 ⊕1 (b.0 ⊕1 c.0)
produces two products a.0 and c.0, but (b.0 ⊕1 c.0) ⊕1 a.0 produces a.0 and b.0,
and consequently, as expected they are not equivalent. Axiom A3 removes a
repeated product from a family, and implies that two product families are equiv-
alent iff they produce similar products, irrespective of their multiplicity. Axiom
A4 defines distributivity for prefix over binary variant, while axioms A5,6 define
distributivity for choice over binary variant. These rules allow for postponing the
product selection by factorizing the common initial action/behavior respectively.
Axioms D1,2 define distributivity for the parallel over the binary variant. These
two axioms reveal the difference between the alternative choice and the binary
variant. Axioms A5,6 and D1,2 are useful to reduce redundancy by factorizing
common parts.

6.2.1 Equivalence Relation

Strong bisimulation (see Definition 2.1) is very efficient to check and affords a
neat theory: many other notions in the branching spectrum can be reduced to
it by adding a standard set of axioms [147]. Definition 2.1 can be readily used
for CTSs (since CTSs can be considered LTSs with a structure on the set of labels
L). However, this simple adoption of Definition 2.1 can lead to some counter-
intuitive observations.

For example, according to this definition, a.0 + b.0 is strongly bisimilar to
a.0⊕1 b.0. However, these two processes should not be considered equivalent in-
tuitively. The family a.0+b.0 produces one product which has a non-deterministic
behavior in performing actions a and b. By contrast, the family a.0⊕1b.0 produces
two products, namely a.0 and b.0, and each product has deterministic behavior
by performing solely a or solely b. As another concern, this relation cannot iden-
tify a.(b.0⊕1 c.0) and a.b.0⊕1 a.c.0, while both have two products a.b.0 and a.c.0;

6.2. Bisimilarity for Product Line 145

consequently, this bisimulation relation does not support axiom A4. Therefore,
the appropriate notion of bisimilarity over families must find for any product in
one family a product in another such that their behaviors be strong bisimilar.

A full configuration is called valid with respect to term t, if its length is not less
than the maximum index in bi(t). For instance, 〈L〉 is not valid for b.〈X|E〉⊕1c.0,
where E = {(a.(b.X⊕1c.0)+d.0)⊕2e.0}, while 〈L, ?, L〉 is valid. Let VFConfig(t)
denote the set of all valid full configurations with respect to t. Intuitively, two
product families are equivalent when they produce bisimilar sets of products:

Definition 6.3 (Strict strong bisimulation). Two product line terms s and t are
strictly strongly bisimilar, denoted by s ≈PL t, iff for any valid full configuration
νf ∈ VFConfig(s) ∩VFConfig(t), Π(s, νf) ∼ Π(t, νf).

Strict strong bisimilarity does not support axioms A1,2; to see this, observe
that Π(a.0⊕1b.0, 〈L〉) � Π(b.0⊕1a.0, 〈L〉), Π((a.0⊕1b.0)⊕2c.0, 〈L,R〉) � Π(a.0⊕1

(b.0⊕2c.0), 〈L,R〉) and Π((a.0⊕2b.0)⊕1c.0, 〈R,L〉) � Π(a.0⊕2(b.0⊕1c.0), 〈R,L〉).
However, axiom A3 is supported by strict strong bisimilarity, e.g., (a.0⊕1 b.0)⊕2

(a.0⊕1 b.0) ≈PL a.0⊕1 b.0 since for any νf ∈ {〈L,R〉, 〈L,L〉, 〈R,R〉,
〈R,L〉}, Π((a.0⊕1 b.0)⊕2 (a.0⊕1 b.0), νf) ∼ Π(a.0⊕1 b.0, ν

f). See Appendix B.3
for its soundness proof.

To make Definition 6.3 insensitive to the placement of families in a binary
variant composition, and consequently to support axioms A1,2, the notion of
bisimulation can be revised as follows.

Definition 6.4 (Product line bisimulation). Two product line terms s and t are
product line bisimilar, denoted by s 'PL t, if and only if:

• ∀νf1 ∈ VFConfig(s) · ∃νf2 ∈ VFConfig(t) ·Π(s, νf1) ∼ Π(t, νf2), and

• ∀νf2 ∈ VFConfig(t) · ∃νf1 ∈ VFConfig(s) ·Π(s, νf1) ∼ Π(t, νf2).

Theorem 6.5. Product line bisimilarity is an equivalence relation.

See Section B.1 for the proof. Confining the behaviors of two CTSs into full
configurations disallows any reconfiguration of variants whose resolutions are
left open in their semantic models (as it was explained in Section 6.1.2).

Matching each and every valid full configuration in the product line bisim-
ilarity is very tedious. This process may require examining all possible pairs of
configurations to find a suitable match. (Yet it does eventually reduce to checking
strong bisimilarity for a large, but finite, number of CCS processes, which is only
decidable for CCS processes with finite-state behaviors [33].) Hence, it would be
appealing to have an appropriate notion of bisimilarity that decides the equiva-
lence of PL-CCS terms at once (without quantifying over the full configurations
in the notion of product line bisimilarity). We provide such a relation, called
configuration bisimulation, next and prove that it coincides with product line
bisimilarity. Therefore, all the results for product line bisimilarity also hold for

146 Chapter 6 — Product Line Process Theory

configuration bisimilarity. Also, to facilitate reasoning about product lines and to
establish an algebraic theory for product line processes, we provide a sound and
complete axiomatization for product line and configuration bisimilarity. Using
this axiomatization, a term can be restructured at the syntactic level to its equiv-
alent terms without the need to generate and compare the state spaces. In the
process of providing a sound and complete axiomatization, we use product line
bisimilarity which makes our proofs much simpler.

We define a configuration-oriented notion of strong bisimulation inspired by
[16], and our notion of branching reliable computed network bisimilarity (see
Definition 3.1). In contrast to CLTSs, the transitions of a CTS are interrelated.
For instance, the transitions a and b in a.0 + (b.0 ⊕1 c.0) are related together as
they coexist in the same product. Hence, these two transitions cannot be matched
independently to prohibit cases where the behaviors of a family is matched par-
tially to the behavior of another family. This correlation among transitions moti-
vates our definition of consistent transition sets. As a first step, we would like to
classify the transitions in terms of their configuration vectors; the set of all tran-
sitions with consistent configurations is called a consistent transition set. Such
transitions potentially belong to a family. Subsequently, we define a relation that
relates two strongly similar states in terms of their consistent transition sets. In
other words, it is also required to relate not only states on the basis of their be-
haviors, but also their consistent transition sets. Therefore, two states are related
if one strongly simulates the other and their consistent transition sets can be
matched. The former condition classifies states in terms of their behaviors (i.e.,
enabled actions) while the latter in terms of the correlation of behaviors (i.e.,
enabled configuration vectors).

Example 6.6. Consider Fig. 6.4, which illustrates the above mention bisimula-
tion relation by an example. The terms in this figure are not product line bisim-
ilar, as the left one consists of four (behaviorally different) products while the
right one consists of two. However, a notion of bisimulation that only considers
consistent transition sets in each state (as shown in Fig. 6.4) cannot distinguish
them. The consistent transition set {(d, 〈L, ?〉), (a, 〈?, ?〉)} can be enabled to-
gether for a product/family identified by with the configuration vector ν as long
as ν v 〈L, ?〉 ∧ ν〈?, ?〉. For instance, consider the product d.0 + a.c.0, which is
identified by the full configuration 〈L,R〉 in the left CTS. It is derived from the
consistent transition sets highlighted in Fig. 6.4. These consistent transition sets
are matched to the corresponding sets in the right CTS. However, the matched
sets do not belong to a family, and consequently cannot specify a product. The
reason stems from the related states b.0 ⊕2 c.0 and b.0. State b.0 ⊕2 c.0 is reach-
able by the consistent transition set {(d, 〈L, ?〉), (a, 〈?, ?〉)} for two products (i.e.,
{〈L,R〉, 〈L,L〉}). Therefore, its consistent transition set {(c, 〈?, R〉)} is enabled
for product 〈L,R〉. However, its related state b.0 is only reachable for one prod-
uct, which does not generate a matching consistent transition set.

To summarize, we need to note for which family a state is reachable in or-

6.2. Bisimilarity for Product Line 147

(d.0⊕1 e.0) + a.(b.0⊕2 c.0)

0 0b.0⊕2 c.0

0 0

(d.0 + a.b.0)⊕1 (e.0 + a.c.0)

0 0

b.0 c.0

0 0

d,
〈L
, ?
〉 e, 〈R

, ?〉

a
,〈

?
,
?〉

b,
〈?
,
L
〉 c

, 〈?
,
R
〉

d,
〈L〉

e, 〈R〉

a
,
〈L
〉 a

, 〈R
〉

b,
〈?
〉

c, 〈?〉

Figure 6.4: An example on defining a bisimulation regarding states and consistent tran-
sition sets: The consistent transitions sets of each state have been grouped together by
dashed/dotted boundaries

der to match its enabled consistent transition sets with respect to that family.
Furthermore, this book-keeping family disallows any reconfiguration of variants
which have been previously resolved.

A partitioning of a configuration vector ν, denoted by pν , is a set of config-
uration vectors such that ∀νi, νj ∈ pν · ((i 6= j) ⇒ νi 6� νj), and ∀νf · (ν v
νf ⇒ ∃νj ∈ pν · (νj v νf)). For instance, {〈?, L〉, 〈L,R〉, 〈R,R〉} is a parti-
tioning of 〈?, ?〉. A partitioning of ν is said to be valid for the state s, denoted
by Par(s, ν, pν), if and only if its elements (containing a product with a non-
deadlock behavior in the state s) are at most as abstract as the configurations
of the transitions of s. Formally, the predicate Par(s, ν, pν) holds if and only if

∀ν1 ∈ pν ⇒ (∃α, ν′1, s′(s
α,ν′1−−−→ s′ ∧ ν′1 v ν1) ∨ @α, ν′1, s′(s

α,ν′1−−−→ s′ ∧ ν′1 � ν1)). This
restriction the partitioning of 〈R, ?, ?〉 in the states (b.0 ⊕2 (0 ⊕3 c.0)) rejects a
partitioning like {〈R,L, ?〉, 〈R,R, ?〉} but accepts {〈R,L, ?〉, 〈R,R,R〉, 〈R,R,L〉}.
For an arbitrary configuration vector ν and state s, the partitioning pν , such that
Par(s, ν, pν), classifies the transitions of s into a set of consistent transition sets;
For any ν ∈ pν1 , transitions of s whose configurations are more abstract than ν
constitute a consistent transition set. In the notion of configuration bisimulation
defined below, states are related in terms of families. Assume s and t are related
for families ν1 and ν2, respectively. Furthermore, the consistent transition sets of
s defined by pν1 , where Par(s, ν1, pν1), are matched to the consistent transition
sets of t defined by pν2 , where Par(t, ν2, pν2).

Definition 6.7 (Configuration bisimulation). A familyR of binary relationsRν1,ν2
⊆ S × S, where ν1, ν2 ∈ Config , is a configuration simulation relation if and only
if for all Rν1,ν2 ∈ R, and s, t ∈ S such that (s, t) ∈ Rν1,ν2 , there exist pν1 and pν2 ,
where Par(s, ν1, pν1) and Par(t, ν2, pν2) such that for any ν′1 ∈ pν1 , there exists
ν′2 ∈ pν2 and:

148 Chapter 6 — Product Line Process Theory

• s
α,ν′′1−−−→ s′ and ν′′1 v ν′1 ⇒ ∃t′, ν′′2 · t

α,ν′′2−−−→ t′, ν′′2 v ν′2, and (s′, t′) ∈ Rν′1,ν′2 ;

• t
α,ν′′2−−−→ t′ and ν′′2 v ν′2 ⇒ ∃s′, ν′′1 · s

α,ν′′1−−−→ s′, ν′′1 v ν′1, and (s′, t′) ∈ Rν′1,ν′2 ,

where Rν′1,ν′2 ∈ R. R is a configuration bisimulation if R and R−1, where
Rν1,ν2 ∈ R ⇔ R−1

ν1,ν2 ∈ R−1, are configuration simulations. Two states s, t ∈ S
are called configuration bisimilar, denoted by s 'C t, if and only if (s, t) ∈ Rν?,ν?
for some family of configuration bisimulation relation R such that Rν?,ν? ∈ R.

Example 6.8. To inspect if a.(b.0⊕1c.0) and a.c.0⊕1a.b.0 are configuration bisim-
ilar, we should find a configuration bisimulation having the relation R〈?〉,〈?〉 =

{(a.(b.0 ⊕1 c.0), a.c.0 ⊕1 a.b.0)}. For the configuration vector 〈?〉, the partition-
ing {〈?〉} and {〈L〉, 〈R〉} are both valid for a.(b.0 ⊕1 c.0), but only {〈L〉, 〈R〉} is
valid for a.c.0 ⊕1 a.b.0. If we consider the partitioning {〈?〉} for a.(b.0 ⊕1 c.0),
and match 〈?〉 to both 〈R〉 and 〈L〉 of the partitioning of a.c.0 ⊕1 a.b.0, then
(b.0⊕1 c.0, b.0) ∈ R〈?〉,〈R〉 and (b.0⊕1 c.0, c.0) ∈ R〈?〉,〈L〉 must hold. However the
family {R〈?〉,〈?〉, R〈?〉,〈R〉, R〈?〉,〈L〉} is not a configuration bisimulation, because
the elements of the only valid partitioning {〈L〉, 〈R〉} of 〈?〉 in the state b.0⊕1 c.0
cannot be both matched to 〈L〉 for the state a.c.0 in the relation R〈?〉,〈L〉. There-
fore, by considering the partitioning {〈L〉, 〈R〉} for 〈?〉 in the state a.(b.0 ⊕1 c.0)
and matching the configurations 〈R〉 and 〈L〉 of the partitioning for a.(b.0⊕1 c.0)
to 〈L〉 and 〈R〉 of the partitioning for a.c.0⊕1 a.b.0 (and vice versa), the family of
relations R〈?〉,〈?〉 = {(a.(b.0⊕1 c.0), a.c.0⊕1 a.b.0)}, R〈R〉,〈L〉 = {(b.0⊕1 c.0, c.0), (0, 0)},
R〈L〉,〈R〉 = {(b.0 ⊕1 c.0, b.0), (0, 0)} is achieved which constitutes a configuration
simulation relation. However a.(b.0⊕1 0) 6'C a.b.0 as the only valid partitioning
of 〈?〉 for the state b.0 ⊕1 0 is {〈R〉, 〈L〉} and then the behavior b.0 ⊕1 0 for the
family 〈R〉 (i.e., the empty consistent transition set) cannot be matched to any
behavior of a.b.0.

Partitioning the transitions of a state, guided by its consistent transition set,
was inspired by our notion of branching reliable computed network bisimilarity,
where a network constraint is partitioned (see Definition 3.1), while parameter-
izing the relation with matched partitioning was inspired by [16].

Theorem 6.9. For any PL-CCS s and t, s 'PL t⇔ s 'C t.

Proof. We assume s 'PL t, we show that s 'C t. The assumption s 'PL t

implies that there is a set of pairs of valid full configurations (νf1 , ν
f
2), where νf1 ∈

VFConfig(s) and νf2 ∈ VFConfig(t), such that Π(s, νf1) ∼ Π(t, νf2). Construct
R = {Rνf1 ,νf2 | Π(s, νf1) ∼ Π(t, νf2)} where Rνf1 ,νf2 is defined as:

R
ν
f
1 ,ν

f
2

= {(s′, t′) | Π(s, νf1) ∼ Π(t, νf2) witnessed by R′ ∧ (Π(s′, νf1),Π(t′, νf2)) ∈ R′}

It is easy to check that R is a configuration bisimulation relation.

6.2. Bisimilarity for Product Line 149

We assume s 'C t is witnessed by the configuration bisimulationR, we show
that s 'PL t. To this aim, for any νf1 ∈ VFConfig(s), we find νf2 ∈ VFConfig(t)

such that Π(s, νf1) ∼ Π(t, νf2) and vice versa. Let B = {ν2 | Rν1,ν2 ∈ R∧ν1 v νf1 }.
Choose b ∈ B such that @ν ∈ B \ {b} · b v ν. Take a configuration νf2 such that
b v νf2 . It is trivial that R′ = {(Π(s′, νf1),Π(t′, νf2)) | (s′, t′) ∈ Rν1,ν2 ∧ Rν1,ν2 ∈
R∧ν1 v νf1∧ν2 v νf2 } is a strong bisimulation witnessing Π(s, νf1) ∼ Π(t, νf2).

Since product line and configuration bisimilarity coincide, with the aim to
provide a sound and complete axiomatization, we use product line bisimilarity
which makes our proofs much simpler. All results for product line bisimilarity
also hold for configuration bisimilarity.

6.2.2 Congruence Property

In this section, we study the congruence property of strict and product line
bisimulation relations, and provide a syntactic restriction over PL-CCS terms that
makes product line bisimilarity a congruence with respect to the PL-CCS opera-
tors.

Strict strong bisimilarity is a congruence for PL-CCS terms.

Theorem 6.10. Strict strong bisimilarity is a congruence for the PL-CCS term al-
gebra.

See Section B.1 for the proof.
The case for product line bisimulation is a bit more intricate. To illustrate

the involved issues, observe that (d.0 ⊕1 e.0) ‖ (b.0 ⊕1 c.0) 6'PL (d.0 ⊕1 e.0) ‖
(c.0⊕1 b.0), while b.0⊕1 c.0 'PL c.0⊕1 b.0. The reason is that the configurations
〈R〉 and 〈L〉 of b.0⊕1c.0 are matched to the configurations 〈L〉 and 〈R〉 of c.0⊕1b.0
respectively, but each pair of matched configurations chooses a different product
in d.0⊕1 e.0. However, (d.0⊕1 e.0)⊕2 (b.0⊕1 c.0) 'PL (d.0⊕1 e.0)⊕2 (c.0⊕1 b.0),
since ⊕2 makes the configurations of its operands independent of each other. To
guarantee congruence for product line bisimilarity, we impose a constraint on
the PL-CCS syntax. In (d.0 ⊕1 e.0) ‖ (b.0 ⊕1 c.0), there are two binary variants
indexed by 1. Hence, once one resolves the choice between d.0 and e.0, the same
choice has to made between b.0 and c.0. We call a product line fully expanded
when all its variants can be configured independently from the configuration of
other variation points. The previous example is not fully expanded as its binary
variants can not be resolved independently.

This constraint was first introduced in [90] with the different intention of
compositionality for their structural rules. We revise their definition to enforce
that different binary variant choices can be made independent of each other. To
formally define a fully expanded term, we use its term-dependency graph which
is a directed labeled graph. Its construction for a term t is explained on the term
(a.〈Y |E〉 + e.0) ‖ 〈Z|E〉, where E = {Y def

= b.0 ⊕1 c.Z, Z
def
= c.Z ⊕2 d.Y }. Its nodes

150 Chapter 6 — Product Line Process Theory

comprise the nodes of the parse tree of t together with additional nodes labeled
〈Ai|Ei〉 and Ei (i.e., the gray and the white nodes in Fig. 6.5, respectively).
Its edges comprise the edges of the parse tree of t (i.e., the thick solid edges
in Fig. 6.5) plus edges connecting 〈Ai|Ei〉 to the node labeled Ai in the term-
dependency graph of Ei (i.e., the dashed edges in Fig. 6.5), and the edges of
recursive specifications Ei. The term-dependency graph of Ei(Ai) consists of
nodes labeled Ai for each Ai ∈ Ai, together with the nodes of the parse trees for

term ti for each Ai
def
= ti ∈ Ei. Its edges comprise the edges of the parse trees

(i.e., the thin solid edges in Fig. 6.5) plus the edges connecting Ai to the roots
of the parse trees of the corresponding right-hand sides, i.e., ti (i.e., the thick
dashed edges in Fig. 6.5). Additionally, we add edges from leaves of the parse
trees labeled Ai to the node labeled with Ai in its binding recursive specification
(i.e., the dotted edges in Fig. 6.5).

a 〈Y |E〉

.

c 0

.

+ 〈Z|E〉

‖

Z ⊕2

. .

c Z d Y

Y ⊕1

. .

b 0 c Z

Figure 6.5: The term-dependency graphs of (a.〈Y |E〉 + e.0) ‖ 〈Z|E〉, where E = {Y def
=

b.0⊕1 c.Z, Z
def
= c.Z ⊕2 d.Y }

Definition 6.11 (Fully expanded terms). A PL-CCS term is fully expanded if and
only if in its term-dependency graph, for each two distinct simple paths starting
at an arbitrary common node and ending at (common or distinct) nodes labeled
with ⊕i, they have both passed through a common node that is labeled with ⊕j ,
for some j 6= i.

Recall that a simple path is a path in a graph which does not have repeating

vertices. This constraint rules out systems such as 〈p1|{p1
def
= p2 ‖ p2, p2

def
=

b.0 ⊕1 c.0}〉, since the parallel composition in the equation of p1 has two simple
paths to ⊕1. However, these paths do not pass through a node labeled with

⊕j , j 6= 1, beforehand. Nevertheless, it accepts systems such as 〈p4|{p4
def
=

(p2 ⊕2 p2) ‖ (b.0 ⊕3 c.0), p2
def
= b.0 ⊕1 c.0}〉, since all simple paths of the parallel

composition in the equation p4 to ⊕1 have already passed through ⊕2, as shown

6.3. Equational Reasoning on PL-CCS Terms 151

in Fig. 6.6. The same holds for simple paths of the node labeled with p4. Such
systems were not accepted by the Definition given in [90]. The term-dependency
graph of Fig. 6.5 satisfies the condition of Definition 6.11.

p2 p2 b 0 c 0

⊕2 . .

⊕3

p4 ‖

p2

b

.

⊕1

.

0 c 0

‖

p2 p2

p1

Figure 6.6: The term-dependency graphs of p1 and p4; the term-dependency graph of p2

is shared

Restricting to fully expanded PL-CCS terms prevents compositing two product
line bisimilar terms s and t with a term t′ with a dependent binary variant which
may be resolved incompatible in the terms s and t. Fully expandedness resolves
the incompatibility problem between dependent variants.

Theorem 6.12. Product line bisimilarity is a congruence on the fully expanded
PL-CCS term algebra.

See Section B.1 for the proof. Restricting to fully expanded PL-CCS terms is
not important in practice (when terms are manipulated at the syntactic level),
since a term can be rewritten using our axioms supported by strict strong bisimi-
larity into a fully expanded form (see Theorem 6.13 in Section 6.3.2). Note that
the side condition of axiom A2 guarantees that a fully expanded term remains
fully expanded after being restructured by this axiom. For instance, although
(a.0⊕1 b.0)⊕2 (c.0⊕1 d.0) is fully expanded, a.0⊕1 (b.0⊕2 (c.0⊕1 d.0)) is not.

6.3 Equational Reasoning on PL-CCS Terms

We extend the axioms given in Section 6.2 to reason about parallel, recursive
behaviors with finite-state models, and indexed binary variants. To axiomatize
the interleaving behavior of parallel composition and terms with variants with an
identical index, we extend the PL-CCS syntax and semantics with new operators
in Section 6.3.1.

We provide PL-CCS axioms that are sound with respect to product line bisimi-
larity in Section 6.3.2. Furthermore, we identify those that are also valid with re-
spect to strict strong bisimilarity. Our axiomatization in Table 6.2 subsumes stan-
dard axioms of CCS for choice operator (C1−4, R1−4, E1−4), axioms of ACP cor-
responding to the well-known elimination theorem [8] (P1−3,5,6 and S1,2,4−6),

152 Chapter 6 — Product Line Process Theory

and axioms of CCS to reason about recursive behaviors [145] (Fold , UnFold ,
and Ung). We explain that a term can be manipulated using axioms supported
by strict strong bisimilarity (without changing the order of operands in binary
variants) to be rewritten into a fully expanded form, and then manipulated with
all axioms valid for product line bisimilarity. We prove ground-completeness
(completeness over closed terms) of our axiomatization for a subset of PL-CCS
terms, namely, those with finite-state behaviors in Section 6.3.3.

6.3.1 Extending PL-CCS Framework

Our axiomatization borrows from the process algebra ACP [21] two auxiliary
operators (left merge and communication merge) to axiomatize the interleaving
and the synchronizing behavior of parallel composition, respectively. Further-
more, we extend the process theory with two new sets of indexed operators (left
and right selector), to restrict the behavior of a term regarding the configuration
of the variant indexed by that number. The SOS rules of operators to derive CTSs
are given in Fig. 6.7.

t1
a,ν−−→ t′1

t1 t2
a,ν−−→ t′1 ‖ t2

: LMerge
t1

a,ν−−→ t′1 t2
a,ν′−−−→ t′2 ν � ν′

t1 | t2 τ,ν�ν′−−−−−−→ t1 ‖ t2
: Merge

t
a,ν−−→ t′ ν|i 6= R

L(t, i)
a,ν−−→ L(t′, i)

: LSelect
t
a,ν−−→ t′ ν|i 6= L

R(t, i)
a,ν−−→ R(t′, i)

: RSelect

Figure 6.7: SOS rules for auxiliary operators

In the left merge composition t1 t2, the left operand (t1) performs an action
and then continues in parallel with t2. In the communication merge t1 | t2, both
operands are synchronized on their initial actions and then continue in parallel
composition. The left selector operator L(t, i) makes all variants indexed by i
be configured as left. Therefore, it only allows behaviors whose configurations
on the variant indexed by i are consistent with left. The right selector operator
R(t, i) behaves symmetrically.

6.3.2 PL-CCS Axiomatization

We proceed to complete the axiomatization of PL-CCS modulo product line bisim-
ilarity. The axioms are given in Table 6.2. Axioms C1−4 define commutativity,
associativity, idempotence, and unit element for the choice operator.

Axiom P1 defines the parallel composition of two families in an interleaving
semantics, as in the process algebra ACP [21]; axiom P2 explains the behavior
of the left merge operator in terms of its left operand, if it can do an action.
However, if it cannot do any action, the result is a deadlock, as explained by P6.
Axioms P3,4 define left-distributivity of the choice and the binary variant over

6.3. Equational Reasoning on PL-CCS Terms 153

the left merge operator, respectively. Axiom P5 defines right-distributivity of bi-
nary variant over the left merge operator. Axiom S1 defines the commutativity
property for the communication merge operator. Axioms S2,3 (together with S1)
define distributivity of choice and binary variant over the communication merge
operator respectively. Axioms S4,5,6 define the behavior of communication merge
operator; when the operands are ready to do matched input and output commu-
nication actions, they can be synchronized and the result of their synchronization
is the unobservable action τ as explained by S4. However, if either they are not
matched (S5) or one of the operands cannot do any action (S6), the result is a
deadlock.

