1,181 research outputs found

    Guaranteed Conditional Performance of Control Charts via Bootstrap Methods

    Full text link
    To use control charts in practice, the in-control state usually has to be estimated. This estimation has a detrimental effect on the performance of control charts, which is often measured for example by the false alarm probability or the average run length. We suggest an adjustment of the monitoring schemes to overcome these problems. It guarantees, with a certain probability, a conditional performance given the estimated in-control state. The suggested method is based on bootstrapping the data used to estimate the in-control state. The method applies to different types of control charts, and also works with charts based on regression models, survival models, etc. If a nonparametric bootstrap is used, the method is robust to model errors. We show large sample properties of the adjustment. The usefulness of our approach is demonstrated through simulation studies.Comment: 21 pages, 5 figure

    Parametric, Nonparametric, and Semiparametric Linear Regression in Classical and Bayesian Statistical Quality Control

    Get PDF
    Statistical process control (SPC) is used in many fields to understand and monitor desired processes, such as manufacturing, public health, and network traffic. SPC is categorized into two phases; in Phase I historical data is used to inform parameter estimates for a statistical model and Phase II implements this statistical model to monitor a live ongoing process. Within both phases, profile monitoring is a method to understand the functional relationship between response and explanatory variables by estimating and tracking its parameters. In profile monitoring, control charts are often used as graphical tools to visually observe process behaviors. We construct a practitioner’s guide to provide a stepby- step application for parametric, nonparametric, and semiparametric methods in profile monitoring, creating an in-depth guideline for novice practitioners. We then consider the commonly used cumulative sum (CUSUM), multivariate CUSUM (mCUSUM), exponentially weighted moving average (EWMA), multivariate EWMA (mEWMA) charts under a Bayesian framework for monitoring respiratory disease related hospitalizations and global suicide rates with parametric, nonparametric, and semiparametric linear models

    Improved data driven control charts

    Get PDF
    Classical control charts for monitoring the mean are based on the assumption of normality. When normality fails, these control charts are no longer valid and serious errors often arise. Data driven control charts, which choose between the normal chart, a parametric one and a nonparametric chart, have recently been proposed to solve the problem. They also correct for estimation errors due to estimation of the parameters involved or, in the nonparametric chart, for estimation of the appropriate quantiles of the distribution. In many cases these data driven control charts are performing very well. However, when the data point towards the nonparametric chart no satisfactory solution is obtained unless the number of Phase I observations is very large. The problem is that accurate estimation of an extreme quantile in a nonparametric way needs a huge number of observations. Replacing the nonparametric individual chart by a nonparametric chart for grouped observations does the job. These improved data driven control charts are presented here. Ready-made formulas are given, which make implementation of the charts quite straightforward. An application on real data clearly shows the improvement: estimation of extreme quantiles is replaced by estimation of ordinary quantiles, which can be done in an accurate way for common sample sizes
    • …
    corecore