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Abstract- This paper proposes the application of a
genetic algorithm and simulated annealing based hybrid
approach for the scheduling of generator maintenance
in power systems using an integer representation. The
adapted approach uses the probabilistic acceptance
criterion of simulated annealing within the genetic
algorithm framework. A case study is formulated in this
paper as an integer programming problem using a
reliability based objective function and typical problem
constraints. The implementation and performance of the
proposed solution technique are discussed. Results
contained in this paper will demonstrate that the
technique is more effective than approaches based solely
on genetic algorithms or solely on simulated annealing.
It therefore proves to be a valid approach for the
solution of generator maintenance scheduling problems.

1.1 Generator maintenance scheduling
It is vital for a utility to determine when its generators
should be taken off-line for preventive maintenance. This is
primarily because other short-term and long-term planning
activities such as unit commitment, generation dispatch,
import/export of power and generation expansion planning
are directly affected by such decisions. In modern power
systems the demand for electricity has greatly increased with
related expansions in power system size, which has resulted
in higher numbers of generators and lower reserve margins,
making the generator maintenance scheduling (GMS)
problem more complicated. The goal of GMS is to allocate a
maintenance timetable for generators in order to maintain a
high system reliability, reduce total operating costs, and
extend generator life time, whilst still satisfying constraints
on the individual generators and the power system itself.

Previous studies of GMS have considered the objectives
of maximizing system reliability [1-5] and minimizing
economic cost [2,3,6-9]. The most common reliability

criterion is the leveling of the reserve generation, which is
the difference between the total capacity of the units not
undergoing maintenance and the demand over the planning
period. The most common economic objective is to
minimize the total operating costs, which includes the costs
of energy production and maintenance. However, this is an
insensitive objective and as such it requires many
approximations [2,3].

The GMS problem has a series of constraints related to
the generating units and the power system. Maintenance
window constraints define the possible times and duration of
maintenance for each unit. The relative timetabling of
maintenance of certain units may be restricted. The
available power must exceed the load, and the manpower
and resources available for maintenance work are limited.
Further constraints may be posed involving the reliability,
transmission capacity and maintenance in local areas of the
power system. In general GMS is a multi-criterion
constrained combinatorial optimization problem, with
nonlinear objective and constraint functions.

1.2 Solution techniques for GMS problems
Conventional solution methods for GMS problems are
generally based on heuristic techniques or mathematical
methods including integer programming, branch-and-
bound techniques and dynamic programming [1-3,6]. The
heuristic approach uses a trial-and-error method to evaluate
the maintenance objective function, usually by considering
each unit separately. This requires significant operator
input and in some situations it fails to produce even feasible
solutions [1,2]. In contrast, the above mathematical
approaches are severely limited by the 'curse of
dimensionality' and are poor in handling the nonlinear
objective and constraint functions that characterize the
GMS problem.

In an attempt to overcome some of the above limitations,
genetic algorithms (GAs) and simulated annealing (SA)
have been implemented for solving complex scheduling
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problems [10]. These techniques are completely distinct
from classical mathematical programming and trial-and-
error heuristic methods. The GA method replicates the
principles of the population genetics, i.e. selection and
inheritance. GAs are based on natural genetic and
evolutionary mechanisms that operate on populations of
solutions. The SA method is based on the analogy between
the physical annealing process of a solid and the problem of
finding the minimum or maximum of a given function
depending on many parameters, as encountered in
combinatorial optimization problems [10].

The GA and SA approaches have been applied to solve a
range of optimization problems in electrical power systems
with encouraging results [11,12]. GAs have recently been
applied to GMS in [9]. Generator maintenance scheduling
problems were considered by using a SA method in [9,13].
In all these applications, the problems were formulated
using the economic objective and typical problem
constraints. These papers used a binary string representation
to encode a trial solution and penalty functions were used in
the formulation of the evaluation function to take account of
violations of problem constraints. The results reported for a
number of test problems were promising.

