
REVIEW ARTICLE
published: 20 July 2012

doi: 10.3389/fpls.2012.00155

An overview of existing modeling tools making use of
model checking in the analysis of biochemical networks
Miguel Carrillo , Pedro A. Góngora and David A. Rosenblueth*

Departamento de Ciencias de la Computación, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional
Autónoma de México, México D.F., México

Edited by:

Mariana Benítez, Masaryk
University, Czech Republic

Reviewed by:

Dongying Gao, University of
Georgia, USA
Pedro T. Monteiro, Instituto
Gulbenkian de Ciência, Portugal

*Correspondence:

David A. Rosenblueth,
Departamento de Ciencias de la
Computación, Instituto de
Investigaciones en Matemáticas
Aplicadas y en Sistemas,
Universidad Nacional Autónoma de
México, Apdo. 20-726, 01000
México D.F., México.
e-mail: drosenbl@servidor.unam.mx

Model checking is a well-established technique for automatically verifying complex
systems. Recently, model checkers have appeared in computer tools for the analysis of
biochemical (and gene regulatory) networks. We survey several such tools to assess the
potential of model checking in computational biology. Next, our overview focuses on direct
applications of existing model checkers, as well as on algorithms for biochemical network
analysis influenced by model checking, such as those using binary decision diagrams
(BDDs) or Boolean-satisfiability solvers. We conclude with advantages and drawbacks of
model checking for the analysis of biochemical networks.

Keywords: model checking, gene regulatory networks, biochemical networks, model analysis, complex systems

1. INTRODUCTION
A basic conviction in computational biology is that it should be
possible to create computational tools allowing us to considerably
increase our understanding of the functional properties of living
organisms. Model checkers are mainly used in the design of digital
circuits and stand out as computational tools especially success-
ful in the analysis of complex systems. Hence, it is unavoidable
to consider the applicability of model checking to computational
biology (Fisher and Henzinger, 2007). In fact, model checking has
already been incorporated into a number of computer systems for
the analysis of biochemical networks. Our purpose is to review
several tools that use model checking in the analysis of biochem-
ical networks, so as to assess the potential of model checking in
computational biology.

1.1. MODEL CHECKING
Model checking is a verification technique allowing us to deter-
mine whether or not a system model meets a specification. As
compared with other verification techniques, model checking has
a number of features making it an industrial-strength methodol-
ogy. Model checking is, for example, routinely used in the design
of integrated circuits. Model checking inventors, moreover, were
distinguished with the A. M. Turing award in 2007.

1.2. GRAPH SEARCH AND BRANCHING TIME
The verification process in a model checker often uses a graph-
search algorithm accumulating, in a set, system states having a
desired property. Model checkers typically do not represent the
elements of such sets explicitly, but implicitly, with techniques
named symbolic. A symbolic model checker can often represent
sets with a vast number of states.

Graph-traversal in model checkers should be contrasted with
that of simulators. A simulator visits system states in the same
order as states occur in the simulated system. Model checkers, by
comparison, normally traverse the state graph in reverse, start-
ing from states which trivially have a property of interest and
proceeding backwards toward the rest of the states. This differ-
ence has advantages when the model of the system has states with
more than one successor. The reason is that these models may have
infinitely many trajectories, so that traversing all such trajectories
forward, as a simulator does, would be infeasible.

The possibility of having more than one successor for a state
translates to branches in time, a feature often appearing in models
analyzed by model checkers. Branching time can model a vari-
ety of important phenomena, such as the interaction with the
environment. A reason is that because the behavior of the envi-
ronment is not determined, and the next state of the system
being analyzed partially depends on the environment, the next
state of such a system is not completely determined either. Other
phenomena, such as asynchrony and incomplete knowledge of a
network can be modeled with branching time as well (Thomas
and D’Ari, 1990).

It might seem at first sight that model checking is an ordi-
nary method for exhaustive graph-traversal. Such methods are
often shunned as they are subject to the “state-explosion prob-
lem” and can readily become intolerably inefficient as the size of a
network increases. Although model checkers do perform exhaus-
tive search (Emerson, 2008), symbolic methods often override the
state-explosion problem: symbolic representations are in many
cases surprisingly concise, yielding efficient traversals. Moreover,
the verification of some systems can only be tackled symbolically
(Bloem et al., 2000).

www.frontiersin.org July 2012 | Volume 3 | Article 155 | 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Frontiers - Publisher Connector

https://core.ac.uk/display/82875752?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/about
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/Plant_Genetics_and_Genomics/10.3389/fpls.2012.00155/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=MiguelCarrillo&UID=50097
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=PedroG�ngora&UID=52687
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=DavidRosenblueth&UID=39116
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Genetics_and_Genomics/archive

Carrillo et al. Model checking for biochemical networks

1.3. BEYOND THE ORIGINAL MODEL CHECKING
Model checking is most often employed in the analysis of state-
transition systems. The reason is that initially model checking
was applied to “Kripke structures,” which can be regarded as
such systems. Variables in such structures are Boolean, and
time is discrete. Model checking, nonetheless, has since been
extended to numerous other kinds of models. For example,
by adding probabilities, a Kripke structure can be regarded as
either a discrete- or continuous-time Markov chain or even
a Markov decision process. Logics and algorithms have been
developed for model-checking such processes (Hansson and
Jonsson, 1994; Bianco and de Alfaro, 1995; Baier et al., 2003;
Kwiatkowska et al., 2005). By adding continuous variables, a
Kripke structure can be viewed as a hybrid automaton (Alur et al.,
1993; Henzinger et al., 1997). Continuous time for automata
can also be modeled, with timed automata (Alur and Dill,
1994).

Therefore, although the most direct use of model checking in
biochemical networks would be in discrete models, other kinds of
model are also potentially amenable to be model-checked.

1.4. MODEL CHECKING IN BIOCHEMICAL NETWORKS
In the sequel, we will encounter model checking employed in var-
ious ways for the analysis of biochemical networks. Perhaps the
kind of model that is most often used for such networks is a set
of differential equations. If ordinary model checking is chosen,
however, the gap between such continuous models and discrete
state-transition systems must be bridged.

On a different dimension, we will see that many computer
tools for biochemical network analysis employ model checking
for verifying that a model has a desired property (as is usually
done in other domains, like digital circuits). Other systems, nev-
ertheless, are able to extract more information from a model
checker. For instance, by forcing a model checker to compute a
counterexample, it is possible to obtain a path with a certain prop-
erty. Another way is to have the model checker report all the states
having a specified property.

Finally, we will see examples of less usual kinds of model
checking, like probabilistic and hybrid model checking.

1.5. STRUCTURE OF THE PAPER
After reviewing models of biochemical networks in section 2,
we turn our attention to model checking in section 3. Section 4
summarizes the use of model checking in tools for biochemical
network analysis, while section 5 is devoted to works report-
ing direct applications of model checkers. Section 6, by contrast,
describes computer tools or isolated algorithms that do not neces-
sarily employ full-fledged model checking, but do use a symbolic
technique. Section 7 draws some conclusions.

2. MODELS OF BIOCHEMICAL NETWORKS
From the point of view of model checking, there is no essen-
tial difference, in terms of analysis with this technique, between
various kinds of either biochemical networks or GRNs. We,
therefore, use “biochemical network” to refer to several families
of networks, such as gene, metabolic, signal-transduction, and
cell-cycle networks (Deville et al., 2003).

2.1. GENE REGULATORY NETWORKS
A GRN is a collection of DNA fragments indirectly interacting
with each other and controlling the transcription of genes into
mRNA. In the study of GRNs, analytical approaches represent the
more realistic end of the model spectrum. Such models consist
of nonlinear systems of ordinary differential equations (ODEs),
where each variable denotes the concentration of a different gene
product. Non-linearities, often modeled with sigmoids, appear
from the fact that often the concentration of a product changes
non-linearly with respect to another one. These non-linearities
create mathematical difficulties, even for finding the set of attrac-
tors. A simplification of such models approximates sigmoids by
step functions, giving rise to stepwise-linear equations (Gouzé
and Sari, 2002). Such treatments have the advantage of being
amenable to qualitative analysis of steady-state and transient
behavior of regulatory systems (de Jong et al., 2004). Next in
the spectrum would be models of Thomas’ formalism (Thomas
and D’Ari, 1990). Such models are multi-valued state-transition
systems. Activation levels of genes are represented with discrete
variables and time is viewed as proceeding in discrete steps. The
value of every gene x at time t + 1 is specified by a function of the
values of its regulators y1, y2, . . . , ynx at time t. Boolean GRNs
(Kauffman, 1969) are Boolean state-transition systems, where
each gene has only two possible activation values: active (1) or
inactive (0); intermediate expression levels are neglected. A net-
work state at time t is a vector containing the activation values
of all the genes in the GRN at time t. Time is also discrete. The
value of every gene x at time t + 1 is specified by a function of the
values of its regulators y1, y2, . . . , ynx at time t. Finally, an inter-
action graph can be considered an even more abstract model of
a biochemical network (Fages and Soliman, 2008b). We refer the
reader to the review (de Jong, 2002).

2.2. METABOLIC PATHWAYS
Metabolic pathways are series of chemical reactions catalized
by enzymes, often employing vitamins and other dietary sub-
stances, termed metabolites. Metabolites are modified through
formation and dissolution of chemical bonds. Non-probabilistic
models can be adequate because unstable equilibria are rare and
large numbers of molecules are present (Bower and Bolouri,
2001).