Table 6.2: The axiomatization of PL-CCS terms: for axioms N2 and N4, i 6= j.

p+ q = q + p C1 (p+ q) + r = p+ (q + r) C2

p = p+ p C3 0 + p = p C4

p ‖ q = (p q) + (q p) + (p | q) P1 p | q = q | p S1

a.p q = a.(p ‖ q) P2 (p+ q) | r = (p | r) + (q | r) S2

(p+ q) r = (p r) + (q r) P3 (p⊕i q) | r = (p | r)⊕i (q | r) S3

(p⊕i q) r = (p r)⊕i (q r) P4 (a.p) | (a.q) = τ.(p ‖ q) S4

p (q ⊕i r) = (p q)⊕i (p r) P5 (a.p) | (b.q) = 0, (b 6= a) ∨ (a = τ) S5

0 p = 0 P6 0 | p = 0 S6

(a.p)[f] = f(a).(p[f]) R1 (a.p) \ L = a.(p \ L), a 6∈ L E1

(p+ q)[f] = (p[f]) + (q[f]) R2 (a.p) \ L = 0, a ∈ L E2

(p⊕i q)[f] = (p[f])⊕i (q[f]) R3 (p+ q) \ L = (p \ L) + q \ L) E3

0[f] = 0 R4 0 \ L = 0 E4

(p⊕i q) \ L = (p \ L)⊕i (q \ L) E5

L(p⊕i q, i) = L(p, i) N1 L(p⊕j q, i) = L(p, i)⊕j L(q, i) N2

R(p⊕i q, i) = R(q, i) N3 R(p⊕j q, i) = R(p, i)⊕j R(q, i) N4

p⊕i q = L(p, i)⊕i R(q, i) N5 p = p[k/j], k 6∈ bi(p) N6

〈A|E ∪ {B def
= t}〉 = 〈〈A|E〉|{B def

= t}〉 Dec

〈A|{A def
= t}〉 = 〈t|{A def

= t}〉 UnFold

s = t{s/A} ⇒ s = 〈A|{A def
= t}〉, A is guarded in t Fold

〈A|{A def
= A+ t}〉 = 〈A|{A def

= t}〉 Ung

〈A|{A def
= t1 ⊕i t2}〉 = 〈A|{A def

= t1}〉 ⊕i 〈A|{A def
= t2}〉 Dri

Axioms R1,4 and E1,2,4 define the behavior of renaming and restriction oper-
ators respectively. Axioms R2,3 and E3,5 define distributivity of choice and binary

154 Chapter 6 — Product Line Process Theory

variant over the renaming and restriction operators, respectively.
Axiom Dec decomposes a recursive specificationE made up of (finitely many)

multiple equations into several nested recursive specifications made up of a single
equation. Axiom UnFold expresses the existence of a solution for any recursive
specification E: the constant 〈A|E〉 is a solution of the recursive specification E.
Fold expresses uniqueness of a solution for a guarded recursive specification: if y
is a solution for A in E, and E is guarded, then y = 〈A|E〉. Note that UnFold and
Fold are the consequences of Recursive Definition Principle (RDP) and Recursive
Specification Principle (RSP) in ACP. An occurrence of a process name A in t is
called guarded, if and only if this occurrence is in the scope of an action prefix
operator. A recursive specification is called guarded if and only if all occurrences
of all the process names in the right-hand sides of all its equations are guarded,
or it can be rewritten to such a recursive specification using the axioms of the
theory and the equations of the specification [9]. This guardedness criterion en-
sures every guarded recursive specification has a unique solution (in the model of
closed PL-CCS terms modulo product line bisimilarity). By application of axiom

Ung , it possible to turn the unguarded recursive specification {A def
= A+ t} into

a guarded one. By application of axiom Dri , one can derive the products of a re-

cursive specification: the solution of a recursive specification 〈A|{A def
= t1⊕i t2}〉

is 〈A|{A def
= t1}〉 ⊕i 〈A|{A def

= t2}〉. Axioms UnFold , Fold , and Ung are standard
for CCS terms (with finite state behaviors modulo branching bisimulation) [145].

Axioms N1−5 handle binary variants with an identical index. Whenever the
left (right) operand is selected in p ⊕i q, then all i-indexed variants in p (q),
should select their left (right) operands accordingly. Axiom N5 removes all oc-
currences of ⊕i at the root of p ⊕i q in operands p and q. In other words, with
the help of N1−5, the occurrence of i in subtrees of p ⊕i q becomes unique. For

instance, consider the product line 〈X|{X def
= b.X ⊕1 a.0}〉, with two products

〈X|{X def
= b.X}〉 and 〈X|{X def

= a.0}〉 obtained using axiom Dri . However, by
applying axiom UnFold and substituting for X its defining term, one can derive

〈X|{X def
= b.X ⊕1 a.0}〉 = (b.(〈X|{X def

= b.X ⊕1 a.0}〉) ⊕1 a.0) = b.(〈X|{X def
=

b.X}〉⊕1 〈X|{X def
= a.0}〉)⊕1 a.0. By axioms A4 and N1,5, b.(〈X|{X def

= b.X}〉⊕1

〈X|{X def
= a.0}〉) ⊕1 a.0 is reduced to b.〈X|{X def

= b.X}〉 ⊕1 a.0, which derives

two products b.〈X|{X def
= b.X}〉 and a.0 (that are strongly bisimilar to the prod-

ucts of 〈X|{X def
= b.X ⊕1 a.0}〉). Axiom N6 changes the index of a binary variant

term. For example, (a.0 ⊕1 b.0) ⊕2 (c.0 ⊕1 d.0) = (a.0 ⊕1 b.0) ⊕2 (c.0 ⊕3 d.0).
Consequently, axiom A2 can be applied, resulting in (a.0⊕1 b.0)⊕2 (c.0⊕1 d.0) =
a.0⊕1 (b.0⊕2 (c.0⊕3 d.0)).

It should be noted that t ≈PL s implies t 'PL s. All axioms, except for A1,2

andN6, are sound for strict strong bisimilarity. Generally speaking, to manipulate
a PL-CCS term, as stated in Theorem 6.13, first it can be converted into a fully
expanded form with the help of axioms supported by strict strong bisimilarity,

6.3. Equational Reasoning on PL-CCS Terms 155

and then manipulated with all axioms.

Theorem 6.13. Any PL-CCS term t can be rewritten by axioms A4−6, D1,2, P4,5,
S1,3, R3, E5, Dri , and N1−5 into a form that is fully expanded.

See Section B.2 for the proof. With the help of axioms A4−6, P4,5, S1,3, R3, E5,
and Dri , one can convert a PL-CCS term into a term such that its binary variants
do not occur in the scope of any CCS operators. Then, by axioms N1−5, the term
becomes fully expanded. Therefore, it can be manipulated using all the axioms.
The soundness of derivations, when the order of binary variants operands are
fixed, follows from Theorem 6.10, and when terms are fully expanded, follows
from Theorem 6.12.

Theorem 6.14 (Soundness). The axiomatization, given in Tables 6.1 and 6.2
(while the application of the axioms A1,2 and N6 is restricted to fully expanded
terms), is sound for the term algebra IP (PL-CCS)/ 'PL, i.e., for all closed PL-CCS
terms t1 and t2, t1 = t2 implies t1 'PL t2.

See Section B.3 for the proof. The proof is a consequence of Theorems 6.10,
6.12, 6.13, and the fact that all the axioms except A1,2 and N6 are sound with
respect to strict strong bisimilarity.

Example 6.15. Axioms D1,2 in Table 6.1 can be derived from the other axioms.
The derivation for D1 is:

r ‖ (p⊕i q) =P1 r (p⊕i q) + (p⊕i q) r + r | (p⊕i q)

=P4,5,S2,3 (r p⊕i r q) + (p r ⊕i q r) + (r | p⊕i r | q)

=A5,6 (((r p+ p r + r | p)⊕i (r p+ p r + r | q))⊕i
((r p+ q r + r | p)⊕i (r p+ q r + r | q)))⊕i
(((r q + p r + r | p)⊕i (r q + p r + r | q))⊕i
((r q + q r + r | p)⊕i (r q + q r + r | q)))

=N1,3,5 (r p+ p r + r | q)⊕i (r q + q r + r | q)

=P1 (r ‖ p)⊕i (r ‖ q).

In [89], a set of algebraic laws was provided including A4, A6, D1, and Dri .
Their algebraic laws are sensitive to the numbering of variants and the place-
ment of their operands. Therefore, the laws do not support idempotence and
commutativity properties of the binary variant (axioms A1,3). By prohibiting ap-
plication of axioms A1,2 and N6 while removing variants with an identical index
with the help of axioms N1−5, we can rewrite a term into a fully expanded one.
Subsequently, with the help of axioms A1,2 and N6, our axiomatization becomes
insensitive to the placement of operands in binary variants or binary variant in-
dices.

156 Chapter 6 — Product Line Process Theory

6.3.3 Completeness of the Axiomatization for Finite-state Behaviors

We prove that the axiomatization in Table 6.1 and 6.2 is ground-complete for
PL-CCS terms with finite-state models modulo product line bisimilarity. Follow-
ing the approach of [9], to restrict to PL-CCS terms with finite-state transition
systems, we provide a syntactical restriction for constants 〈A|E〉. We consider
so-called finite-state PL-CCS, denoted by PL-CCSf , which is obtained by extend-
ing PL-CCS with essentially finite-state recursive specifications: a recursive spec-
ification E is essentially finite-state, if it has only finitely many equations and in
the right-hand sides of all equations of E, no process name occurs in the scope of
static operators, namely, parallel composition, left- and communication merge,
restriction, and renaming operators.

For instance, PL-CCS term 〈Y |{Y def
= (a.0 ⊕1 b.0) ‖ c.Y }〉 is not a finite-state

PL-CCS process. To see this, observe that the sequence of transitions 〈Y |{Y def
=

(a.0 ⊕1 b.0) ‖ c.Y }〉 c,〈?〉−−−→ (a.0 ⊕1 b.0) ‖ 〈Y |{Y def
= (a.0 ⊕1 b.0) ‖ c.Y }〉 c〈?〉−−→

(a.0 ⊕1 b.0) ‖ (a.0 ⊕1 b.0) ‖ 〈Y |{Y def
= (a.0 ⊕1 b.0) ‖ c.Y }〉 c,〈?〉−−−→ . . . can be

derived, which leads to an infinite state space. This sequence results from the
occurrence of process name Y in the context of a parallel composition.

Proposition 6.16 (Finite-state behaviors). Consider a PL-CCSf term t; the tran-
sition system for t generated by the SOS rules has only finitely many states.

This proposition can be proved by resolving the binary variants, which are
finite. Therefore, a finite set of CCS terms are derived such that each CCS term
generates finitely many states [145].

Theorem 6.17 (Completeness). The axiomatization, given in Tables 6.1 and 6.2 is
ground-complete for the term algebra IP (PL-CCSf)/ 'PL, i.e., for all closed finite-
state PL-CCSf terms t1 and t2, t1 'PL t2 implies t1 = t2.

See Section B.4 for the proof.

6.4 Product Line Analysis

The advantage of our sound and complete axiomatization is that we can prove
equality of PL-CCS terms at a syntactic level by transforming one term to another.
Hence, one does not need to generate the huge state space, which was required
to check the notions of bisimilarity introduced in Section 6.2. This process can be
facilitated and mechanized with the help of theorem provers, or term rewriting
systems. Consequently, terms can be transformed by our axiomatization into
a basic form, such as linear process specifications in the mCRL2 language [82,
83], over which different analyses can be performed, either manually or using
tools. This basic form acts as a symbolic representation of the state space of
a model, which is comparatively small. A set of tools such as model checker,

6.4. Product Line Analysis 157

state space visualizer, and behavioral simulator exist that run over this basic
representation and can be adapted to our setting. Furthermore, a number of
optimization approaches such as τ -confluence reduction [26], that work on the
level of this basic format, can simplify it prior to any analysis. The transformation
process into a basic form can be mechanized in the same way as [143] within a
small amount of time. Similarly, PL-CCS terms can be reduced to their possible
products (which are simple CCS terms) in a syntactic way to be validated in terms
of their intended properties.

A formal framework for modeling and analyzing SPLs should support modu-
lar design, derivation (configuration) of individual systems from a product line
model, and restructuring them into various syntactic forms [89]. Our process
theory supports them all. In our case, we support a few different forms of re-
structuring: for example, we support “moving variation points throughout the
hierarchical specification of an SPL towards its leaves or its root” [89]. We also
support “modeling individual systems using a higher or lower degree of common
parts” [89]. Therefore, a designer can model the functionality of an SPL irrespec-
tive of the existing components. Later with the aim of reuse, the functionality can
be restructured to behaviors for which appropriate components exist. A restruc-
turing mechanism is also appealing when a new functionality (which corresponds
to a new feature) is added. We illustrate how our framework supports deriving
products or restructuring of SPLs in following sections.

6.4.1 Deriving Products of a Family

Using our axiomatization, one can derive the products of a family, i.e., rewrite a
process term into a term which comprises binary variants of CCS terms.

Example 6.18. For instance, consider CCS terms p, q, and s (which naturally do
not contain the binary variant operator); the family (q ⊕1 (a.(s⊕2 p))⊕3 a.s can
generate three pairwise non-bisimilar products:

(q⊕1(a.(s⊕2 p)))⊕3 a.s =A2

q ⊕1 ((a.(s⊕2 p))⊕3 a.s) =A4 q ⊕1 ((a.s⊕2 a.p)⊕3 a.s) =A1

q ⊕1 ((a.p⊕2 a.s)⊕3 a.s) =A2 q ⊕1 (a.p⊕2 (a.s⊕3 a.s)) =A3

q ⊕1 (a.p⊕2 a.s)

Example 6.19. We can compare product lines 〈p1|{p1
def
= p2 ‖ p2, p2

def
= b.0 ⊕1

c.0}〉 and 〈p′1|{p′1
def
= b.0 ⊕1 c.0 ‖ b.0 ⊕2 c.0}〉. p1 generates two non-bisimilar

products, while p′1 generates three pairwise non-bisimilar products, concluding
p1 6= p′1. To see this, observe the following derivations:

158 Chapter 6 — Product Line Process Theory

p1 =UnFold 〈p2|{p1
def
= p2 ‖ p2,

p2
def
= b.0⊕1 c.0}〉 ‖ 〈p2|{p1

def
= p2 ‖ p2, p2

def
= b.0⊕1 c.0}〉

=UnFold (b.0⊕1 c.0) ‖ (b.0⊕1 c.0)
=P1,C3 ((b.0⊕1 c.0) (b.0⊕1 c.0)) + ((b.0⊕1 c.0) | (b.0⊕1 c.0))
=P4,5,S3 ((b.0 b.0⊕1 c.0 b.0)⊕1 (b.0 c.0⊕1 c.0 c.0))+

((b.0 | b.0⊕1 c.0 | b.0)⊕1 (b.0 | c.0⊕1 c.0 | c.0))
=N1,3,5 (b.0 b.0)⊕1 (c.0 c.0) + (b.0 | b.0)⊕1 (c.0 | c.0)
=P2,S5,C3,4 b.(0 ‖ b.0)⊕1 c.(0 ‖ c.0)
=P1,6,S6 b.b.0⊕1 c.c.0

p′1 =UnFold (b.0⊕1 c.0) ‖ (b.0⊕2 c.0)
=D1,2 ((b.0 ‖ b.0)⊕2 (b.0 ‖ c.0))⊕1 ((c.0 ‖ b.0)⊕2 (c.0 ‖ c.0))
=P1,6,S6 (b.b.0⊕2 (b.c.0 + c.b.0))⊕1 ((c.b.0 + b.c.0)⊕2 c.c.0)
=A1−3,C1 b.b.0⊕1 ((b.c.0 + c.b.0)⊕2 c.c.0)

Next, we show that every PL-CCS term can be rewritten into a normal form
comprising binary choices over CCS products.

Theorem 6.20. Let
⊕

i≤npi denote (p0⊕1 (p1⊕2 (. . .⊕n pn) . . .)) if n > 0, and p0

if n = 0. Using the axiomatization in Tables 6.1 and 6.2, each PL-CCS term t can
be rewritten into the form

⊕
i≤npi, where the pis are CCS processes.

See Section B.2 for the proof. With the help of axioms A4−6, D1,2, P4,5, S1,3,
R3, E5, and Dri , one can convert a PL-CCS term into another term such that its
binary variants do not occur in scope of any CCS operators. Later by axiom N1−6,
the indices of variants become unique. Therefore, by A1,2, it can be rewritten into
the desired format.

6.4.2 Restructuring a Product Family

With the help of our axiomatization, we can factorize the common parts and
simplify the structure of product line terms. We can also identify the mandatory
parts of a product line; the parts that exist in any product.

Example 6.21. Consider a Sensor process that is replicated in different parts of
a car windscreen WindScreen, such as wiper WipFam and fog remover FogFam
[90]:

WindScreen
def
= WipFam ⊕1 FogFam

WipFam
def
= Sensor ‖Wiper

FogFam
def
= Sensor ‖ FogRem

where Sensor detects the different conditions of precipitation, Wiper and FogRem
offer different operational modes for wiper arm movement, and windscreen

6.4. Product Line Analysis 159

warmer concerning environmental conditions, respectively. Using our axioms,
WindScreen specification is restructured as follows:

WindScreen
def
= WipFam ⊕1 FogFam

=UnFold (Sensor ‖Wiper)⊕1 (Sensor ‖ FogRem)
=D1 Sensor ‖ (Wiper ⊕1 FogRem)

The new specification for WindScreen reveals that Sensor is the mandatory part
of our windscreen family. The structural specification (i.e., the architecture) of
WindScreen consists of two components, a Sensor and a component, which can
be either Wiper or FogRem.

Assume that the Sensor has two qualities, namely, high and low. The low
quality sensor cannot distinguish between heavy and little rain (specified by hvy
and ltl actions) and can only discriminate between no rain and rain [90]. The
high quality sensor can, however, make such distinctions as specified below:

Sensor
def
= SensL⊕2 SensH

SensL
def
= non.SensL + ltl .Raining + hvy .Raining + noRain.SensL

Raining
def
= non.SensL + ltl .Raining + hvy .Raining + rain.Raining

SensH
def
= non.SensH + ltl .Medium + hvy .Heavy + noRain.SensH

Medium
def
= non.SensH + ltl .Medium + hvy .Heavy + rain.Medium

Heavy
def
= non.SensH + ltl .Medium + hvy .Heavy + hvyRain.Heavy

The specification of Sensor can be similarly examined to reveal the common
behaviors. To this aim, we first restructure SensL ⊕2 SensH to factor out the
common behaviors:

SensL⊕2 SensH =UnFold

(non.SensL + ltl .Raining + hvy .Raining + noRain.SensL)⊕2

(non.SensH + ltl .Medium + hvy .Heavy + noRain.SensL) =N1,3,5

((non.SensL + ltl .Raining + hvy .Raining + noRain.SensL)⊕2

(non.SensH + ltl .Raining + hvy .Raining + noRain.SensL))⊕2

((non.SensL + ltl .Medium + hvy .Heavy + noRain.SensH)⊕2

(non.SensH + ltl .Medium + hvy .Heavy + noRain.SensH)) =A4,5

(non.(SensL⊕2 SensH) + ltl .Raining + hvy .Raining + noRain.SensL)⊕2

(non.(SensL⊕2 SensH) + ltl .Medium + hvy .Heavy + noRain.SensH) =UnFold

(non.Sensor + ltl .Raining + hvy .Raining + noRain.SensL)⊕2

(non.Sensor + ltl .Medium + hvy .Heavy + noRain.SensH) =N1,3,5,A4,5

non.Sensor + ltl .(Raining ⊕2 Medium) + hvy .(Raining ⊕2 Heavy)+

noRain.Sensor

160 Chapter 6 — Product Line Process Theory

Similarly Raining ⊕2 Medium and Raining ⊕2 Heavy can be examined:

Raining ⊕2 Medium =UnFold,N1,3,5,A4,5

non.(SensL⊕2 SensH) + ltl .(Raining ⊕2 Medium) + hvy .(Raining ⊕2 Heavy)+

rain.(Raining ⊕2 Medium)

Raining ⊕2 Heavy =UnFold,N1,3,5,A4,5

non.(SensL⊕2 SensH) + ltl .(Raining ⊕2 Medium) + hvy .(Raining ⊕2 Heavy)+

(rain.(Raining ⊕2 Heavy)⊕2 hvyRain.(Raining ⊕2 Heavy))

By applying Fold , the new specification of Sensor is obtained as follows:

Sensor
def
= non.Sensor + ltl .RainMed + hvy .RainHvy + noRain.Sensor

RainMed
def
= non.Sensor + ltl .RainMed + hvy .RainHvy + rain.RainMed

RainHvy
def
= non.Sensor + ltl .RainMed + hvy .RainHvy+

(rain.RainHvy ⊕2 hvyRain.RainHvy)

The new specification explains that resolving variability between SensL and SensH
can be postponed until the variability between performing output actions rain
and hvyRain is resolved in case it is possible to have heavy rain.

In [37], PL-CCS was compared with FTS in addressing variability via mod-
eling the above-mentioned example. There, it was concluded that modeling in
PL-CCS can result in verbose descriptions since common parts have to be du-
plicated [39]. However, in our experience, PL-CCS facilitates modular design
without forcing the designer to factor out common parts. Later the specifica-
tion can be restructured as illustrated by the above-given example. For instance,
actions non, ltl , hvy , and noRain are common among SensL and SensR, while
their behaviors does not change after performing actions non and noRain. Such
common actions and behaviors are factored our by rewriting SensL⊕2 SensR to
non.Sensor +ltl .(Raining⊕2Medium)+hvy .(Raining⊕2Heavy)+noRain.Sensor .
Therefore, the modeler is not forced to identify common actions and behaviors
to derive its model. The semantics of our resulting specification is even more
compact than the FTS model of [37] by factorizing out common behaviors as
much as possible; the part of behavior in which both sensors does not change
their behaviors as long as action hvy is performed, is factored out in our case.

6.5 Logical Characterization

In this section, we show that product line bisimilarity induces the same identifi-
cation of PL-CCS terms as the multi-valued modal µ-calculus. In this section, we
first review the logic and then explain how it characterizes product line bisimi-
larity.

6.5. Logical Characterization 161

6.5.1 Multi-Valued Modal µ-Calculus

The multi-valued modal µ-calculus [90] combines Kozen’s modal µ-calculus [105]
and multi-valued µ-calculus as defined by Grumberg and Shoham [136]. Let V
be the set of propositional variables. The set of multi-valued modal µ-calculus
formulae is given by the following grammar:

ϕ ::= true | false | Z | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [a]ϕ | ηZ.ϕ, η ∈ {ν, µ}
where a ∈ Act and Z ∈ V, and the fixed point quantifiers µ and ν are variable
binders.

Let mv − Lµ denote the set of closed formulae generated by the above gram-
mar. The semantics of a formula for a PL-CCS term is the set of configurations
satisfying it. All configurations satisfy true in all states. A configuration ν′ satis-
fies a formula φ1 ∨ φ2 in state s if it satisfies either φ1 or φ2 in state s. A configu-
ration ν′ satisfies a formula 〈a〉ϕ in state s if it has a transition s

a,ν−−→ s′ such that
ν v ν′ and ν′ satisfies ϕ in state s′. A configuration ν′ satisfies a formula [a]ϕ in
state s if for all transitions s

a,ν−−→ s′ such that ν v ν′, ν′ satisfies ϕ in state s′.
Equations with recursive variables are used to describe properties of behaviors

with an infinite depth. For instance, X
def
= 〈a〉X ∨〈b〉true specifies configurations

(i.e., products) that satisfy 〈b〉true either in the initial state, or the state reached
after performing a sequence of a-actions (with consistent configurations). Since
an equation may have many solutions, the maximum and minimum solutions are
selected by νZ.φ and µZ.φ, respectively. Considering Z as a mapping from the
states to a set of configurations, µZ.φ is valid for the smallest mapping Z that sat-
isfies the equation Z = φ. Similarly νZ.φ is valid for the largest mapping Z that
satisfies equation Z = φ. For instance, the property µX.〈a〉X ∨ 〈b〉true specifies
that “eventually an action b follows a (possibly empty) sequence of a actions”.
This property holds for the configuration 〈L,L〉 in the state 〈X|E〉 of CTS in Fig.
6.3a.

The semantics of ϕ, denoted by [[ϕ]], is a function S → IP (Config) that defines
the set of configurations that satisfy formula ϕ for each given state. Given an
environment ρ : V → (S → IP (Config)), which maps free variables in ϕ to
S → IP (Config), [[ϕ]]ρ defines the semantics of ϕ with respect to ρ in Table 6.3.

Let Ra(s, s′) = {ν | s ν′,a−−−→ s′, ν′ v ν} denote the set of configurations for which
s has a transition to s′ labeled by a.

Example 6.22. Regarding the rules in Table 6.3, the semantics of [[〈b〉true]] in the
state (b.〈X|E〉 ⊕1 c) of the CTS in Fig. 6.3a is {〈L,R〉, 〈L,L〉}, since Rb(b.〈X|E〉 ⊕1

c.0, 〈X|E〉) = {〈L,R〉, 〈L,L〉} and [[true]](〈X|E〉) = Config. It can be shown that
f = {(b.〈X|E〉 ⊕1 c.0) 7→ {〈L,R〉, 〈L,L〉}, 〈X|E〉 7→ {〈L,L〉}, 0 7→ ∅} is the semantics
of µX.〈a〉X ∨ 〈b〉true since [[〈a〉X]][X 7→f] = λs.

⋃
{Ra(s, s′) ∩ X(s′)} = {〈X|E〉 7→

{〈L,L〉}, b.〈X|E〉⊕1 c 7→ ∅, 0 7→ ∅}, [[〈b〉true]] = {b.〈X|E〉⊕1 c 7→ {〈L,R〉, 〈L,L〉}, 〈X|E〉
7→ ∅, 0 7→ ∅}, f = [[〈a〉X ∨ 〈b〉true]][X 7→f], and it is the minimum mapping w.r.t.
inclusion that satisfies the equation X = 〈a〉X ∨ 〈b〉true.

162 Chapter 6 — Product Line Process Theory

Table 6.3: Semantics of multi-valued modal µ-calculus [90]

[[true]]ρ = λs.Config [[〈a〉ϕ]]ρ = λs.
⋃
s′∈S Ra(s, s′) ∩ [[ϕ]]ρ(s

′)
[[false]]ρ = λs.∅ [[[a]ϕ]]ρ = λs.

⋂
s′∈S ¬Ra(s, s′) ∪ [[ϕ]]ρ(s

′)
[[Z]]ρ = ρ(Z) [[µZ.ϕ]]ρ =

⋂{f | [[ϕ]]ρ[Z 7→f] ⊆ f}
[[ϕ1 ∧ ϕ2]]ρ = [[ϕ1]]ρ ∩ [[ϕ2]]ρ [[νZ.ϕ]]ρ =

⋃{f | f ⊆ [[ϕ]]ρ[Z 7→f]}
[[ϕ1 ∨ ϕ2]]ρ = [[ϕ1]]ρ ∪ [[ϕ2]]ρ

6.5.2 Relation to Product Line Bisimilarity

Model checking logical formula φ over a PL-CCS term is supposed to result in the
set of full configurations for which the property holds. Intuitively, two PL-CCS
terms are logically equivalent when for each logical formula, there exists a non-
empty set of products in one product line satisfying it if and only if there exists
such a non-empty set in the other. For instance, (a.0 + b.0)⊕1 b.0 is not logically
equivalent to a.0 ⊕1 b.0 as the logical formula 〈a〉true ∧ 〈b〉true is satisfied by
the former for the configuration 〈L〉, but it is not satisfied by the latter for any
configuration.

Definition 6.23 (Logical equivalence). Two PL-CCS terms s and t are logically
equivalent, denoted by s ∼L t, iff ∀ϕ ∈ mv − Lµ · ([[ϕ]](s) 6= ∅ ⇔ [[ϕ]](t) 6= ∅).

As stated before, product line bisimilarity and logical equivalence coincide.
We restrict to PL-CCS terms with finite-state behaviors, following the approach
of [49, 92]. However, Theorem 6.24 can be generalized in the same vein as
[118] by resorting to infinitary logics. The following theorem states that if two
PL-CCSf terms are not product line bisimilar, then there is a logical formula that
can distinguish them.

Theorem 6.24. For any PL-CCSf terms s and t, s 'PL t iff s ∼L t.

See Section B.5 for the proof.

6.6 Related Work

There are a vast number of languages to specify software product lines for the
purpose of specifying different aspects of variability [1, 7, 15, 38, 39, 44, 60,
65, 77, 89, 90, 94, 106, 108, 110, 141, 157]. Among them some frameworks,
such as [1, 44, 60, 157], do not directly address formal reasoning. On the other
hand, there are formal frameworks to reason about some aspects of SPLs, such
as [7, 15, 38, 39, 65, 77, 89, 90, 94, 106, 108, 110, 141].

Regarding modeling issues, several approaches are classified by [39] in terms
of treating variability as either a first class citizen [15, 44, 77, 94, 108, 110, 141]
or as part of the behavioral model [1, 60, 65, 90, 106, 157]. In the former ap-
proaches, variability is separately modeled and related to other models (data

6.6. Related Work 163

and behavior), called base models. Therefore, variability is explicitly traceable in
base models and its evolution is automatically propagated to the base models. As
opposed to other process-algebraic approaches [15, 77, 141], PL-CCS expresses
variability as part of its behavioral model; In [15, 77], the cross-tree constraints
of feature models are related to the behavior of products using a CCS-like pro-
cess algebra, while in [141], process terms are tagged with the sets of specific
products where they are enabled using a CSP-like process algebra. In [20], some
of the fundamental formal behavioral models for SPLs are compared in terms of
their expressiveness.

Our approach follows the line of research on process algebra for SPLs [14, 15,
77, 89, 90, 141]. It also offers several reasoning capabilities: model-checking
based on a multi-valued modal µ-calculus over CTSs given in [90], and equa-
tional reasoning based on a set of rules to restructure PL-CCS terms, extending
the approach of [89]. Along these lines, the safety and liveness properties of
SPLs as well as consistency of configurations are checked in [15, 77] by encod-
ing their semantic rules in the Maude rewriting logic. In [14], the algebraic
framework mCRL2 [82, 83], is used for modular verification of SPLs. There, tai-
lored property-preserving reductions were applied to a product line modeled in
mCRL2 using the reduction modulo branching bisimulation of mCRL2 tool set.
Two pre-congruence behavioral relations to compare the behavior of a product
either against a product or a family are proposed in [141]. In contrast, we offer
a set of behavioral equivalence relations over CTSs supported by a sound and
complete axiomatization to reason about families at the syntactic level. To this
aim, a family can be restructured to another, while its functionality is preserved.
Our approach is hence complementary to the aforementioned approaches in the
literature.