In the authors' previous works [4,5], the application of
GAs for GMS was demonstrated. In [5], a SA approach was
also employed to solve the GMS problem. These
applications investigated different architectures of the GA
and SA methods using an integer representation to encode
candidate solutions, to a GMS test problem.

1.3 Hybrid solution techniques
It has been demostrated that the performance of a GA
approach can be improved by combining it with other
techniques [10]. A GA approach with an initial population
seeded by heuristics was applied to solve GMS problems in
[5].

This paper proposes the application of a hybrid approach
that combines a GA with a feature of SA. This hybrid
algorithm employs the probabilistic acceptance criterion of
SA for selecting new solutions, and utilizes it within the GA
framework. This permits some control over the acceptance
of newly created solution.

Recently the GA/SA hybrid approach has been employed
to solve many optimization problems arising in power
systems [7,8,11,12] and has been demostrated to improve
performance over the simple SA and GA methods.

A generator maintenance scheduling problem is
considered using a binary GA combined with SA in [7,8].
The use of the acceptance probability of the SA method for
the survival of candidate solutions during the GA evolution
process improved the convergence of the simple GA. In [7]
the hybrid approach was applied to a test GMS system to
obtain a solution whose cost value was around 0.1% less
than the best solution obtained using a simple GA. In [8] a

Tabu Search (TS) technique was coupled with a GA/SA
hybrid method. In each generation, the best solution was
selected as the new trial solution for the TS. The TS
searches in the neighborhood of this solution in order to
locate any local improvement. The hybridization improved
the convergence of the algorithms.

In the GMS applications discussed above the GA/SA
hybrid approaches were developed using populations of
binary strings to represent the maintenance state of a
generating unit over the scheduling period. With this
encoding type, the length of a chromosome becomes very
long for genuine problems, increasing the size of the search
space. In [4] it was observed that a GA with an integer
encoding to represent the maintenance start period for a
generating unit gives a better performance than a GA with a
binary encoding.

The hybrid approach presented in this paper uses the
integer encoding for solving the GMS problem. The effect of
varying the parameters of the method on its performance is
analyzed and the results are compared with those obtained
using the GA and SA approaches alone. Whereas earlier
GA/SA hybrids used initial population pools with randomly
generated candidate solutions, the research reported herein
includes the inoculation of the GA/SA approach by seeding
the initial population pool.

The paper is organized as follows. The following section
describes the GMS test problem and the mathematical
model. Section 3 introduces the proposed GA/SA hybrid
solution technique and details its implementation to the test
problem. It also summarizes the results obtained for the test
GMS problem using a simple GA and SA method. The
performance and the results obtained from the GA/SA and
inoculated GA/SA approaches are discussed in section 4,
and conclusions follow in section 5.

2 GMS test problem formulation
The test problem consists of scheduling the maintenance of
21 generating units over a planning period of 52 weeks.
This test problem is loosely derived from the example
presented in [2] with some simplifications and additional
constraints, and has been previously studied in [4,5]. Table
I gives the capacities, allowed periods and duration of
maintenance and the manpower required for each unit. The
power system peak load is 4739 MW, and there are 20
technical staff available for maintenance work in each
week. The problem involves the reliability criterion of
minimizing the sum of squares of the reserves in each
weekly time period. Each unit must be maintained (without
interruption) for a given duration within an allowed period.
The allowed period for each generator is the result of a
technical assessment and the experience of the maintenance
personnel, which ensures adequate maintenance frequency.
Due to its complexity the exact optimum solution for this
problem is unknown.



The GMS problem can be formulated as an integer
programming problem by using integer variables to
represent the period in which the maintenance of each unit
starts. The variables are bounded by the maintenance
window constraints. However, for clarity the problem is first
formulated using binary variables which indicate the start of
maintenance of each unit at each time.