2.3. SIGNAL-TRANSDUCTION PATHWAYS
Signal transduction refers to the transfer of information (called
signals) from the extracellular medium, first to the cell mem-
brane, and then to the intracellular medium, causing a response.
By comparison with metabilic pathways, signal transduction
pathways present a more complex dynamics with small num-
bers of relevant molecules. This makes probabilistic models more
appropriate for such networks (Bower and Bolouri, 2001).

2.4. CELL-CYCLE NETWORKS
The cell cycle is the series of phenomena happening when a cell
grows, divides, and duplicates. Models of cell-cycle networks also
range from differential equations (Chen et al., 2004) to Boolean
networks (Davidich and Bornholdt, 2008).

Frontiers in Plant Science | Plant Genetics and Genomics July 2012 | Volume 3 | Article 155 | 2

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/Plant_Genetics_and_Genomics
http://www.frontiersin.org/Plant_Genetics_and_Genomics/archive

Carrillo et al. Model checking for biochemical networks

3. MODEL CHECKING
Model checking (Clarke and Emerson, 1981; Quielle and Sifakis,
1981) can be regarded as an instance of the verification problem:
determining whether or not a given computer program meets a
given specification. Initial research on verification (Floyd, 1967)
concentrated on finite computations of sequential programs. The
desire, a decade later, for dealing with infinite computations and
with concurrent programs motivated the development of new
techniques, based on temporal logic, where the truth of state-
ments can vary in time (Pnueli, 1977). Temporal logics also
allowed reasoning about “reactive” systems, having an ongoing
interaction with the environment. The unpredictability of the
environment appears as branching time, where a state can have
more than one possible future. Non-terminating computations
are reflected as infinite sequences of states. Hence, the seman-
tics of a reactive system can be given as an infinite tree of states.
In spite of such trees being infinite, the number of states may
be finite, allowing the application of efficient graph-traversal
methods.

Unlike other verification methods, model checking is totally
automatic, and the specification is formulated in mathematical
(temporal) logic. In addition, model checking not only deals with
correctness but also with incorrectness, often providing a coun-
terexample in case the program does not meet the specification.

Expressiveness of logics used in model checking, however,
should be limited to achieve good performance. Hence, (tempo-
ral) logic is sometimes restricted so that only a partial behavior
of the system may be specified. In this sense, model check-
ing is a weak version of the verification problem. In spite of
this, restricted temporal logics can express, among others, live-
ness properties, e.g., “every request will eventually be granted,”
and safety properties, e.g., “certain state will never be reached”
(Emerson, 2008).

An important breakthrough in model checking was the devel-
opment of “symbolic” techniques, where states are represented
implicitly. The first of these techniques was the introduction
(Burch et al., 1992) of reduced, ordered binary decision diagrams
(BDDs). A BDD is a representation of a Boolean function, where
all redundancy has been removed. Such a representation can be
seen as a graph in which a polynomial number of nodes may
have an exponential number of paths. Since each path corre-
sponds to a state, such a graph can represent a large number
of states. Another symbolic technique is the codification of a
model-checking problem as the satisfiability of a Boolean expres-
sion (SAT). This method employs algorithms for solving the SAT
problem resulting from the phenomenal recent progress in the
development of SAT solvers.

The main problem model checking faces is that of “state
explosion,” as the size of the model increases exponentially in
the number of parameters of the model. A notable achievement
is precisely that “Despite being hampered by state explosion,
[. . .] model checking has had a substantive impact on program
verification efforts” (Emerson, 2008). “Although the worst-case
time complexity of symbolic algorithms is typically worse than
that of corresponding explicit algorithms, they perform well as
heuristics, so that many large problems can only be tackled
symbolically” (Bloem et al., 2000).

It must be emphasized that not all systems with, say 1090,
states can be handled (Emerson, 2008). Nonetheless, sym-
bolic methods often work on the large systems encountered in
practice.

3.1. COMPUTATION-TREE LOGIC
We illustrate model checking for a logic L, by using the case
of L = CTL. More thorough treatments are in: (Clarke et al.,
1999; Bérard et al., 2001; Huth and Ryan, 2004; Baier and Katoen,
2008).

3.1.1. Kripke structures
Truth of CTL formulas is defined in Kripke structures (also called
Kripke models). Figure 1 illustrates one such structure, consist-
ing of: (1) a set AP of Boolean variables, i.e., atomic propositions
({x, y}), (2) a set S of states ({s0, . . . , s3}), each labeled with a sub-
set of AP, and (3) an accessibility relation over S which is serial, i.e.,
every state has (at least) an outgoing transition. A path starting at
a state s0 is an infinite sequence s0s1 . . . of states such that si and
si+1 are related by the accessibility relation.

3.1.2. Formulas
CTL formulas can have Boolean operators, such as not (¬), or
(∨), and (∧), implication (→), and equivalence (↔). In addition,
such formulas can have temporal operators, allowing us to refer to
formulas holding in the future of a particular state (when inter-
preting the accessibility relation as time). In this case, we must
indicate whether we mean some future or all futures. Hence, we
must refer either (1) to some path starting in the current state
with the existential “modality” E, or (2) to all paths starting in
the current state with the universal modality A. Similarly, we can
refer (a) to the immediate future with the modality X, (b) to
some state in the future (including the present) with the modal-
ity F, or (c) to all states in the future (including the present)
with the modality G. The following table summarizes these
modalities.

Modality Meaning

E Some path (i.e., there Exists a path)

A All paths

X NeXt state (i.e., immediate future)

F Some state either in the present or in the Future

G All states in the present and in the future (Global)

s0

x

s2

y

s1

x y

s3

FIGURE 1 | A Kripke structure.

www.frontiersin.org July 2012 | Volume 3 | Article 155 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Plant_Genetics_and_Genomics/archive

Carrillo et al. Model checking for biochemical networks

A CTL temporal operator is composed of a modality in the
upper part together with a modality in the lower part of this table,
resulting in six temporal operators. For example, a formula assert-
ing that there exists a path such that in the present or in the future
x does not hold and y does hold would be: “EF ((not x) and y).”

Often more temporal operators are included in CTL. For
example, a generalization of “EF β,” written “E[αUβ]” (for “Exists
Until”), holds when β holds in the present or in the future,
traversing only states in which α holds. Hence, if a formula “σi”
holds only at a state si, then “not E[(not σ1)Uσ2]” expresses that
it is necessary to go through a state s1 to reach a state s2. Such a
formula asserts (equivalently) that there does not exist a path that
can reach s2 without reaching s1.

3.1.3. Model checking algorithm
Normally, an ordinary CTL model checker follows the “state-
labeling” algorithm (Clarke et al., 1986). This algorithm traverses
a state-transition graph backwards, gradually accumulating, in a
set, the states satisfying the desired property. Consider, for exam-
ple, a liveness property of an elevator model: “every request is
eventually granted,” i.e., “every time a button is pressed on a
floor will cause the elevator to eventually arrive at such a floor.”
Following the state-labeling algorithm, a CTL model checker first
computes all the states in which a request has already been granted
(i.e., where the elevator has already arrived). This set of states can
be trivially computed, as is part of the representation of the sys-
tem. Then the model checker traverses the state-transition graph
backwards, adding states capable of reaching any state in the cur-
rent set in one time step. The model checker repeats this process
until the set stops growing. Such a set will have exactly all the
states from which every request is eventually granted.

3.2. OTHER LOGICS
In addition to CTL, linear-time temporal logic (LTL) is often
employed in practice. LTL also uses Kripke structures, but the
temporal operators of this logic lack the E and A modalities.
Hence, truth of an LTL formula is defined with respect to a sin-
gle path. A formula holds at a state of a Kripke structure if such a
formula holds with respect to every path starting at that state.

When model checking is applied to biochemical network
analysis, there are often interesting properties that cannot be
expressed in CTL or LTL. For example, neither of these logics can
specify the states from which it is possible for a Boolean vari-
able to oscillate (i.e., to switch infinitely many times back and
forth between 0 and 1). To be sure, there exists a CTL formula,
namely “EG((x → EF not x) and (not x → EF x))”, approximat-
ing oscillations. This formula is necessary but not sufficient for
oscillations (which may or may not be adequate for a particu-
lar kind of analysis). Sometimes, therefore, more expressive logics
must be considered.

It is also possible to apply model checking to other kinds
of models. A probabilistic version of CTL (PCTL) has been
developed (Hansson and Jonsson, 1994; Bianco and de Alfaro,
1995), which employs discrete-time Markov chains or Markov
decision processes instead of Kripke structures. Continuous-time
Markov chains (CTMC) can be model-checked with continuous
stochastic logic (CSL) (Baier et al., 2003). Furthermore, hybrid

models (with continuous variables) (Alur et al., 1993) and timed-
automata (with continuous time) (Alur and Dill, 1994) can be
model-checked with appropriate logics.

4. SPECIALIZED TOOLS
Biocham and Genetic Network Analyzer (GNA) are perhaps the
computer tools for biochemical network analysis most extensively
using model checking. We thus start with these two systems, and
proceed with SMBioNet, Pathway Logic, Antelope, and XSSYS.

4.1. BIOCHAM
4.1.1. Overview
Biocham (BIOCHemical Abstract Machine) (Fages and Soliman,
2008b) can analyze and simulate biochemical networks using
differential, stochastic, discrete, and Boolean models. In addi-
tion, properties can be formalized in temporal logic (LTL with
numerical constraints, probabilistic LTL, and CTL), so that a
model checker can be used to validate such properties. Moreover,
Biocham can compute the violation degree of LTL formulas.
Finally, Biocham has a model-update module, repairing models
that do not satisfy CTL properties.