The work of [109] is analogous to our in that it takes an axiomatic approach
to software product lines. However, their approach has a different intention,
namely, to axiomatize product family concepts that characterize a generic prod-
uct line formalism. Their approach defines that all operators of a formalism are
distributive over the binary variant operator. Our axioms D1,2, A5,6, P4,5, S3

(together with S1), R3, and E5 conform to this result. Furthermore, it expresses
that binary variant operators with different indices are distributive and provides
rules to simplify specifications when two i-indexed variants are directly nested.
These rules are derivable in our setting by axioms A3 and N1−6 as follows:

(P⊕jQ)⊕i (P ⊕j O) =A3

((P ⊕j Q)⊕i (P ⊕j O))⊕j ((P ⊕j Q)⊕i (P ⊕j O)) =N5

L((P ⊕j Q)⊕i (P ⊕j O), j)⊕j R((P ⊕j Q)⊕i (P ⊕j O), j) =N1−4

(L(P, j)⊕i L(P, j))⊕j (R(Q, j)⊕i R(O, j)) =N2,N4

L(P ⊕i P, j)⊕j R(Q⊕i O, j) =A3,N5 P ⊕j (Q⊕i O)

P⊕i(Q⊕i O) =N5 L(P, i)⊕i R(Q⊕i O, i) =N4

L(P, i)⊕i R(O, i) =N5 P ⊕i O

164 Chapter 6 — Product Line Process Theory

Similarly, (P ⊕j O) ⊕i (Q ⊕j O) = (P ⊕j Q) ⊕i O and (P ⊕i Q) ⊕i O = P ⊕i O
can be derived from our equational theory.

Other techniques related to our behavioral equivalence are conformance no-
tions that are used to iteratively refine partial behavioral models; they can con-
sequently be used to relate a product behavior to a family model. Refinement as
well as conformance between SPLs modeled by modal I/O automata is studied
in [106]. A notion of behavioral conformance on MTS-based specifications is
defined in [65], which preserves 3-valued weak µ-calculus. Modal transition sys-
tems (MTS) [65] and modal I/O automata [106] capture variability by defining
transitions as optional and mandatory. A notion of input-output conformance on
FTSs is defined in [18, 19] with the aim of devising a model-based testing trajec-
tory for SPLs. In [41], pre-orders over FTSs preserving LTL properties are given
with respect to specific products. As opposed to these approaches, our equiva-
lence relation is defined over CTS and preserves multi-valued modal µ-calculus.
Providing a comprehensive and formal comparison of the different notions of SPL
pre-orders in the literature is among our future work. In [16], a feature-oriented
notion of branching bisimulation over FTSs and its associated minimization al-
gorithm were introduced in order to reduce a model prior to its verification. Our
configuration bisimulation was inspired by [16] and adopting its minimization
algorithm is also among our future directions for research.

Other approaches mainly use model checking to reason about SPLs; these
include checking safety properties over Statecharts in [110], LTL over FTSs [39],
CTL over modal I/O automata [108], MHML, a deontic logic interpreted over
MTSs [7], and fLTL (an extension of LTL) over FTSs in [38].

6.7 Conclusions and Future Work

We proposed an equational reasoning technique to reason about software prod-
uct lines at the syntactic level. To this aim, we defined product line bisimilarity
by finding a mapping between products of two terms, identified by their con-
figuration vectors. We also introduced a configuration-oriented bisimilarity that
compares families at once, based on the idea of partitioning configuration lists
inspired by our notion of branching reliable computed network bisimilarity. We
proved that product line and configuration bisimilarity coincide. To facilitate
checking the bisimilarity relations, we provided a sound and complete axiomati-
zation over closed and finite-state behaviors. We characterized the distinguishing
power of our equivalence relations in terms of a multi-valued modal µ-calculus.

Instead of working at the semantic level and finding a mapping between prod-
ucts, one can use our axioms and restructure a term to its equivalent terms, e.g.,
such that the mandatory and optional parts are factored out separately. The re-
structuring mechanism can also be initiated to group the functionality of an SPL
to behaviors for which appropriate components exist. Furthermore, one can de-
rive the possible products of a term, specified by CCS terms to validate an SPL

6.7. Conclusions and Future Work 165

model in terms of its various products.
We intend to exploit the PL-CCS process theory as a formal framework for

specifying the structural and behavioral aspects of product lines, following the
approach of [5]. We intend to investigate a basic form, such as linear process
specification in mCRL2, over which different analysis and optimizations can be
executed. Then, PL-CCS terms can be automatically transformed into the basic
form in the same way of [143]. Finding a minimization algorithm for configura-
tion bisimulation is another line of research. Furthermore, pre-order notions of
literature can be compared in the general setting of FTS, which is a very expres-
sive model for SPLs [20].

7Concluding Remarks

We review the results of this thesis and the objectives that have been achieved to
overcome the problems and the challenges as explained in Sections 1.1 and 1.3,
respectively. Furthermore, we provide possible future directions of this research.

7.1 Results

We have classified our results from three viewpoints: the basic semantic model
for MANETs, formal modeling frameworks for MANETs and results related to
each specific framework, and formal analysis of MANETs taking mobility into
account.

To address the problem of abstract formal modeling of the topology and its
changes to minimize the problem of state space explosion and to make its formal
analysis via the model checking technique feasible, the following results have
been obtained:

• We introduced network constraints with positive and negative pairs as the
symbolic representation of a set of topologies. These constraints are ex-
ploited to annotate the transitions of the classical LTSs to compactly ad-
dress arbitrary mobility of nodes at the semantics. We formally defined
how a CLTS is unfolded into an LTS whose states maintain the underlying
topology. We showed in Section 3.6 through a case study on a leader elec-
tion protocol for MANETs that CLTSs prevent the growth of state spaces
with a factor of 2n

2

, where n is the number of nodes, as opposed to the
classical LTSs.

• We gave a novel branching-time temporal logic over CLTSs, as an exten-
sion of action-based CTL [48], to specify the topology-dependent proper-
ties of MANETs. In this logic, the path quantifier All is parametrized with
a topology formula that enforces the pre-condition on establishment of the
property. The topology formula expresses multi-hop constraints over the
topology. We have also defined an efficient model checking algorithm for
this logic. Therefore, by specifying an appropriate property one can ex-
amine the correct behavior of a protocol for different topological patterns

167

168 Chapter 7 — Concluding Remarks

(without changing the model), which is infeasible through classical model
checking approaches.

Therefore, the objective of providing a suitable semantic model addressing
the arbitrary mobility of nodes which supports efficient analysis of protocols
through model checking has been achieved.

To formally model the protocols above the data link layer, two directions were
followed, with a focus on the problem of minimizing the state space explosion
specially for formal models of small networks.

• We provided an algebraic framework whose terms derive CLTSs. Thus the
problem of state space explosion due to topology and its arbitrary changes
is delegated to the semantic model. The behavior of wireless communica-
tion with the required properties is guaranteed by the careful computation
of network constraints by the SOS rules. The framework was furnished
with a sound and complete axiomatization modulo rooted branching reli-
able computed network bisimilarity. Therefore, it supports necessary means
to automatically derive the linear format of a specification following the
approach of [143] for symbolic analysis of MANETs, namely the cones and
foci method [67, 68, 86] and parametrized boolean equation systems [88].
The former allows to prove that a network composed of a finite but un-
bounded numbers of uniform nodes is behaviorally equivalent to a specifi-
cation, while the latter enables to prove a property for a specification with
infinite data domains.

• A modeling approach based on the actor computation model was followed
which comes up with a high level of abstraction for modelers, and hence,
it can be used in a larger community thanks to its simple syntax inherited
from Rebeca [139]. However, it does not support compositional modeling
of networks as opposed to the algebraic framework. Furthermore, it pro-
hibits a direct generation of the compact CLTS models (to address the issues
of topology). Semantic states contain an abstract model of the underlying
topology by which the behavior of wireless communication was defined. To
minimize the problem of state space explosion and hence, to get the assis-
tance of existing model checking tools, we proposed a reduction technique,
based on the counter abstraction technique, whose application is restricted
to static networks. However, CLTSs are generated through a two-step state
generation tool by first exploring next states and then merging those which
only differ in their underlying topology.

To formally analyze MANETs to find mobility scenarios leading to an erro-
neous behavior, the following results were achieved:

• We extended the model checking technique over CLTSs and demonstrated
how the correct behavior of a protocol can be inspected regarding different
topological patterns.

7.2. Future Work 169

• To investigate the topology-dependent properties of MANETs by equational
reasoning, we provided an equivalence relation for the reliable setting sup-
ported with a sound and complete axiomatization. Furthermore, we pro-
vided an analysis approach at the syntactic level, exploiting a precongru-
ence relation and our axiomatization.

• We extended the counter abstraction technique with the idea of partitioning
nodes in terms of their topological positions to reduce the classical semantic
model of MANETs when the underlying topology constitutes a part of a
semantic state.

• We introduced a configuration-oriented bisimilarity that compares product
families at once, inspired by our notion of branching reliable computed
network bisimilarity, which induces the same identification of PL-CCS terms
as the multi-valued modal µ-calculus of [90]. We also provided a sound
and complete axiomatization over closed PL-CCS terms with finite-state
behaviors.

7.2 Future Work

The following extensions are proposed for this research:

• Extending the algebraic framework with parametrized boolean equations
in the same way as [88]: We can symbolically reason about the properties
of MANET models with infinite data domains specified by linear formats
without any need to generate the state spaces.

• Application of wRebeca to the newer versions of AODV: We can learn expe-
riences by inspecting different versions which are helpful for the protocol
design. Our ultimate goal could be to show how formal tools are beneficial
for a protocol design.

• Extending wRebeca with timing features following the approach of [102]:
We remark that our approach of modeling the topology and timing concepts
are orthogonal, and thus it can be easily extended to reason about the
performance issues of protocols.

• Extending the model checking algorithm for topology formula with nega-
tive topology formula, e.g., ` 699K `′: To this aim, we should define when a
path is valid for a multi-hop constraint M. Instead of finding a subgraph
for a positive topology formula, we should find a super-graph which does
not satisfy a negative topology formula.

• Generating a counterexample during model checking: To assist the process
of debugging, it is essential to improve our model checking algorithm to
generate a counterexample. The role of network constraints during the
model checking make the generation of counterexamples challenging.

Bibliography

[1] W. van der Aalst, M. Dumas, F. Gottschalk, A. ter Hofstede, M. Rosa,
and J. Mendling. Correctness-preserving configuration of business process
models. In Proc. 11th Conference on Fundamental Approaches to Software
Engineering, volume 4961 of LNCS, pages 46–61. Springer, 2008.

[2] P. Aziz Abdulla, G. Delzanno, O. Rezine, A. Sangnier, and R. Traverso.
On the verification of timed ad hoc networks. In Proc. 9th Conference on
Formal Modeling and Analysis of Timed Systems, volume 6919 of LNCS,
pages 256–270. Springer, 2011.

[3] L. Aceto, A. Ingólfsdóttir, K. Larsen, and J. Srba. Reactive Systems: Mod-
elling, Specification and Verification. Cambridge University Press, 2007.

[4] G. Agha. ACTORS - A Model of Concurrent Computation in Distributed
Systems. MIT Press, 1990.

[5] A. Aldini, M. Bernardo, and F. Corradini. A Process Algebraic Approach to
Software Architecture Design. Springer, 2010.

[6] H. R. Andersen, C. Stirling, and G. Winskel. A compositional proof system
for the modal mu-calculus. In Proc. 9th Annual Symposium on Logic in
Computer Science, pages 144–153. IEEE, 1994.

[7] P. Asirelli, M. ter Beek, A. Fantechi, and S. Gnesi. A logical framework to
deal with variability. In Proc. 8th Conference on Integrated Formal Methods,
volume 6396 of LNCS, pages 43–58, 2010.

[8] J. Baeten, T. Basten, and M.A. Reniers. Process Algebra: Equational Theo-
ries of Communicating Processes. Cambridge University Press, 2010.

[9] J. Baeten and M. Bravetti. A ground-complete axiomatization of finite
state processes in process algebra. In Proc. 16th Conference on Concurrency
Theory, volume 3653 of LNCS, pages 248–262. Springer, 2005.

[10] R. Bakhshi, L. Cloth, W. J. Fokkink, and B. R. Haverkort. Mean-field anal-
ysis for the evaluation of gossip protocols. In Proc. on Quantitative Evalu-
ation of SysTems, pages 247–256. IEEE, 2009.

171

172 Bibliography

[11] G. Basler, M. Mazzucchi, T. Wahl, and D. Kroening. Symbolic counter
aabstraction for concurrent software. In Proc. 21st Conference on Computer
Aided Verification, pages 64–78. Springer, 2009.

[12] T. Basten. Branching bisimilarity is an equivalence indeed! Information
Processing Letters, 58(3):141–147, 1996.

[13] R. J. Baxter. Exactly Solved Models in Statistical Mechanics. Academic Press,
1982.

[14] M. ter Beek and E. P. de Vink. Using mCRL2 for the analysis of software
product lines. In Proc. 2nd Workshop on Formal Methods in Software Engi-
neering, pages 31–37. ACM, 2014.

[15] M. ter Beek, A. Lluch-Lafuente, and M. Petrocchi. Combining declarative
and procedural views in the specification and analysis of product families.
In Proc. 17th Software Product Line Conference, pages 10–17. ACM, 2013.

[16] T. Belder, M. H. ter Beek, and E. P. de Vink. Coherent branching feature
bisimulation. In Proc. 6th Workshop on Formal Methods and Analysis in
SPL Engineering, volume 182 of EPTCS, pages 14–30, 2015.

[17] J. Bengtson, M. Johansson, J. Parrow, and B. Victor. Psi-calculi: Mobile
processes, nominal data, and logic. In Proc. 24th Annual IEEE Symposium
on Logic in Computer Science, pages 39–48. IEEE, 2009.

[18] H. Beohar and M. R. Mousavi. Spinal test suites for software product lines.
In Proc. 9th Workshop on Model-Based Testing, volume 141 of EPTCS, pages
44–55, 2014.

[19] H. Beohar and M.R. Mousavi. Input-output conformance testing based on
featured transition systems. In Proc. Symposium on Applied Computing,
pages 1272–1278. ACM, 2014.

[20] H. Beohar, M. Varshosa, and M.R. Mousavi. Basic behavioral models for
software product lines: Expressiveness and testing pre-orders. Science of
Computer Programming, 2015.

[21] J. Bergstra and J. W. Klop. Process algebra for synchronous communica-
tion. Information and Control, 60(1-3):109–137, 1984.

[22] J. Bergstra and J. W. Klop. Algebra of communicating processes with
abstraction. Theoretical Computer Science, 37:21–77, 1985.

[23] D. P. Bertsekas and R. T. G. Gallager. Data Networks. Prentice Hall, 1992.

[24] M. Bezem and J. F. Groote. Invariants in process algebra with data. In
Proc. 5th Conference of Concurrency Theory, volume 836 of LNCS, pages
401–416. Springer, 1994.

Bibliography 173

[25] K. Bhargavan, D. Obradovid, and C. A. Gunter. Formal verification of
standards for distance vector routing protocols. Journal of the ACM,
49(4):538–576, 2002.

[26] S. Blom and J. van de Pol. State space reduction by proving confluence.
In Proc. 14th Conference on Computer Aided Verification, volume 2404 of
LNCS, pages 596–609. Springer, 2002.

[27] J. Borgström, S. Huang, M. Johansson, P. Raabjerg, B. Victor, J. Åman Po-
hjola, and J. Parrow. Broadcast psi-calculi with an application to wireless
protocols. Software and System Modeling, 14(1):201–216, 2015.

[28] T. Bourke, R. J. van Glabbeek, and P. Höfner. A mechanized proof of loop
freedom of the (untimed) AODV routing protocol. In Proc. 12th Sympo-
sium on Automated Technology for Verification and Analysis, volume 8837
of LNCS, pages 47–63. Springer, 2014.

[29] T. Bourke, R. J. van Glabbeek, and P. Höfner. Showing invariance com-
positionally for a process algebra for network protocols. In Proc. 5th Con-
ference on Interactive Theorem Proving, volume 8558 of LNCS, pages 144–
159. Springer, 2014.

[30] E. Bres, R. J. van Glabbeek, and P. Höfner. A timed process algebra for
wireless networks with an application in routing (extended abstract). In
Proc. 25th European Symposium on Programming, volume 9632 of LNCS,
pages 95–122. Springer, 2016.

[31] E. J. H. Chang. Echo algorithms: Depth parallel operations on general
graphs. IEEE Transactions on Software Engineering, 8(4):391–401, 1982.

[32] S. Chiyangwa and M. Kwiatkowska. A timing analysis of AODV. In Proc.
7th IFIP Conference on Formal Methods for Open Object-based Distributed
Systems, volume 3535 of LNCS, pages 306–321. Springer, 2005.

[33] S. Christensen, H. Hüttel, and C. Stirling. Bisimulation equivalence is
decidable for all context-free processes. Information and Computation,
121(2):143–148, 1995.

[34] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization
skeletons using branching-time temporal logic. In Proc. Workshop on Logic
of Programs, volume 131 of LNCS, pages 52–71. Springer, 1981.

[35] E. M. Clarke, E. A. Emerson, S. Jha, and A. Prasad Sistla. Symmetry
reductions in model checking. In Proc. 10th Conference on Computer Aided
Verification, volume 1427 of LNCS, pages 147–158. Springer, 1998.

[36] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press,
2001.

174 Bibliography

[37] A. Classen. Modelling with FTS: a collection of illustrative examples.
Technical Report P-CS-TR SPLMC-00000001, PReCISE Research Center,
University of Namur, 2010.

[38] A. Classen, M. Cordy, P. Schobbens, P. Heymans, A. Legay, and J. F. Raskin.
Featured transition systems: foundations for verifying variability-intensive
systems and their application to LTL model checking. IEEE Transactions on
Software Engineering, 39(8):1069–1089, 2013.

[39] A. Classen, P. Heymans, P. Schobbens, A. Legay, and J. F. Raskin. Model
checking lots of systems: efficient verification of temporal properties in
software product lines. In Proc. 32nd Conference on Software Engineering,
pages 335–344. ACM, 2010.

[40] P. Clements and L. Northrop. Software product lines: Practices and Patterns.
Addison-Wesley, 2001.

[41] M. Cordy, A. Classen, G. Perrouin, P. Schobbens, P. Heymans, and A. Legay.
Simulation-based abstractions for software product-line model checking.
In Proc. 34th Conference on Software Engineering, pages 672–682. IEEE,
2012.

[42] A. Dal Corso, D. Macedonio, and M. Merro. Statistical model checking of
ad hoc routing protocols in lossy grid networks. In Proc. 7th International
Symposium on NASA Formal Methods, volume 9058 of LNCS, pages 112–
126. Springer, 2015.

[43] T. Cui, L. Chen, and T. Ho. Proc. 46th IEEE conference on distributed
optimization in wireless networks using broadcast advantage. In Proc.
Decision and Control, pages 5839–5844. IEEE, 2007.

[44] K. Czarnecki and M. Antkiewicz. Mapping features to models: a template
approach based on superimposed variants. In Proc. 4th Conference on Gen-
erative Programming and Component Engineering,, volume 3676 of LNCS,
pages 422–437. Springer, 2005.

[45] E. M. Dashofy, A. van der Hoek, and R. N. Taylor. An infrastructure for
the rapid development of xml-based architecture description languages.
In Proc. 22rd Conference on Software Engineering, pages 266–276. ACM,
2002.

[46] A. David, K. G. Larsen, A. Legay, M. Mikucionis, and D. Bøgsted Poulsen.
Uppaal SMC tutorial. International Journal on Software Tools for Technol-
ogy Transfer, 17(4):397–415, 2015.

[47] R. De Nicola, A. Fantechi, S. Gnesi, and G. Ristori. An action-based frame-
work for verifying logical and behavioural properties of concurrent sys-
tems. Computer Networks and ISDN Systems, 25(7):761–778, 1993.

Bibliography 175

[48] R. De Nicola and F. W. Vaandrager. Action versus state based logics for
transition systems. In Semantics of Systems of Concurrent Processes, volume
469 of LNCS, pages 407–419. Springer, 1990.

[49] R. De Nicola and F.W. Vaandrager. Three logics for branching bisimula-
tion. Journal of the ACM, 42(2):458–487, 1995.

[50] R. de Renesse and A. H. Aghvami. Formal verification of ad-hoc routing
protocols using SPIN model checker. In Proc. 12th Mediterranean Elec-
trotechnical Conference, pages 1177–1182. IEEE, 2004.

[51] G. Delzanno, A. Sangnier, R. Traverso, and G. Zavattaro. On the complex-
ity of parameterized reachability in reconfigurable broadcast networks. In
Proc. Annual Conference on Foundations of Software Technology and The-
oretical Computer Science, volume 18 of LIPIcs, pages 289–300. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

[52] G. Delzanno, A. Sangnier, and G. Zavattaro. Parameterized verification
of safety properties in ad hoc network protocols. In Proc. 1st Workshop
on Process Algebra and Coordination, volume 60 of EPTCS, pages 56–65,
2011.

[53] E. A. Emerson E. M. Clarke and A. P. Sistla. Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM
Transaction of Programming Languages and Systems, 8(2):244–263, 1986.

[54] S. Edenhofer and P. Höfner. Towards a rigorous analysis of aodvv2
(dymo). In Proc. 20th IEEE International Conference on Network Protocols,
pages 1–6. IEEE Computer Society, 2012.

[55] H. Ehrich, J. Loeckx, and M Wolf. Specification of Abstract Data Types.
John Wiley, 1996.

[56] E. A. Emerson and R. J. Trefler. From asymmetry to full symmetry: New
techniques for symmetry reduction in model checking. In Proc. 10th
IFIP WG 10.5 Advanced Research Working Conference on Correct Hardware
Design and Verification Methods, volume 1703 of LNCS, pages 142–156.
Springer, 1999.

[57] C. Ene and T. Muntean. Expressiveness of point-to-point versus broadcast
communications. In Proc. 12th Symposium on Fundamentals of Computa-
tion Theory, volume 1684 of LNCS, pages 258–268. Springer, 1999.

[58] E. Engström and P. Runeson. Software product line testing - A systematic
mapping study. Information & Software Technology, 53(1):2–13, 2011.

[59] K. R. Fall and W. R. Stevens. TCP/IP Illustrated, volume 1. Addison-Wesley,
2011.

176 Bibliography

[60] A. Fantechi and S. Gnesi. Formal modeling for product line families engi-
neering. In Proc. 12th Conference on Software Product Lines, pages 193–
202. IEEE, 2008.

[61] A. Fehnker, R. J. van Glabbeek, P. Höfner, A. McIver, M. Portmann, and
W. Tan. Automated analysis of AODV using UPPAAL. In Proc. 18th Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems,
volume 7214 of LNCS, pages 173–187. Springer, 2012.

[62] A. Fehnker, R. J. van Glabbeek, P. Höfner, A. McIver, M. Portmann, and
W. L. Tan. A process algebra for wireless mesh networks used for mod-
elling, verifying and analysing AODV. arXiv preprint arXiv:1312.7645,
2013.

[63] A. Fehnker, R. J. van Glabbeek, P. Höfner, A. McIver, M. Portmann, and
W. L. Tan. Automated analysis of AODV using UPPAAL. In Proc. 18th
Conference on Tools and Algorithms for the Construction and Analysis of
Systems, volume 7214 of LNCS, pages 173–187. Springer, 2012.

[64] A. Fehnker, R. J. van Glabbeek, P. Höfner, A. McIver, M. Portmann, and
W. L. Tan. A process algebra for wireless mesh networks. In Proc. 21st
European Symposium on Programming, volume 7211 of LNCS, pages 295–
315. Springer, 2012.

[65] D. Fischbein, S. Uchitel, and V. Braberman. A foundation for behavioral
conformance in software product line architectures. In Proc. Workshop on
Role of Software Architecture for Testing and Analysis, pages 39–48. ACM,
2006.

[66] W. J. Fokkink. Distributed Algorithms: An Intuitive Approach. MIT Press,
2013.

[67] W. J. Fokkink, J. Pang, and J. van de Pol. Cones and foci: A mechanical
framework for protocol verification. Formal Methods in System Design,
29(1):1–31, 2006.

[68] W. J. Fokkink, J. Pang, and J. C. van de Pol. Cones and foci: A mechanical
framework for protocol verification. Formal Methods in System Design,
29(1):1–31, 2006.

[69] F. Ghassemi and W. Fokkink. Reliable restricted process theory. CoRR,
abs/1705.02600, 2017.

[70] F. Ghassemi and W. J. Fokkink. Model checking mobile ad hoc networks.
Formal Methods in System Design, 49(3):159–189, 2016.

[71] F. Ghassemi, W. J. Fokkink, and A. Movaghar. Restricted broadcast pro-
cess theory. In Proc. 6th Conference on Software Engineering and Formal
Methods, pages 345–354. IEEE, 2008.

Bibliography 177

[72] F. Ghassemi, W. J. Fokkink, and A. Movaghar. Equational reasoning on
ad hoc networks. In Proc. 3rd Conference on Fundamentals of Software
Engineering, volume 5961 of LNCS, pages 113–128. Springer, 2009.

[73] F. Ghassemi, W. J. Fokkink, and A. Movaghar. Equational reasoning on
mobile ad hoc networks. Fundamenta Informaticae, 103:1–41, 2010.

[74] F. Ghassemi, W. J. Fokkink, and A. Movaghar. Verification of mobile
ad hoc networks: An algebraic approach. Theoretical Computer Science,
412(28):3262–3282, 2011.

[75] F. Ghassemi and M. R. Mousavi. Product line process theory. Journal of
Logic and Algebraic Programming, 85(1):200–226, 2016.

[76] R. J. van Glabbeek and W. P. Weijland. Branching time and abstraction in
bisimulation semantics. Journal of the ACM, 43(3):555–600, 1996.

[77] S. Gnesi and M. Petrocchi. Towards an executable algebra for product
lines. In Proc. 16th Software Product Line Conference, pages 66–73. ACM,
2012.

[78] J. Godskesen. A calculus for mobile ad hoc networks. In Proc. 9th Confer-
ence on Coordination Models and Languages, volume 4467 of LNCS, pages
132–150. Springer, 2007.

[79] J. Godskesen. A calculus for mobile ad-hoc networks with static location
binding. In Proc. 15th Workshop on Expressiveness in Concurrency, volume
242 of Electronic Notes in Theoretical Computer Science, pages 161–183,
2009.

[80] J. Godskesen and O. Gryn. Modeling and verification of security protocols
for ad hoc networks using UPPAAL. In Proc. 18th Nordic Workshop on
Programming Theory, page 3 pages, 2006.

[81] J. Godskesen and S. Nanz. Mobility models and behavioural equivalence
for wireless networks. In Proc. 11th Conference on Coordination Models
and Languages, volume 5521 of LNCS, pages 106–122. Springer, 2009.

[82] J. F. Groote, A. Mathijssen, M. Reniers, Y. Usenko, and M. van Weerden-
burg. The formal specification language mCRL2. In Methods for Modelling
Software Systems, volume 06351 of Dagstuhl Seminar Proceedings. Schloss
Dagstuhl, 2006.

[83] J. F. Groote and M.R Mousavi. Modeling and Analysis of Communicating
Systems. MIT Press, 2014.

[84] J. F. Groote and A. Ponse. µCRL: A base for analysing processes with
data. In Proc. 3rd Workshop on Concurrency and Compositionality, pages
125–130. GMD-Studien Nr. 191, 1991.

178 Bibliography

[85] J. F. Groote and A. Ponse. Syntax and semantics of µCRL. In Proc. Work-
shop on Algebra of Communicating Processes, Workshops in Computing,
pages 26–62. Springer, 1995.

[86] J. F. Groote and J. Springintveld. Focus points and convergent process
operators: A proof strategy for protocol verification. Journal of Logic and
Algebraic Programming, 49(1-2):31–60, 2001.

[87] J. F. Groote and J. van Wamel. The parallel composition of uniform pro-
cesses with data. Theoretical Computer Science, 266(1-2):631–652, 2001.

[88] J. F. Groote and T. A. C. Willemse. Parameterised boolean equation sys-
tems. Theoretical Computer Science, 343(3):332–369, 2005.