Unit Capacity Allowed Outage Manpower required
(MW) period weeks) for each week

1 555 1-26 7 10+10+5+5+5+5+3
2 555 27-52 5 10+10+ 10+5+5
3 180 1-26 2 15+15
4 180 1-26 1 20
5 640 27-52 5 10+10+10+10+10
6 640 1-26 3 15+15+15
7 640 1-26 3 15+15+15
8 555 27-52 6 10+10+10+5+5+5
9 276 1-26 10 3+2+2+2+2+2+

2+2+2+3
10 140 1-26 4 10+10+5+5
11 90 1-26 1 20
12 76 27-52 3 10+15+15
13 76 1-26 2 15+15
14 94 1-26 4 10+10+10+10
15 39 1-26 2 15+15
16 188 1-26 2 15+15
17 58 27-52 1 20
18 48 27-52 2 15+15
19 137 27-52 1 15
20 469 27-52 4 10+10+10+10
21 52 1-26 3 10+10+10

Notation:
index of generating units

I set of generating unit indices
N total number of generating units
t index of periods
T set of indices of periods in planning horizon
epi earliest period for maintenance of unit i to begin
Ipi latest period for maintenance of unit i to end
di duration of maintenance for unit i
Pit generating capacity of unit i in period t
Lt anticipated load demand for period t
Mit manpower needed by unit i at period t
AMt available manpower at period t

Suppose TicT is the set of periods when maintenance of

unit i may start, so Ti= {tE T: epi~t~lpi-di+ I} for each i.
We define,

fl ifunit i starts maintenance in period t
XiF 0 otherwise '

to be the maintenance start indicator for unit i E I in period
t E Tj• It is convenient to introduce two further sets. Firstly
let Sit be the set of start time periods such that if the
maintenance of unit i starts at period k that unit will be in
maintenance at period t, so Sit={kE Ti: t-di+l~k~t}.
Secondly, let It be the set of units which are allowed to be in
maintenance in period t, so IF{i: tE Ti}. Then the problem
can be formulated as a quadratic 0-1 programming problem
as below.

The objective is to minimize the sum of squares of the
reserve generation,

I,Xit = 1 for all i E I, (2)
tETj

the manpower constraint,
I, I,XikMik~AMt foralltET, (3)

iEII kESil

I, Pit - I, I,XikPik ~Lt
iEI iEII kESjl

3.1 Introduction
A GA approach maintains a population of candidate
solutions throughout the solution process. In a simple GA,
an initial population of candidate solutions is generated
randomly or by other means. During each iteration step, a
new population is formed by applying selection, crossover
and mutation operators to solutions in the current
population based on their individual goodness.

A SA approach maintains a single solution in the search
space throughout the solution process. First an initial
solution and an initial 'temperature' are selected. As the
algorithm progresses a new trial solution is generated by
making a move from the current solution and the
temperature is reduced according to a specified cooling
schedule. If the new solution is an improvement, it is
accepted unconditionally, otherwise it is accepted with a
probability defined by the current temperature and quality of
the new solution. Progression through successive iterations
leads to a gradual reduction in the probability of accepting
non-improved trial solutions.



The proposed hybrid GAISA in this paper combines these
GA and SA approaches. The mechanism of the proposed
GAISA approach for a minimization problem is shown
diagrammatically in Figure I.

The proposed GAISA approach maintains a population of
candidate solutions throughout the solution process using a
steady state approach. The steady state approach directly
inserts a new solution into the population pool replacing a
less fit solution. First an initial population of candidate
solutions is generated randomly or by other means and an
initial temperature is selected. The initial temperature
should be large enough to allow the free movement of a trial
solution in the search space in the early stages of the search
process.

Calculate increase of evaluation value (~E) in
new solution compared to best parent solution

Figure 1: The algorithm of the proposed GNSA hybrid method.

