290 research outputs found

    On the Two-Dimensional Knapsack Problem for Convex Polygons

    Get PDF
    We study the two-dimensional geometric knapsack problem for convex polygons. Given a set of weighted convex polygons and a square knapsack, the goal is to select the most profitable subset of the given polygons that fits non-overlappingly into the knapsack. We allow to rotate the polygons by arbitrary angles. We present a quasi-polynomial time O(1)-approximation algorithm for the general case and a polynomial time O(1)-approximation algorithm if all input polygons are triangles, both assuming polynomially bounded integral input data. Also, we give a quasi-polynomial time algorithm that computes a solution of optimal weight under resource augmentation, i.e., we allow to increase the size of the knapsack by a factor of 1+? for some ? > 0 but compare ourselves with the optimal solution for the original knapsack. To the best of our knowledge, these are the first results for two-dimensional geometric knapsack in which the input objects are more general than axis-parallel rectangles or circles and in which the input polygons can be rotated by arbitrary angles

    Parametric Polyhedra with at least kk Lattice Points: Their Semigroup Structure and the k-Frobenius Problem

    Full text link
    Given an integral d×nd \times n matrix AA, the well-studied affine semigroup \mbox{ Sg} (A)=\{ b : Ax=b, \ x \in {\mathbb Z}^n, x \geq 0\} can be stratified by the number of lattice points inside the parametric polyhedra PA(b)={x:Ax=b,x≥0}P_A(b)=\{x: Ax=b, x\geq0\}. Such families of parametric polyhedra appear in many areas of combinatorics, convex geometry, algebra and number theory. The key themes of this paper are: (1) A structure theory that characterizes precisely the subset \mbox{ Sg}_{\geq k}(A) of all vectors b \in \mbox{ Sg}(A) such that PA(b)∩ZnP_A(b) \cap {\mathbb Z}^n has at least kk solutions. We demonstrate that this set is finitely generated, it is a union of translated copies of a semigroup which can be computed explicitly via Hilbert bases computations. Related results can be derived for those right-hand-side vectors bb for which PA(b)∩ZnP_A(b) \cap {\mathbb Z}^n has exactly kk solutions or fewer than kk solutions. (2) A computational complexity theory. We show that, when nn, kk are fixed natural numbers, one can compute in polynomial time an encoding of \mbox{ Sg}_{\geq k}(A) as a multivariate generating function, using a short sum of rational functions. As a consequence, one can identify all right-hand-side vectors of bounded norm that have at least kk solutions. (3) Applications and computation for the kk-Frobenius numbers. Using Generating functions we prove that for fixed n,kn,k the kk-Frobenius number can be computed in polynomial time. This generalizes a well-known result for k=1k=1 by R. Kannan. Using some adaptation of dynamic programming we show some practical computations of kk-Frobenius numbers and their relatives

    Non-projectability of polytope skeleta

    Get PDF
    We investigate necessary conditions for the existence of projections of polytopes that preserve full k-skeleta. More precisely, given the combinatorics of a polytope and the dimension e of the target space, what are obstructions to the existence of a geometric realization of a polytope with the given combinatorial type such that a linear projection to e-space strictly preserves the k-skeleton. Building on the work of Sanyal (2009), we develop a general framework to calculate obstructions to the existence of such realizations using topological combinatorics. Our obstructions take the form of graph colorings and linear integer programs. We focus on polytopes of product type and calculate the obstructions for products of polygons, products of simplices, and wedge products of polytopes. Our results show the limitations of constructions for the deformed products of polygons of Sanyal & Ziegler (2009) and the wedge product surfaces of R\"orig & Ziegler (2009) and complement their results.Comment: 18 pages, 2 figure

    Rotational placement of irregular polygons over containers with fixed dimensions using simulated annealing and no-fit polygons

    Get PDF
    This work deals with the problem of minimizing the waste of space that occurs on a rotational placement of a set of irregular bi-dimensional small items inside a bi-dimensional large object. This problem is approached with an heuristic based on simulated annealing. Traditional " external penalization" techniques are avoided through the application of the no-fit polygon, that determinates the collision-free region for each small item before its placement. The simulated annealing controls: the rotation applied and the placement of the small item. For each non-placed small item, a limited depth binary search is performed to find a scale factor that when applied to the small item, would allow it to be fitted in the large object. Three possibilities to define the sequence on which the small items are placed are studied: larger-first, random permutation and weight sorted. The proposed algorithm is suited for non-convex small items and large objects

    Approximating Smallest Containers for Packing Three-dimensional Convex Objects

    Get PDF
    We investigate the problem of computing a minimal-volume container for the non-overlapping packing of a given set of three-dimensional convex objects. Already the simplest versions of the problem are NP-hard so that we cannot expect to find exact polynomial time algorithms. We give constant ratio approximation algorithms for packing axis-parallel (rectangular) cuboids under translation into an axis-parallel (rectangular) cuboid as container, for cuboids under rigid motions into an axis-parallel cuboid or into an arbitrary convex container, and for packing convex polyhedra under rigid motions into an axis-parallel cuboid or arbitrary convex container. This work gives the first approximability results for the computation of minimal volume containers for the objects described

    Heuristics for Multidimensional Packing Problems

    Get PDF
    • …
    corecore