[89] A. Gruler, M. Leucker, and K. D. Scheidemann. Calculating and modeling
common parts of software product lines. In Proc. 12th Software Product
Line Conference, pages 203–212. IEEE, 2008.

[90] A. Gruler, M. Leucker, and K. D. Scheidemann. Modeling and model check-
ing software product lines. In Proc. 10th Conference on Formal Methods for
Open Object-Based Distributed Systems, volume 5051 of LNCS, pages 113–
131. Springer, 2008.

[91] M. Hammer and M. Weber. “To store or not to store” reloaded: Reclaim-
ing memory on demand. In Proc. 11th Workshop on Formal Methods for
Industrial Critical Systems, volume 4346 of LNCS, pages 51–66. Springer,
2006.

[92] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and con-
currency. Journal of the ACM, 32(1):137–161, 1985.

[93] C. Hewitt. Viewing control structures as patterns of passing messages.
Artificial Intelligence, 8(3):323–364, 1977.

[94] P. Höfner, R. Khédri, and B. Möller. An algebra of product families. Soft-
ware and System Modeling, 10(2):161–182, 2011.

[95] P. Höfner and A. McIver. Statistical model checking of wireless mesh rout-
ing protocols. In Proc. 5th International Symposium on NASA Formal Meth-
ods, volume 7871 of LNCS, pages 322–336. Springer, 2013.

[96] Peter Höfner, Robert J. van Glabbeek, Wee Lum Tan, Marius Portmann,
Annabelle McIver, and Ansgar Fehnker. A rigorous analysis of aodv and its
variants. In Proc. 15th ACM International Conference on Modeling, Analy-
sis and Simulation of Wireless and Mobile Systems, pages 203–212. ACM,
2012.

Bibliography 179

[97] M. M. Jaghoori, M. Sirjani, M. R. Mousavi, E. Khamespanah, and
A. Movaghar. Symmetry and partial order reduction techniques in model
checking Rebeca. Acta Informatica, 47(1):33–66, 2010.

[98] M. Kamali, M. Merro, and A. Dal Corso. Aodvv2: Performance vs. loop
freedom. In Proc. 44th International Conference on Current Trends in The-
ory and Practice of Computer Science, volume 10706 of LNCS, pages 337–
350. Springer, 2018.

[99] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. Feature-oriented
domain analysis (FODA) feasibility study. Technical report, Carnegie-
Mellon University Software Engineering Institute, CMU/SEI-90-TR-21,
1990.

[100] R. K. Karmani and G. Agha. Actors. In Encyclopedia of Parallel Computing,
pages 1–11. Springer, 2011.

[101] J. Katoen. Model checking: One can do much more than you think!
In Proc. 4th Conference on Fundamentals of Software Engineering, volume
7141 of Lecture Notes in Computer Science, pages 1–14. Springer, 2011.

[102] E. Khamespanah, M. Sirjani, Z. Sabahi-Kaviani, R. Khosravi, and
M. Izadi. Timed rebeca schedulability and deadlock freedom analysis us-
ing bounded floating time transition system. Science of Computer Program-
ming, 98:184–204, 2015.

[103] P. Khengar and A.H. Aghvami. WARP - the wireless adaptive routing pro-
tocol. In Proc. IST Mobile Communications Summit 2001, pages 480–485,
2001.

[104] D. Kouzapas and A. Philippou. A process calculus for dynamic networks.
In Proc. Conference on Formal Techniques for Distributed Systems, volume
6722 of LNCS, pages 213–227. Springer, 2011.

[105] D. Kozen. Results on the propositional mu-calculus. Theoretical Computer
Science, 27:333–354, 1983.

[106] K. G. Larsen, U. Nyman, and A. Wasowski. Modal I/O automata for in-
terface and product line theories. In Proc. 16th European Symposium on
Programming Languages and Systems, volume 4421 of LNCS, pages 64–79.
Springer, 2007.

[107] K. G. Larsen and B. Thomsen. A modal process logic. In Proc. 3rd Annual
Symposium on Logic in Computer Science, pages 203–210. IEEE, 1988.

[108] K. Lauenroth, S. Thning, and K. Pohl. Model checking of domain arti-
facts in produc line engineering. In Proc. 24th IEEE/ACM Conference on
Automated Software Engineering, pages 269–280. IEEE, 2009.

180 Bibliography

[109] M. Leucker and D. Thoma. A formal approach to software product fam-
ilies. In Proc. 5th Symposium on Leveraging Applications of Formal Meth-
ods, Verification and Validation. Technologies for Mastering Change, volume
7609 of LNCS, pages 131–145. Springer, 2012.

[110] J. Liu, J. Dehlinger, and R. Lutz. Safety analysis of software prod-
uct lines using state-based modeling. Journal of Systems and Software,
80(11):1879–1892, 2007.

[111] B. Luttik. Choice Quantification in Process Algebra. PhD thesis, University
of Amsterdam, 2002.

[112] R. Mateescu and M. Sighireanu. Efficient on-the-fly model-checking for
regular alternation-free mu-calculus. Science of Computer Programming,
46(3):255–281, 2003.

[113] A. McIver and A. Fehnker. Formal techniques for analysis of wireless net-
works. In Proc. 2nd Symposium on Leveraging Applications of Formal Meth-
ods, pages 263–270. IEEE, 2006.

[114] R. Meolic, T. Kapus, and Z. Brezocnik. ACTLW - An action-based compu-
tation tree logic with unless operator. Information Sciences, 178(6):1542–
1557, 2008.

[115] M. Merro. An observational theory for mobile ad hoc networks. Informa-
tion and Computation, 207(2):194–208, 2009.

[116] M. Merro, F. Ballardin, and E. A Sibilio. A timed calculus for wireless
systems. Theoretical Computer Science, 412(47):6585–6611, 2011.

[117] N. Mezzetti and D. Sangiorgi. Towards a calculus for wireless systems.
In Proc. 22nd Conference on Mathematical Foundations of Programming Se-
mantics, volume 158 of Electronic Notes in Theoretical Computer Science,
pages 331–353, 2006.

[118] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[119] K. S. Namjoshi and R. J. Trefler. Analysis of dynamic process networks.
In Proc. 21st Conference on Tools and Algorithms for the Construction and
Analysis of Systems, volume 9035 of LNCS, pages 164–178. Springer, 2015.

[120] K. S. Namjoshi and R. J. Trefler. Loop freedom in AODVv2. In Proc. 35th
IFIP Conference on Formal Techniques for Distributed Objects, Components,
and Systems, volume 9039 of LNCS, pages 98–112, 2015.

[121] S. Nanz and C. Hankin. A framework for security analysis of mobile wire-
less networks. Theoretical Computer Science, 367(1):203–227, 2006.

Bibliography 181

[122] S. Nanz, F. Nielson, and H. Nielson. Static analysis of topology-dependent
broadcast networks. Information and Computation, 208(2):117–139,
2010.

[123] R. C. van Ommering. Koala, a component model for consumer electronics
eroduct software. In Proc. 2ed Conference on Development and Evolution of
Software Architectures for Product Families, volume 1429 of LNCS, pages
76–86. Springer, 1998.

[124] D. A. Peled. All from one, one for all: On model checking using repre-
sentatives. In Proc. 5th Conference on Computer Aided Verification, volume
697 of LNCS, pages 409–423. Springer, 1993.

[125] C. E. Perkins and E. M. Belding-Royer. Ad-hoc on-demand distance vector
routing. In Proc. 2nd Workshop on Mobile Computing Systems and Applica-
tions, pages 90–100. IEEE, 1999.

[126] G. D. Plotkin. A structural approach to operational semantics. Technical
Report DAIMI FN-19, University of Aarhus, 1981.

[127] A. Pnueli, J. Xu, and L. D. Zuck. Liveness with (0, 1, infty)-counter ab-
straction. In Proc. 14th Conference on Computer Aided Verification, volume
2404 of LNCS, pages 107–122. Springer, 2002.

[128] K. Pohl, G. Bockle, and F. van der Linden. Software Product Line Engineer-
ing: Foundations, Principles, and Techniques. Springer, 2005.

[129] K. V. S. Prasad. A calculus of broadcasting systems. Science of Computer
Programming, 25(2-3):285–327, 1995.

[130] T. Razafindralambo and F. Valois. Performance evaluation of backoff al-
gorithms in 802.11 ad-hoc networks. In Proc. 3rd ACM Workshop on Per-
formance Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks,
pages 82–89. ACM, 2006.

[131] A. H. N. Reynisson, M. Sirjani, L. Aceto, M. Cimini, A. Jafari,
A. Ingólfsdóttir, and S. H. Sigurdarson. Modelling and simulation of asyn-
chronous real-time systems using Timed Rebeca. Science of Computer Pro-
gramming, 89:41–68, 2014.

[132] H. Sabouri and R. Khosravi. Delta modeling and model checking of prod-
uct families. In Proc. 5th Conferece on Fundamentals of Software Engineer-
ing, volume 8161 of LNCS, pages 51–65. Springer, 2013.

[133] H. Sabouri and M. Sirjani. Slicing-based reductions for rebeca. Electronic
Notes in Theoretical Computer Science, 260:209–224, 2010.

182 Bibliography

[134] M. Saksena, O. Wibling, and B. Jonsson. Graph grammar modeling and
verification of ad hoc routing protocols. In Proc. 14th Conference on Tools
and Algorithms for the Construction and Analysis of Systems, volume 4963
of LNCS, pages 18–32. Springer, 2008.

[135] K. Schmid and F. van der Linden. Software Product Lines in Action: The
Best Industrial Practice in Product Line Engineering. Springer, 2010.

[136] S. Shoham and O. Grumberg. Multi-valued model checking games. Jour-
nal of Computer and System Sciences, 78(2):414–429, 2012.

[137] A. Singh, C. R. Ramakrishnan, and S. A. Smolka. A process calculus for
mobile ad hoc networks. Science of Computer Programming, 75(6):440–
469, 2010.

[138] M. Sirjani and M. M. Jaghoori. Ten years of analyzing actors: Rebeca
experience. In Formal Modeling: Actors, Open Systems, Biological Systems,
volume 7000 of LNCS, pages 20–56. Springer, 2011.

[139] M. Sirjani, A. Movaghar, A. Shali, and F. S. de Boer. Modeling and
verification of reactive systems using Rebeca. Fundamenta Informaticae,
63(4):385–410, 2004.

[140] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake. A classification and
survey of analysis strategies for software product lines. ACM Computing
Surveys, 47(1):6:1–6:45, 2014.

[141] M. Tribastone. Behavioral relations in a process algebra for variants. In
Proc. 18th Software Product Line Conference, pages 82–91. ACM, 2014.

[142] C. Tschudin, R. Gold, O. Rensfelt, and O. Wibling. LUNAR: a lightweight
underlay network ad-hoc routing protocol and implementation. In Proc.
4th Conference on Next Generation Teletraffic and Wired/Wireless Advanced
Networking, page 300, 2004.

[143] Y. Usenko. Linearization in µCRL. PhD thesis, Eindhoven University of
Technology, 2002.

[144] R. van Glabbeek, P. Höfner, W. L. Tan, and M. Portmann. Sequence num-
bers do not guarantee loop freedom: Aodv can yield routing loops. In Proc.
16th ACM International Conference on Modeling, Analysis & Simula-
tion of Wireless and Mobile Systems, pages 91–100. ACM, 2013.

[145] R. J. van Glabbeek. A complete axiomatization for branching bisimulation
congruence of finite-state behaviours. In Proc. 18th Symposium on Mathe-
matical Foundations of Computer Science, volume 711 of LNCS, pages 473–
484. Springer, 1993.

Bibliography 183

[146] R. J. van Glabbeek. Notes on the methodology of CCS and CSP. Theoretical
Computer Science, 177(2):329–349, 1997.

[147] R. J. van Glabbeek. The linear time-branching time spectrum i - the se-
mantics of concrete, sequential processes. In Handbook of Process Algebra,
pages 3–99. Elsevier, 2001.

[148] R. J. van Glabbeek, P. Höfner, M. Portmann, and W. Lum Tan. Mod-
elling and verifying the AODV routing protocol. Distributed Computing,
29(4):279–315, 2016.

[149] M. Varshosaz and R. Khosravi. Modeling and verification of probabilistic
actor systems using pRebeca. In Proc. 14th Conference on Formal Engineer-
ing Methods, volume 7635 of LNCS, pages 135–150. Springer, 2012.

[150] S. Vasudevan, J. Kurose, and D. Towsley. Design and analysis of a leader
election algorithm for mobile ad hoc networks. In Proc. 12th Conference
on Network Protocols, pages 350–360. IEEE, 2004.

[151] O. Wibling, J. Parrow, and A. Pears. Automatized verification of ad hoc
routing protocols. In Proc. 24th IFIP Conference on Formal Techniques for
Networked and Distributed Systems, volume 3235 of LNCS, pages 343–358.
Springer, 2004.

[152] O. Wibling, J. Parrow, and A. Pears. Ad hoc routing protocol verification
through broadcast abstraction. In Proc. 25th IFIP Conference on Formal
Techniques for Networked and Distributed Systems, volume 3731 of LNCS,
pages 128–142. Springer, 2005.

[153] B. Yousefi. Modeling and analysis of broadcasting actors. Master’s thesis,
University of Tehran, 2015.

[154] B. Yousefi and F. Ghassemi. An efficient loop-free version of aodvv2. CoRR,
abs/1709.01786v2, 2017.

[155] B. Yousefi, F. Ghassemi, and R. Khosravi. Modeling and efficient verifi-
cation of broadcasting actors. In Proc. 6th Conference on Fundamentals of
Software Engineering, volume 9392 of LNCS, pages 69–83, 2015.

[156] B. Yousefi, F. Ghassemi, and R. Khosravi. Modeling and efficient verifica-
tion of wireless ad hoc networks. Formal Aspect of Computing, To appear,
2017.

[157] T. Ziadi, L. Hélouët, and J. M. Jézéquel. Towards a UML profile for soft-
ware product lines. In Proc. 5th Workshop on Product-Family Engineering,
volume 3014 of LNCS, pages 129–139. Springer, 2003.

AProofs of Chapter 3

A.1 Proof of Theorem 3.2

To prove that branching reliable computed network bisimilarity is an equiva-
lence, we exploit semi-branching reliable computed network bisimilarity, follow-
ing [12].

Definition A.1. A binary relation R on computed network terms is a semi-
branching reliable computed network simulation, if t1Rt2 implies that whenever

t1
(C,η)−−−−→ t′1:

• either η = τ and there is t′2 such that t2 ⇒ t′2 with t1Rt′2 and t′1Rt′2; or

• there are s′′1 , . . . , s
′′
k and s′1, . . . , s

′
k for some k > 0 such that ∀i ≤ k (t2 ⇒

s′′i
〈(Ci,η)〉−−−−−→ s′i, with t1Rs′′i and t′1Rs′i), and 〈C1〉, . . . , 〈Ck〉 constitute a par-

titioning of 〈C〉.

R is a semi-branching reliable computed network bisimulation if R and R−1 are
semi-branching reliable computed network simulations. Computed networks t1
and t2 are semi-branching reliable computed network bisimilar if t1Rt2, for some
semi-branching reliable computed network bisimulation relation R.

Lemma A.2. Let t1 and t2 be computed network terms, and R a semi-branching
reliable computed network bisimulation such that t1Rt2.

• If t1 ⇒ t′1 then ∃t′2 · t2 ⇒ t′2 ∧ t′1Rt′2
• If t2 ⇒ t′2 then ∃t′1 · t1 ⇒ t′1 ∧ t′1Rt′2

Proof. We only give the proof of the first property. The second property can be
proved in a similar fashion. The proof is by induction on the number of⇒ steps
from t1 to t′1:

• Base: Assume that the number of steps equals zero. Then t1 and t′1 must
be equal. Since t1Rt2 and t2 ⇒ t2, the property is satisfied.

185

186 Appendix A — Proofs of Chapter 3

• Induction step: Assume t1 ⇒ t′1 in n steps, for some n ≥ 1. Then there is

t′′1 such that t1 ⇒ t′′1 in n − 1 ⇒ steps, and t′′1
(C,τ)−−−−→ t′1. By the induction

hypothesis, there exists t′′2 such that t2 ⇒ t′′2 and t′′1Rt′′2 . Since t′′1
(C,τ)−−−−→ t′1

and R is a semi-branching reliable computed network bisimulation, there
are two cases to consider:

– there is t′2 such that t′′2 ⇒ t′2, t′′1Rt′2, and t′1Rt′2. So t2 ⇒ t′2 such that
t′1Rt′2.

– or there are s′′′1 , . . . , s
′′′
k and s′1, . . . , s

′
k for some k > 0 such that ∀i ≤

k (t′′2 ⇒ s′′′i
(Ci,τ)−−−−→ s′i, with t′′1Rs′′′i and t′1Rs′i), and C1, . . . , Ck consti-

tute a partitioning of C. By definition, s′′′i
(Ci,τ)−−−−→ s′i yields s′′′i ⇒ s′i.

Consequently for any arbitrary i ≤ k, t2 ⇒ s′i such that t′1Rs′i.

Proposition A.3. The relation composition of two semi-branching reliable com-
puted network bisimulations is again a semi-branching reliable computed network
bisimulation.

Proof. Let R1 and R2 be semi-branching reliable computed network bisimula-

tions with t1R1t2 and t2R2t3. Let t1
(C,η)−−−−→ t′1. It must be shown that

• either η = τ and there is t′3 such that t3 ⇒ t′3 with t1R1 ◦ R2t
′
3 and t′1R1 ◦

R2t
′
3; or

• ∃s′1, . . . , s′k, s′′1 , . . . , s′′k ∀i ≤ k (t3 ⇒ s′′i
〈(Ci,η)〉−−−−−→ s′i ∧ t1R1 ◦ R2s

′′
i ∧ t′1R1 ◦

R2s
′
i), where 〈C1〉, . . . , 〈Ck〉 constitute a partitioning of 〈C〉.

Since t1R1t2, two cases can be considered:

• η = τ and there exists t′2 such that t2 ⇒ t′2 with t1R1t
′
2 and t′1R1t

′
2.

Lemma A.2 yields that there exists t′3 that t3 ⇒ t′3 with t′2R2t
′
3. It im-

mediately follows that t1R1 ◦ R2t
′
3 and t′1R1 ◦ R2t

′
3.

• there exist s∗∗1 , . . . s
∗∗
j , s∗1 . . . s

∗
j for some j > 0 such that ∀i ≤ j (t2 ⇒

s∗∗i
〈(Ci,η)〉−−−−−→ s∗i , t1R1s

∗∗
i , t′1R1s

∗
i), and 〈C1〉, . . . , 〈Cj〉 is a partitioning of

〈C〉. Since t2R2t3 and t2 ⇒ s∗∗i , Lemma A.2 yields that there are s′′′1 , . . . , s
′′′
j

such that ∀i ≤ j (t3 ⇒ s′′′i ∧ s∗∗i R2s
′′′
i). Two cases can be distinguished:

– either η = τ and for some i ≤ j, s∗∗i
(Ci,τ)−−−−→ s∗i implies there is s′′i such

that s′′′i ⇒ s′′i with s∗∗i R2s
′′
i and s∗iR2s

′′
i . It follows immediately that

there exists s′′i such that t3 ⇒ s′′i with t1R1 ◦ R2s
′′
i and t′1R1 ◦ R2s

′′
i ;

or

A.1. Proof of Theorem 3.2 187

– for all i ≤ j, s∗∗i
〈(Ci,η)〉−−−−−→ s∗i implies there are s′′i1 , . . . , s

′′
iki

and s′i1 , . . . , s
′
iki

for some ki > 0 such that ∀o ≤ ki (s′′i ⇒ s′′io
〈(Cio ,η)〉−−−−−−→ s′io , s

∗∗
i R2s

′′
io

,
s∗iR2s

′
io

), and 〈Ci1〉, . . . , 〈Ciki 〉 is a partitioning of 〈Ci〉. Since t3 ⇒ s′′i ,

we have ∀i ≤ j, ∀o ≤ ki (t3 ⇒ s′′io
〈(Cio ,η)〉−−−−−−→ s′io with t1R1 ◦ R2s

′′
io

,
t′1R1 ◦ R2s

′
io

), and {〈Cio〉 | i ≤ j, o < ki} is a partitioning of 〈C〉.

Corollary A.4. Semi-branching reliable computed network bisimilarity is an equiv-
alence relation.

Proposition A.5. Each largest semi-branching reliable computed network bisimu-
lation is a branching reliable computed network bisimulation.

Proof. SupposeR is the largest semi-branching reliable computed network bisim-
ulation for some given CLTSs. Let t1Rt2, t2 ⇒ t′2, t1Rt′2 and t′1Rt′2. We show that
R′ = R∪ {(t′1, t2)} is a semi-branching reliable computed network bisimulation.

1. If t′1
(C,η)−−−−→ t′′1 , then it follows from (t′1, t

′
2) ∈ R that

• either η = τ and there exists t′′2 such that t′2 ⇒ t′′2 with t′1Rt′′2 and
t′′1Rt′′2 . Finally t2 ⇒ t′2 results t′1R′t′′2 and t′′1R′t′′2 ; or

• there are s′′′1 , . . . , s
′′′
k and s′′1 , . . . , s

′′
k for some k > 0 such that ∀i ≤

k (t′2 ⇒ s′′′i
〈(Ci,η)〉−−−−−→ s′′i with (t′1, s

′′′
i), (t′′1 , s

′′
i) ∈ R) and 〈C1〉, . . . , 〈Ck〉 is

a partitioning of 〈C〉. And t2 ⇒ t′2 yields ∀i ≤ k (t2 ⇒ s′′′i
〈(Ci,η)〉−−−−−→ s′′i ,

with (t′1, s
′′′
i), (t′′1 , s

′′
i) ∈ R′).

2. If t2
(C,η)−−−−→ t′′2 , then it follows from (t1, t2) ∈ R that

• either η = τ , and there exists t′′1 such that t1 ⇒ t′′1 with t′′1Rt2 and
t′′1Rt′′2 . Furthermore, (t1, t

′
2) ∈ R, t1 ⇒ t′′1 , and Lemma A.2 imply there

exists t′′′2 such that t′2 ⇒ t′′′2 with (t′′1 , t
′′′
2) ∈ R. Similarly (t′1, t

′
2) ∈ R,

t′2 ⇒ t′′′2 , and Lemma A.2 imply there exists t′′′1 such that t′1 ⇒ t′′′1 with
(t′′′1 , t

′′′
2) ∈ R. From (t′′′1 , t

′′′
2) ∈ R, (t′′′2 , t

′′
1) ∈ R−1, and (t′′1 , t2) ∈ R, we

conclude (t′′′1 , t2) ∈ R ◦ R−1 ◦ R. And from (t′′′1 , t
′′′
2) ∈ R, (t′′′2 , t

′′
1) ∈

R−1, and (t′′1 , t
′′
2) ∈ R, we conclude (t′′′1 , t

′′
2) ∈ R ◦ R−1 ◦ R.

• or there are s′′′11
, . . . , s′′′1k and s′′11

, . . . , s′′1k for some k > 0 such that ∀i ≤
k (t1 ⇒ s′′′1i

〈(Ci,η)〉−−−−−→ s′′1i with (s′′′1i , t2), (s′′1i , t
′′
2) ∈ R) and 〈C1〉, . . . , 〈Ck〉

is a partitioning of 〈C〉. Since (t1, t
′
2) ∈ R and t1 ⇒ s′′′1i , by Lemma A.2,

there are s′′′21
, . . . , s′′′2k such that ∀i ≤ k (t′2 ⇒ s′′′2i and (s′′′1i , s

′′′
2i) ∈ R).

Since s′′′1i
〈(Ci,η)〉−−−−−→ s′′1i , there are s∗∗2i1 , . . . , s

∗∗
2iki

and s∗2i1 , . . . , s
∗
2iki

for

188 Appendix A — Proofs of Chapter 3

some ki > 0 such that ∀o ≤ ki (s′′′2i ⇒ s∗∗2io
〈(Cio ,η)〉−−−−−−→ s∗2io with

(s′′′1i , s
∗∗
2io

), (s′′1i , s
∗
2io

) ∈ R) and 〈Ci1〉, . . . , 〈Ciki 〉 is a partitioning of 〈Ci〉.
Since t′2 ⇒ s′′′2i and s′′′2i ⇒ s∗∗2io , we have ∀i ≤ k, o ≤ ki (t′2 ⇒ s∗∗2io).
By assumption, (t′1, t

′
2) ∈ R, so by Lemma A.2 there are s∗∗11

, . . . , s∗∗1K ,
where K =

∑k
i=1 ki, such that ∀z ≤ K (t′1 ⇒ s∗∗1z and (s∗∗1z , s

∗∗
2io

) ∈
R, where z = (

∑i−1
j=1 kj) + o). Since s∗∗2io

〈(Cio ,η)〉−−−−−−→ s∗2io , there are
s∗∗∗1z1

, . . . , s∗∗∗1z
k′z

and s
′

1z1
, . . . , s

′

1z
k′z

for some k′z > 0 such that ∀j ≤

k′z (s∗∗1z ⇒ s∗∗∗1zj

〈(Cioj ,η)〉
−−−−−−−→ s

′

1zj
with (s∗∗∗1zj

, s∗∗2io), (s
′

1zj
, s∗2io) ∈ R) and

〈Cio1 〉, . . . , 〈Ciok′z 〉 is a partitioning of 〈Cio〉. And t′1 ⇒ s∗∗1z yields ∀i ≤

k, o ≤ ki, j ≤ k′z(t′1 ⇒ s∗∗∗1zj

〈(Cioj ,η)〉
−−−−−−−→ s

′

1zj
with

(s∗∗∗1zj
, s∗∗2io) ∈ R ∧ (s∗∗2io , s

′′′
1i) ∈ R−1 ∧ (s′′′1i , t2) ∈ R

⇒ (s∗∗∗1zj
, t2) ∈ R ◦ R−1 ◦ R

(s
′

1zj
, s∗2io) ∈ R ∧ (s∗2io , s

′′
1i) ∈ R−1 ∧ (s′′1i , t

′′
1) ∈ R

⇒ (s
′

1zj
, t′′2) ∈ R ◦ R−1 ◦ R,

where z = (
∑i−1
l=1 kl) + o), and {〈Cioj 〉 | i ≤ k, o ≤ ki, j ≤ k′z} is a

partitioning of 〈C〉.

By Proposition A.3, R ◦ R−1 ◦ R is a semi-branching reliable computed
network bisimulation. Since R is the largest semi-branching reliable com-
puted network bisimulation, and clearly R ⊆ R ◦ R−1 ◦ R, we have R =
R ◦R−1 ◦ R.

So R′ is a semi-branching reliable computed network bisimulation. Since R is
the largest semi-branching reliable computed network bisimulation, R′ = R.

We will now prove thatR is a branching reliable computed network bisimula-

tion. Let t1Rt2, and t1
(C,η)−−−−→ t′1. We only consider the case when η = τ , because

for other cases, the transfer condition of Definition 3.1 and Definition A.1 are the
same. Two cases can be distinguished:

1. there exists t′2 such that t2 ⇒ t′2 with t1Rt′2 and t′1Rt′2: we proved above
that t′1Rt2. This agrees with the first case of Definition 3.1.

2. there are s′′1 , . . . , s
′′
k and s′1, . . . , s

′
k for some k > 0 such that ∀i ≤ k (t2 ⇒

s′′i
〈(Ci,τ)〉−−−−−→ s′i with t1Rs′′i and t′1Rs′i) and 〈C1〉, . . . , 〈Ck〉 constitute a parti-

tioning of 〈C〉. This agrees with the second case of Definition 2.4.

Consequently R is a branching reliable computed network bisimulation.

A.2. Proof of Theorem 3.5 189

Since any branching reliable computed network bisimulation is a semi-branching
reliable computed network bisimulation, this yields the following corollary.

Corollary A.6. Two computed network terms are related by a branching reliable
computed network bisimulation if and only if they are related by a semi-branching
reliable computed network bisimulation.

Corollary A.7. Branching reliable computed network bisimilarity is an equivalence
relation.

Corollary A.8. Rooted branching reliable computed network bisimilarity is an equiv-
alence relation.

Proof. It is easy to show that rooted branching reliable computed network bisim-
ilarity is reflexive and symmetric. To conclude the proof, we show that rooted
branching reliable computed network bisimilarity is transitive. Let t1 'rbr t2
and t2 'rbr t3. Since t1 'rbr t2, if t1

(C,η)−−−−→ t′1, then there is t′2 such that

t2
〈(C,η)〉−−−−−→ t′2 and t′1 'br t′2. Since t2 'rbr t3, there is t′3 such that t3

〈(C,η)〉−−−−−→ t′3
and t′2 'br t′3. Equivalence of branching reliable computed network bisimilar-

ity yields t3
〈(C,η)〉−−−−−→ t′3 with t′1 'br t′3. The same argumentation holds when

t3
(C,η)−−−−→ t′3. Consequently the transfer conditions of Definition 3.3 holds and

t1 'rbr t3.