Biocham’s models are specified with a set of reaction rules of
the form “ei for Si => S′

i,” i = 1, . . . , n, over molecular con-
centration variables x1, . . . , xm, where ei is a kinetic expression
involving the concentration of molecules, Si is a set of molecules
with their stoichiometric coefficient, and S′

i is the transformed
set of molecules. Examples of kinetic expressions are: (1) the
mass action law kinetics, (2) the Michaelis–Menten kinetics,
and (3) the Hill kinetics. A set of such rules defines a (hyper)
graph which can be interpreted by Biocham under different
semantics.

In the case of a system ODEs semantics, Biocham can simulate,
using the Runge–Kutta method or Rosenbrock’s method, such
systems of equations. In addition, Biocham can interpret rules
with a stochastic semantics as a continuous-time Markov chain
where the kinetic expressions are transition rates. Simulations in
this case can be performed with Gillespie’s algorithm (Gillespie,
1976), for example. Next in the abstraction-level progression, a
set of rules can be interpreted as an asynchronous discrete model.
Biocham obtains such a model from the stochastic semantics by
simply disposing of the transition probabilities. As a result, this
model employs branching time (but not probabilities). Finally,
Biocham can view a set of rules as an asynchronous Boolean net-
work. In this case, Biocham obtains a Boolean network directly
from the biochemical reaction rules. Branching time appears
because a rule such as A + B => C, for instance, is translated
into four transitions going out of the same state, resulting from
the four combinations of either reactant A or reactant B being
completely or incompletely consumed.

These abstractions, which start from a reaction model and
proceed to stochastic, to discrete, to Boolean networks, overap-
proximate the Boolean semantics obtained from the quantitative
semantics. Hence, the non-existence of a behavior in the Boolean
semantics implies its non-existence in the quantitative seman-
tics of the rules (Fages and Soliman, 2008b). Fages and Soliman
(2008a) use an algebraic theory of abstract interpretation to for-
malize reaction models and the stochastic, discrete, and Boolean

Frontiers in Plant Science | Plant Genetics and Genomics July 2012 | Volume 3 | Article 155 | 4

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/Plant_Genetics_and_Genomics
http://www.frontiersin.org/Plant_Genetics_and_Genomics/archive

Carrillo et al. Model checking for biochemical networks

semantics by lattices DR, DS , DD, and DB, respectively. Then,
the authors prove that such lattices form a hierarchy of abstrac-
tions by constructing Galois connections between DR and DS ,
DS and DD, and DD and DB.

Finally, Fages and Soliman (2008c) have observed that if no
molecule is both an activator and an inhibitor of the same tar-
get molecule, then the interaction diagram obtained from an
ODE model coincides with that obtained from a set of reaction
rules. As a result, Biocham can efficiently compute such an inter-
action diagram simply by a syntactic inspection of the reaction
rules.

4.1.2. Model checking in Biocham
Using the NuSMV model checker (Cimatti et al., 2000), Biocham
can model-check its Boolean networks with respect to CTL for-
mulas. For example, Biocham abbreviates “not E[(not Q)UP]”
as checkpoint (Q,P). CTL (without “strong fairness”) can
also approximate oscillations with necessary, but not sufficient,
formulas (seen in subsection 3.2). For many applications such
formulas are helpful.

Biocham can use model checking in other forms. First, an
extension of ordinary LTL with constraints over reals allows to
analyze traces obtained from simulations (Rizk et al., 2011).
Essentially, such a logic adds variables to LTL formulas, as in
G[A]<x, expressing the constraint that x is always greater than
the maximum concentration of A. Currently, Biocham has a
model checker for the fragment of such a logic in which lin-
ear constraints can appear as atomic propositions. Furthermore,
Biocham is able to compute the violation degree of a formula.
Intuitively, the violation degree is the distance between a par-
ticular behavior of a system, given as a path, and the expected
behavior, given as a temporal-logic formula (Rizk et al., 2009).
Such a violation measure can be used to estimate a fitness func-
tion with evolutionary optimization methods. This is done by
finding kinetic parameter values satisfying a set of biological
properties formalized in temporal logic. In addition, such a mea-
sure can be used to estimate the robustness of a biological model
with respect to its temporal specification.

Next, probabilistic model checking is also provided. Biocham
estimates the probability of an LTL formula holding by sampling
stochastic simulations (Fages and Soliman, 2008b).

Finally, Biocham has an “update” component for automat-
ically modifying a network that does not satisfy a given CTL
formula. The algorithm of this component is based on coun-
terexamples computed by NuSMV. Although incomplete (in
the sense of sometimes not being able to find the appropri-
ate changes to networks), such a component is useful because
of being able to handle large networks (Chabrier-Rivier et al.,
2005).

Biocham has been applied (by its developers) to a bud-
ding yeast cell cycle model, to the Mitogen-Activated Protein
Kinase (MAPK) cascades, and to the mammalian cell-cycle
control. This last network involves 732 reactions over 165
proteins and genes, and 532 variables (implying 2532 � 10160

states) (Chabrier-Rivier et al., 2004, pp. 36, 40). Moreover,
Biocham has been used by biologists working independently from
Biocham’s developers. Bellé et al. (2010), for instance, has used

Biocham to model the cap-dependent translation initiation in sea
urchin.

4.2. GNA
4.2.1. Overview
GNA (de Jong et al., 2004) is based on a piecewise-linear
differential-equations approach, allowing qualitative reasoning
about GRNs. Qualitative analysis of GRNs is important because
the mechanisms governing gene interactions as well as the quali-
tative information on kinetic parameters and molecular concen-
trations are often only partially known. The equations employed
by GNA were proposed by Mestl et al. (1995), extending work
by Glass and Kauffman (1973). The state variables represent con-
centrations of gene products; the differential equations, in turn,
model the regulatory influences. This approach is related to the
formalism developed by Thomas and his colleagues (Thomas and
D’Ari, 1990): Snoussi (1989) showed that Thomas’ formalism
(described below) can be regarded as an abstraction of a special
case of this model (de Jong et al., 2004).

The equations of this kind of model have the form:

ẋi = fi(x1, . . . , xn) − gi(x1, . . . , xn)xi, 1 ≤ i ≤ n (1)

where ẋi is the rate of change of protein xi, fi the rate of synthesis
of xi, and gi the rate of degradation of xi. The rate of synthesis is
defined as:

fi(x1, . . . , xn) =
∑
l∈L

κilbil(x1, . . . , xn)

where κil is a rate parameter (κil > 0), bil is a regulation function
mapping the non-negative reals into {0, 1}, and L is a possi-
bly empty set of indices of regulation functions. The rate of
degradation is similar:

gi(x1, . . . , xn) =
∑
l∈L

γilbil(x1, . . . , xn)

where gi is strictly positive. Observe that these equations are
piecewise-linear.

A regulation function bil can be defined as an expression of
step functions:

s+(xj, θj) =
{

1 if xj > θj

0 if xj < θj

s−(xj, θj) = 1 − s+(xj, θj)

where θj is a threshold. These thresholds divide the n-dimensional
phase space into domains of dimension n, separated by the

(n − 1)-dimensional hyperplanes xi = θ
j
i (Gouzé and Sari, 2002).

Within each domain, the behavior is linear, whereas on the hyper-
planes separating the domains, mathematical complications arise.
The reason is that discontinuous right-hand sides may appear
in the equations. Gouzé and Sari (2002) applied a technique
developed by Filippov (1988), essentially replacing differential
equations by differential inclusions.

www.frontiersin.org July 2012 | Volume 3 | Article 155 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Plant_Genetics_and_Genomics/archive

Carrillo et al. Model checking for biochemical networks

GNA performs an abstraction of a system of equations of the
form (1) by associating such a system with a state-transition
graph. In such a graph, each domain of dimension k ≤ n
is identified with a qualitative state. There exists a transition
between two qualitative states if some solution trajectories start-
ing in one corresponding domain reach the other corresponding
domain, without passing through an intermediate domain (de
Jong et al., 2004, p. 314). As a result of replacing equations by
inclusions, solutions (in the sense of Filippov) may not be unique
(de Jong et al., 2004, pp. 311, 312). Therefore, a state in the state-
transition graph may have more than one successor, giving rise to
branching time.

Instead of having to give precise numerical values of the
threshold and rate parameters, it is possible to supplement the
state equations with inequality constraints on such values. GNA
is then able to perform a “qualitative simulation” on the result-
ing model. Such a simulation results in a state-transition graph
consisting of qualitative states and transitions between quali-
tative states. It is then possible to search for steady states, for
example.

4.2.2. Model checking in GNA
GNA is able to perform model checking with NuSMV (Cimatti
et al., 2000) and CADP (Garavel et al., 2010). Examples of
the kind of properties that can be tested through NuSMV are:
“it is possible for a state with an x_a concentration equal
to t_xa2 to occur” or “if the system is in the state corre-
sponding to the initial conditions zero_a <= x_a < t_a1,
zero_b <= x_b < t_b, and zero_c <= x_c < t_c1,
then the system necessarily reaches a steady state.” Importantly,
GNA has a pattern-based query language (Monteiro et al., 2008)
to help users write CTL formulas.

Through the CADP toolbox, more complex properties can
be analyzed (Monteiro et al., 2008). Let A and B be proteins,
each of which has an associated threshold. An example of one
such property is: “From a given initial state in which A and
B have concentrations below their corresponding thresholds, it
is possible to reach two different stable states in which only
one of A and B is present at concentrations above their corre-
sponding thresholds.” The logic employed (regular alternation-
free μ-calculus) subsumes both CTL and propositional dynamic
logic (PDL).

