11,209 research outputs found

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners

    Contingency-Constrained Unit Commitment With Intervening Time for System Adjustments

    Full text link
    The N-1-1 contingency criterion considers the con- secutive loss of two components in a power system, with intervening time for system adjustments. In this paper, we consider the problem of optimizing generation unit commitment (UC) while ensuring N-1-1 security. Due to the coupling of time periods associated with consecutive component losses, the resulting problem is a very large-scale mixed-integer linear optimization model. For efficient solution, we introduce a novel branch-and-cut algorithm using a temporally decomposed bilevel separation oracle. The model and algorithm are assessed using multiple IEEE test systems, and a comprehensive analysis is performed to compare system performances across different contingency criteria. Computational results demonstrate the value of considering intervening time for system adjustments in terms of total cost and system robustness.Comment: 8 pages, 5 figure

    State of the Art in the Optimisation of Wind Turbine Performance Using CFD

    Get PDF
    Wind energy has received increasing attention in recent years due to its sustainability and geographically wide availability. The efficiency of wind energy utilisation highly depends on the performance of wind turbines, which convert the kinetic energy in wind into electrical energy. In order to optimise wind turbine performance and reduce the cost of next-generation wind turbines, it is crucial to have a view of the state of the art in the key aspects on the performance optimisation of wind turbines using Computational Fluid Dynamics (CFD), which has attracted enormous interest in the development of next-generation wind turbines in recent years. This paper presents a comprehensive review of the state-of-the-art progress on optimisation of wind turbine performance using CFD, reviewing the objective functions to judge the performance of wind turbine, CFD approaches applied in the simulation of wind turbines and optimisation algorithms for wind turbine performance. This paper has been written for both researchers new to this research area by summarising underlying theory whilst presenting a comprehensive review on the up-to-date studies, and experts in the field of study by collecting a comprehensive list of related references where the details of computational methods that have been employed lately can be obtained

    Multi-Objective Optimization Techniques to Solve the Economic Emission Load Dispatch Problem Using Various Heuristic and Metaheuristic Algorithms

    Get PDF
    The main objective of thermoelectric power plants is to meet the power demand with the lowest fuel cost and emission levels of pollutant and greenhouse gas emissions, considering the operational restrictions of the power plant. Optimization techniques have been widely used to solve engineering problems as in this case with the objective of minimizing the cost and the pollution damages. Heuristic and metaheuristic algorithms have been extensively studied and used to successfully solve this multi-objective problem. This chapter, several optimization techniques (simulated annealing, ant lion, dragonfly, NSGA II, and differential evolution) are analyzed and their application to economic-emission load dispatch (EELD) is also discussed. In addition, a comparison of all approaches and its results are offered through a case study

    Stepwise investment plan optimization for large scale and multi-zonal transmission system expansion

    Get PDF
    This paper develops a long term transmission expansion optimization methodology taking the probabilistic nature of generation and demand, spatial aspects of transmission investments and different technologies into account. The developed methodology delivers a stepwise investment plan to achieve the optimal grid expansion for additional transmission capacity between different zones. In this paper, the optimization methodology is applied to the Spanish and French transmission systems for long term optimization of investments in interconnection capacity

    Electricity System Expansion Studies to Consider Uncertainties and Interactions in Restructured Markets

    Get PDF
    This dissertation concerns power system expansion planning under different market mechanisms. The thesis follows a three paper format, in which each paper emphasizes a different perspective. The first paper investigates the impact of market uncertainties on a long term centralized generation expansion planning problem. The problem is modeled as a two-stage stochastic program with uncertain fuel prices and demands, which are represented as probabilistic scenario paths in a multi-period tree. Two measurements, expected cost (EC) and Conditional Value-at-Risk (CVaR), are used to minimize, respectively, the total expected cost among scenarios and the risk of incurring high costs in unfavorable scenarios. We sample paths from the scenario tree to reduce the problem scale and determine the sufficient number of scenarios by computing confidence intervals on the objective values. The second paper studies an integrated electricity supply system including generation, transmission and fuel transportation with a restructured wholesale electricity market. This integrated system expansion problem is modeled as a bi-level program in which a centralized system expansion decision is made in the upper level and the operational decisions of multiple market participants are made in the lower level. The difficulty of solving a bi-level programming problem to global optimality is discussed and three problem relaxations obtained by reformulation are explored. The third paper solves a more realistic market-based generation and transmission expansion problem. It focuses on interactions among a centralized transmission expansion decision and decentralized generation expansion decisions. It allows each generator to make its own strategic investment and operational decisions both in response to a transmission expansion decision and in anticipation of a market price settled by an Independent System Operator (ISO) market clearing problem. The model poses a complicated tri-level structure including an equilibrium problem with equilibrium constraints (EPEC) sub-problem. A hybrid iterative algorithm is proposed to solve the problem efficiently and reliably

    Algorithms to Model and Optimize a Stand-Alone Photovoltaic-Diesel-Battery System: An Application in Rural Libya

    Get PDF
    This paper introduces a new optimum calculation technique for a stand-alone hybrid photovoltaic-diesel-battery system (PDBS), which meets the energy requirements of a small village in southern Libya. The bat algorithm design strategy is applied to reduce the annual cost of the system, taking into consideration the controlled electricity restriction and the optimal numbers of PV panels, diesel generators, and batteries. Comparative tests are performed using MATLAB for the bat algorithm with the grey wolf search algorithm and particle swarm optimization, demonstrating that the bat algorithm determines the optimum size of the PDBS effectively at a lower expense. Results then indicate that, taking into account the reliability characteristics, this has a significant effect on optimum capacity, load supply, and cost
    corecore