4,564 research outputs found

    Quantitative multi-objective verification for probabilistic systems

    Get PDF
    We present a verification framework for analysing multiple quantitative objectives of systems that exhibit both nondeterministic and stochastic behaviour. These systems are modelled as probabilistic automata, enriched with cost or reward structures that capture, for example, energy usage or performance metrics. Quantitative properties of these models are expressed in a specification language that incorporates probabilistic safety and liveness properties, expected total cost or reward, and supports multiple objectives of these types. We propose and implement an efficient verification framework for such properties and then present two distinct applications of it: firstly, controller synthesis subject to multiple quantitative objectives; and, secondly, quantitative compositional verification. The practical applicability of both approaches is illustrated with experimental results from several large case studies

    When are Stochastic Transition Systems Tameable?

    Full text link
    A decade ago, Abdulla, Ben Henda and Mayr introduced the elegant concept of decisiveness for denumerable Markov chains [1]. Roughly speaking, decisiveness allows one to lift most good properties from finite Markov chains to denumerable ones, and therefore to adapt existing verification algorithms to infinite-state models. Decisive Markov chains however do not encompass stochastic real-time systems, and general stochastic transition systems (STSs for short) are needed. In this article, we provide a framework to perform both the qualitative and the quantitative analysis of STSs. First, we define various notions of decisiveness (inherited from [1]), notions of fairness and of attractors for STSs, and make explicit the relationships between them. Then, we define a notion of abstraction, together with natural concepts of soundness and completeness, and we give general transfer properties, which will be central to several verification algorithms on STSs. We further design a generic construction which will be useful for the analysis of {\omega}-regular properties, when a finite attractor exists, either in the system (if it is denumerable), or in a sound denumerable abstraction of the system. We next provide algorithms for qualitative model-checking, and generic approximation procedures for quantitative model-checking. Finally, we instantiate our framework with stochastic timed automata (STA), generalized semi-Markov processes (GSMPs) and stochastic time Petri nets (STPNs), three models combining dense-time and probabilities. This allows us to derive decidability and approximability results for the verification of these models. Some of these results were known from the literature, but our generic approach permits to view them in a unified framework, and to obtain them with less effort. We also derive interesting new approximability results for STA, GSMPs and STPNs.Comment: 77 page

    A Markov Chain Model Checker

    Get PDF
    Markov chains are widely used in the context of performance and reliability evaluation of systems of various nature. Model checking of such chains with respect to a given (branching) temporal logic formula has been proposed for both the discrete [17,6] and the continuous time setting [4,8]. In this paper, we describe a prototype model checker for discrete and continuous-time Markov chains, the Erlangen Twente Markov Chain Checker (E⊱MC2(E \vdash MC^2), where properties are expressed in appropriate extensions of CTL. We illustrate the general bene ts of this approach and discuss the structure of the tool. Furthermore we report on first successful applications of the tool to non-trivial examples, highlighting lessons learned during development and application of (E⊱MC2(E \vdash MC^2)

    Analysis of Probabilistic Basic Parallel Processes

    Full text link
    Basic Parallel Processes (BPPs) are a well-known subclass of Petri Nets. They are the simplest common model of concurrent programs that allows unbounded spawning of processes. In the probabilistic version of BPPs, every process generates other processes according to a probability distribution. We study the decidability and complexity of fundamental qualitative problems over probabilistic BPPs -- in particular reachability with probability 1 of different classes of target sets (e.g. upward-closed sets). Our results concern both the Markov-chain model, where processes are scheduled randomly, and the MDP model, where processes are picked by a scheduler.Comment: This is the technical report for a FoSSaCS'14 pape

    Verifying nondeterministic probabilistic channel systems against ω\omega-regular linear-time properties

    Full text link
    Lossy channel systems (LCSs) are systems of finite state automata that communicate via unreliable unbounded fifo channels. In order to circumvent the undecidability of model checking for nondeterministic LCSs, probabilistic models have been introduced, where it can be decided whether a linear-time property holds almost surely. However, such fully probabilistic systems are not a faithful model of nondeterministic protocols. We study a hybrid model for LCSs where losses of messages are seen as faults occurring with some given probability, and where the internal behavior of the system remains nondeterministic. Thus the semantics is in terms of infinite-state Markov decision processes. The purpose of this article is to discuss the decidability of linear-time properties formalized by formulas of linear temporal logic (LTL). Our focus is on the qualitative setting where one asks, e.g., whether a LTL-formula holds almost surely or with zero probability (in case the formula describes the bad behaviors). Surprisingly, it turns out that -- in contrast to finite-state Markov decision processes -- the satisfaction relation for LTL formulas depends on the chosen type of schedulers that resolve the nondeterminism. While all variants of the qualitative LTL model checking problem for the full class of history-dependent schedulers are undecidable, the same questions for finite-memory scheduler can be solved algorithmically. However, the restriction to reachability properties and special kinds of recurrent reachability properties yields decidable verification problems for the full class of schedulers, which -- for this restricted class of properties -- are as powerful as finite-memory schedulers, or even a subclass of them.Comment: 39 page

    Probably Safe or Live

    Get PDF
    This paper presents a formal characterisation of safety and liveness properties \`a la Alpern and Schneider for fully probabilistic systems. As for the classical setting, it is established that any (probabilistic tree) property is equivalent to a conjunction of a safety and liveness property. A simple algorithm is provided to obtain such property decomposition for flat probabilistic CTL (PCTL). A safe fragment of PCTL is identified that provides a sound and complete characterisation of safety properties. For liveness properties, we provide two PCTL fragments, a sound and a complete one. We show that safety properties only have finite counterexamples, whereas liveness properties have none. We compare our characterisation for qualitative properties with the one for branching time properties by Manolios and Trefler, and present sound and complete PCTL fragments for characterising the notions of strong safety and absolute liveness coined by Sistla

    Tableaux for Policy Synthesis for MDPs with PCTL* Constraints

    Full text link
    Markov decision processes (MDPs) are the standard formalism for modelling sequential decision making in stochastic environments. Policy synthesis addresses the problem of how to control or limit the decisions an agent makes so that a given specification is met. In this paper we consider PCTL*, the probabilistic counterpart of CTL*, as the specification language. Because in general the policy synthesis problem for PCTL* is undecidable, we restrict to policies whose execution history memory is finitely bounded a priori. Surprisingly, no algorithm for policy synthesis for this natural and expressive framework has been developed so far. We close this gap and describe a tableau-based algorithm that, given an MDP and a PCTL* specification, derives in a non-deterministic way a system of (possibly nonlinear) equalities and inequalities. The solutions of this system, if any, describe the desired (stochastic) policies. Our main result in this paper is the correctness of our method, i.e., soundness, completeness and termination.Comment: This is a long version of a conference paper published at TABLEAUX 2017. It contains proofs of the main results and fixes a bug. See the footnote on page 1 for detail

    An overview of existing modeling tools making use of model checking in the analysis of biochemical networks

    Get PDF
    Model checking is a well-established technique for automaticallyverifying complex systems. Recently, model checkers have appearedin computer tools for the analysis of biochemical (and generegulatory) networks. We survey several such tools to assess thepotential of model checking in computational biology. Next, our overviewfocuses on direct applications of existing model checkers, as well ason algorithms for biochemical network analysis influenced by modelchecking, such as those using binary decision diagrams or Booleansatisfiability solvers. We conclude with advantages and drawbacks ofmodel checking for the analysis of biochemical networks
    • 

    corecore