In addition, the GNA team has developed computation-tree
regular logic (CTRL) (Mateescu et al., 2011), an extension of
CTL with regular expressions and fairness operators. CTRL is
able to express properties of biological interest and subsumes
both CTL and LTL. A particular strength of this logic is the con-
venient specification of multistability and oscillation properties.
CTRL formulae are translated into Hennessy–Milner logic with
recursion (an equational variant of the modal μ-calculus), which
allows reusing the verification technology available in the CADP
toolbox.

GNA has been used (by its developers) for analyzing the GRN
controlling the carbon starvation response of Escherichia coli
(Ropers et al., 2006), as well as for studying the initiation of
sporulation in Bacillus subtilis (de Jong et al., 2003). Furthermore,
GNA has been applied by biology groups. Two examples are:

Viretta and Fussenegger (2004) with Pseudomonas aeruginosa,
and Sepulchre et al. (2007) with a pectinolytic bacterium.

4.3. SMBioNet
SMBioNet (Selection of Models of Biological Networks) (Bernot
et al., 2004; Richard et al., 2006, 2008, 2012; Khalis et al., 2009)
is founded on the formalism developed by Thomas’ and his col-
leagues (Thomas and D’Ari, 1990). The following review of such
a formalism is based on (Richard et al., 2008).

4.3.1. Thomas’ state-transition systems
Thomas’ models of GRNs can be viewed either as an abstraction
of a special case of piecewise-linear differential equations or as a
generalization of a restriction of Boolean GRNs. These models are
multi-valued state-transition systems, where concentrations are
represented with discrete variables. In addition, time is viewed as
proceeding in discrete steps. The value of every gene x at time
t + 1 is specified by a function of the values of its regulators
y1, y2, . . . , ynx at time t.

4.3.2. Thomas’ method
Thomas and his colleagues developed a method establishing a
mapping from an “interaction” graph into a set of multi-valued
state-transition systems. An interaction graph G is a directed graph
where each node corresponds to a gene and each edge x → y is
labeled with a sign. We say that x is an activator (resp. inhibitor) of
y if the sign is positive (resp. negative). We say that y is influenced
by x if there is an edge x → y.

Thomas’ method associates state-transition systems with an
interaction graph as follows. First, an instantiated interaction
graph is obtained by associating a set of possible “levels” with
each gene, and a “threshold” with each edge. Each gene x has at
most rx + 1 levels, where rx is the number of genes influenced by
x. Intuitively, this allows for the possibility that each gene influ-
enced by a gene x reacts at a different threshold of the level of x.
Hence, with each gene x we associate a set of levels:

Sx = {0, . . . , r′
x}

where r′
x ≤ rx. In addition, with each interaction x → y we asso-

ciate a threshold:
θxy ∈ {1, . . . , r′

x}

An example of an instantiated interaction graph is depicted in
Figure 2.

The set of possible states is S = S1 × · · · × Sn. The level of x
at a state s = (s1, . . . , sn) ∈ S is given by the component sx ∈ Sx.

x y

21 1

FIGURE 2 | An instantiated interaction graph where Sx = {0, 1, 2} and

Sy = {0, 1}. An activator is represented by an ordinary arrow; an inhibitor is
represented with a blunt arrow.

Frontiers in Plant Science | Plant Genetics and Genomics July 2012 | Volume 3 | Article 155 | 6

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/Plant_Genetics_and_Genomics
http://www.frontiersin.org/Plant_Genetics_and_Genomics/archive

Carrillo et al. Model checking for biochemical networks

The set of effective regulators of gene x at state s is:

ωx(s) = {y ∈ G−1
x |sy ≥ θyx}

where G−1
x denotes the set of predecessors of x in the interaction

graph G.
Next, Thomas maps each ωx(s) into an integer kx(ωx(s)) ∈ Sx

(the value toward which x “tends”) as follows. For each gene x
and for each set of predecessors R ⊆ G−1

x , kx(R) ∈ Sx is an integer
satisfying the following action constrains:

1. If y is an activator of x, then

∀R ⊆ G−1
x , kx(R) ≤ kx(R ∪ {y})

2. If y is an inhibitor of x, then

∀R ⊆ G−1
x , kx(R) ≥ kx(R ∪ {y})

Intuitively, action constraints mean that the action of an activator
of x cannot decrease the level toward which x tends, and that the
action of an inhibitor of x cannot increase the level toward which
x tends.

The following table shows, for each state, the effective regu-
lators of each gene, as well as possible values toward which each
gene tends.

sx sy ωx(s) ωy(s) kx(ωx(s)) ky(ωy(s))

0 0 ∅ ∅ 1 1

0 1 ∅ {y} 1 1

1 0 {x} ∅ 2 1

1 1 {x} {y} 2 1

2 0 {x} {x} 2 0

2 1 {x} {x, y} 2 1

The k’s satisfy the corresponding action constraints:

kx(∅) ≤ kx({x})
ky({x}) ≤ ky(∅) ≤ ky({y})
ky({x}) ≤ ky({x, y}) ≤ ky({y})

Note that there may be many possible values of the k’s satisfying
the associated action constraints.

A state-transition system T is now obtained as follows. T has
a transition (edge) from s to (kx1(s), . . . , kxn(s)) if and only if
ki(s) �= si for at most one i. Note that a state may have more
than one successor. The state-transition system for our example
is exhibited in Figure 3.

4.3.3. SMBioNet
SMBioNet extends Thomas’ formalism with processes. This
extension enables the incorporation of biological information
possibly constraining the set of state-transition systems associ-
ated with an interaction graph. Essentially, processes constrain
the regulators of a gene with Boolean functions over inequali-
ties. For example, instead of having y independently influenced

00 10 20

01 11 21

FIGURE 3 | A state-transition graph of example in Figure 2 showing

asynchrony.

x y

P S

x ≥ 1 x < 2 ∧ y ≥ 1

FIGURE 4 | An interaction graph with processes.

by x, through Q if x < 2, and by y, through R if y ≥ 1, Q and R
may be combined (e.g., by ∧) into one process S to influence y if
x < 2 ∧ y ≥ 1 (Figure 4).

SMBioNet takes as input an interaction graph with processes
G and a temporal property expressed by a CTL formula ϕ.
SMBioNet returns as output all the networks f such that the inter-
action graph (without processes) of f is a subgraph of G, and the
state-transition graph of f satisfies ϕ.

To build the expected output, SMBioNet exhaustively enu-
merates all the possible values of the sets of parameters and,
by using NuSMV, retains the corresponding state graphs satis-
fying the given CTL formula. Processes and restrictions on the
parameters help to reduce the number of parameter sets to be
processed.

The number of states for a state graph corresponding to a
Boolean network with n variables is 2n. Each of the 2n states
has at most n outgoing transitions (n is a condition of Thomas’
formalism; the general bound would be 2n). Since each of the
n2n possible transitions may or may not be present in an asyn-
chronous state graph, the number of asynchronous state graphs
for a Boolean network with n variables is 2(n2n). Thus, if the
input of SMBioNet is a property p, and the complete interac-
tion graph has n vertices, then the output of SMBioNet consists
of all the Boolean networks with n components whose asyn-
chronous state graph satisfies property p. In this case, SMBioNet
complexity is given by 2(n2n). Therefore, SMBioNet only works
in general for small values of n, typically n < 7 (Richard et al.,
2012, p. 2).

SMBioNet has been applied to the tail resorption in tadpole
metamorphosis (Khalis et al., 2009) and to the immunity control
in bacteriophage lambda (Richard et al., 2006).

4.4. PATHWAY LOGIC
Pathway Logic (Eker et al., 2003; Talcott, 2008) employs the
Maude computer system (Clavel et al., 2007), based on rewrit-
ing logic. In rewriting logic, the behavior of a system is given by

www.frontiersin.org July 2012 | Volume 3 | Article 155 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Plant_Genetics_and_Genomics/archive

Carrillo et al. Model checking for biochemical networks

local transitions between states, and transitions are described by
rewrite rules. A rewrite rule has the form “t ⇒ t′if c”, where t and
t′ are patterns and c a condition. A rule applies to a system in
state s if t can be matched to a part of s. Sequences of states trans-
formed through rule application form branching computations
(since more than one rule may be applicable).

Similarly to Biocham, the interpretation of a system in Pathway
Logic is qualitative and binary (Talcott, 2008, pp. 25, 36).

Pathway Logic can perform forward search (i.e., simulation),
as well as LTL model checking (Eker et al., 2003, p. 154) (Talcott,
2008, p. 32) with the LoLA model checker (Schmidt, 2000) for
Petri nets. To be model-checked, therefore, a system represented
with rewrite rules must be mapped into a Petri net. A Petri net
is a directed graph with two kinds of nodes: “transitions” and
“places”. When a set of rewrite rules is viewed as a Petri net,
the transitions correspond to rewrite rules and the places corre-
spond to reactants, products, or modifiers (Talcott, 2008, p. 40).
Unlike other uses of model checking in biochemical network anal-
ysis, Pathway Logic can employ model checking to compute paths
by means of a counterexample: By giving the model checker a
formula asserting that a desired path does not exist, the coun-
terexample computed by the model checker will be precisely such
a path.

In addition, Pathway Logic provides metalevel analysis: Rules
can be abstracted into families, each family corresponding, for
example, to a particular type of reaction, such as activation, inhi-
bition, or translocation. It is thus possible, for instance, to find all
rules involving a given protein.

Pathway Logic has been applied to analyze the MAPK path-
way (Eker et al., 2003; Talcott, 2008). The model of this pathway
has 500 rules, 650 proteins, and 39,992 states (Eker et al., 2003,
p. 148).