A.2 Proof of Theorem 3.5

Theorem A.9. Rooted branching reliable computed network bisimilarity is a con-
gruence for terms with respect to RCNT operators.

Proof. We need to prove the following cases:

1. [[t1]]` 'rbr [[t2]]` implies [[α.t1]]` 'rbr [[α.t2]]`;

2. [[t1]]` 'rbr [[t2]]` and [[t′1]]` 'rbr [[t′2]]` implies [[t1 + t′1]]` 'rbr [[t2 + t′2]]`;

3. [[t1]]` 'rbr [[t2]]` and [[t′1]]` 'rbr [[t′2]]` implies that [[sense(`′, t1, t
′
1)]]` 'rbr

[[sense(`′, t2, t
′
2)]]`;

4. [[t1]]` 'rbr [[t2]]` implies ` : t : t1 'rbr ` : t : t2 for any arbitrary term t;

5. t1 'rbr t2 implies (C, η).t1 'rbr (C, η).t2;

6. t1 'rbr t2 and t′1 'rbr t′2 implies t1 + t′1 'rbr t2 + t′2;

7. t1 'rbr t2 implies (ν`)t1 'rbr (ν`)t2;

8. t1 'rbr t2 and t′1 'rbr t′2 implies t1 ‖ t′1 'rbr t2 ‖ t′2;

190 Appendix A — Proofs of Chapter 3

9. t1 'rbr t2 and t′1 'rbr t′2 implies t1 t′1 'rbr t2 t′2;

10. t1 'rbr t2 and t′1 'rbr t′2 implies t1 | t′1 'rbr t2 | t′2;

11. t1 'rbr t2 implies ∂M (t1) 'rbr ∂M (t2);

12. t1 'rbr t2 implies τM (t1) 'rbr τM (t2);

13. t1 'rbr t2 implies C B t1 'rbr C B t2.

Clearly, if t1 'rbr t2 then t1 'br t2 is witnessed by the following branching
reliable computed network bisimulation relation:

R′ = {R | t1
(C,η)−−−−→ t′1 ⇒ ∃t′2 · t2

〈(C,η)〉−−−−−→ t′2 ∧ t′1 'br t′2 is witnessed by R}
∪ {R | t2

(C,η)−−−−→ t′2 ⇒ ∃t′1 · t1
〈(C,η)〉−−−−−→ t′1 ∧ t′1 'br t′2 is witnessed by R}

∪ {(t1, t2)}.
We prove the cases 1, 2, 4, 7, 10, 11, and 13 since the proof of the cases 3

and 6 are similar to the case 2, the case 5 is similar to the case 1, the cases 8
and 9 are similar to the case 10, and the case 12 is similar to the case 11.
Case 1. The first transitions of [[α.t1]]` and [[α.t2]]` are the same with applica-
tion of the rule Snd (if α is a send action), Rcv1 (if α is a receive action), or
Rcv2,3 (for receiving (C,nrcv(m))which are not derivable from Rcv1), and by as-
sumption [[t1]]` 'rbr [[t2]]` implies [[t1]]` 'br [[t2]]`. Thus the transfer conditions of
Definition 3.3 hold.
Case 2. Every transition [[t1 + t′1]]`

(C,η)−−−−→ t owes to [[t1]]`
(C,η)−−−−→ t or [[t′1]]`

(C,η)−−−−→ t

by Choice, or is implied by Rcv3, i.e., [[t1 + t′1]]`
(C,nrcv(m))−−−−−−−−−→ [[t1 + t′1]]` iff there

exists no t1 + t′1
(C′,rcv(m))−−−−−−−−→ t∗ for some t∗ such that C′ 4 C. We assume that

C is the greatest network constraint derived by Rcv3 as the other can be derived
by application of Exe. For the former case, [[t1]]` 'rbr [[t2]]` and [[t′1]]` 'rbr [[t′2]]`

imply there is t′ such that [[t2]]`
(〈C,η)〉−−−−−→ t′ or [[t′2]]`

〈(C,η)〉−−−−−→ t′ and t 'br t′.

Thus [[t2 + t′2]]`
〈(C,η)〉−−−−−→ t′ with t 'br t′. For the latter case by the rule Choice,

there exists no t1
(C′,rcv(m))−−−−−−−−→ t∗ and t′1

(C′,rcv(m))−−−−−−−−→ t∗ for some t∗ such that

C′ 4 C. Thus by the rule Rcv3, [[t1]]`
(C,nrcv(m))−−−−−−−−−→ [[t1]]` and [[t′1]]`

(C,nrcv(m))−−−−−−−−−→
[[t′1]]`. We remark that transitions derived by application of Rcv3 are those that
cannot be derived from Rcv1,2. The greatest value of the network constraints of
such transitions have no pair in the form of ? ` or ? 6 `. This implies that
such transitions can not be mimicked by application of Rcv1,2 (since they will
add constraints of the form ? ` or ? 6 `) . Therefore, [[t1]]` 'rbr [[t2]]` and

[[t′1]]` 'rbr [[t′2]]` imply that [[t2]]`
(C,nrcv(m))−−−−−−−−−→ [[t2]]` and [[t′2]]`

(C,nrcv(m))−−−−−−−−−→ [[t′2]]`
which can be only derived by application of the rule Rcv3. Therefore, there exists

no t2
(C′,rcv(m))−−−−−−−−→ t∗ and t′2

(C′,rcv(m))−−−−−−−−→ t∗ for some t∗ such that C′ 4 C. Hence,

[[t2 + t′2]]`
(C,nrcv(m))−−−−−−−−−→ [[t2 + t′2]]`.

A.2. Proof of Theorem 3.5 191

Case 4 Suppose that ` : t : t1
(C∗,η)−−−−→ t∗. Two cases can be distinguished:

• It owes to the application of one of the rules Inter ′1−3 together with some of
the rules Choice ′, Inv ′, and Sen ′1,2. Therefore, t1 has a subterm in the form
of α.t′1 where t∗ ≡ [[t′1]]`, η is the network action version of α, and C∗ =
C∗1 ∪ C∗2 such that C∗1 is the network constraint added by Inter ′1−3 and C∗2 is
added by the rules Sen ′1,2 if they are applied. By application of Prefix ′ and

Snd/Rcv1,2 together with the rules Choice, Inv , and Sen1,2, [[t1]]`
(C∗,η)−−−−→

[[t′1]]`. The assumption [[t1]]` 'rbr [[t2]]` results that [[t2]]`
〈(C∗,η)〉−−−−−−→ [[t′2]]` and

[[t′1]]` 'br [[t′2]]`. We remark that a transition of t1 owing to Rcv1,2 cannot be
matched to a transition of t2 generated by Rcv3. By the rules Rcv1,2, two
transitions are generated with network constraints of the forms {? `} ∪ C
and {? 6 `} ∪ C. Assume that one of these transitions of t1 is matched to a
transition of t2 generated by Rcv3 with the network constraint C (together
with Exe). Due to our root condition, t1 must also generate a transition
with the network constraint C by application of Rcv3 and this is impossible.

Thus [[t2]]`
〈(C∗,η)〉−−−−−−→ [[t′2]]` implies that t2 must have a subterm in the form

of α.t′2. Therefore with a same discussion, ` : t : t2
〈(C∗,η)〉−−−−−−→ [[t′2]]` and

[[t′1]]` 'br [[t′2]]`.

• It owes to either Sen3 or Sen4 as t1 has a subterm of the form sense(`′, t∗1, t
∗∗
1).

Assume it was derived by Sen3 (maybe together with Choice ′, Inv ′, and
Sen ′1,2), as the other case can be proved with the same argumentation.

Thus, the assumptions ` : t : t∗1 6
nrcv(m)−−−−−−→ and ` : t : t∗∗1

(C,nrcv(m))−−−−−−−−−→ [[t∗∗1
′]]`,

where C∗ = {`′ `} ∪ C1, η∗ = nrcv(m) and t∗ = t hold. These together

imply that sense(`′, t∗1, t
∗∗
1) 6 ({? ̀ ′},rcv(m))−−−−−−−−−−−−−→ and hence it can be con-

cluded that t1 6 ({? ̀ ′}∪C1[?/`],rcv(m))−−−−−−−−−−−−−−−−−−−−−→. Therefore, by application of
Rcv3, [[t1]]`

(C∗,nrcv(m))−−−−−−−−−−→ [[t1]]`, and by application of the rules Sen2 and
Rcv1 (maybe together with Choice, Inv , and Sen1,2), it can be derived that

[[t1]]`
({`′ 6 ̀ }∪C∪C1[`/?],nrcv(m))−−−−−−−−−−−−−−−−−−−−−−−−→ [[t∗∗1

′]]`. The assumption [[t1]]` 'rbr [[t2]]`

implies that [[t2]]`
({`′ 6 ̀ }∪C∪C1[`/?],nrcv(m))−−−−−−−−−−−−−−−−−−−−−−−−→ [[t∗∗2

′]]`, [[t∗∗1
′]]` 'br [[t∗∗2

′]]`,
and [[t2]]`

(C∗,nrcv(m))−−−−−−−−−−→ [[t2]]` hold. Due to the root condition, the nega-
tive pair ` 6 `′ can be only derived when t2 has a subterm of the form

sense(`′, t∗2, t
∗∗
2), where t∗2 6rcv(m)−−−−−→, t∗∗2

(C,rcv(m))−−−−−−−−→ t∗∗2
′. Consequently

` : t : t∗2 6nrcv(m)−−−−−−→ and ` : t : t∗∗2
(C,nrcv(m))−−−−−−−−−→ [[t∗∗2]]`. By application of

Sen3, ` : t : t2
(C∗,nrcv(m))−−−−−−−−−−→ t is achieved.

Case 7. We prove that if t1 'br t2 then (ν`)t1 'br (ν`)t2. Let t1 'br t2 be
witnessed by the branching reliable computed network bisimulation relation R.
We define R′ = {((ν`)t′1, (ν`)t′2)|(t′1, t′2) ∈ R}. We prove that R′ is a branching

192 Appendix A — Proofs of Chapter 3

reliable computed network bisimulation relation. Suppose (ν`)t′1
(C′,η′)−−−−−→ (ν`)t′′1

results from the application of Hid on t′1
(C,η)−−−−→ t′′1 . Since (t′1, t

′
2) ∈ R, there

are two cases; in the first case η is a τ action and (t′′1 , t
′
2) ∈ R, consequently

((ν`)t′′1 , (ν`)t
′
2) ∈ R′. In second case there are s′′′1 , . . . s

′′′
k and s′′1 , . . . , s

′′
k for some

k > 0 such that ∀i ≤ k (t′2 ⇒ s′′′i
〈(Ci,η)〉−−−−−→ s′′i with (t′1, s

′′′
i), (t′′1 , s

′′
i) ∈ R), and

〈C1〉 . . . , 〈Ck〉 is a partitioning of 〈C〉. By application of Hid , ∀i ≤ k ((ν`)t′2 ⇒
(ν`)s′′′i with ((ν`)t′1, (ν`)s

′′′
i) ∈ R′). There are two cases to consider:

• 〈(Ci, η)〉 = (Ci, η): Consequently (ν`)s′′′i
(C′i,η

′)−−−−−→ (ν`)s′′i where (C′i, η′) =
(Ci, η)[?/`].

• 〈(Ci, η)〉 6= (Ci, η): in this case η is of the form nsnd(m, ?), η′ = η, and
C′i = Ci[?/`]. If 〈(Ci, η)〉 = (Ci, η)[`/?] then 〈(Ci, η)〉[?/`] = (C′i, η′) holds,
otherwise 〈(Ci, η)〉 = (Ci, η)[`′/?], where `′ 6= `, and hence 〈(Ci, η)〉[?/`] is a

counterpart of (C′i, η′). Consequently (ν`)s′′′i
〈(C′i,η

′)〉−−−−−−→ (ν`)s′′i .

Owing to the fact that a subset of C1[?/`], . . . , Ck[?/`] constitutes a partition-
ing of C[`/?], and according to the discussion above, there are s′′′1 , . . . , s

′′′
j and

s′′1 , . . . , s
′′
j for some j ≤ k such that ∀i ≤ j, (ν`)t′2 ⇒ (ν`)s′′′i

〈(C′i,η
′)〉−−−−−−→ (ν`)s′′i

with ((ν`)t′1, (ν`)s
′′′
i), ((ν`)t′′1 , (ν`)s

′′
i) ∈ R′), and 〈C′1〉, . . . , 〈C′j〉 is a partitioning of

〈C′〉.
Likewise we can prove that t1 'rbr t2 implies (ν`)t1 'rbr (ν`)t2. To this aim

we examine the root condition in Definition 3.3. Suppose (ν`)t1
(C′,η′)−−−−−→ (ν`)t′1.

With the same argument as above, (ν`)t2
〈(C′,η′)〉−−−−−−→ (ν`)t′2. Since t′1 'br t′2, we

proved that (ν`)t′1 'br (ν`)t′2. Concluding (ν`)t1 'rbr (ν`)t2.
Case 10. From the three remaining cases, we focus on the most challenging
case, which is the communication merge operator |, as the other operators are
proved in a similar way. First we prove that if t1 'br t2, then t1 ‖ t 'br
t2 ‖ t. Let t1 'br t2 be witnessed by the branching reliable computed net-
work bisimulation relation R. We define R′ = {(t′1 ‖ t′, t′2 ‖ t′) | (t′1, t

′
2) ∈

R, t′ any computed network term}. We prove that R′ is a branching reliable

computed network bisimulation relation. Suppose t′1 ‖ t
(C∗,η)−−−−→ t∗. There are

several cases to consider:

• Suppose η is of the form nsnd(m, `). First let it be performed by t′1, and

t participated in the communication. That is, t′1
(C1,nsnd(m,`))−−−−−−−−−−−→ t′′1 and

t
(C,nrcv(m))−−−−−−−−−→ t′ give rise to the transition t′1 ‖ t

(C1∪C[`/?],nsnd(m,`))−−−−−−−−−−−−−−−−−−→
t′′1 ‖ t′. As (t′1, t

′
2) ∈ R and t′1

(C1,nsnd(m,`))−−−−−−−−−−−→ t′′1 , there are s′′′1 , . . . , s
′′′
k and

s′′1 , . . . , s
′′
k for some k > 0 such that ∀i ≤ k (t′2 ⇒ s′′′i

(C1i [`
′/`],nsnd(m,`′))−−−−−−−−−−−−−−−−→

A.2. Proof of Theorem 3.5 193

s′′i , where (` =?∨` = `′), with (t′1, s
′′′
i), (t′′1 , s

′′
i) ∈ R), and C11 [`′/`], . . . , C1k [`′/`]

is a partitioning of C1[`′/`].

Hence ∀i ≤ k (t′2 ‖ t ⇒ s′′′i ‖ t
((C1i [`

′/`]∪C)[`′/?],nsnd(m,`′))−−−−−−−−−−−−−−−−−−−−−−−−−→ s′′i ‖ t′
with (t′1 ‖ t, s′′′i ‖ t), (t′′1 ‖ t′, s′′i ‖ t′) ∈ R′), and (C11

[`′/`]∪C)[`′/?], . . . , (C1k [`′/`]∪
C)[`′/?] is a partitioning of (C1[`′/`] ∪ C)[`′/?].

Now suppose that the send action was performed by t, and t′1 participated

in the communication. That is, t′1
(C1,nrcv(m))−−−−−−−−−−→ t′′1 and t

(C,nsnd(m,`))−−−−−−−−−−−→ t′

give rise to the transition t′1 ‖ t
(C1∪C[`/?],nsnd(m,`))−−−−−−−−−−−−−−−−−−→ t′′1 ‖ t′. Since

(t′1, t
′
2) ∈ R and t′1

(C1,nrcv(m))−−−−−−−−−−→ t′′1 , there are s′′′1 , . . . , s
′′′
k and s′′1 , . . . , s

′′
k for

some k > 0 such that ∀i ≤ k (t′2 ⇒ s′′′i
(C1i ,nrcv(m))−−−−−−−−−−→ s′′i with (t′1, s

′′′
i), (t′′1 , s

′′
i) ∈

R), and C11
, . . . , C1k is a partitioning of C1. Therefore, ∀i ≤ k (t′2 ‖ t⇒ s′′′i ‖

t
(C1i∪C[`/?],nsnd(m,`))−−−−−−−−−−−−−−−−−−−→ s′′i ‖ t′, and (t′1 ‖ t, s′′′i ‖ t), (t′′1 ‖ t′, s′′i ‖ t′) ∈

R′) and C11
∪C[`/?], . . . , C1k ∪C[`/?] constitute a partitioning of C1∪C[`/?].

• The case where η is a receive action is proved in a similar way to the previ-
ous case.

• Suppose η is a τ action. Assume it originates from t1 by application of

Par . Thus t′1
(C,τ)−−−−→ t′′1 and (t′1, t

′
2) ∈ R implies: either (t′′1 , t

′
2) ∈ R and

consequently (t′′1 ‖ t, t′2 ‖ t) ∈ R′, or there are s′′′1 , . . . , s
′′′
k and s′′1 , . . . , s

′′
k for

some k > 0 such that ∀i ≤ k (t′2 ⇒ s′′′i
(Ci,τ)−−−−→ s′′i with (t′1, s

′′′
i), (t′′1 , s

′′
i) ∈

R), and C1, . . . , Ck constitute a partitioning of C. Therefore, ∀i ≤ k (t′2 ‖
t ⇒ s′′′i ‖ t

(Ci,τ)−−−−→ s′′i ‖ t′, and (t′1 ‖ t, s′′′i ‖ t), (t′′1 ‖ t′, s′′i ‖ t′) ∈ R′). The

case when t
(C,τ)−−−−→ t′ implies t′1 ‖ t

(C,τ)−−−−→ t′1 ‖ t′ by application of Par is
straightforward.

• The case when η is an internal action is easy to prove (similar to the second
case of the previous case).

Likewise we can prove that t1 'rbr t2 implies t ‖ t1 'rbr t ‖ t2.

Now let t1 'rbr t2. To prove t1 | t 'rbr t2 | t, we examine the root condition

from Definition 3.3. Suppose t1 | t
(C∗,nsnd(m,`))−−−−−−−−−−−−→ t∗. There are two cases to

consider:

• This send action was performed by t1 at node `, and t participated in the

communication. That is, t1
(C1,nsnd(m,`))−−−−−−−−−−−→ t′1 and t

(C,nrcv(m))−−−−−−−−−→ t′, so

that t1 | t
(C1∪C[`/?],nsnd(m,`))−−−−−−−−−−−−−−−−−−→ t′1 ‖ t′. Since t1 'rbr t2, there is a t′2

such that t2
(C1,nsnd(m,`′))−−−−−−−−−−−−→ t′2 with (` =? ∨ ` = `′) and t′1 'br t′2. Then

194 Appendix A — Proofs of Chapter 3

t2 | t
(C1∪C[`′/?],nsnd(m,`))−−−−−−−−−−−−−−−−−−−→ t′2 ‖ t′. Since t′1 'br t′2, we proved that

t′1 ‖ t′ 'br t′2 ‖ t′.

• The send action was performed by t at node `, and t1 participated in the

communication. That is, t1
(C1,nrcv(m))−−−−−−−−−−→ t′1 and t

(C,nsnd(m,`))−−−−−−−−−−−→ t′, so
that t1 | t

(C1∪C[`/?],nsnd(m,`))−−−−−−−−−−−−−−−−−−→ t′1 ‖ t′. Since t1 'rbr t2, there is a t′2 such
that t2

(C1,nrcv(m))−−−−−−−−−−→ t′2 with t′1 'br t′2. Then t2 | t
(C1∪C[`/?],nsnd(m,`))−−−−−−−−−−−−−−−−−−→

t′2 ‖ t′. Since t′1 'br t′2, we have t′1 ‖ t′ 'br t′2 ‖ t′.

Finally, the case where t1 | t
(C∗,nrcv(m))−−−−−−−−−−→ t∗ can be easily dealt with. This

receive action was performed by both t1 and t.
Concluding, t1 | t 'rbr t2 | t. Likewise it can be argued that t | t1 'rbr t | t2.

Case 11. We prove that if t1 'br t2, then ∂M (t1) 'br ∂M (t2). Let t1 'br t2
be witnessed by the branching reliable computed network bisimulation rela-
tion R. We define R′ = {(∂M (t′1), ∂M (t′2)) | (t′1, t

′
2) ∈ R}. We prove that R′

is a branching reliable computed network bisimulation relation. Suppose that

∂M (t′1)
(C,η)−−−−→ ∂M (t′′1) results from the application of Encap on t′1

(C,η)−−−−→ t′′1 such
that η 6= nrcv(m)∨ isTypem(m) = F . Since (t′1, t

′
2) ∈ R, two cases can be consid-

ered: either η is a τ action and (t′′1 , t
′
2) ∈ R, or there are s′′′1 , . . . , s

′′′
k and s′′1 , . . . , s

′′
k

for some k > 0 such that ∀i ≤ k (t′2 ⇒ s′′′i
〈(Ci,η)〉−−−−−→ s′′i with (t′1, s

′′′
i), (t′′1 , s

′′
i) ∈ R)

and 〈C1〉, . . . , 〈Ck〉 is a partitioning of 〈C〉. In the former case, (∂M (t′′1), ∂M (t′2)) ∈
R′. In the latter case, by application of Par and Encap, ∀i ≤ k (∂M (t′2) ⇒
∂M (s′′′i)

〈(Ci,η)〉−−−−−→ ∂M (t′′2) with (∂M (t′1), ∂M (s′′′i)), (∂M (t′′1), ∂M (s′′i)) ∈ R′).
Likewise we can prove that t1 'rbr t2 implies ∂M (t1) 'rbr ∂M (t2). To this aim

we examine the root condition in Definition 3.3. Suppose ∂M (t1)
(C,η)−−−−→ ∂M (t′1).

With the same argument as above, ∂M (t2)
〈(C,η)〉−−−−−→ ∂M (t′2). Since t′1 'br t′2, we

proved that ∂M (t′1) 'br ∂M (t′2). Concluding ∂M (t1) 'rbr ∂M (t2).

Case 13 Suppose that CBt1
(C′∪C,η)−−−−−−−→ t′1 by application of TR since t1

(C′,η)−−−−→ t′1.

By assumption t1 'rbr t2 implies that t2
(C′,η)−−−−→ t′2 and t′1 'br t′2. Therefore, by

application of TR, C B t2
(C′∪C,η)−−−−−−−→ t′2, and t′1 'br t′2 concludes that C B t1 'rbr

C B t2.

A.3 Soundness of RCNT Axiomatization

As two rooted branching computed network bisimilar terms are also rooted branch-
ing reliable computed network bisimilar, the soundness of axioms which are in
common with the lossy setting are established [73]. Thus, to prove the soundness
of our axiomatization, it suffices to prove the soundness of each new axiom in

A.3. Soundness of RCNT Axiomatization 195

comparison with the lossy setting, i.e., Dep0−7, TRes1−5, LM ′
1,2, and T1, modulo

rooted branching reliable computed network bisimilarity.
We focus on the soundness of Dep0 and T1, as the soundness of the remaining

axioms can be argued in a similar fashion. To prove Dep0, we show that both
sides of the axiom satisfy the transfer conditions of Definition 3.3. In following
cases, for the sake of brevity, we writeX for recQ·∑m′ 6∈Message(t,∅)({},nrcv(m′)).Q+

` : Q : t. Assume that [[t]]`
(C∗,η)−−−−→ [[t′]]`. Two cases can be distinguished:

1. It owes to the application Prefix ′ and Snd/Rcv1,2 together with some of
the rules Choice, Inv , and Sen1,2. Therefore t has a subterm of the form of
α.t′ where η is the network action version of α and C∗ ≡ C∗1 ∪ C∗2 such that
C∗1 is derived by Snd/Rcv1,2 and C∗2 is derived by Sen1,2 if they are applied.
By application of Inter ′1/Inter ′2,3 together with some of the rules Choice ′,

Inv ′, and Sen ′1,2, ` : X : t
(C∗,η)−−−−→ [[t′]]`. Then, by application of Rec and

Choice, X
(C∗,η)−−−−→ [[t′]]`.

2. It owes to the application of Rcv3 since t 6 (C,rcv(m))−−−−−−−−→, where C∗ = C[`/?],

and there exists no t′ such that t 6 (C
′, rcv(m))−−−−−−−−−→ t′ ∧ C′ 4 C. Two cases can

be distinguished:

• Assume that m 6∈ Message(t, ∅). Thus, by application of Rec, Choice

and Prefix , X
(C,nrcv(m))−−−−−−−−−→ X, where C = {}.

• Assume that m ∈ Message(t, ∅) and consequently t
(C′′,rcv(m))−−−−−−−−−→ t′

for some t′. This only happens when t has a subterm of the form of

sense(`′, t1, t2) for some t1 and t2. Assume that t1
(C′′′[?/`],rcv(m))−−−−−−−−−−−−−→

t′1, where {? `′}∪C′′′[?/`]∪C∗1 [?/`] = C′′ and t2 6
({}, rcv(m))−−−−−−−−−−→. Thus,

t 6 ({? ̀ ′}∪C∗1 [?/`],rcv(m))−−−−−−−−−−−−−−−−−−−−−→ and C ≡ {? `′}∪C∗1 [?/`]. Therefore, ` :

X : t1
(C′′′∪{ ̀̀ ′},nrcv(m))−−−−−−−−−−−−−−−−−−−→ [[t′1]]` and ` : X : t2 6

nrcv(m)−−−−−−→, and by ap-
plication of Sen4 (and maybe together with Choice ′, Inv ′, and Sen ′1,2),

` : X : t
({ 6̀ ̀ ′}∪C∗1 ,nrcv(m))

−−−−−−−−−−−−−−−−−−→ X. The case t2
(C′′′[?/`],rcv(m))−−−−−−−−−−−−−→ t′2,

where {? `′} ∪ C′′′[?/`] ∪ C∗1 [?/`] = C′′, and t1 6 ({}, rcv(m))−−−−−−−−−−→ hold, is
proved with a similar discussion with application of Sen3.

We focus on the soundness of T1. The only transition that the terms (C′, η).(

(C1, η).t + (C2, η).t + t′) and (C′, η).((C, η).t + t′) in T1 can do is
(C′,η)−−−−→ and the

resulting terms (C1, η).t + (C2, η).t + t′ and (C, η).t + t′ are branching reliable
computed network bisimilar, witnessed by the relation R constructed as follows:

R = {((C1, η).t+ (C2, η).t+ t′, (C, η).t+ t′), (t, t) | t ∈ RCNT}

196 Appendix A — Proofs of Chapter 3

The pair ((C1, η).t + (C2, η).t + t′, (C, η).t + t′) satisfies the transfer conditions
of Definition 3.1. Because every initial transition that (C1, η).t + (C2, η).t + t′

can perform owing to t′, (C, η).t + t′ can perform too. If (C1, η).t + (C2, η).t + t′

can perform a (C1, η) or (C2, η)-transition, (C, η).t + t′ can also perform it by
application of Exe. Vice versa, if (C, η).t + t′ can perform a (C, η)-transition,
then as C1 and C2 form a partitioning of C, (C1, η).t+ (C2, η).t+ t′ can perform a
corresponding (C1, η)- or (C2, η)-transition.

A.4 Completeness of RCNT Axiomatization

To define RCNT terms with a finite-state behavior, we borrow the syntactical
restriction of [73] on recursive terms recA · t, following the approach of [9].
We consider so-called finite-state Reliable Computed Network Theory (RCNTf),
obtained by restricting recursive terms recA · t to those that of which the bound
network names do not occur in the scope of parallel, communication merge, left
merge, hide, encapsulation and abstraction operators in t.

We follow the corresponding proof of [73] to prove the completeness of our
axiomatization by performing the following steps:

1. first we show that each RCNTf term can be turned into a normal form
consisting of only 0, (C, η).t′, t′ + t′′ and recA · t′, where A is guarded in t′;

2. next we define recursive network specifications and prove that each guarded
recursive network specification has a unique solution;

3. finally we show that our axiomatization is ground-complete for normal
forms, by showing that equivalent normal forms are solutions for the same
guarded recursive network specification.

Completeness of our axiomatization for all RCNTf terms results from the steps
1 and 3. We only discuss the first step, as others are exactly the same as in the
lossy setting.