In each iteration the GAISA hybrid approach selects two
solutions from the population pool and applies a crossover
operator. One of the "crossovered" solutions is randomly
selected to undergo mutation. The resulting solution
replaces an existing member of the population pool. The
solution is inserted in a controlled manner, by taking
account of its evaluation value and the stage reached in the
search process. To implement this, the probabilistic
acceptance approach of the simple SA is incorporated into
the GA algorithm to decide whether the new solution should
be included in the population. This is expressed by,

where ~E is the increase of the evaluation value in the new
solution (as described in section 3.2.2) and T is the
temperature which defines the stage in the process.

If the new solution is an improvement, it is accepted,
otherwise it is accepted with a defined probability given by
equation (5). As in a simple SA algorithm, the initial
temperature is fixed to a large value and is reduced
gradually according to a cooling schedule as the algorithm
progresses. As the temperature is reduced from high to low
during the GAISA process, the probability of accepting non-
improved newly born solutions is reduced. At the beginning
of the search process new solutions are accepted with a high
probability. In the latter stages however, the GAISA
approach is constrained to a local search space due to the
reduction in the probability of accepting non-improved
solutions.

3.2 Implementation
A number of decisions must be made in order to implement
the proposed GAISA method for solving the GMS problem.
Firstly, there are problem specific decisions which are
concerned with the search space (and thus the
representation) of feasible solutions and the form of the
evaluation function. The second class of decisions is generic,
and involves the operators and the parameters of the
technique itself.

3.2.1 Solution encoding
The encoding of the problem using an appropriate
representation is a crucial aspect of the implementation of
the GAISA hybrid technique. The encoding used to
represent solutions of the problem defines the size and the
structure of the search space.

In the previously reported work [4], GAs were applied to
GMS using binary and integer strings to represent solutions.
The integer representation was found to be more effective
for GMS problems as this respects the maintenance window
constraint (2). This representation allows the GA to focus in
the area of the solution space where constraint (2) is not
violated - thereby greatly reducing the size of the search
space by ignoring unfeasible solutions. Therefore, integer
strings are used here to represent candidate solutions of the
problem. The string is given by Q,t2, ... ,ti, ... ,tN, where ti is
an integer which indicates the maintenance start period
for unit i, epi:-:;tr:;lpi-di+I.

3.2.2 Evaluation function
The goodness (evaluation value) of every trial solution is
calculated by using an evaluation function. The evaluation
function formulated for the test problem is a weighted sum
of the objective function and the penalty function for
violations of the constraints. The penalty value for each



constraint violation is proportional to the amount by which
the constraint is violated. Hence,

evaluation = Ul()xSSR + WMxTMV + wLXTLV, (6)
where SSR is the sum of squares of reserves as in (1), TMV
is the total manpower violation of(3), and TLV is the total
load violation of (4). The weighting coefficients Ul(), wM
and wL are set such that the penalty values for the
constraint violations dominate over the objective function,
and to ensure that the violation of the relatively hard load
constraint (4) gives a greater penalty value than for the
relatively soft crew constraint (3). This balance is because a
solution with a high reliability but requiring more
manpower may well be accepted by the power utility as the
unavailable manpower may be hired. In fact, there is a
trade-off between the level of reliability (i.e. sufficient
reserve margin) and the required extra manpower. Feasible
solutions with low evaluation measures have high fitness
values while unfeasible solutions with high evaluation
measures have low fitness measures.

3.2.3 SA and GA applications
For the purpose of comparison, the applications of an SA

and a simple GA to the same test GMS problem are
discussed in this section. Both methods use the integer
encoding and the same evaluation function. The discussion
about these applications is relatively limited in this paper; a
fuller description is given in previous works [4,5].

The total number of iterations (i.e. fitness evaluations)
for each run of the SA and GA methods has been set to
30,000, which was determined by an empirical analysis of
the convergence of these methods. Both of the methods have
been implemented on a Sun Sparcstation 1000 using the
Reproductive Plan Language, RPL2 [14]. The design of
these approaches to give the best performance in terms of
finding good solutions to the test GMS problem has been
established after extensive experimentation. The adopted
experimentation approach involved conducting ten runs
with particular selection of parameters and identifYing the
best solution (lowest evaluation value) over these runs, and
the average of the best solutions from each of the ten
experiments.