4.5. ANTELOPE
Antelope (Analysis of Networks through TEmporal-LOgic sPEc-
ifications) (Arellano et al., 2011) is a system developed by our
team, aimed at Boolean networks. Antelope also uses model
checking in a different way from other computational-biology
tools. Instead of simply verifying whether or not a given formula
holds, Antelope utilizes a model checker to obtain all the states
in the model which satisfy a given formula. Hence, if the formula
denotes reachability to a state, for example, Antelope will obtain
the basin of attraction to such a state.

As with other systems, Antelope has to face the fact that ordi-
nary logics for model checking such as CTL and LTL are not
expressive enough for many biological applications. Antelope
employs an extension of CTL with “hybrid” operators (not to be
confused with “hybrid model checking”, having both discrete and
continuous variables). The additional expressiveness of Hybrid
CTL essentially consists in formulas being able to refer to par-
ticular states explicitly. Hybrid CTL can express many interesting
properties such as oscillations and multistability.

Antelope encourages the use of branching time beyond asyn-
chrony, for incompletely specified behavior and environment
interaction. The authors exemplify these other uses of branch-
ing time in the development of a Boolean GRN of the Arabidopsis
thaliana root stem cell niche.

4.6. SIMPATHICA AND XSSYS
Antoniotti et al. (2003) illustrate the use of model checking by
Simpathica and XSSYS for qualitative biochemical network anal-
ysis. An XS-system is a set of differential equations describing
the rate of change of given quantities, together with a set of
constraints on these quantities. Simpathica allows the user to
enter the description of an XS-system and simulate its behav-
ior. XS-systems may be discretized into state-transition systems
which can be model-checked by XSSYS. XSSYS is a model checker
employing a variant of LTL in which the propositional variables
consist of assertions about the values or rate of change of reac-
tants. This variant of LTL may identify steady states (the rate
of change of all concentrations is zero) and express that the
concentration of a reactant is within an interval. The authors
illustrate their systems with a repressilator system and the purine
metabolism in humans.

5. SPECIFIC USES OF MODEL CHECKING
This section is devoted to examples of model checking applied to
biochemical networks analysis, without necessarily involving the
development of a specialized tool.

5.1. MOCHA
In (Fisher et al., 2007), the authors follow the idea of using for-
mal verification for testing biological hypotheses. According to
the authors, by verifying all possible model executions, the model-
checking analysis resembles the study of variations in the rate of
biochemical reactions.

The proposal of Fisher et al. (2007) is using model check-
ing for reproducing biological behavior under different mutant
backgrounds. Specifically, the authors present a Reactive Modules
(Alur and Henzinger, 1999) model describing the Caenorhabditis
elegans vulval development. Then, the authors use the Mocha
model checker (Alur et al., 1998) for querying different behav-
iors of the model like, for example, the mutations leading to
stable or unstable fate patterns. The C. elegans analysis of the
authors predicts some novel interactions between the model
components, and provides a better understanding of the nec-
essary temporal order of events leading to stable cell fate
patterns.

Finally, it is interesting to mention the high number of
states having many successors. A consequence is the existence of
approximately 1036 possible executions of the model, and about
92,000 different reachable states. Thus, a simulation approach in
this context would not be feasible.

5.2. HyTech
In (Ahmad et al., 2006), the authors build upon SMBioNet
(Bernot et al., 2004). Ahmad et al. recall that temporal logic can
describe some epigenetic properties of GRNs. Thus, after apply-
ing Thomas’ method, it is possible to use a model checker for
selecting GRNs satisfying some desired properties (Bernot et al.,
2004). Thomas’ discretization process, however, neglects the time
delays in the change between genes levels of expression. This
loss of information may cause some acceptable GRNs to be dis-
carded during the model-checking selection phase. Particularly,
Ahmad et al. show how, in some cases, a discrete model cannot

Frontiers in Plant Science | Plant Genetics and Genomics July 2012 | Volume 3 | Article 155 | 8

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/Plant_Genetics_and_Genomics
http://www.frontiersin.org/Plant_Genetics_and_Genomics/archive

Carrillo et al. Model checking for biochemical networks

distinguish attractive cycles from unstable steady states. For this
reason, the authors propose the use of hybrid modeling of GRNs.
Specifically, the authors propose using a subclass of linear hybrid
automata (LHA, see Alur and Dill, 1994; Henzinger et al., 1998).
The LHA of Ahmad et al. (2006) are discrete state machines with
time variables (called “clocks”) and where the dynamics of the
variables are governed by linear constraints (with some restric-
tions on their derivatives). The authors show how to build an
LHA model of a GRN considering (linear) delays on gene expres-
sions changes. Such models provide a finer-grained description
of GRNs, and are able to distinguish attractive cycles from unsta-
ble steady states. Then, by using the command language of the
HyTech model checker (Henzinger et al., 1997), the authors pro-
vide an algorithm for finding the initial values of the clocks and
rates of a GRN model for a given steady state. Finally, Ahmad et al.
(2006) exemplify their approach with the P. aeruginosa mucus
production system.

5.3. PRISM
We now review three works employing the PRISM model checker
(Kwiatkowska et al., 2011). In these three works, model checking
is applied to CTMC with CSL. In such CTMCs each transition of
the system dynamics is labeled with a rate, which is the parameter
of an exponential distribution.

In the first work, starting from a kinetics with non-linear
ODEs, Calder et al. (2006) model the RKIP-inhibited ERK path-
way with an approach using approximate techniques where con-
centrations are modeled by discrete abstract quantities. By using
PRISM, these authors are able to answer questions such as “what
is the probability that if a concentration reaches a certain level,
it will remain at that level thereafter?” or “how does varying a
given reaction rate affect that probability?”. The size of the model
depends on the number N of levels of concentration of each
species. For example, for N = 3, there are 273 states and 1316
transitions; for N = 9 there are 28,171 states and 216,282 transi-
tions. A state may have more than one outgoing transition; in that
case there is a “race” between such transitions. Calder et al. (2006)
list the following advantages of using CTMCs and model checking
as compared with simulation: (1) CTMCs allow to model per-
formance, as well as having states with more than one successor,
(2) PRISM’s high level abstractions enable a separation of system
structure from performance, and (3) model checking can com-
pute the probability of a property holding even in the presence of
infinitely many paths.

In the next work, Heath et al. (2006) build a model for the
FGF (Fibroblast Grow Factor) signaling pathway. These authors
demonstrate how several temporal properties, including some
with reward-based measures, are applicable to the study of biolog-
ical systems. In addition, they give several exact and approximate
techniques for coping with the state-explosion problem.

The authors’ model consists of a PRISM module for each
component of the pathway (e.g., FGF, FGFR, Src, etc.), and also
a module for each possible compound and receptor residue.
Module synchronization allows describing interactions involving
multiple elements.

For example, two queries in PRISM are: P=?[F [t,t]agrb2:fsr2],
to find the probability that Grb2 binds with FRS2 at time t,

and R=?[F(asrc_reloc ∨ aaplc_deg ∨ aspry_deg)], to find the expected
time until the degradation or relocation occurs (where the R
represents rewards).

Two classes of state-reduction techniques are described: exact
and approximate. The exact approaches group equivalent states
in the underlying CTMC, and are (1) “lumpability” (Derisavi
et al., 2003), (2) symmetry reduction, and a (3) population-based
approach.

The approximate approaches are applicable to networks where
the proteins and the receptors have multiple docking sites and
engage multiple downstream signaling proteins. The first approx-
imate approach is based on identifying and removing “micro-
states” in the network. When the model’s reactions differ in
orders of magnitude, it is possible to separate “fast” from “slow”
reactions. Similarly, it is possible to model molecules’ concentra-
tions with abstract quantities, such as “low” and “high.” A final
reduction is that of abstraction, involving manual grouping of
states.

By using approximate techniques, Heath et al. (2006) reduce
a CTMC with 10,285,320 states and 92,767,336 transitions, to
one with 80,616 states and 560,520 transitions. Moreover, exact
techniques reduce the number of states even more, to 38,661.

In the final work, Ciocchetta et al. (2009) present another use
of PRISM, combining probabilistic model checking with stochas-
tic simulation. Model checking is an exhaustive technique, but is
subject to the state-explosion problem. Simulation, by contrast,
only explores a single trajectory at a time, but is less sensitive
to the search-space size. Essentially, Ciocchetta et al. (2009) try
to combine the advantages of both these methods by employ-
ing a simulator to obtain approximate bounds on the amounts of
each species. These bounds mainly determine the size of a system
which is subsequently model-checked. Their simulator is based
on Gillespie’s, employs the Michaelis–Menten kinetics, and mod-
els each individual particle. The proposed combination is applied
to the control circuit for the λ repressor protein CI of λ-phage
in E. coli.

6. OTHER SPECIALIZED TECHNIQUES
In this section, we survey some systems and algorithms that do
not necessarily utilize full-fledged model checking, but are related
to model checking because of employing either temporal logic or
a symbolic technique.

6.1. SeMoCoGRN
Building upon SMBioNet, Fromentin et al. (2007) have devel-
oped a method based both on CTL and on constraints, named
“Selecting Models by Constraints for GRN.” Like SMBioNet,
this method has as input an interaction graph and a CTL for-
mula, and produces as output all networks corresponding to
such a graph and satisfying such a formula. Unlike SMBioNet,
this method combines Thomas’ action constraints with Boolean
constraints corresponding to the CTL formula. The resulting
constraints are turned to a Java constraint-solver (JaCoP). The
authors report their system finding 32 networks among three
million possible networks in 800 ms (whereas an exhaustive enu-
meration took 8.5 min). This experiment was performed in a
GRN of P. aeruginosa.

www.frontiersin.org July 2012 | Volume 3 | Article 155 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Plant_Genetics_and_Genomics/archive

Carrillo et al. Model checking for biochemical networks

6.2. MATEUS et al.’s SYSTEM
Another system also using both Thomas’ formalism and temporal
logic is that by Mateus et al. (2007). Inequalities over the param-
eters of the model are obtained from the interaction diagram.
These inequalities are augmented with LTL formulas specifying
desirable properties of the model. The model is traversed forward
and paths that do not satisfy the constraints are eliminated, so that
only paths satisfying the constraints are retained. This method is
illustrated with the mucus production in P. aeruginosa and the
immunity control in bacteriophage lambda.