Proposition A.10. Each closed term t of RCNTf whose network names do not occur
in the scope of one of the operators ‖, , |, (ν`), τM or ∂M for some ` ∈ Loc and
M ⊆ Msg , can be turned into a normal form.

We prove this by structural induction over the syntax of terms t (possibly
open). The base cases of induction for t ≡ 0 or t ≡ A are trivial because they are
in normal form already. The inductive cases of the induction are the following
ones:

• if t ≡ [[0]]`, then by application of Dep0,4 and Ch1 we have t = recQ ·∑
m′ 6∈Msg({},nrcv(m′)).Q, which is in normal form.

A.5. Proofs of Section 3.5.2 197

• if t ≡ [[α.t′]]` or t ≡ [[t′ + t′′]]` or [[sense(`′, t′, t′′)]]` or [[A]]`, then t can be
turned into a normal form by application of axioms Dep0−5,6,7 and induc-
tion over [[t′]]` and [[t′′]]`.

• if t ≡ (C, η).t′ or t ≡ t′ + t′′, then t can be turned into normal form by
induction over t′ and t′′.

• the other cases can be treated in the same way as in [73].

A.5 Proofs of Section 3.5.2

We first prove Theorem 3.7 which indicates that the refinement relation is a
preorder relation and has the precongruence property, and then we discuss the
proof of Proposition 3.8.

A.5.1 Proof of Theorem 3.7

We first show that the refinement relation is a preorder relation and then discuss
its precongruence property. To prove that refinement is a preorder, we must show
that it is reflexive and transitive. As it is trivial that Definition 3.6 is reflexive, we
focus on its transitivity property.

Regrading the well-formedness conditions imposed on RCNT terms, the tran-
sitivity property of our refinement relation, i.e., t1 v t2 and t2 v s implies that
t1 v s, can be only proved when t1 and t2 have no prefixed-actions with a multi-
hop network constraint. For such terms, Definition 3.6 enforces they mimic the
behavior of each other by the first and third conditions.In other words, for reli-
able computed network terms with no prefixed-actions with multi-hop network
constraints, a relation which is strong bisimulation of [118] is also a refinement.

Lemma A.11 (Transitive property). t1 v t2 and t2 v s implies that t1 v s.

Proof. Assume sets of refinement relations R1
C and R2

C witnessing t1 v t2 and
t2 v s, respectively. We construct a set of refinement relations R′C = {(t′1, s′) |
(t′2, s

′) ∈ R2
C ∧ t′1R1

C t2} for any well-formed network constraint C. We show that
t′1R′Cs′ satisfies the transfer conditions of Definition 3.6.

Assume t′1
(C′,η)−−−−→ t′′1 where C ∪ C′ ∈ Cv(Loc). By assumption t′1R1

Ct
′
2 implies

that t′2
(C′,η)−−−−→ t′′2 such that t′′1R1

C∪C′t
′′
2 . By the assumption t′2R2

Cs
′, there are three

cases to consider:

• η = τ and t′′2 R2
C∪C′ s

′ . Thus by construction, t′′1 R′C∪C′ s′.

• There is an s′′ such that s′
(C,η)−−−−→ s′′, and t′′2 R2

C∪C′ s
′′. Thus by construction,

t′′1 R′C∪C′ s′.

198 Appendix A — Proofs of Chapter 3

• η = ι for some ι ∈ IAct ∪{τ} and there is an s′′ such that s′
(M,ι)−−−−→ s′′ with

C ∪ C′ |=M and t′′2 R2
C∪C′ s

′′. Thus by construction, t′′1 R′C∪C′ s′′.

Assume s′
(C′,η)−−−−→ s′′. The assumption t′2 R2

C∪C′ s
′ implies that there is a t′′2

such that t′2
(C′,η)−−−−→ t′′2 with t′′2 R2

C∪C′ s
′′. By assumption t′1R1

Ct
′
2 implies that

t′1
(C′,η)−−−−→ t′′1 such that t′′1R1

C∪C′t
′′
2 , and consequently t′′1 R′C∪C′ s′′.

Assume s′
(M,ι)−−−−→ s′′. . The assumption t′2 R2

C∪C′ s
′ implies that there are

t′′′2 and t′′2 such that t′2
C′
=⇒ t′′′2

(C′′,ι)−−−−→ t′′2 with t′′′2 R2
C∪C′ s

′ and t′′2 R2
C∪C′∪C′′ s

′′

where C ∪ C′ ∪ C′′ |= M. As every transition of t′2 is mimicked by t′1, there are

t′′′1 and t′′1 such that t′1
C′
=⇒ t′′′1

(C′′,ι)−−−−→ t′′1 with t′′′1 R1
C∪C′ t

′′′
2 and t′′1 R1

C∪C′∪C′′ t
′′
2 .

Concluding, there are t′′′1 and t′′1 such that t′1
C′
=⇒ t′′′1

(C′′,ι)−−−−→ t′′1 with t′′′1 R′C∪C′ s′
and t′′1 R′C∪C′∪C′′ s′′ where C ∪ C′ ∪ C′′ |=M.

Theorem A.12. Refinement is a precongruence for terms with respect to the RCNT
operators.

Proof. Assume that t1 v s1 and t2 v s2. We first show that t1 + t2 v s1 + s2.
There are sets of refinement relations R1

C and R2
C witnessing t1 v s1 and t2 v s2,

respectively. We construct a set of refinement relationsRC = R1
C ∪R2

C ∪{(t′1, s1 +
s2) | t′1 R1

C s1}∪{(t′2, s1+s2) | t′2 R2
C s2} for any well-formed network constraint

C. We show that R{ } = {(t1 + t2, s1 + s2)} ∪ R1
{ } ∪ R2

{ } satisfies the transfer
conditions of Definition 3.6.

Assume t1 + t2
(C′,η)−−−−→ t′1 owing to t1

(C′,η)−−−−→ t′1, where C ∪ C′ ∈ Cv(Loc). By
the assumption t1 R1

{ } s1, three cases can be considered:

• η = τ and t′1 RC∪C′ s1. Thus by construction t′1 RC∪C′ s1 + s2.

• There is an s′1 such that s1
(C,η)−−−−→ s′1, and t′1 R1

C∪C′ s
′
1. Thus by the rule

Choice, there is an s′1 such that s1 + s2
(C,η)−−−−→ s′1 and by construction

t′1 RC∪C′ s′1.

• η = ι for some ι ∈ IAct ∪{τ} and there is an s′1 such that s1
(M,ι)−−−−→ s′1 with

C ∪ C′ |= M and t′1 R1
C∪C′ s

′
1. Thus by the rule Choice, there is an s′1 such

that s1 + s2
(M,ι)−−−−→ s′1 and by construction C ∪ C′ |=M and t′1 RC∪C′ s′1.

The same discussion holds if t1 + t2
(C′,η)−−−−→ t′2 owing to t2

(C′,η)−−−−→ t′2.

Assume s1 + s2
(M,ι)−−−−→ s′1 owing to s1

(M,ι)−−−−→ s′1, where C ∪ C′ ∈ Cv(Loc). By

assumption t1 R1
C s1 implies there are t′′1 and t′1 such that t1

C′
=⇒ t′′1

(C′′,ι)−−−−→ t′1 with

t′′1 R1
C∪C′ s1 and t′1 R1

C∪C′∪C′′ s
′
1 where C ∪ C′ ∪C′′ |=M. Consequently t1 + t2

C′
=⇒

A.5. Proofs of Section 3.5.2 199

t′′1
(C′′,ι)−−−−→ t′1 with t′′1 RC∪C′ s1 + s2 and t′1 RC∪C′∪C′′ s′1 where C ∪ C′ ∪ C′′ |= M.

The same discussion holds when s1 + s2
(M,ι)−−−−→ s′2 owing to s2

(M,ι)−−−−→ s′2.

Assume s1 + s2
(C,η)−−−−→ s′1 owing to s1

(C,η)−−−−→ s′1. By assumption t1 R1
C s1

implies there is a t′1 such that t1
(C′,η)−−−−→ t′1 with t′1 R1

C∪C′ s
′
1. Hence, there is a t′1

such that t1 + t2
(C′,η)−−−−→ t′1 with t′1 RC∪C′ s′1.

The above discussions together yield t1 + t2 v s1 + s2.
If s1 and s2 have no prefixed-action with a multi-hop network constraint, then

we must show the following cases:

1. (C, η).t1 v (C, η).t2;

2. (ν`).t1 v (ν`).t2;

3. t1 ‖ t2 v s1 ‖ s2;

4. t1 t2 v s1 s2;

5. t1 | t2 v s1 | s2;

6. ∂M (t1) v ∂M (t2);

7. τ(t1) v τ(t2);

8. C B t1 v C B t2;

The above cases result from the congruence property of strong bisimilarity. As
we discussed earlier, for reliable computed network terms with no prefixed-
actions with multi-hop network constraints, a relation which is strong bisimu-
lation of [118] is also a refinement.

The proof of Theorem 3.7 is an immediate result of Lemma A.11 and Theorem
A.12.

A.5.2 Proof of Proposition 3.8

First we show that (C, τ).t v (M, ι).s ⇒ C B t v (M, ι).s ∧ C |= M. The

only transition (C, τ).t can make is (C, τ).t
(C,τ)−−−−→ t. As ι 6= τ , according to

the first case of the first transfer condition of Definition 3.6, t RC (M, ι).s. We
construct R′{ } = RC and show that it induces C B t v (M, ι).s. This is trivial

as any transition C B t (C∪C′,η)−−−−−−−→ t′ is the result of t
(C′,η)−−−−→ t′. The transition

s
(M,ι)−−−−→ s′ and the assumption t RC (M, ι).s imply that here are t′′ and t′

such that t C
′

=⇒ t′′
(C′′,ι)−−−−→ t′ with C ∪ C′ ∪ C′′ |= M and t′ RC∪C′∪C′′ s′ where

C ∪ C′ ∪ C′′ ∈ Cv(Loc). Two cases can be discussed:

200 Appendix A — Proofs of Chapter 3

• t′′ ≡ t, and t
{ }
=⇒ t

(C′′,ι)−−−−→ t′ with C ∪ C′′ |= M and t′ RC∪C′′ s′ where

C ∪C′′ ∈ Cv(Loc). Therefore, CB t { }=⇒ CB t (C′′∪C,ι)−−−−−−−→ t′ with C ∪C′′ |=M
and t′ RC∪C′′ s′ where C ∪ C′′ ∈ Cv(Loc);

• t
C′
=⇒ t′′ is the result of n > 0 τ -transitions. Thus there is t∗ such that

t
(C∗,τ)−−−−→ t∗

C∗∗
==⇒ t′′ where C∗ ∪C∗∗ = C′. Hence, CB t (C∗∪C,τ)−−−−−−−→ t∗

C∗∗
==⇒ t′′.

Thus, C B t C
′

=⇒ t′′
(C′′,ι)−−−−→ t′ with C ∪ C′ ∪C′′ |=M and t′ RC∪C′∪C′′ s′ where

C ∪ C′ ∪ C′′ ∈ Cv(Loc).

Now, we show that (C, ι).t v (M, ι).s⇒ CB t v s. The only transition (C, ι).t
can make is (C, ι).t (C,ι)−−−→ t. As ι 6= τ and ι ∈ IAct , according to the third case of
the first transfer condition of Definition 3.6, t RC s. We constructR′{ } = RC and

show that it induces C B t v s. This is trivial as any transition C B t (C∪C′,η)−−−−−−−→ t′

is the result of t
(C′,η)−−−−→ t′. The reverse of the rule can be argued in a similar

fashion.

BProofs of Chapter 6

B.1 Proofs of Theorems 6.5, 6.10, and 6.12

We first prove that product line bisimilarity is an equivalence relation, and then
prove its congruence property on fully expanded PL-CCS terms. Later, we show
that strict strong bisimilarity is an equivalence relation and constitutes a congru-
ence on PL-CCS terms

B.1.1 Proof of Theorem 6.5

Theorem 6.5. Product line bisimilarity is an equivalence relation.
Proof. To show that product line bisimilarity is an equivalence, we must show
that it is reflexive, symmetric, and transitive. Reflexivity and symmetry follow
immediately from the reflexivity and symmetry properties of strong bisimilarity.
Hence, it only remains to prove transitivity.

Consider PL-CCS terms s, t, r such that s 'PL t, and t 'PL r. Following Defi-
nition 6.4, for any valid full configuration νf1 with respect to s, there exists a valid
full configuration νf2 with respect to t such that Π(s, νf1) ∼ Π(t, νf2). For any νf2 ,
there exists a valid full configuration νf3 with respect to r such that Π(t, νf2) ∼
Π(r, νf3). Transitivity of strong bisimilarity results in Π(s, νf1) ∼ Π(r, νf3). The
same argument holds for any valid full configuration νf3 with respect to r, con-
cluding that s 'PL r.

B.1.2 Proof of Theorem 6.12

Theorem 6.12. Product line bisimilarity constitutes a congruence on fully ex-
panded PL-CCS terms.
Proof. Consider an arbitrary product line r such that s � r and t � r are fully
expanded, where � ∈ {+,⊕, ‖} and s 'PL t; also consider renaming function φ,
L ⊆ Act; to show that product line bisimilarity is a congruence on fully expanded
PL-CCS terms we need to prove the following statements:

1. α.s 'PL α.t ;

2. s+ r 'PL t+ r;

201

202 Appendix B — Proofs of Chapter 6

3. s⊕i r 'PL t⊕i r;

4. s \ L 'PL t \ L;

5. s[φ] 'PL t[φ];

6. s ‖ r 'PL t ‖ r;

We only prove cases 1, 3, and 6 as the proof of remaining cases is almost iden-
tical. Let ν · λ denote the concatenation of two configuration vectors ν and λ
by appending the elements of λ at the end of ν. Furthermore, assume that |ν|
denotes the length of configuration vector ν, and max (S) denotes the maximum
index in set S, where max (∅) = 0. Note that any full configuration νf with re-
spect to s� r can be written as either νs ·λ1 or νr ·λ2 for some νs ∈ VFConfig(s)
and νr ∈ VFConfig(r). The following two lemmata are required for the proof. In
following proofs, we use ≡ to denote syntactic equivalence.

Lemma B.1. For each PL-CCS term t, t
a,ν−−→ t′, where |ν| ≥ max (bi(t)), implies

t
a,ν·λ?−−−−−→ t.

Proof. The proof is straightforward by induction on the structure of t. The only
interesting cases are given below:

• t ≡ t1⊕i t2: by SOS rule Select , t
a,ν−−→ t′1, since t1

a,ν′−−−→ t′1 and ν′|i 6= R, and

ν = ν′|i/L. By induction, t1
a,ν′·λ?−−−−−−→ t′1 while ν′|i 6= R ⇒ (ν′ · λ?)|i 6= R.

Consequently by SOS rule Select , t
a,ν·λ?−−−−−→ t′1 holds. The same discussion

holds when t
a,ν−−→ t′2 as the result of t2

a,ν′−−−→ t′2.

• t ≡ t1 ‖ t2: by SOS rule Sync, we have t
τ,ν′�ν′′−−−−−−−→ t′1 ‖ t′2, since

t1
a,ν′−−−→ t′1 and t2

a,ν′′−−−→ t′2, and ν′ � ν′′. By induction, t1
a,ν′·λ?−−−−−−→ t′1 and

t2
a,ν′′·λ?−−−−−−→ t′2. Since (ν′ · λ?) � (ν′′ · λ?), then by SOS role Sync, we have

t
τ,(ν′�ν′′)·λ?−−−−−−−−−−−→ t′1 ‖ t′2. The same argument holds when t

a,ν−−→ t′1 ‖ t2 or

t
a,ν−−→ t1 ‖ t′2 by SOS rule Par as the results of t1

a,ν′−−−→ t′1 or t2
a,ν′−−−→ t′2,

respectively.

Lemma B.2. For each PL-CCS term t, t
a,ν−−→ t′ implies t

a,ν′−−−→ t, where ν = ν′ · λ?

and |ν′| ≥ max (bi(t)).

Proof. By induction on the structure of t. The only interesting cases are:

B.1. Proofs of Theorems 6.5, 6.10, and 6.12 203

• t ≡ t1 ⊕i t2: by SOS rule Select , we have t
a,ν−−→ t′1, since t1

a,ν′−−−→ t′ and

ν′|i 6= R, and ν ≡ ν′|i/L. By induction, we obtain t1
a,ν′′−−−→ t′, where

ν′ ≡ ν′′ · λ? and |ν′′| ≥ max (bi(t)). Since i ∈ bi(t), then i < |ν′′|, and

consequently ν′′|i 6= R. Therefore by SOS rule Select , t
a,ν′′|i/L−−−−−−→ t′1 holds.

The same argument holds when t
a,ν−−→ t′2 as the result of t2

a,ν′−−−→ t′2.

• t ≡ t1 ‖ t2: by SOS rule Sync, we obtain t
τ,ν1�ν2−−−−−−−→ t′1 ‖ t′2, since t1

a,ν1−−−→
t′1 and t2

a,ν2−−−→ t′2, and ν1 � ν2. By induction, t1
a,ν′1−−−→ t′1 and t2

a,ν′2−−−→ t′2,
where ν1 = ν′1 ·λ?, ν2 = ν′2 ·λ?, and |ν′1|, |ν′2| ≥ max (bi(t)). Therefore, ν1 �
ν2 implies ν′1 � ν′2, and by SOS rule Sync, we have that t

a,ν′1�ν
′
2−−−−−−−→ t′1 ‖ t′2.

The same argument holds when t
a,ν−−→ t′1 ‖ t2 or t

a,ν−−→ t1 ‖ t′2 by SOS rule

Par as the results of t1
a,ν′−−−→ t′1 or t2

a,ν′−−−→ t′2, respectively.

We now proceed with the proof of Theorem 6.12. Following Definition 6.4,
s 'PL t implies that for any full configuration νf1 with respect to s, there exists a
valid full configuration νf2 with respect to t such that Π(s, νf1) ∼ Π(t, νf2) holds.
In the remainder of the proof, we assume that Π(s, νf1) ∼ Π(t, νf2) is witnessed
by the strong bisimulation relation R.
Case 1. νf1 ∈ VFConfig(s) and νf2 ∈ VFConfig(t) and hence, νf1 ∈ VFConfig(a.s)

and νf2 ∈ VFConfig(a.t). Therefore, we only need to prove that Π(a.s, νf1) ∼
Π(a.t, νf2). To this end, we prove that the closure of R with action prefixing,
denoted by R′, is a strong bisimulation relation. We formally define R′ as R
∪ {(Π(a.s, νf1),Π(a.t, νf2)) | (Π(s, νf1),Π(t, νf2)) ∈ R}. It remains to show the
transfer conditions of Definition 2.1 for each pair in R′. The case for the pairs
in R holds vacuously. We only need to show the transfer conditions for an ar-
bitrary pair (Π(a.s, νf1),Π(a.t, νf2)) ∈ R′. Assume that Π(a.s, νf1)

a−→ (s′, νf1) for
some s′. This transition can only be due to SOS rule Prefix and s′ must be s.
Hence, a.s

a,ν?−−−→ s and ν? v νf1 . Similarly, it follows from SOS rule Prefix and
the definition of the LTS semantic of product lines that Π(a.t, νf2)

a−→ Π(t, νf2).
Due to the definition of R′, we have that (Π(s, νf1),Π(t, νf2)) ∈ R and hence
(Π(s, νf1),Π(t, νf2)) ∈ R′, which was to be shown.
Case 3. Following the Definition 6.4, we prove that for any valid full configu-
ration νf

′
1 with respect to s ⊕i r, there exists a valid full configuration νf

′
2 with

respect to t⊕i r such that Π(s⊕i r, νf ′1) ∼ Π(t⊕i r, νf ′2) holds. Since s⊕i r and
t ⊕i r are fully expanded, i is fresh in s, t, and r. Regarding the value of νf

′
1|i,

two cases can be considered:

204 Appendix B — Proofs of Chapter 6

1. νf
′
1|i = L: Let νf

′
1 = νf1 ·λ1. Take νf

′
2 = νf1 ·λ2 such that Π(s, νf1) ∼ Π(t, νf2)

and νf
′
1|i = νf

′
2|i. Construct R′1 as:

R′1 = {(Π(s⊕i r, νf ′1),Π(t⊕i r, νf ′2))}∪
{(Π(s′, νf

′
1),Π(t′, νf

′
2))|(Π(s′, νf1),Π(t′, νf2)) ∈ R} .

We prove thatR′1 satisfies the transfer conditions of Definition 2.1. We only
examine the transfer conditions for for an arbitrary pair (Π(s⊕ir, νf ′1),Π(t⊕i
r, νf

′
2)) ∈ R′1 as the pairs in R trivially satisfy the transfer conditions. Sup-

pose that Π(s ⊕i r, νf ′1)
a−→ p. This transition can only be due to SOS

rule Select and transition s
a,ν−−→ s′, where ν v νf

′
1, and p ≡ Π(s′, νf

′
1).

Hence, we have that s ⊕i r
a,ν|i/L−−−−−→ s′. By Lemma B.2, s

a,νs−−−→ s′, where
ν = νs · λ?, νs v νf1 and νs|i =?. Therefore, it follows from the def-
inition of the LTS semantic of product lines that Π(s, νf1)

a−→ Π(s′, νf1).
Furthermore, Π(s, νf1) ∼ Π(t, νf2) implies that Π(t, νf2)

a−→ Π(t′, νf2) and
Π(s′, νf1) R Π(t′, νf2). Similarly, it follows from the definition of the LTS
semantic of product lines that t

a,νt−−−→ t′, where νt v νf2 , νt|i =?. Thus,

by Lemma B.1, t
a,ν′−−−→ t′, where ν′ = νt · λ? and ν′ v νf

′
2. From SOS

rule Select and the definition of the LTS semantic of product lines, it fol-
lows that Π(t ⊕i r, νf ′2)

a−→ Π(t′, νf
′
2). Due to the definition of R′, we have

that (Π(s′, νf1),Π(t′, νf2)) ∈ R and hence (Π(s′, νf1),Π(t′, νf2)) ∈ R′, which
was to be shown. The same discussion holds when Π(t ⊕i r, νf ′2)

a−→ p.
Concluding that R′1 is a strong bisimulation.

2. νf
′
1|i = R: Let νf

′
1 = νf · λ1, where νf is a valid configured configuration

with respect to r, then take νf
′
2 = νf ·λ2 such that νf

′
1|i = νf

′
2|i. Construct

R′2 as:

R′2 = {(Π(s⊕i r, νf ′1),Π(t⊕i r, νf ′2))} ∪ {(Π(r′, νf
′
1),Π(r′, νf

′
2))} .

We prove thatR′2 satisfies the transfer conditions of Definition 2.1. We only
examine the transfer conditions for an arbitrary pair (Π(s⊕i r, νf ′1),Π(t⊕i
r, νf

′
2)) ∈ R′2 as the pairs in {(Π(r′, νf

′
1),Π(r′, νf

′
2))} trivially satisfy the

transfer conditions. Suppose that Π(s ⊕i r, νf ′1)
a−→ p. This transition can

only be due to SOS rule Select and transition r
a,ν−−→ r′, where ν v νf

′
1,

and p ≡ Π(r′, νf
′
1). Hence, s ⊕i r

a,ν|i/R−−−−−→ r′. By Lemma B.2, r
a,νr−−−→ r′,

where ν = νr · λ? and νr v νf . Hence, by Lemma B.1, r
a,ν′−−−→ r′, where

ν′ = νr · λ?, and ν′ v νf
′
2. From SOS rule Select and the definition of the

LTS semantic of product lines, it follows that Π(t ⊕i r, νf ′2)
a−→ Π(r′, νf

′
2),

and by the definition of R′2 we have that Π(r′, νf
′
1) R′2 Π(r′, νf

′
2), which

was to be shown. The same discussion holds when Π(t ⊕i r, νf ′2)
a−→ p.

Concluding, R′2 is a strong bisimulation.

B.1. Proofs of Theorems 6.5, 6.10, and 6.12 205

The same discussion holds for any valid full configuration νf
′
2 with respect to

t⊕i r. We conclude that s⊕i r 'PL t⊕i r.
Case 6. Since s ‖ r and t ‖ r are fully expanded and the root of their parse
tree is parallel composition, s and t cannot have any binary variant in common
with r, i.e., bi(s) ∩ bi(r) = ∅ and bi(t) ∩ bi(r) = ∅. Consequently, for any νf1 ∈
VFConfig(s), there exists a νf2 ∈ VFConfig(t) such that ∀i ∈ bi(r)(νf1 |i = νf2 |i).
Following the Definition 6.4, we prove that for any νf

′
1 ∈ VFConfig(s ‖ r), there

exists νf
′
2 ∈ VFConfig(t ‖ r) such that Π(s ‖ r, νf ′1) ∼ Π(t ‖ r, νf ′2) holds. To

this aim, for any νf
′
1 = νf1 · λ1, take νf

′
2 = νf2 · λ2 such that Π(s, νf1) ∼ Π(t, νf1)

and ∀i ∈ bi(r)(νf1 |i = νf2 |i). Construct R′ as

R′ = {(Π(s′ ‖ r′, νf ′1),Π(t′ ‖ r′, νf ′2))|(Π(s′, νf1),Π(t′, νf2)) ∈ R}

We show that it satisfies the transfer conditions of Definition 2.1.
For an arbitrary pair Π(s′ ‖ r′, νf ′1) R′ Π(t′ ‖ r′, νf ′1), suppose that Π(s′ ‖

r′, νf
′
1)

a−→ p. Using the SOS rules Par and Sync, three cases can be considered:

1. This transition can be due to SOS rule Par and s′
a,ν′1−−−→ s′′, where ν′1 v νf

′
1.

Hence, s′ ‖ r′ a,ν′1−−−→ s′′ ‖ r′, and p ≡ Π(s′′ ‖ r′, νf ′1). By Lemma B.2,
s′

a,νs−−−→ s′′, where ν′1 = νs · λ? and νs v νf1 . Thus, it follows from the
definition of the LTS semantic of product lines that Π(s′, νf1)

a−→ Π(s′′, νf1).
Furthermore, Π(s′, νf1) R Π(t′, νf2) implies that Π(t′, νf2)

a−→ Π(t′′, νf2) and
Π(s′′, νf1) R Π(t′′, νf2). Similarly, it follows from the definition of the LTS
semantic of product lines that t′

a,νt−−−→ t′′, where νt v νf2 and consequently

by Lemma B.1, t′
a,ν′2−−−→ t′′, where ν′2 = νt · λ? and ν′2 v νf

′
2. By SOS rule

Par , t′ ‖ r′ a,ν′2−−−→ t′′ ‖ r′ and consequently, Π(t′ ‖ r′, νf ′2)
a−→ Π(t′′ ‖ r′, νf ′2).

Due to the definition of R′ we have that Π(s′′, νf1) R Π(t′′, νf2), and hence
Π(s′′ ‖ r′, νf ′1) R′ Π(t′′ ‖ r′, νf ′2), which was to be shown.

2. This transition can be due to SOS rule Par and r′
a,ν′−−−→ r′′, where ν′ v νf ′1.

Hence, s′ ‖ r′ a,ν′−−−→ s′ ‖ r′′ and p ≡ Π(s′ ‖ r′′, νf ′1). Therefore, by Lemmas

B.2 and B.1, r′
a,ν′′−−−→ r′′, where ν′′ v νf

′
2. Thus, by SOS rule Par , t′ ‖

r′
a,ν′′−−−→ t′ ‖ r′′, where ν′′ v νf ′2, and consequently, Π(t′ ‖ r′, νf ′2)

a−→ Π(t′ ‖
r′′, νf

′
2). Due to the definition ofR′ we have that Π(s′, νf1)R Π(t′, νf2), and

hence Π(s′ ‖ r′′, νf ′1) R′ Π(t′ ‖ r′′, νf ′2), which was to be shown.

3. This transition can be due to SOS rule Sync and transitions s′
a,ν′1−−−→ s′′ and

r′
a,ν′−−−→ r′′, where ν′1 v νf

′
1, ν′ v νf

′
1, and ν′1 � ν′, and consequently

p ≡ Π(s′′ ‖ r′′, νf ′1). Hence, s′ ‖ r′ τ,ν′1�ν
′

−−−−−−→ s′′ ‖ r′′. By Lemma B.2,

206 Appendix B — Proofs of Chapter 6

s′
a,νs−−−→ s′′, where ν′1 = νs · λ? and νs v νf1 . It follows from the def-

inition of the LTS semantic of product lines that Π(s′, νf1)
a−→ Π(s′′, νf1).