SA results
For the SA method, the initial temperature has been set to a
value of 10,000 following an earlier period of
experimentation. A stage-wise cooling schedule, which
executes a number of iterations at each temperature before
reducing the temperature, has also been found to give better
results. Ten SA runs were made with the identified design.
The average evaluation value of the best solutions obtained
over ten SA runs was 146.06 and the best solution had
evaluation value of 140.49.

GA results

For the simple GA method, the genetic operators used were
tournament selection, standard two-point crossover and
standard random mutation again based on extensive
experimentation. The tournament selection method picks a
subset of solutions at random from the population to form a
tournament selection pool, from which one solution is
selected with probability based upon the evaluation values of
the solutions. Two solutions selected are then subjected to
crossover with a defined crossover probability (CP). The
two-point crossover operator splits the selected solutions at
two randomly chosen positions and exchanges the center
sections with probability CPo One of the resulting solutions
is then chosen to undergo mutation, which changes the
integer at each position in the solution within the allowed
range with a defined mutation probability (MP). The elitist
approach, which ensures that the best solution in the
population pool is always retained, has been applied. The
population size and the tournament pool size have been
taken to be 100 and 10 respectively following a period of
experimentation.

The best performance in terms of finding good solutions
to the problem was obtained with a steady state population
updating approach.

The sensitivity of the steady state GA with variation of
crossover probability (CP) and mutation probability (MP) is
shown in Figure 2. The GA gives the best result when
CP=1.0 and MP=0.05. The average evaluation value of the
best solutions obtained over ten GA runs with these values
for CP and MP was 146.71 and the best solution had an
evaluation value of 137.91.



and the manpower constraint were violated in one time
period. The evaluation value for this solution is 483.70.

The average evaluation value of the best solution over ten
experiments for the inoculated GA was 142.67 and the best
solution had evaluation value of 139.95. Although the best
solution found by the GA approach is slightly better than
that found by the inoculated GA, the average performance of
the inoculated GA over ten runs was found to be
significantly better than that of the GA approach.

For comparison's sake the results obtained using these
SA, GA, heuristic and inoculated GA methods are
summarized in Table 2. The designs of the individual GA
and SA approaches that have been found to be effective have
been incorporated into the proposed hybrid approach.

Average of best Best
solutions solution

SA 146.06 140.49
GA 146.71 137.91
Heuristic - 483.70
Inoculated GA 142.67 139.95
GAJSA 145.78 138.12
Inoculated GAJSA 141.71 139.10

3.2.4 GAiSA Architecture
The features for the GA and SA adapted in the hybrid
approach have been borrowed from the results described in
the previous section. In summary these are: a steady state
approach, tournament selection, two-point crossover,
random mutation, a population size= 100, a tournament
pool size= 10, an initial temperature= I0,000 and a stage-
wise cooling schedule.

A temperature defines a stage of the GAJSA process. The
stage-wise cooling schedule executes a number of genetic
operations (iterations) at a temperature (i.e. at one stage)
before reducing the temperature according to equation,

where Ts is the temperature at stage s and ex is the cooling
parameter. In the reported experimentation the genetic
operations have been performed 100 times for each
temperature. The number of temperature alterations (or
stages) was fixed to 300, giving 30,000 fitness evaluations
per run of the algorithm.

In each iteration the evaluation value of a newly created
solution (Encw)is compared with the evaluation value of the
best amongst its parents (Ecurrcn,)to calculate the increase in
evaluation value (~E= Encw- Ecurrcn,)'The new solution is
then accepted with probability given by (5). An acceptance
of a new solution replaces the worst solution of the
population pool.

The GAJSA approach has also been implemented using
the Reproductive Plan Language, RPL2 [14].