6.3. GINsim
A system also based on Thomas’ formalism is GINsim (Gene
Interaction Network simulation) (Chaouiya et al., 2003; Gonzalez
et al., 2006; Naldi et al., 2009). As in such a formalism, networks in
GINsim have both multi-valued genes and states with more than
one successor (representing asynchrony). GINsim employs (Naldi
et al., 2007) a symbolic technique, namely BDDs, to compute
the set of all stable steady states of a synchronous, Boolean state-
transition system. A stable steady state is a single-point attractor
having a single successor (itself). Such states are obtained by using
BDDs to compute all solutions to:∧

i

(xi ↔ fi(x0, . . . , xn−1))

6.4. DUBROVA et al.’s SAT-BASED METHOD
There are close connections between Boolean satisfiability (SAT)
and Boolean networks (Milano and Roli, 2000; Inoue, 2011),
allowing the possibility of computing attractors with SAT solvers.
For example, Dubrova et al. (2010) employ a SAT solver to com-
pute the set of attractors (of any size) of a synchronous Boolean
network. Essentially, their method works as follows. The accessi-
bility relation of the network is represented by a Boolean formula
of the form:

T(s, s′) =
∧

i

(x′
i ↔ fi(x0, . . . , xn−1))

where s = (x0, . . . , xn−1) and s′ = (x′
0, . . . , x′

n−1). Next, T is

composed with itself a number of times giving Tk. Any assign-
ment satisfying Tk is a finite path of length k. A finite path in

which a state is repeated is an attractor. Each time an attractor is
found, it is “removed” by adding the negation of a state occurring
in such an attractor to the formula to be given to the SAT solver
the next time. Dubrova et al. (2010) report, for example, taking
52 ms. to find all seven attractors of a Drosophila melanogaster
Boolean GRN having 52 genes, where the accessibility rela-
tion was composed 52 times. A disadvantage of this method
is its being restricted to non-branching synchronous Boolean
networks.

7. CONCLUDING REMARKS
We encountered model checking used in numerous and varied
ways for biochemical network analysis. This verification tech-
nique has been applied to many kinds of biochemical models,
ranging from Boolean networks, to Thomas’ formalism, to hybrid
and timed automata, to CTMC (see Table 1).

It is clear, on the other hand, that the application of model
checkers for biochemical network analysis is still incipient. Many
tools we reviewed have only been used by their developers. Two
relevant exceptions, however, are Biocham, used e.g., by Bellé
et al. (2010) and GNA, used e.g., by Viretta and Fussenegger
(2004) and Sepulchre et al. (2007).

In our opinion, there are two situations that could be improved
to further the applicability of model checking in this area. First,
there is often a mismatch between the kind of model that can be
checked and the type of biochemical network model built under
uncontrolled conditions, such as the available data. Nevertheless,
Biocham and GNA employ two different ways of performing such
a link.

Second, writing a formula in the logic underlying the uti-
lized model checker is usually difficult. To be sure, Biocham
provides syntactic sugar abbreviating certain common formulas
and GNA has a pattern-based query language, but the difficulty
persists.

In addition to model checking, there are other computa-
tional techniques employed in biochemical network analysis.
The potential of simulation and constraint-solving, for instance,
should also be assessed. Although perhaps the most direct tool,
the relevance of simulation cannot be exaggerated. Constraint-
solving, in turn, has been successfully employed, as illustrated in
Devloo et al. (2003) and Corblin et al. (2009). Such techniques
are not only important in their own right, but more so when they

Table 1 | Summary of modeling tools using model checking.

System/Work Model(s) Logic(s) Model checker(s)

Biocham
GNA
SMBioNet
Pathway logic
Antelope
Simpathica, XSSYS
Fisher et al. (2007)
Ahmad et al. (2006)
Calder et al. (2006)
Heath et al. (2006)
Ciocchetta et al. (2009)

ODEs, stochastic, discrete, Boolean
piecewise-linear eq., Boolean
Thomas’
rewrite rules, Petri, Boolean
Boolean
ODEs
reactive modules
LHA
continuous-time Markov chains
continuous-time Markov chains
continuous-time Markov chains

CTL, LTL + num. constr., PLTL
CTL, variant μ-calculus, CTRL
CTL
LTL
Hybrid CTL
variant LTL
Alternating-time temp. logic (ATL)
“while” language
CSL
CSL
CSL

NuSMV, PLTL, violation-degree
NuSMV, CADP, CTRL
NuSMV
LoLA
Antelope’s
XSSYS
Mocha
HyTech
PRISM
PRISM
PRISM

Frontiers in Plant Science | Plant Genetics and Genomics July 2012 | Volume 3 | Article 155 | 10

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/Plant_Genetics_and_Genomics
http://www.frontiersin.org/Plant_Genetics_and_Genomics/archive

Carrillo et al. Model checking for biochemical networks

can be combined, for example, with model checking. A system
exploiting the advantages of model checking reinforced with sim-
ulation is Ciocchetta et al. (2009); systems profited by enriching
model checking with constraints are Fromentin et al. (2007) and
Rizk et al. (2011).

We devoted this work to biochemical pathways, but model
checking has also been applied to other problems in computa-
tional biology. An example is (Grosu et al., 2009), where a spatial
logic based on quadtrees (Samet, 1984) is used for detecting spiral
electric waves in networks of cardiac myocytes.

Our main interest was that of exploring model-checking con-
tributions to biochemical network analysis. We saw, nevertheless,
contributions in the other direction as well: the development
of model-checking results motivated by biochemical problems.
We can mention the update component of Biocham (Chabrier-
Rivier et al., 2005), the LTL extensions with constraints and with

a measure of the violation degree of a formula (Rizk et al., 2009),
and CTRL (Mateescu et al., 2011).

We thus believe that model checking is ready for advanc-
ing substantial contributions to biochemical network analysis in
particular, and to computational biology in general.

ACKNOWLEDGMENTS
We acknowledge the facilities provided by IIMAS, UNAM. We
are also grateful to Elena Alvarez-Buylla, Eugenio Azpeitia, Julio
Collado-Vides, Elizabeth Ortiz, and Nathan Weinstein, with
whom we had fruitful discussions. Members of the Biocham and
GNA teams generously gave us helpful information. Finally, we
are grateful to the reviewers, who gave us useful suggestions.

FUNDING
Pedro A. Góngora was supported by Conacyt.

REFERENCES
Ahmad, J., Bernot, G., Comet, J.-P.,

Lime, D., and Roux, O. (2006).
Hybrid modelling and dynamical
analysis of gene regulatory networks
with delays. Complexus 3, 231–251.

Alur, R., Courcoubetis, C., Henzinger,
T. A., and Ho, P.-H. (1993).
“Hybrid automata: an algorithmic
approach to the specification and
verification of hybrid systems,” in
Hybrid Systems, Vol. 736 eds R. L.
Grossman, A. Nerode, A. P. Ravn,
and H. Rischel (Lyngby, Denmark
and Ithaca, New York: Springer),
209–229.

Alur, R., and Dill, D. L. (1994). A theory
of timed automata. Theor. Comput.
Sci. 126, 183–235.

Alur, R., and Henzinger, T. A. (1999).
Reactive modules. Formal Method in
Syst. Des. 15, 7–48.

Alur, R., Henzinger, T. A., Mang, F.
Y. C., Qadeer, S., Rajamani, S. K.,
and Tasiran, S. (1998). “MOCHA:
modularity in model checking,” in
Computer Aided Verification, Vol.
1427, eds A. J. Hu and M. Y. Vardi
(Lyngby/Denmark and Ithaca/New
York: Lecture Notes in Computer
Science), 521–525.

Antoniotti, M., Policriti, A., Ugel, N.,
and Mishra, B. (2003). Model build-
ing and model checking for bio-
chemical processes. Cell Biochem.
Biophys. 38, 271–286.

Arellano, G., Argil, J., Azpeitia, E.,
Benítez, M., Carrillo, M., Góngora,
P., Rosenblueth, D. A, and Alvarez-
Buylla, E. R. (2011). “Antelope”:
a hybrid-logic model checker for
branching-time Boolean GRN anal-
ysis. BMC Bioinformatics 12, 1–14.

Baier, C., Haverkort, B., Hermanns,
H., and Katoen, J.-P. (2003).
Model-checking algorithms
for continuous-time Markov

chains. IEEE Trans. Softw. Eng. 29,
524–541.

Baier, C., and Katoen, J.-P. (2008).
Principles of Model Checking.
Cambridge, MA: MIT Press.

Batt, G., Bergamini, D., de Jong,
H., Garavel, H., and Mateescu, R.
(2004). “Model checking genetic
regulatory networks using GNA and
CADP,” in Eleventh International
SPIN Workshop on Model Checking
of Software (SPIN 2004), No. 2989,
(Barcelona, Spain: Lecture Notes in
Computer Science), 158–163.

Bellé, R., Prigent, S., Siegel, A., and
Cormier, P. (2010). Model of cap-
dependent translation initiation
in sea urchin: a step towards the
eukaryotic translation regulation
network. Mol. Reprod. Dev. 77,
257–264.