Furthermore, Π(s′, νf1) R Π(t′, νf2) implies that Π(t′, νf2)
a−→ Π(t′′, νf2) and

Π(s′′, νf1) R Π(t′′, νf2). It follows that t′
a,νt−−−→ t′′, where νt v νf2 , and con-

sequently, by Lemma B.1, t′
a,ν′2−−−→ t′′, where ν′2 = νt · λ? and ν′2 v νf

′
2.

Since νs v νf1 and νt v νf2 , then ν′1 � ν′ and ∀i ∈ bi(r)(νf1 |i = νf2 |i)
imply that ν′2 � ν′ and ν′2 � ν′ v νf

′
2. By SOS rule Sync, we have that

t′ ‖ r′ τ,ν′2�ν
′

−−−−−−→ t′′ ‖ r′′ and hence, Π(t′ ‖ r′, νf ′2)
τ−→ Π(t′′ ‖ r′′, νf ′2).

Due to the Definition of R′, we have that Π(s′′, νf1) R Π(t′′, νf2) and hence,
Π(s′′ ‖ r′′, νf ′1) R′ Π(t′′ ‖ r′′, νf ′2).

The same discussion holds when Π(t′ ‖ r′, νf ′2)
a−→ p. Concluding, R′ is a strong

bisimulation, and consequently s ‖ r 'PL t ‖ r.

B.1.3 Proof of Theorem 6.10

Theorem 6.10 - Part 1. Strict strong bisimilarity is an equivalence relation.
Proof. To show that strict strong bisimilarity is an equivalence, we must show
that it is reflexive, symmetric, and transitive. Reflexivity and symmetry follow
immediately from the reflexivity and symmetry properties of strong bisimilarity.
Hence, it only remains to prove transitivity.

Consider PL-CCS terms s, t, and r such that s ≈PL t, and t ≈PL r; following
Definition 6.3 for any valid full configuration νf1 ∈ VFConfig(s) ∩ VFConfig(t)

and νf2 ∈ VFConfig(t) ∩ VFConfig(r), it holds that Π(s, νf1) ∼ Π(t, νf1), and
Π(t, νf2) ∼ Π(r, νf2). Without loss of generality, we assume that max (bi(s)) ≥
max (bi(t)) ≥ max (bi(r)) (the proof of all other cases is almost identical). There-
fore, νf1 = νr · λ1 · λ2, νf2 = νr · λ2, where νr ∈ VFConfig(r). We prove that
Π(s, νf1) ∼ Π(r, νf1). Construct R as

R = {(Π(s′, νf1),Π(r′, νf1)) | Π(s′, νf1) ∼ Π(t′, νf1) ∧Π(t′, νf2) ∼ Π(r′, νf2)}

We prove that R satisfies the transfer conditions of Definition 2.1.
For an arbitrary pair (Π(s′, νf1),Π(r′, νf1)) ∈ R, consider that Π(s′, νf1)

α−→
Π(s′′, νf1) since s′

α,ν′1−−−→ s′′, where ν′1 v νf1 . Hence, Π(s′, νf1) ∼ Π(t′, νf1) implies
that Π(t′, νf1)

α−→ Π(t′′, νf1) and Π(s′′, νf1) ∼ Π(t′′, νf1). It follows that t′
α,ν2−−−→ t′′,

where ν2 v νf1 . By Lemma B.2, it holds that t′
α,ν′2−−−→ t′′, where ν2 = ν′2 · λ? and

ν′2 v νf2 and consequently Π(t′, νf2)
α−→ Π(t′′, νf2). Therefore, Π(t′, νf2) ∼ Π(r′, νf2)

implies that Π(r′, νf2)
α−→ Π(r′′, νf2) and Π(t′′, νf2) ∼ Π(r′′, νf2). It follows that

r′
α,ν′3−−−→ r′′, where ν′3 v νf2 . Consequently, by Lemma B.1, r′

α,ν3−−−→ r′′, where
ν3 = ν′3 · λ? and ν3 v νf1 . Hence, Π(r′, νf1)

α−→ Π(r′′, νf1). Due to the Definition
of R, we have that Π(s′′, νf1) ∼ Π(t′′, νf1) and Π(t′′, νf2) ∼ Π(r′′, νf2) and hence,

B.1. Proofs of Theorems 6.5, 6.10, and 6.12 207

(Π(s′′, νf1),Π(r′′, νf1)) ∈ R, which was to be shown. The same discussion holds
when r′

α,ν3−−−→ r′′, where ν3 v νf1 . Concluding, R is a strong bisimulation, and
consequently s ≈PL r.
Theorem 6.10 - Part 2. Strict strong bisimilarity is congruence on PL-CCS terms.
Proof. To show that strict strong bisimilarity is a congruence on PL-CCS terms
with respect to the PL-CCS operators, we need to prove that for any arbitrary
product line r, renaming function φ, and L ⊆ Act , s ≈PL t implies following
cases:

1. α.s ≈PL α.t ;

2. s+ r ≈PL t+ r;

3. s⊕i r ≈PL t⊕i r;
4. s \ L ≈PL t \ L;

5. s[φ] ≈PL t[φ];

6. s ‖ r ≈PL t ‖ r;
We only prove cases 1, 3, and 6; the proof of remaining cases is almost identical.
Note that ∀νf ′ ∈ VFConfig(s � r) ∩ VFConfig(t � r) ⇒ ∃νf ∈ VFConfig(s) ∩
VFConfig(t)(νf

′
= νf · λ), where � ∈ {+,⊕, ‖, , |}. For any valid full configu-

ration νf with respect to s and t, we assume Π(s, νf) ∼ Π(t, νf) is witnessed by
strong bisimulation R.
Case 1. We have that νf ∈ VFConfig(s) ∩ VFConfig(t), and hence, νf ∈
VFConfig(a.s)∩VFConfig(a.t). Therefore, we only need to prove that Π(a.s, νf)
∼ Π(a.t, νf). To this end, we prove that the closure of R with action prefixing,
denoted by R′ is a strong bisimulation relation. It remains to show the trans-
fer conditions of Definition 2.1 for each pair in R′. The case for the pairs in R
holds vacuously. We only need to show the transfer conditions for an arbitrary
pair (Π(a.s, νf1),Π(a.t, νf2)) ∈ R′. Assume that Π(a.s, νf)

a−→ (s′, νf) for some s′.
This transition can only be due to SOS rule Prefix and s′ must be s. Hence, we
have that a.s

a,ν?−−−→ s and ν? v νf . Similarly, it follows from SOS rule Prefix and
the definition of the LTS semantic of product lines that Π(a.t, νf)

a−→ Π(t, νf).
Due to the definition of R′, we have that (Π(s, νf),Π(t, νf)) ∈ R and hence
(Π(s, νf),Π(t, νf)) ∈ R′, which was to be shown.
Case 3. Following Definition 6.3, we prove that for any valid full configuration
νf
′
with respect to s⊕i r and t⊕i r, Π(s⊕i r, νf ′) ∼ Π(t⊕i r, νf ′) holds. Construct

R′, as:

R′ = {(Π(s⊕i r, νf ′),Π(t⊕i r, νf ′))} ∪ {(Π(t′, νf
′
),Π(t′, νf

′
))}∪

{(Π(s′, νf
′
),Π(t′, νf

′
))|(Π(s′, νf),Π(t′, νf)) ∈ R} .

We prove thatR′ satisfies the transfer conditions of Definition 2.1. We only prove
the transfer conditions for the pair (Π(s⊕ir, νf ′),Π(t⊕ir, νf ′)) ∈ R′ as for others,

208 Appendix B — Proofs of Chapter 6

the proof is trivial (the proof for pairs such as (Π(s′, νf
′
),Π(t′, νf

′
)) ∈ R′ follows

from Lemmas B.1 and B.2).
Suppose that Π(s ⊕i r, νf ′) a−→ p. Regarding the value of νf

′|i two cases can
be considered:

1. νf
′|i = L: This transition can be due to SOS rule Select and s

a,ν−−→ s′,

where ν v νf ′, and p ≡ Π(s′, νf
′
). Hence, s⊕i r

a,ν|i/L−−−−−→ s′. By Lemma B.2,
s

a,νs−−−→ s′, where ν = νs · λ?, and νs v νf . Therefore, from the definition
of the LTS semantic of product lines it follows that Π(s, νf)

a−→ Π(s′, νf).
Furthermore, Π(s, νf) ∼ Π(t, νf) implies that Π(t, νf)

a−→ Π(t′, νf) and
Π(s′, νf) ∼ Π(t′, νf). Similarly, it follows that t

a,νt−−−→ t′, where νt v νf .

Thus, by Lemma B.1, t
a,ν′−−−→ t′, where ν′ = νt · λ?, and ν′ v νf

′
. By

Select , t ⊕i r
a,ν′|i/L−−−−−→ t′ and consequently Π(t ⊕i r, νf ′) a−→ Π(t′, νf

′
).

Due to the definition of R′, we have that Π(s′, νf) ∼ Π(t′, νf) and hence,
Π(s′, νf

′
) R′ Π(t′, νf

′
), which was to be shown.

2. νf |i = R: This transition can be due to SOS rule Select and r
a,ν−−→ r′,

where ν v νf
′
, and p ≡ Π(r′, νf

′
). Hence, s ⊕i r

a,ν|i/R−−−−−→ r′ and simi-

larly, t ⊕i r
a,ν|i/R−−−−−→ t′. It follows from the definition of the LTS semantic

of product lines that Π(t ⊕i r, νf ′) a−→ Π(r′, νf
′
). By the definition of R′,

Π(r′, νf
′
) R′ Π(r′, νf

′
).

The same discussion holds when Π(t ⊕i r, νf ′) a−→ p. Concluding, R′ is a strong
bisimulation. Consequently s⊕i r ≈PL t⊕i r.
Case 6. Following the Definition 6.3, we prove that for any valid full configu-
ration νf

′
with respect to s ‖ r and t ‖ r, Π(s ‖ r, νf ′) ∼ Π(t ‖ r, νf ′) holds.

Construct R′ as

R′ = {(Π(s′ ‖ r′, νf ′),Π(t′ ‖ r′, νf ′))|(Π(s′, νf),Π(t′, νf)) ∈ R}

We show that it satisfies the transfer conditions of Definition 2.1.
For an arbitrary pair Π(s′ ‖ r′, νf ′) R′ Π(t′ ‖ r′, νf ′), suppose that Π(s′ ‖

r′, νf
′
)
a−→ p. Using the SOS rules Par and Sync, three cases can be considered:

1. This transition can be due to SOS rule Par and s′
a,ν′1−−−→ s′′, where ν′1 v

νf
′
, and p ≡ Π(s′′ ‖ r′, νf ′). Hence, s′ ‖ r′ a,ν′1−−−→ s′′ ‖ r′. By Lemma

B.2, s′
a,νs−−−→ s′′, where ν′1 = νs · λ? and νs v νf . It follows from the

definition of the LTS semantic of product lines that Π(s′, νf)
a−→ Π(s′′, νf).

Furthermore, Π(s′, νf) R Π(t′, νf) implies that Π(t′, νf)
a−→ Π(t′′, νf) and

Π(s′′, νf) R Π(t′′, νf). It follows that t′
a,νt−−−→ t′′, where νt v νf , and

consequently by Lemma B.1, t′
a,ν′2−−−→ t′′, where ν′2 = νt · λ? and ν′2 v νf

′
.

B.2. Proof of Theorem 6.13 and 6.20 209

By SOS rule Par , t′ ‖ r′ a,ν′2−−−→ t′′ ‖ r′ and hence, Π(t′ ‖ r′, νf ′) a−→ Π(t′′ ‖
r′, νf

′
). Due to the Definition of R′, we have that Π(s′′, νf) R Π(t′′, νf)

and hence Π(s′′ ‖ r′, νf ′) R′ Π(t′′ ‖ r′, νf ′), which was to be shown.

2. This transition can be due to SOS rule Par and r′
a,ν′−−−→ r′′, where ν′ v

νf
′
, and p ≡ Π(s′ ‖ r′′, νf ′). Hence, s′ ‖ r′ a,ν′−−−→ s′ ‖ r′′ and similarly,

t′ ‖ r′ a,ν′−−−→ t′ ‖ r′′, where ν′ v νf
′
. Therefore, it follows that Π(t′ ‖

r′, νf
′
)
a−→ Π(t′ ‖ r′′, νf ′). Due to the Definition of R′, we have that Π(s′ ‖

r′′, νf
′
) R′ Π(t′ ‖ r′, νf ′′), which was to be shown.

3. This transition can be due to SOS rule Sync and transitions s′
a,ν′1−−−→ s′′

and r′
a,ν′−−−→ r′′, where ν′1 v νf

′
, ν′ v νf

′
, and ν′1 � ν′, and consequently

p ≡ Π(s′′ ‖ r′′, νf ′). Hence, s′ ‖ r′ τ,ν′1�ν
′

−−−−−−→ s′′ ‖ r′′. By Lemma B.2,
s′

a,νs−−−→ s′′, where ν′1 = νs · λ? and νs v νf . It follows from the def-
inition of the LTS semantic of product lines that Π(s′, νf)

a−→ Π(s′′, νf).
Furthermore, Π(s′, νf) R Π(t′, νf) implies that Π(t′, νf)

a−→ Π(t′′, νf) and
Π(s′′, νf) R Π(t′′, νf). It follows that t′

a,νt−−−→ t′′, where νt v νf , and conse-

quently, by Lemma B.1, t′
a,ν′2−−−→ t′′, where ν′2 = νt · λ? and ν′2 v νf

′
. Since

νs v νf and νt v νf , then νs � νt. Therefore, ν′1 � ν′ implies ν′2 � ν′ and

ν′2 � ν′ v νf
′
. By SOS rule Sync, we have that t′ ‖ r′ τ,ν′2�ν

′

−−−−−−→ t′′ ‖ r′′
and hence, Π(t′ ‖ r′, νf ′) τ−→ Π(t′′ ‖ r′′, νf ′). Due to the Definition of R′,
we have that Π(s′′, νf) R Π(t′′, νf) and hence, Π(s′′ ‖ r′′, νf ′) R′ Π(t′′ ‖
r′′, νf

′
).

The same discussion holds when Π(t′ ‖ r′, νf)
′ a−→ p. Concluding, R′ is a strong

bisimulation.

B.2 Proof of Theorem 6.13 and 6.20

In this Section, we first prove Theorem 6.13 and then we provide a proof for
Theorem 6.20. To this aim, we prove that each PL-CCS term can be rewritten by
axioms A4−6, D1,2, P4,5, S1,3, R3, E5, Dri , and N1−5 into a form where no binary
variant occurs in the scope of a CCS-operator.

We prove this by structural induction on the syntax of term t. The base case
of the induction, where t ≡ 0, holds trivially. We distinguish the following cases
based on the structure of t:

• if t ≡ a.t′, then t can be rewritten into the required form by applying the
induction hypothesis on t′, and subsequently applying axiom A4.

210 Appendix B — Proofs of Chapter 6

• if t ≡ t′1 + t′2, then t can be rewritten into the required format by ap-
plying the induction hypothesis on t′1 and t′2, and then applying axioms
A5,6. Assume that ` t′1 = p1 ⊕i p2 and ` t′2 = q1 ⊕j q2. By axioms
A5,6 ` t = ((p1 + q1) ⊕j (p1 + q2)) ⊕i ((p2 + q1) ⊕j (p2 + q2)). These
two axioms are applied to each pi + qj , where i, j ∈ {1, 2}, repeatedly until
the operands of + become CCS terms.

• if t ≡ t′1 ⊕ t′2, t can be rewritten into the required format by applying the
induction hypothesis on t′1 and t′2.

• if t ≡ t′1 ‖ t′2, then t can be rewritten into the required format by applying
the induction hypothesis on t′1 and t′2, and then applying axioms D1,2. As-
sume ` t′1 = p1 ⊕i p2 and ` t′2 = q1 ⊕j q2. By axioms D1,2 ` t = ((p1 ‖
q1)⊕j (p1 ‖ q2))⊕i ((p2 ‖ q1)⊕j (p2 ‖ q2)). These two axioms are applied to
each pi ‖ qj , where i, j ∈ {1, 2}, repeatedly until the operands of ‖ become
CCS terms.

• if t ≡ t′1 t′2, then t can be rewritten into the required format by apply-
ing the induction hypothesis on t′1 and t′2, and then applying axioms P4,5.
Assume ` t′1 = p1 ⊕i p2 and ` t′2 = q1 ⊕j q2. By axioms P4,5 ` t =
((p1 q1) ⊕j (p1 q2)) ⊕i ((p2 q1) ⊕j (p2 q2)). These two axioms are ap-
plied to each pi qj , where i, j ∈ {1, 2}, repeatedly until the operands of
become CCS terms.

• if t ≡ t′1 | t′2, then t can be rewritten into the required format by applying
the induction hypothesis on t′1 and t′2, and then applying axioms S1,3. As-
sume ` t′1 = p1 ⊕i p2 and ` t′2 = q1 ⊕j q2. By axioms S1,3 ` t = ((p1 |
q1)⊕j (p1 | q2))⊕i ((p2 | q1)⊕j (p2 | q2)). These two axioms are applied to
each pi | qj , where i, j ∈ {1, 2}, repeatedly until the operands of | become
CCS terms.

• if t ≡ 〈A|{A def
= t′}〉, then by applying the induction hypothesis, we obtain

` t′ = p1 ⊕i p2. By axiom Dri ` t = 〈A|{A def
= p1}〉 ⊕i 〈A|{A def

= p2}〉. We
apply this axiom repeatedly to p1 and p2, until no binary variant operator
occurs in the equations defining A.

Hence, t is rewritten into a form where no binary variant is in the scope of CCS
operator, i.e., ` t = p1 ⊕i p2, where p1 and p2 are also in this form. For all
j ∈ bi(p1⊕i p2), first apply N5 to any subterm p′⊕j q′, i.e. ` p′⊕j q′ = L(p′, j)⊕j
L(q′, j) and then N1−4 to make j free in p′ and q′. We claim that the resulting
term t′′ ≡ p′1 ⊕i p′2 is fully expanded, otherwise there is a simple path from ⊕j to
another ⊕j . This is impossible due to application of N1−5.

For all j ∈ bi(p′1) ∩ bi(p′2), apply N6 to p′2, and replace all occurrences of j by
a fresh index k 6∈ bi(p′1) ∪ bi(p′2) to derive t′′′. Hence, all indices are unique, and
the term is fully expanded. Theorem 6.20 is proved by applying axioms A1,2 to
t′′′.

B.3. Soundness of Axiomatization 211

B.3 Soundness of Axiomatization

To prove the soundness of axioms, we show that all axioms except A1,2 and N6

are sound with respect to strict strong bisimilarity, while A1,2 and N6 are sound
with respect to product line bisimilarity.

To show the soundness of A1, for any νf1 ∈ VFConfig(p⊕i q), we define νf2 ∈
VFConfig(q⊕ip) such that |νf1 | = |νf2 | and ∀j 6=i(νf1 |j = νf2 |j), (νf1 |i = R⇒ νf2 |i =

L), and (νf1 |i = L ⇒ νf1 |i = R). We show that Π(p ⊕i q, νf1) ∼ Π(q ⊕i p, νf2). To
this aim, we show thatR = {(Π(p⊕i q, νf1),Π(q⊕i p, νf2))}∪{(Π(t, νf1),Π(t, νf2))}
is a strong bisimulation. Regarding νf1 |i, two cases can be distinguished. We only
discuss the case where νf1 |i = L, as the other can be dealt with in the same
fashion.

We show that the transfer conditions hold for the pair (Π(p ⊕i q, νf1),Π(q ⊕i
p, νf2)) ∈ R, as for others, the proof is straightforward. Suppose Π(p⊕i q, νf1)

a−→
Π(p′, νf1), since p

a,ν1−−−→ p′, where ν1 v νf1 and ν1|i =?. Therefore, ν1 v νf2 . By
SOS rule Select , q⊕ip a,ν2−−−→ p′, where ν2 = ν1|i/R, ν2 v νf2 , and Π(p′, νf1)R Π(p′,

νf2). The same discussion holds when Π(q ⊕i p, νf2)
a−→ Π(p′,

νf2). Similarly, for any νf2 ∈ VFConfig(q⊕ip), we define νf1 ∈ VFConfig(q⊕ip) as
discussed above. Concluding that p⊕iq 'PL q⊕ip. Axiom A2 is proved similar to
A1: for any νf1 ∈ VFConfig((p⊕i q)⊕j r), we define νf2 ∈ VFConfig(p⊕i (q⊕j r))
such that |νf1 | = |νf2 | and ∀k 6=i,k 6=j(νf1 |k = νf2 |k), (νf1 |i = R ∧ νf1 |j = R) ⇒
(νf2 |i = R ∧ νf2 |j = R), (νf1 |i = L ∧ νf1 |j = R) ⇒ (νf2 |i = R ∧ νf2 |j = R),
(νf1 |i = R ∧ νf1 |j = L) ⇒ (νf2 |i = R ∧ νf2 |j = L), and (νf1 |i = L ∧ νf1 |j =

L) ⇒ (νf2 |i = L ∧ νf2 |j = L). It can be easily shown that Π((p ⊕i q) ⊕j r, νf1) ∼
Π(p⊕i(q⊕jr), νf2). Axiom N6 is proved similar to A1,2: for any νf1 ∈ VFConfig(p),
we define νf2 ∈ VFConfig(p[k/i]) such that νf2 = νf1 · λ and νf1 |i = νf2 |k.

For axiom A3, we show that for any νf ∈ VFConfig(p⊕i p) (which implicitly
implies νf ∈ VFConfig(p)), Π((p ⊕i p), νf) ∼ Π(p, νf). It is trivial that R =
{(Π((p ⊕i p), νf)} ∪ {(Π(t, νf),Π(t, νf))} is a strong bisimulation. Axioms N1,3

are proved similarly.
For axiom A4, for any νf ∈ VFConfig(a.(p ⊕i q)) (which implicitly implies

νf ∈ VFConfig(a.p ⊕i a.q)), Π(a.(p ⊕i q), νf) ∼ Π(a.p ⊕i a.q, νf). Regarding
the value of νf |i, two cases can be distinguished. We only discuss the case that
νf |i = L, as the other cases can be proven identically. Therefore, we show that

R = {(Π(a.(p⊕i q), νf),Π(a.p⊕i a.q, νf)), (Π((p⊕i q), νf),Π(p, νf))}∪
{(Π(t, νf),Π(t, νf))}

is a strong bisimulation and satisfies the transfer conditions of Definition 2.1. For
the pair (Π(a.(p ⊕i q), νf),Π(a.p ⊕i a.q, νf)) ∈ R, suppose Π(a.(p ⊕i q), νf)

a−→
Π(p ⊕ qi, νf) since by SOS rule Prefix a.(p ⊕i q) a,ν?−−−→ p ⊕i q, where ν? v νf .

By SOS rules Prefix and Select , a.p ⊕i a.q
a,ν?|i/L−−−−−−→ p, ν?|i/L v νf . There-

212 Appendix B — Proofs of Chapter 6

fore, Π(a.p ⊕i a.q, νf)
a−→ Π(p, νf) , and Π((p ⊕i q), νf) R Π(p, νf). The same

discussion holds when Π(a.p ⊕ a.q, νf)
a−→ Π(p, νf). Furthermore, for the pair

(Π((p ⊕i q), νf),Π(p, νf)) ∈ R, assume that Π((p ⊕i q), νf)
a−→ Π(p′, νf) since

p ⊕i q a,ν−−→ p′ and ν v νf . Therefore, p
a,ν′−−−→ p′, where ν′|i/L = ν, and ν′ v νf .

Consequently Π(p, νf)
a−→ Π(p′, νf) and Π(p′, νf) R Π(p′, νf). The same discus-

sion holds when Π(p, νf)
a−→ Π(p′, νf). Transfer conditions trivially hold for pairs

like (Π(t, νf),Π(t, νf)) ∈ R. ConsequentlyR is a strong bisimulation, concluding
that a.(p⊕i q) ≈PL a.p⊕i a.q.

To prove axiom A5, for any νf ∈ VFConfig((p ⊕i q) + r) (which implicitly
implies νf ∈ VFConfig((p + r) ⊕i (q + r))), it is straightforward to show that
Π((p⊕i q)+r, νf) ∼ Π((p+r)⊕i (q+r), νf) witnessed by the strong bisimulation
relationR = {(Π((p⊕iq)+r, νf),Π((p+r)⊕i(q+r), νf))}∪{(Π(t, νf),Π(t, νf))}.
Axioms A6, P4,5 R3, E5, N2,4,5, S3 are proved similar to A5.

For axiom C1, it can be proved that for any νf ∈ VFConfig(p + q) (which
implicitly implies νf ∈ VFConfig(q + p)) Π(p + q, νf) ∼ Π(q + p, νf). It is
easy to show that R = {(Π(p + q, νf),Π(q + p, νf))} ∪ {(Π(t, νf),Π(t, νf))} is a
strong bisimulation. Axioms C2−4, P1−3,6, S1,2,4,5,6, R1,2,4, and E1−4 are proved
similarly.

Axioms Dec, UnFold , Fold , and Ung are standard [9]. We provide a full
proof for the new axiom Dri . To prove axiom Dri , we show that for any νf ∈
VFConfig(〈A|{A def

= t1⊕it2}〉) (which implicitly implies νf ∈ VFConfig(〈A|{A def
=

t1}〉 ⊕i 〈A|{A def
= t2}〉)), Π(〈A|{A def

= t1 ⊕i t2}〉, νf) ∼ Π(〈A|{A def
= t1}〉 ⊕i

〈A|{A def
= t2}〉, νf). We only discuss the case when νf |i = L, as the other can

be dealt with in the same way. To this aim, we prove thatR = {(Π(〈t|{A def
= t1⊕i

t2}〉),Π(〈t|{A def
= t1}〉⊕i〈t|{A def

= t2}〉, νf))}∪{(Π(〈t|{A def
= t1⊕it2}〉),Π(〈t|{A def

=
t1}〉, νf))} is a strong bisimulation.

The transfer conditions of Definition 2.1 for the pair (Π(〈t|{A def
= t1⊕it2}〉, νf),

Π(〈t|{A def
= t1}〉 ⊕i 〈t|{A def

= t2}〉, νf)) can be examined by structural induction
over the syntax of t. The base case of induction for t ≡ 0 is trivial.

• if t ≡ a.t′, then by rule Prefix , 〈a.t′|{A def
= t1⊕it2}〉 a,ν?−−−→ 〈t′|{A def

= t1⊕it2}〉
and ν? v νf . Similarly, 〈a.t′|{A def

= t1}〉 ⊕i 〈a.t′|{A def
= t2}〉

a,ν?|i/L−−−−−−→
〈t′|{A def

= t1}〉. Hence, Π(〈a.t′|{A def
= t1 ⊕i t2}〉, νf)

a−→ Π(〈t′|{A def
=

t1 ⊕i t2}〉, νf), Π(〈a.t′|{A def
= t1}〉 ⊕i 〈a.t′|{A def

= t2}〉, νf)
a−→ Π(〈t′|{A def

=

t1}〉, νf), and Π(〈t′|{A def
= t1 ⊕i t2}〉, νf) R Π(〈t′|{A def

= t1}〉, νf).

• if t ≡ t1 + t2, then by rule Choice, either 〈t1 + t2|{A def
= p ⊕i q}〉 a,ν1−−−→

〈t′1|{A
def
= p ⊕i q}〉 or 〈t1 + t2|{A def

= p ⊕i q}〉 b,ν2−−−→ 〈t′2|{A
def
= p ⊕i q}〉,

and ν1 v νf or ν2 v νf , since 〈t1|{A def
= p ⊕i q}〉 a,ν1−−−→ 〈t′1|{A

def
= p ⊕i q}〉

B.4. Ground-Completeness of Axiomatization 213

or 〈t2|{A def
= p ⊕i q}〉 b,ν2−−−→ 〈t′2|{A

def
= p ⊕i q}〉. Hence, Π(〈t1 + t2|{A def

=

p⊕i q}〉, νf)
a−→ Π(〈t′1|{A

def
= p⊕i q}〉, νf) or Π(〈t1 +t2|{A def

= p⊕i q}〉, νf)
b−→

Π(〈t′2|{A
def
= p ⊕i q}〉, νf). By induction, Π(〈t1|{A def

= p ⊕i q}〉, νf) ∼
Π(〈t1|{A def

= p}〉 ⊕i 〈t1|{A def
= q}〉, νf) and Π(〈t2|{A def

= p ⊕i q}〉, νf) ∼
Π(〈t2|{A def

= p}〉 ⊕i 〈t2|{A def
= q}〉, νf). Therefore, Π(〈t1|{A def

= p}〉 ⊕i
〈t1|{A def

= q}〉, νf)
a−→ Π(〈t′1|{A

def
= p}〉, νf), or Π(〈t2|{A def

= p}〉⊕i 〈t2|{A def
=

q}〉, νf)
b−→ Π(〈t′2|{A

def
= p}〉, νf), and Π(〈t′1|{A

def
= p⊕i q}〉, νf) R Π(〈t′1|{A

def
= p}〉, νf), and Π(〈t′2|{A

def
= p ⊕i q}〉, νf) R Π(〈t′2|{A

def
= p}〉, νf). Con-

sequently, Π(〈t1 + t2|{A def
= p}〉 ⊕i 〈t1 + t2|{A def

= q}〉, νf)
a−→ Π(〈t′1|{A

def
=

p}〉, νf) or Π(〈t1 + t2|{A def
= p}〉 ⊕i 〈t1 + t2|{A def

= q}〉 b−→ Π(〈t′2|{A
def
=

p}〉, νf). The same discussion holds when 〈t1+t2|{A def
= p}〉⊕i〈t1+t2|{A def

=

q}〉 a,ν1−−−→ 〈t′1|{A
def
= p}〉 or 〈t1 + t2|{A def

= p}〉 ⊕i 〈t1 + t2|{A def
= q}〉 b,ν2−−−→

〈t′2|{A
def
= q}〉.