4.1 Sensitivity analysis
The particular design that gives the best performance of the
GAJSA is typically identified after a process of
experimentation. The general approach adopted during
experimentation takes the same format as that for the GA
and SA methods. That is, over a series of ten GAJSA runs
the average evaluation measure of the best solutions and the
evaluation value of the best solution found are identified.
These averaged and best evaluation values are used to
compare the performance of the various approaches.

In order to determine the best value of the cooling
parameter (ex) for the proposed hybrid method, a number of
experiments have been performed and the results obtained
are summarized in Table 3. Three values of ex covering a
relatively wide range have been selected for the experiments
based on previous experience with the SA method. With
ex=0.92, the temperature decrease is very rapid and the
algorithm lacks in exploration, concentrating more on
exploitation in the neighborhood of a solution in the
population pool. With ex=0.98, the temperature does not
drop sufficiently far within 30,000 iterations and the method
works as a simple GA technique. The cooling schedule with
ex=0.95 provides a good compromise between the
exploitation and exploration during the search process and
this is supported by observing the best performance of the
algorithm for 30,000 iterations. This cooling parameter
value is used fi ti h SA method.or urt er investigatIOn of the GAJ

ex Average evaluation value
0.92 148.03
0.95 145.78
0.98 352.24

Table 3: Average performance of the GA/SA method with
different values of cooling parameter and 30,000 iterations.

The sensitivities of the method to variation of crossover
probability (CP) and mutation probability (MP) have also
been established. Results were obtained for varying CP in
the range [0.6, 1.0] and MP in the range [0.001, 0.1). For
each value ofCP and MP ten independent experiments were
performed using the same collection of ten random initial
populations. The sensitivity of the GAJSA approach to
variation ofCP and MP is depicted in Figure 3.

Comparing Figure 2 and Figure 3 directly, it can be
observed that the performance of the GAJSA is generally
less sensitive than that of the simple GA for the given range
of crossover probability. The performance of the GAJSA and
the simple GA method does not differ much for MP=O.OO1.
However, for higher MP values the GAJSA method is more



robust than the simple GA method alone in terms of
consistently finding better results. Although mutation can
introduce new information to solutions, it can also destroy
useful information. In the simple GA the mutation operator
becomes disruptive as MP increases as seen in the climbing
evaluation value of the graph. In the GA/SA hybrid method,
the SA probabilistic acceptance test tends to preserve the
positive effects and counter the adverse effects of the
mutation operator. That is, new solutions, even those whose
evaluation function values are lower than those of current
solutions, are fully accepted at the beginning of the search,
thus introducing more diversity amongst the candidate
solutions. However, at later stages of the search process, the
chance of mutated solutions of lesser fitness being accepted
will be low.



demonstrated for a test problem of generator maintenance
scheduling. The sensitivity of the approach to the variation
of cooling parameter, crossover probability and mutation
probability has been studied. An inoculated GA/SA using a
seeded initial population pool has also been employed to the
test GMS. The performance and results obtained from these
GA/SA approaches have been compared with those of other
techniques.

The test results show that the GA/SA approach is
sensitive to the cooling parameter; this should be selected to
make a good compromise between exploration and
exploitation of the search space for the given number of
iterations (computational time).

The best crossover and mutation probabilities of a GA
approach are generally decided upon after a number of
experiments. The results presented in this paper show that
the GA/SA approach is more robust and stable for solving
GMS problems in a wide range of crossover and mutation
probabilities than a GA approach. Hence, the parameter
selection process in the GA/SA method involves fewer
experiments than that in the GA method. Furthermore, the
hybrid method also improved the convergence of the simple
GA.

The study of the inoculated GA/SA using a heuristically
derived solution in the initial population shows that
inoculation can enhance the performance of the GA/SA
approach. Comparing the individual average results of
different approaches considered, the inoculated GA/SA
approach gives the best average performance.
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