Bérard, B., Bidoit, M., Finkel, A.,
Laroussinie, F., Petit, A., Petrucci,
L., Schnoebelen, Ph., and McKenzie,
P. (2001). “Systems and Software
Verification,” in Model-Checking
Techniques and Tools. (New York,
NY: Springer).

Bernot, G., Comet, J.-P., Richard, A.,
and Guespin, J. (2004). Application
of formal methods to biological
regulatory networks: extending
Thomas’ asynchronous logical
approach with temporal logic.
J. Theor. Biol. 229, 339–347.

Bianco, A., and de Alfaro, L. (1995).
“Model checking of probabilistic
and nondeterministic systems,” in
Proceedings of the Foundations of
Software Technology and Theoretical
Computer Science, No. 1026,
ed P. Thiagarajan (Bangalore,
India: Lecture Notes in Computer
Science), 499–513.

Bloem, R., Gabow, H. N., and Somenzi,
F. (2000). “An algorithm for strongly
connected component analysis in

n log n symbolic steps,” in Formal
Methods in Computer-Aided Design,
eds Jr. W. A. Hunt and S. D. Johnson
(Austin, TX: Springer), 37–54.

Bower, J. M., and Bolouri, H., (eds).
(2001). Computational Modeling of
Genetic and Biochemical Networks.
Westwood, MA: MIT Press.

Burch, J. R., Clarke, E. M., McMillan,
K. L., Dill, D. L., and Hwang, L. J.
(1992). Symbolic model checking:
1020 states and beyond. Inf. Comput.
98, 142–170.

Calder, M., Vyshemirsky, V., and
Gilbert, D. (2006). “Analysis of sig-
nalling pathways using continuous
time Markov chains, in Transactions
on Computational Systems Biology,
No. 4220, VI, eds C. Priami and G.
D. Plotkin (Beijing, China: Lecture
Notes in Bioinformatics), 44–67.

Chabrier-Rivier, N., Chiaverini, M.,
Danos, V., Fages, F., and Schächter,
V. (2004). Modeling and query-
ing biomolecular interaction net-
works. Theor. Comput. Sci. 325,
25–44.

Chabrier-Rivier, N., Fages, F., Soliman,
S., and Calzone, L. (2005). Learning
transition rules from temporal logic
properties. Technical Report 5543,
(INRIA, Rocquencourt).

Chaouiya, C., Remy, E., Mossé, B.,
and Thieffry, D. (2003). Qualitative
analysis of regulatory graphs: a
computational tool based on a dis-
crete formal framework. Posit. Syst.
LNCIS 294, 119–126.

Chen, K. C., Calzone, L., Csikasz-
Nagy, A., Cross, F. R., Novak, B.,
and Tyson, J. J. (2004). Integrative
analysis of cell cycle control in
budding yeast. Mol. Biol. Cell 15,
3841–3862.

Cimatti, A., Clarke, E., Giunchiglia, F.,
and Roveri, M. (2000). NuSMV: a
new symbolic model checker. Int.

J. Softw. Tools Technol. Transf. 2,
410–425.

Ciocchetta, F., Gilmore, S., Guerriero,
M. L., and Hillston, J. (2009).
Integrated simulation and
model-checking for the analy-
sis of biochemical systems. Elect.
Notes Theor. Comput. Sci. 232,
17–38.

Clarke, E. M., and Emerson, E. A.
(1981). “Design and synthesis of
synchronization skeletons using
branching time temporal logic,”
in Proceedings of the Workshop on
Logics of Programs, IBM Watson
Research Center No. 131. (Lecture
Notes in Computer Science), 52–71.

Clarke, E. M., Emerson, E. A., and
Sistla, A. P. (1986). Automatic ver-
ification of finite-state concurrent
systems using temporal logic spec-
ifications. ACM Trans. Programm.
Lang. Syst. 8, 244–263.

Clarke, E. M., Grumberg, O., and
Peled, D. A. (1999). Model Checking.
Cambridge, MA: MIT Press.

Clavel, M., Durán, F., Eker, S., Lincoln,
P., Martí-Oliet, N., and Meseguer, J.
(2007). All About Maude – A High-
Performance Logical Framework:
How to Specify, Program, and Verify
Systems in Rewriting Logic, Vol.
4350. (Springer, Lecture Notes in
Computer Science).

Corblin, F., Tripodi, S., Fanchon, E.,
Ropers, D., and Trilling, L. (2009).
A declarative constraint-based
method for analyzing discrete
genetic regulatory networks.
BioSystems 98, 91–104.

Davidich, M. I., and Bornholdt, S.
(2008). Boolean network model
predicts cell cycle sequence of fis-
sion yeast. PLoS ONE 3:e1672. doi:
10.1371/journal.pone.0001672

de Jong, H. (2002). Modeling and
simulation of genetic regulatory

www.frontiersin.org July 2012 | Volume 3 | Article 155 | 11

http://www.frontiersin.org
http://www.frontiersin.org/Plant_Genetics_and_Genomics/archive

Carrillo et al. Model checking for biochemical networks

systems: a literature review. J.
Comput. Biol. 9, 67–103.

de Jong, H., Geiselmann, J., Batt,
G., Hernandez, C., and Page, M.
(2003). Qualitative simulation of
the initiation of sporulation in
Bacillus subtilis. Bull. Math. Biol. 66,
261–299.

de Jong, H., Gouzé, J.-L., Hernandez, C.,
Page, M., Sari, T., and Geiselmann,
J. (2004). Qualitative simulation of
genetic regulatory networks using
piecewise-linear models. Bull. Math.
Biol. 66, 301–340.

Derisavi, S., Hermanns, H., and
Sanders, W. H. (2003). Optimal
state-space lumping in Markov
chains. Inf. Process. Lett. 87,
309–315.

Deville, Y., Gilbert, D., van Helden,
J., and Wodak, S. J. (2003). An
overview of data models for the
analysis of biochemical pathways.
Brief. Bioinform. 4, 246–259.

Devloo, V., Hansen, P., and Labbé, M.
(2003). Identification of all steady
states in large networks by logi-
cal analysis. Bull. Math. Biol. 65,
1025–1051.

Dubrova, E., Teslenko, M., and Ming,
L. (2010). “Finding attractors in
synchronous multiple-valued net-
works using SAT-based bounded
model checking,” in 40th IEEE
International Symposium on
Multiple-Valued Logic, (Barcelona,
Spain), 144–149.

Eker, S., Knapp, M., Laderoute, K.,
Lincoln, P., and Talcott, C. (2003).
Pathway Logic: executable models of
biological networks. Elect. Notes in
Theor. Comput. Sci. 71, 144–161.

Emerson, E. A. (2008). “The begin-
ning of model checking: a per-
sonal perspective,” in 25 Years of
Model Checking, chapter 2, No.
5000, (Springer, Lecture Notes in
Computer Science), 27–45. doi:
10.1007/978-3-540-69850-0_2

Fages, F., and Soliman, S. (2008a).
Abstract interpretation and types
for systems biology. Theor. Comput.
Sci. 403, 52–70.

Fages, F., and Soliman, S. (2008b).
“Formal cell biology in Biocham,”
in 8th International School on
Formal Methods for the Design of
Computer, Communication and
Software Systems: Computational
Systems Biology SFM08, Vol. 5016,
(Bertinoro, Italy, Lecture Notes in
Computer Science), 54–80.

Fages, F., and Soliman, S. (2008c).
“From reaction models to
influence graphs and back: a
theorem,” in Formal Methods
in Systems Biology, No. 5054.
(Lecture Notes in Bioinformatics),
90–102.

Filippov, A. F. (1988). Differential
Equations with Discontinuous
Righthand Sides. Dordrecht,
Netherlands: Kluwer.

Fisher, J., and Henzinger, T. A. (2007).
Executable cell biology. Nat.
Biotechnol. 25, 1239–1249.

Fisher, J., Piterman, N., Hajnal, A., and
Henzinger, T. A. (2007). Predictive
modeling of signaling crosstalk dur-
ing C. elegans vulval development.
PLoS Comput. Biol. 3:e92. doi:
10.1371/journal.pcbi.0030092

Floyd, R. W. (1967). “Assigning mean-
ings to programs,” in Proceedings of
Symposia in Applied Mathematics
volume XIX, ed J. T. Schwartz,
(Providence, RI: American
Mathematical Society), 19–32.

Fromentin, J., Comet, J.-P., Le Gall, P.,
and Roux, O. (2007). “Analysing
gene regulatory networks by both
constraint programming and
model-checking,” in Engineering
in Medicine and Biology Society
(2007). EMBS (2007). 29th Annual
International Conference of the IEEE,
(Lyon, France), 4595–4598.

Garavel, H., Lang, F., Mateescu, R.,
and Serwe, W. (2010). “CADP 2010,
A toolbox for the construction
and analysis of distributed pro-
cesses,” in Tools and Algorithms for
the Construction and Analysis of
Systems, No. 6605. (Lecture Notes in
Computer Science), 372–387.

Gillespie, D. T. (1976). A general
method for numerically simulating
the stochastic time evolution of cou-
pled chemical reactions. J. Comput.
Phys. 22, 403–434.

Glass, L., and Kauffman, S. A. (1973).
The logical analysis of continu-
ous, non-linear biochemical con-
trol networks. J. Theor. Biol. 39,
103–129.

Gonzalez, A., Naldia, A., Sánchez,
L., Thieffry, D., and Chaouiya,
C. (2006). GINsim: a software
suite for the qualitative modelling,
simulation and analysis of reg-
ulatory networks. BioSystems 84,
91–100.

Gouzé, J.-L., and Sari, T. (2002). A
class of piecewise linear differen-
tial equations arising in biolog-
ical models. Dynamical Syst. 17,
299–316.