• if t ≡ t1 ⊕j t2, t ≡ t1 ‖ t2, t ≡ t1 t2, t ≡ t1 | t2, t ≡ t′ \ L, or t ≡ t′[f], then
the proof is almost identical to the previous case.

• if t ≡ 〈A|{A def
= t1 ⊕i t2}〉, then Π(〈A|{A def

= t1 ⊕i t2}〉, νf)
a−→ Π(〈t′1|{A

def
=

t1 ⊕i t2}〉, νf) since 〈A|{A def
= t1 ⊕i t2}〉 a,ν−−→ 〈t′1|{A

def
= t1 ⊕i t2}〉, where

ν v νf , and by SOS rules call and Select , 〈t1|{A def
= t1 ⊕i t2}〉 a,ν′−−−→

〈t′1|{A
def
= t1⊕i t2}〉, where ν′|i/L = ν. Therefore, by induction Π(〈t1|{A def

=

t1 ⊕i t2}〉, νf) ∼ Π(〈t1|{A def
= t1}〉, νf), and hence Π(〈t1|{A def

= t1}〉, νf)
a−→

Π(〈t′1|{A
def
= t1}〉, νf), and Π(〈t′1|{A

def
= t1}〉, νf) ∼ Π(〈t′1|{A

def
= t1 ⊕i

t2}〉, νf). Thus, by SOS rules Select and Call , Π(〈A|{A def
= t1}〉⊕i 〈A|{A def

=

t2}〉, νf)
a−→ Π(〈t′1|{A

def
= t1}〉, νf) and Π(〈t′1|{A

def
= t1⊕it2}〉, νf)RΠ(〈t′1|{A

def
= t1}〉, νf). The same discussion holds when Π(〈A|{A def

= t1}〉⊕i〈A|{A def
=

t2}〉 a−→ 〈t′1|{A
def
= t1}〉.

The transfer conditions of Definition 2.1 for the pair (Π(〈t|{A def
= t1 ⊕i t2}〉, νf),

Π(〈t|{A def
= t1}〉) can be examined by structural induction over the syntax of t as

discussed above.

B.4 Ground-Completeness of Axiomatization

We are going to prove Theorem 6.17, that the axiomatization of PL-CCS is ground-
complete for closed, finite-state terms modulo product line bisimilarity. The idea
behind the ground-completeness proof, following the approach of [118], is to

214 Appendix B — Proofs of Chapter 6

show that t = s via the intermediate results t = t⊕i s and t⊕i s = s, which imply
that t = t ⊕i s = s. The following lemmata are required before explaining the
proof.

Lemma B.3. Let t, s, and r be fully expanded. If (t⊕i s)⊕j r 'PL r, where i 6= j,
i 6∈ bi(t) ∪ bi(s) and j 6∈ bi(r), then t⊕j r 'PL r and s⊕j r 'PL r.

Proof. We show that t ⊕j r 'PL r as the other case is symmetric. Regarding
Definition 6.4, we must show that

• for any νf
′
1 ∈ VFConfig(t ⊕j r), there exists νf

′
2 ∈ VFConfig(r) such that

Π(t⊕j r, νf ′1) ∼ Π(r, νf
′
2).

Assume νf ′1|j = L; hence, νf
′
1 can be written as νt·λ, where νt ∈ VFConfig(t).

Consider νf 1 ∈ VFConfig((t ⊕i s) ⊕j r) such that νf 1|i = L, νf 1|j =

L, and ∀k ≤ |νt| ∧ (k 6= i)(νf 1|k = νf
′
1|k). Hence, by Definition 6.4,

(t ⊕i s) ⊕j r 'PL r implies that there exists νf2 ∈ VFConfig(r) such that
Π((t ⊕i s) ⊕j r, νf1) ∼ Π(r, νf2). Define νf

′
2 = νf 2. It immediately follows

that Π(t⊕j r, νf ′1) ∼ Π(r, νf
′
2).

Assume νf
′
1|j = R, so it can be written as νf

′
1 = νr · λ, where νr ∈

VFConfig(r). Consider νf 1 ∈ VFConfig((t⊕i s)⊕j r) such that νf 1|j = R,
and ∀k ≤ |νr|(νf 1|k = νf

′
1|k). Define νf

′
2 = νr. It immediately follows that

Π(t⊕j r, νf ′1) ∼ Π(r, νf
′
2).

• for any νf
′
2 ∈ VFConfig(r), there exists νf

′
1 ∈ VFConfig(t ⊕j r) such that

Π(t⊕jr, νf ′1) ∼ Π(r, νf
′
2). Take νf

′
1 such that νf

′
1|j = R and ∀k ≤ |νr|∧(k 6=

j)(νf
′
1|k = νf

′
2|k). It follows immediately that Π(t⊕j r, νf ′1) ∼ Π(r, νf

′
2).

Lemma B.4. Let
⊕

i≤n pi, where n > 0, be a PL-CCS term such that pis are CCS
terms. Then Π(

⊕
i≤n pi, νf) ∼ pj , where νf |j = L and ∀k < j(νf |k = R).

Proof. It is straightforward to check that for a given CCS term p, Π(p, νf) ∼
p since νf has no effect on deriving transitions of p (νf is only considered in
rules Select , RSelect , and LSelect). Therefore, Π(

⊕
i≤n pi, νf)

a−→ Π(p′, νf), since⊕
i≤n pi

a,ν−−→ p′, where ν v νf . Hence, by SOS rule Select , pj
a,ν?−−−→ p′ and

∀k < j(ν|k) = R and ν|j = L.

Theorem. For all closed finite-state PL-CCSf terms t1 and t2, t1 'PL t2 implies
t1 = t2.
Proof. By Theorem 6.20, PL-CCSf terms t and s can be derived by our axiom-
atization into fully expanded terms t′ ≡ ⊕i≤n pi and s′ ≡ ⊕j≤m qj , where pis
and qis are CCS term such that every recursive specification E included in pis or

B.5. Proof of Theorem 6.24 215

qis is essentially finite state. Since our axiomatization subsumes CCS axiomati-
zation, completeness of CCS axiomatization for closed finite-state CCS terms [9]
implies p ∼ q ⇔ p = q. The soundness of our axiomatization yields t 'PL t

′ and
s 'PL s′. By transitivity of product line bisimilarity, t′ 'PL s′. Therefore, it is
enough to prove that t′⊕is′ 'PL s

′ ⇒ t′⊕is′ = s′ and t′ 'PL t
′⊕is′ ⇒ t′ = t′⊕is′,

where i is free in s′ and t′. These properties are sufficient to prove the theorem
as follows: If t′ 'PL s′, then, by the fact that product line bisimilarity is reflex-
ive (i.e., t′ 'PL t′ and s′ 'PL s′) and the fact that product line bisimilarity is a
congruence on fully expanded PL-CCS terms, we have t′ ⊕i t′ 'PL s′ ⊕i t′ and
t′ ⊕i s′ 'PL s′ ⊕i s′ (note that t′ ⊕i s′ is still fully expanded). The soundness
of the axiomatization, more in particular the validity of Axiom A3, implies that
t′ ⊕i t′ 'PL t′ and s′ ⊕i s′ 'PL s′. Using symmetry and transitivity of product
line bisimilarity, t′ 'PL t

′ ⊕i s′ and t′ ⊕i s′ 'PL s
′ are obtained. Thus, the above

properties yield that t′ = t′ ⊕i s′ and t′ ⊕i s′ = s′. These last results can be
combined to show that t′ = t′⊕i s′ = s′. Consequently, t = t′ and s = s′ together
with t′ = s′ result t = s.

For all fully expanded PL-CCSf terms t′ ⊕i s′, t′ and s′, where t′ ≡ ⊕i≤n pi
and s′ ≡⊕j≤m qj , t

′ ⊕i s′ 'PL s
′ implies t′ ⊕i s′ = s′, is proven by induction on

number of CCS terms of t′, i.e. n. The proof that t′ 'PL t
′⊕is′ implies t′ = t′⊕is′

is similar and therefore omitted.
The base case of the induction corresponds to the case that n = 0. Therefore,

p1⊕is′ 'PL s implies for νf 1, where νf 1|1 = L, there exists νf 2 such that Π(p1⊕i
s′, νf 1) ∼ Π(s′, νf 2). By Lemma B.4, Π(p1 ⊕i s′, νf 1) ∼ p1 and Π(s′, νf 2) ∼ qk,
where νf 2|k = L and ∀j < k(νf 2|j = R). Therefore, p1 ∼ qk and consequently
by completeness of the axiomatization of CCS, p1 = qk. Thus, p1 ⊕i s′ = qk ⊕i⊕

j≤m qj =A1,A2,A3 s′.
Assume that for all 0 < w < n such that t′ ≡⊕i≤w pi, t

′ ⊕i s′ 'PL s
′ implies

t′ ⊕i s′ = s′. We prove that t′ ⊕i s′ 'PL s
′, where t′ ≡⊕i≤n pi, implies t′ ⊕i s′ =

s′. By Lemma B.3, t′ ⊕i s′ 'PL s′ implies p1 ⊕i s′ 'PL s′ and (
⊕

1<i≤n pi) ⊕i
s′ 'PL s′. By application of axiom N6,

⊕
1<i≤n pi can be derived into t′′ ≡⊕

k<n pk. Therefore, by soundness of axiomatization and transitivity of product
line bisimilarity, (

⊕
k<n pk)⊕i s′ 'PL s

′. By induction p1 ⊕i s′ = s′, t′′ ⊕i s′ = s′.
Therefore, t′⊕is′ = (p1⊕1(

⊕
1<i≤n pi))⊕is′ =N6 (p1⊕z(

⊕
1<i≤n pi))⊕is′ =A1,A2

(
⊕

1<i≤n pi)⊕z (p1 ⊕i s′) = (
⊕

1<i≤n pi)⊕z s′ = t′′ ⊕i s′ = s′, where z is a fresh
index such that z > m, z > n, and z 6= i.

B.5 Proof of Theorem 6.24

We use the following so-called reduction lemma taken from [6] to complete the
proof. The right-hand sides of the bi-implications express the unfolding of the
fixed points: in case of minimum a single element p is removed, while for the
maximum it is added.

216 Appendix B — Proofs of Chapter 6

Lemma B.5. For ψ a monotonic function on a powerset Pow(D) with p ∈ D, we
have:

p ∈ µV.ψ(V)⇔ p ∈ ψ(µV.(ψ(V) \ {p})),
p ∈ νV.ψ(V)⇔ p ∈ ψ(νV.(ψ(V) ∪ {p})).

The proof Theorem of 6.24 follows:
“⇒” Suppose r 'PL s and let ϕ ∈ mv − Lµ. We prove that for all valid full

configurations νf1 ∈ VFConfig(r) and νf2 ∈ VFConfig(s) that Π(r, νf1) ∼ Π(s, νf2),
νf1 ∈ [[ϕ]](r) iff νf2 ∈ [[ϕ]](s). The proof is managed by induction on the structure
of ϕ.

1. If ϕ = true, then obviously νf1 ∈ [[ϕ]](r) and νf2 ∈ [[ϕ]](s).

2. If ϕ = ϕ1 ∧ ϕ2, then by definition νf1 ∈ [[ϕ1]](r) and νf1 ∈ [[ϕ2]](r), and the
claim follows by straightforward induction.

3. If ϕ = ϕ1 ∨ ϕ2, it is proved similar to the previous case.

4. If ϕ = 〈a〉ϕ′, then by definition νf1 ∈ [[ϕ]](r), if νf1 ∈ Ra(r, r′) and νf1 ∈
[[ϕ′]](r′) for some r′. Hence νf1 ∈ Ra(r, r′) implies that r

a,ν1−−−→ r′ for some
ν1 such that ν1 v νf1 . Consequently Π(r, νf1)

a−→ Π(r′, νf1). By assumption,
Π(r, νf1) ∼ Π(s, νf2) implies Π(s, νf2)

a−→ Π(s′, νf2) and Π(r′, νf1) ∼ Π(s′, νf2).
Thus s

a,ν2−−−→ s′ for some ν2 such that ν2 v νf2 and νf2 ∈ Ra(s, s′). Conclud-
ing, by induction νf2 ∈ [[ϕ′]](s′), so the claim follows.

5. If ϕ = [a]ϕ′, then by definition νf1 ∈ [[ϕ]](r) implies that for all s′:

• either νf1 ∈ Ra(r, r′) and νf1 ∈ [[ϕ′]](r′): Hence νf1 ∈ Ra(r, r′) im-
plies that r

a,ν1−−−→ r′ for some ν1 such that ν1 v νf1 . Consequently
Π(r, νf1)

a−→ Π(r′, νf1). By assumption, Π(r, νf1) ∼ Π(s, νf2) implies
Π(s, νf2)

a−→ Π(s′, νf2) and Π(r′, νf1) ∼ Π(s′, νf2). Thus s
a,ν2−−−→ s′ for

some ν2 such that ν2 v νf2 and νf2 ∈ Ra(s, s′). Concluding, by induc-
tion νf2 ∈ [[ϕ′]](s′), so the claim follows.

• or νf1 6∈ Ra(r, r′): Hence there exists no transition that r
a,ν1−−−→ r′ for

some ν1 such that ν1 v νf1 . Consequently Π(r, νf1) 6a−→. By assumption,
Π(r, νf1) ∼ Π(s, νf2) implies Π(r, νf1) 6a−→, and hence νf2 6∈ Ra(s, s′) for
any s′.

6. If ϕ = µZ.φ, then by Lemma B.5, νf1 ∈ [[ϕ]](r) implies νf1 ∈ [[φ]]ρ[Z 7→µZ.φ\{νf1 }]
(r).

By induction νf2 ∈ [[φ]]ρ[Z 7→µZ.φ\{νf2 }]
(s), and hence νf2 ∈ [[ϕ]](s).

7. If ϕ = νZ.φ, then by Lemma B.5, νf1 ∈ [[ϕ]](r) implies νf1 ∈ [[φ]]ρ[Z 7→νZ.φ∪{νf1 }]
(r).

By induction νf2 ∈ [[φ]]ρ[Z 7→νZ.φ∪{νf2 }]
(s), and consequently νf2 ∈ [[ϕ]](s).

B.5. Proof of Theorem 6.24 217

“⇐” Suppose r ∼L s. We prove that for any valid full configuration νf1 ∈
VFConfig(r), there exists νf2 ∈ VFConfig(s) such that Π(r, νf1) ∼ Π(s, νf2). As
r and s have finite-state behaviors, it is trivial that Π(r, νf1) is finitely branching.
Hence for νf1 ∈ VFConfig(r), we can find ϕ ∈ mv − Lµ such that it charac-
terizes the strong bisimulation class for Π(r, νf1), called characteristic formula.
Following the approach of [3], each process t is characterized by the formula
νXt.

∧
a,t′,t

a−→t′〈a〉Xt′ ∧
∧
a[a](

∨
t′,t

a−→t′ Xt′), where Xt′ denotes the solution of the
characteristic formula of t′. Intuitively, this formula defines the possible actions
of the process by the diamond sub-formula and disables others by the square
sub-formula. Since νf1 ∈ [[ϕ]](r), by Definition 6.23, there exists νf2 ∈ [[ϕ]](s).
Therefore, Π(r, νf1) ∼ Π(s, νf2).

Similarly for any valid full configuration νf2 ∈ VFConfig(s), we can find νf1 ∈
VFConfig(r) such that Π(r, νf1) ∼ Π(s, νf2).

Summary

Formal Modeling and Analysis of Mobile Ad hoc Networks

Wireless ad hoc networks, in particular mobile ad hoc networks (MANETs), make
communication easier and more flexible. However, their protocols tend to be
difficult to design, due to the topology-dependent nature of wireless communi-
cation, and their distributed and adaptive operations to cope with a dynamic
topology. Therefore it is desirable to model and verify such protocols using for-
mal methods. To this aim, we introduce constrained labeled transition systems
(CLTS) as a semantic model, to compactly capture the behavior of MANETs while
mobility is implicitly specified. The transitions are constrained so as to indicate
conditions over the underlying topology for which the behavior is valid. We
present two modeling languages with different computation models to address
main challenges of modeling MANETs, such as local broadcast, underlying topol-
ogy, and its changes.

The first approach, presented in Chapter 3, is an algebraic framework for
modeling and analysis of MANET protocols. The framework abstracts away from
data link layer services by assuming reliable synchronous (local) broadcast. We
discuss how the non-blocking property of local broadcast is guaranteed by mak-
ing network processes input-enabled. We define the appropriate equivalence
relation in this setting and provide a process theory to verify MANET protocols
using equational reasoning. To utilize our complete axiomatization for analyzing
the correctness of protocols at the syntactic level, we introduce a precongruence
relation which abstracts away from a sequence of multi-hop communications,
leading to an application-level action preconditioned by a multi-hop constraint
over the topology. We illustrate the applicability of our framework through a
simple routing protocol. To prove its correctness, we introduce a novel proof
process, based on our precongruence relation.

The second approach, presented in Chapter 4, is an actor-based modeling
language, with the aim to reduce the labor of modeling and generating the state
space. We discuss how MANET protocols can be modeled efficiently at the se-
mantic level, to make their verification feasible. This framework abstracts away
from data link layer services by providing asynchronous (local) broadcast, uni-
cast, and multicast communications, while assuming that message delivery is in
order and is guaranteed for connected receivers. We illustrate the applicability

219

220 Summary

of our framework through two routing protocols, flooding and AODVv2-11, and
show how their state spaces are reduced efficiently by the proposed techniques
implemented in a tool. Furthermore, we demonstrate a loop formation scenario
in AODV, found by our analysis tool. This has led to an adaptation of the AODV
standard.

To model check MANET protocols with respect to the underlying topology
and connectivity changes, we introduce a branching-time temporal logic which
is interpreted over CLTSs in Chapter 5. The path quantifiers are parameterized
by multi-hop constraints over topologies, to discriminate the paths over which
the temporal behavior should be investigated; paths that violate the multi-hop
constraints are not considered. A model checking algorithm is presented to verify
MANETs, under the assumption of reliable communication. It is applied to ana-
lyze a leader election protocol and the packet-delivery property of AODVv2-11.

Software product lines (SPLs) facilitate reuse and customization in software
development by genuinely addressing the concept of variability. Product Line
Calculus of Communicating Systems (PL-CCS) is a process calculus for behav-
ioral modeling of SPLs, in which variability can be explicitly modeled by a binary
variant operator. The transitions of underlying semantic models are constrained
to indicate the set of products (families) for which the behavior is valid. Hence,
to extend the results over CLTSs, we study different notions of behavioral equiv-
alence for PL-CCS in Chapter 6, based on Park and Milner’s strong bisimilarity.
These notions enable reasoning about the behavior of SPLs at different levels of
abstraction. We study the compositionality property and the mutual relationship
among these notions. We further show how the strengths of these notions can
be consolidated in an equational reasoning method. Finally, we designate the
notions of behavioral equivalence that are characterized by the property specifi-
cation language for PL-CCS, called multi-valued modal µ-calculus.

Samenvatting

Formal Modeling and Analysis of Mobile Ad hoc Networks

Draadloze ad hoc networken, in het bijzonder mobiele ad hoc netwerken (MANETs),
maken communicatie gemakkelijker en flexibeler. Het is echter lastig om cor-
recte protocollen voor MANETs te ontwerpen, doordat draadloze communicatie
afhankelijk is van de dynamische posities van de entiteiten in het netwerk, Ook
kunnen entiteiten vaak niet direct met elkaar communiceren, door de beperkte
reikwijdte van communicatie. Daarom is het belangrijk dergelijke protocollen te
modelleren en verifiëren door middel van formele methoden.

Dit proefschrift introduceert een semantisch model, genaamd CLTS (con-
strained labeled transition system), waarin mobiliteit impliciet wordt gespeci-
ficeerd. Zoals de Engelse naam aangeeft wordt elke transitie in een CLTS beperkt,
door expliciet aan te geven voor welke netwerktopologieën de transitie mo-
gelijk is. Dit zorgt voor een compacte representatie van het gedrag van MANET-
protocollen.

Het proefschrift presenteert twee verschillende modelleertalen. De eerste
aanpak, in Hoofdstuk 3, is een algebräısch raamwerk voor het modelleren en an-
alyzeren van MANET-protocollen. Het raamwerk abstraheert van de dataverbind-
ingslaag, door de aanname van betrouwbare synchrone (locale) communicatie.
Er wordt bediscussieerd hoe kan worden gegarandeerd dat locale communicatie
nooit blokkeert, door netwerkprocessen altijd in staat te stellen berichten te ont-
vangen. Ook wordt een equivalentierelatie gëıntroduceerd die geschikt is voor
deze aanpak. Een nieuwe procescalculus maakt het mogelijk de correctheid van
MANET-protocollen aan te tonen met behulp van een equationele axiomatizering.
Er wordt een precongruentie-relatie gedefinieerd die abstraheert van sequenties
van communicaties, waardoor de axiomatizering toegepast kan worden op het
syntactische niveau. De toepasbaarheid van het raamwerk wordt getoond aan
de hand van een simpel routeerprotocol voor MANETs. In het correctheidsbe-
wijs wordt een nieuwe bewijsmethode gebruikt, gebaseerd op de precongruentie-
relatie.

De tweede aanpak is een actor-gebaseerde modelleertaal die als doel heeft
toestandsruimtes te vereenvoudigen. In Hoofdstuk 4 wordt aangetoond hoe
MANET-protocollen aldus efficiënt gemodelleerd kunnen worden op het seman-
tische niveau, waardoor hun verificatie haalbaar wordt. De aanpak is gëımple-

221

222 Samenvatting

menteerd in een tool. De toepasbaarheid van het raamwerk wordt gëıllustreerd
op basis van twee routeerprotocollen voor MANETs, namelijk flooding and AODVv2-
11. Een scenario waarin ongewenst een cyclisch pad wordt geformeerd door het
AODV protocol is gevonden met behulp van het tool. Dit heeft geleid tot een
aanpassing van de wereldwijde AODV standaard.

Hoofdstuk 5 introduceert een zogeheten branching-time temporele logica die
wordt gëınterpreteerd over CLTSen, ten opzichte van de onderliggende dynamis-
che netwerktopologie. Quantoren over paden worden geparametrizeerd door
beperkingen op topologieën; alleen paden die deze beperkingen behouden wor-
den in ogenschouw genomen. Er wordt een zogeheten model checking algoritme
gegeven dat efficiënt verifieert in welke toestanden in een CLTS een gegeven tem-
porele formule geldig is. Een implementatie van dit algoritme is toegepast om
een protocol te analyzeren waarmee een leider in een MANET gekozen wordt,
alsmede om te verifiëren of pakketten altijd hun bestemming bereiken in het
AODV protocol.

Een software product lijn (SPL) faciliteert hergebruik en maatwerk in de on-
twikkeling van software, door rekening te houden met variabiliteit. De Product
Line Calculus of Communicating Systems (PL-CCS) is een procescalculus voor
het formeel modelleren van SPLen, waarin variabiliteit expliciet wordt gemod-
elleerd door een binaire variant-operator. The transities van de onderliggende
semantische modellen worden beperkt op basis van de verzameling producten
(families) waarvoor een transitie geldig is. Hoofdstuk 6 oppert verschillende
noties van equivalentie voor PL-CCS, gebaseerd op sterke bisimulariteit. Deze
noties maken het mogelijk om op verschillende niveaus van abstractie te re-
deneren over het gedrag van SPLen. De compositionaliteitseigenschap voor deze
noties van equivalentie wordt bestudeerd, alsmede de onderlinge relaties tussen
de verschillende noties. Ook wordt aangetoond hoe deze noties ten grondslag
liggen aan een equationeel raamwerk voor PL-CCS. Tenslotte wordt een specifi-
catietaal, een meerwaardige modale µ-calculus, gedefinieerd om eigenschappen
uit te drukken voor PL-CCS.

	Introduction
	Problem Statement
	Analysis Approaches for MANET Protocols
	Modeling Issues and Challenges
	Related Work
	Assumptions, Objective, and Results
	Organization of Chapters
	Origins of the Chapters

	Preliminaries
	Labeled Transition Systems and Semantic Equivalence Relations
	Semantic Model: Constrained Labeled Transition Systems
	Unfolding a CLTS into an LTS

	Computed Network Process Theory
	Data Types
	CNT Syntax and Semantics
	Rooted Branching Computed Network Bisimilarity
	Axioms
	Symbolic Verification

	Actor Model and the Rebeca Language

	Reliable Restricted Broadcast Process Theory
	Extending Network Constraints
	Reliable versus Unreliable Communication
	Unfolding a CLTS into an LTS

	Syntax and semantics of RRBPT
	Operational Semantics

	Rooted Branching Reliable Computed Network Bisimilarity
	Axioms
	Case Study: a Simple Routing Protocol
	Protocol Specification
	Protocol Analysis

	Case Study: Leader Election Algorithm
	Protocol Specification
	Tool Support
	Protocol Analysis

	Related Work
	Modeling Issues
	Analysis Approaches

	Conclusion

	Wireless Rebeca
	Counter Abstraction
	Modeling Topology and Mobility
	wRebeca: Syntax and Semantics
	Syntax
	Semantics

	Semantic Reduction Techniques
	Applying Counter Abstraction
	Eliminating -Transitions

	Modeling the AODVv2 Protocol
	Evaluating Route Messages
	Updating the Routing Table
	rreq Message Server
	rrep Message Server
	rerr Message Server
	newpkt Message Server

	Evaluation
	State Space Generation
	Tool Support
	Model Checking of the AODV Protocol Properties

	Related Work
	Conclusion

	Model Checking MANETs
	Restricting Semantics with Network Constraints
	Constrained Action Computation Tree Logic (CACTL)
	Motivating Example
	CACTL Syntax
	CACTL Semantics

	Model Checking Algorithms
	Model Checking EU Formulae
	Model Checking AU Formulae
	Model Checking EW Formulae
	Model Checking AW Formulae

	Protocol Analysis with CACTL
	Checking the Packet Delivery Property of AODV
	Verification of the Leader Election Algorithm

	Related Work
	Conclusion

	Product Line Process Theory
	PL-CCS : Syntax and Semantics
	PL-CCS: Syntax
	PL-CCS Semantics

	Bisimilarity for Product Line
	Equivalence Relation
	Congruence Property

	Equational Reasoning on PL-CCS Terms
	Extending PL-CCS Framework
	PL-CCS Axiomatization
	Completeness of the Axiomatization for Finite-state Behaviors

	Product Line Analysis
	Deriving Products of a Family
	Restructuring a Product Family

	Logical Characterization
	Multi-Valued Modal -Calculus
	Relation to Product Line Bisimilarity

	Related Work
	Conclusions and Future Work

	Concluding Remarks
	Results
	Future Work

	Bibliography
	Proofs of Chapter 3
	Proof of Theorem 3.2
	Proof of Theorem 3.5
	Soundness of RCNT Axiomatization
	Completeness of RCNT Axiomatization
	Proofs of Section 3.5.2
	Proof of Theorem 3.7
	Proof of Proposition 3.8

	Proofs of Chapter 6
	Proofs of Theorems 6.5, 6.10, and 6.12
	Proof of Theorem 6.5
	Proof of Theorem 6.12
	Proof of Theorem 6.10

	Proof of Theorem 6.13 and 6.20
	Soundness of Axiomatization
	Ground-Completeness of Axiomatization
	Proof of Theorem 6.24

	Summary
	Samenvatting