Grosu, R., Smolka, S. A., Corradini,
F., Wasilewska, A., Entcheva,
E., and Bartocci, E. (2009).
Learning and detecting emergent
behavior in networks of cardiac
myocytes. Commun. ACM 52,
97–105.

Hansson, H., and Jonsson, B. (1994).
A logic for reasoning about time
and reliability. Formal Aspects of
Comput. 6, 512–535.

Heath, J., Kwiatkowska, M., Norman,
G., Parker, D., and Tymchyshyn, O.
(2006). “Probabilistic model check-
ing of complex biological pathways,”
in Computational Methods in
Systems Biology (CMSB’06),
ed C. Priami (Trento, Italy),
32–47.

Henzinger, T. A., Ho, P.-H., and Wong-
Toi, H. (1997). HYTECH: a model
checker for hybrid systems. Int.
J. Softw. Tools Technol. Transfer
(STTT), 1(1, 2), 110–122.

Henzinger, T. A., Kopke, P. W., Puri,
A., and Varaiya, P. (1998). What’s
decidable about hybrid automata? J.
Comput. Syst. Sci. 57, 94–124.

Huth, M. R. A., and Ryan, M. D. (2004).
Logic in Computer Science: Modelling
and Reasoning About Systems, 2nd
Edn. New York, NY: Cambridge
University Press.

Inoue, K. (2011). “Logic program-
ming for Boolean networks,” in
Proceedings of the 22nd International
Joint Conference on Artificial
Intelligence, (Barcelona, Spain),
924–930.

Kauffman, S. (1969). Homeostasis and
differentiation in random genetic
control networks. Nature 224,
177–178.

Khalis, Z., Comet, J.-P., Richard,
A., and Bernot, G. (2009). The
SMBioNet method for discovering
models of gene regulatory networks.
Genes, Genomes and Genomics 3,
15–22.

Kwiatkowska, M., Norman, G., and
Parker, D. (2005). Quantitative anal-
ysis with the probabilistic model
checker PRISM. Elect. Notes Theor.
Comput. Sci. 153, 5–31.

Kwiatkowska, M., Norman, G.,
and Parker, D. (2011). “PRISM
4.0, Verification of proba-
bilistic real-time systems,” in
Proceedings of the 23rd International
Conference on Computer Aided
Verification (CAV11), 5 No. 6806,
(Snowbird, UT: Lecture Notes in
Bioinformatics), 85–591.

Mateescu, R., Monteiro, P. T., Dumas,
E., and de Jong, H. (2011). CTRL:
Extension of CTL with regular
expressions and fairness operators
to verify genetic regulatory net-
works. Theor. Comput. Sci. 412,
2854–2883.

Mateus, D., Gallois, J.-P., Comet, J.-
P., and Le Gall, P. (2007). Symbolic
modeling of genetic regulatory net-
works. J. Bioinformatics Comput.
Biol. 5(2b), 627–640.

Mestl, T., Plahte, E., and Omholt, S.
W. (1995). A mathematical frame-
work for describing and analysing
gene regulatory networks. J. Theor.
Biol. 176, 291–300.

Milano, M., and Roli, A. (2000).
“Solving the satisfiability prob-
lem through Boolean networks,”
in Proceedings of AI*IA 99, No.
1792. (Lecture Notes in Artificial
Intelligence), 72–83.

Monteiro, P. T., Ropers, D., Mateescu,
R., Freitas, A. T., and de Jong,
H. (2008). Temporal logic pat-
terns for querying dynamic mod-
els of cellular interaction net-
works. Bioinformatics 24, i227–i233.

Naldi, A., Berenguier, D., Fauré,
A., Lopez, F., Thieffry, D., and
Chaouiya, C. (2009). Logical
modelling of regulatory networks
with GINsim 2.3. BioSystems 97,
134–139.

Naldi, A., Thieffry, D., and Chaoiuya, C.
(2007). “Decision diagrams for the
representation and analysis of logi-
cal models of regulatory networks,”
in Proceedings of Computational
Methods in Systems Biology (CMSB)
No. 4695. eds M. Calder and
S. Gilmore, (Edinburgh, Scotland:
Lecture Notes in Computer Science),
233–247.

Pnueli, A. (1977). “The temporal logic
of programs,” in 18th Symposium
on Foundations of Computer Science,
(Providence, RI), 46–57.

Quielle, J.-P., and Sifakis, J. (1981).
“Specification and verification of
concurrent systems in CESAR,” in
Proceedings of the 5th International
Symposium on Programming,
(Torino, Italy), 337–350.

Richard, A., Comet, J.-P., and Bernot,
G. (2006). “Formal methods for
modeling biological regulatory net-
works,” in Modern Formal Methods
and Applications 5, ed H. A. Gabbar
(Secaucus, NJ: Springer), 83–122.

Richard, A., Comet, J.-P., and Bernot,
G. R. (2008). “Thomas logical
method,” in Modelling Complex
Biological Systems in the Context of
Genomics. Villeneuve d’Ascq.

Richard, A., Rossignol, G., Comet, J.-P.,
Bernot, G., Guespin-Michel, J., and
Merieau, A. (2012). Boolean mod-
els of biosurfactants production
in Pseudomonas fluorescens. PLoS
ONE 7:e24651. doi: 10.1371/jour-
nal.pone.0024651

Rizk, A., Batt, G., Fages, F., and
Soliman, S. (2011). Continuous val-
uations of temporal logic specifica-
tions with applications to param-
eter optimization and robustness
measures. Theor. Comput. Sci. 412,
2827–2839.

Rizk, A., Batt, G., Fages, F., and
Soliman, S. (2009). A general
computational method for
robustness analysis with appli-
cations to synthetic gene networks.
Bioinformatics 25, i169–i178.

Frontiers in Plant Science | Plant Genetics and Genomics July 2012 | Volume 3 | Article 155 | 12

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/Plant_Genetics_and_Genomics
http://www.frontiersin.org/Plant_Genetics_and_Genomics/archive

Carrillo et al. Model checking for biochemical networks

Ropers, D., de Jong, H., Page, M.,
Schneider, D., and Geiselmann,
J. (2006). Qualitative simulation
of the carbon starvation response
in Escherichia coli. BioSystems 84,
124–152.

Samet, H. (1984). The quadtree
and related hierarchical data
structures. Comput. Surveys 16,
187–260.

Schmidt, K. (2000). “LoLA: a low
level analyser,” in Application and
Theory of Petri Nets 2000, No.
1825, (Lecture Notes in Computer
Science), 465–474.

Sepulchre, J.-A., Reverchon, S., and
Nasser, W. (2007). Modeling the
onset of virulence in a pectinolytic

bacterium. J. Theor. Biol. 244,
239–257.

Snoussi, El, H. (1989). Qualitative
dynamics of piecewise-linear differ-
ential equations: a discrete mapping
approach. Dynamics and Stability of
Syst. 4(3–4), 189–207.

Talcott, C. (2008). “Pathway Logic,”
in 8th International School on
Formal Methods for the Design of
Computer, Communication and
Software Systems: Computational
Systems Biology SFM 08, Vol. 5016,
(Bertinoro, Italy, Lecture Notes in
Computer Science), 21–53.

Thomas, R., and D’Ari, R. (1990).
Biological Feedback. Boca Raton, FL:
CRC Press.

Viretta, A. U., and Fussenegger, M.
(2004). Modeling the quorum
sensing regulatory network of
human-pathogenic Pseudomonas
aeruginosa. Biotechnol. Prog. 20,
670–678.

Conflict of Interest Statement: The
authors declare that the research
was conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 30 April 2012; accepted: 24
June 2012; published online: 20 July
2012.

Citation: Carrillo M, Góngora PA and
Rosenblueth DA (2012) An overview
of existing modeling tools making use
of model checking in the analysis of
biochemical networks. Front. Plant Sci.
3:155. doi: 10.3389/fpls.2012.00155
This article was submitted to Frontiers in
Plant Genetics and Genomics, a specialty
of Frontiers in Plant Science.
Copyright © 2012 Carrillo, Góngora
and Rosenblueth. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License,
which permits use, distribution and
reproduction in other forums, provided
the original authors and source are cred-
ited and subject to any copyright notices
concerning any third-party graphics etc.

www.frontiersin.org July 2012 | Volume 3 | Article 155 | 13

http://dx.doi.org/10.3389/fpls.2012.00155
http://dx.doi.org/10.3389/fpls.2012.00155
http://dx.doi.org/10.3389/fpls.2012.00155
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Genetics_and_Genomics/archive

	An overview of existing modeling tools making use of model checking in the analysis of biochemical networks
	Introduction
	Model Checking
	Graph Search and Branching Time
	Beyond the Original Model Checking
	Model Checking in Biochemical Networks
	Structure of the Paper

	Models of Biochemical Networks
	Gene Regulatory Networks
	Metabolic Pathways
	Signal-Transduction Pathways
	Cell-Cycle Networks

	Model Checking
	Computation-Tree Logic
	Kripke structures
	Formulas
	Model checking algorithm

	Other Logics

	Specialized Tools
	Biocham
	Overview
	Model checking in Biocham

	GNA
	Overview
	Model checking in GNA

	SMBioNet
	Thomas' state-transition systems
	Thomas' method
	SMBioNet

	Pathway Logic
	Antelope
	Simpathica and XSSYS

	Specific Uses of Model Checking
	Mocha
	HyTech
	PRISM

	Other Specialized Techniques
	SeMoCoGRN
	Mateus et al.'s system
	Ginsim
	Dubrova et al.'s SAT-Based Method

	Concluding Remarks
	Acknowledgments
	Funding
	References

