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Abstract
We investigate the problem of computing a minimum-volume container for the non-overlapping
packing of a given set of three-dimensional convex objects. Already the simplest versions of
the problem are NP-hard so that we cannot expect to find exact polynomial time algorithms.
We give constant ratio approximation algorithms for packing axis-parallel (rectangular) cuboids
under translation into an axis-parallel (rectangular) cuboid as container, for packing cuboids
under rigid motions into an axis-parallel cuboid or into an arbitrary convex container, and for
packing convex polyhedra under rigid motions into an axis-parallel cuboid or arbitrary convex
container. This work gives the first approximability results for the computation of minimum
volume containers for the objects described.
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1 Introduction

The problem of efficiently packing objects without overlap arises in a large variety of contexts.
Apart from the obvious ones, where concrete objects need to be packed for transportation or
storage, there are more abstract ones, for example cutting stock or scheduling. Given a set of
objects that have to be cut out from the same material the objective is to minimize the waste,
i.e., place the pieces to be cut out as close as possible. In the case of scheduling, a list of
jobs is given. Each job needs a certain amount of given resources and the aim is to minimize
under certain constraints this need of resources such as time, space, or number of machines.
Altogether, this situation can be described as a problem of packing high-dimensional cuboids
into a strip with bounded side lengths. So, both problems can be viewed as a given list of
objects for which a container of minimum size is wanted.

In this work, we consider the more general and abstract problem of packing three-
dimensional convex polyhedra into a minimum volume container. All variants of this problem
are NP-hard and we will develop constant factor approximation algorithms for some of them.
The worst case constant factors are still very high, but probably they will be much lower for
realistic inputs. The major aim of this paper, however, is to show the existence of constant
factors at all, i.e., that the problems belong to the complexity class APX.
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Related Work

So far, there are only few results about finding containers of minimum volume. Related
problems include strip packing and bin packing. In two-dimensional strip packing the width
of a strip is given and the objects should be packed in order to minimize the length of the
strip used. In three dimensions, the rectangular cross section of the strip is fixed. Bin-packing
is the problem where the complete container is fixed and the objective is to minimize the
number of containers to pack all objects. For both problems usually only translations are
allowed to pack the objects.

For two-dimensional bin packing there exists an algorithm with an asymptotic approx-
imation ratio of 1.405 [3] and Bansal et al. proved that there cannot be an APTAS unless
P = NP [2]. For two-dimensional strip packing there exists an AFPTAS [7]. In three
dimensions there are algorithms with an asymptotic approximation ratio of 4.89 for bin
packing [9] and an asymptotic approximation ratio of 3

2 + ε for strip packing [6]. The best
known worst case (non-asymptotic) approximation ratio for three-dimensional strip packing
is 29

4 [5].
For two dimensions, von Niederhäusern [11] gave algorithms for packing rectangles or

convex polygons in a minimum-area rectangular container with approximation ratios 3 and 5
respectively. A recent result shows that packing convex polygons under translation into a
minimum-area rectangular or convex container can be approximated with ratios 17.45 and
27 respectively [1].

PARTITION can be reduced to one-dimensional bin packing and one-dimensional bin
packing is a special case of higher dimensional bin or strip packing. If one-dimensional bin
packing could be approximated with a ratio smaller than 3

2 , we could solve PARTITION.
Therefore, none of the mentioned problems can be approximated better than with ratio 3

2
unless P = NP. PARTITION can also be reduced to our problem showing NP-hardness.

Our Results

In this work we give the first approximation results for packing three-dimensional convex
objects in a minimum-volume container. For packing axis-parallel rectangular cuboids under
translation into an axis-parallel rectangular cuboid as a container, we achieve a 7.25 + ε

approximation. If we allow the cuboids to be packed under rigid motions (translation and
rotation) then we achieve an approximation ratio of 17.737 for an axis-parallel cuboid as
container and an approximation ratio of 29.135 for an arbitrary convex container. For
packing convex polyhedra under rigid motions we achieve an approximation ratio of 277.59
for computing an axis-parallel cuboid as container and 511.37 for a convex container.

2 Preliminaries and Reduction to Strip Packing

For most algorithms considered here, the input is a set of rectangular boxes B = {b1, b2, . . . bn}.
We denote a box bi in axis-parallel orientation by a tuple of its height, width and depth
(hi, wi, di). We denote by hmax = max {hi | bi ∈ B}, wmax = max {wi | bi ∈ B} and dmax =
max {di | bi ∈ B}.

For points P and Q we denote by PQ the line segment between P and Q of length |PQ|.
−−→
PQ denotes the vector from P to Q. When we write "axis-parallel container" we mean
"axis-parallel rectangular cuboid as a container". We use the term box as a synonym for
rectangular cuboid.
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Packing under translation means that a separate translation is applied to each object
moving it inside the container. The translated objects are not allowed to overlap. Packing
under rigid motion means that a (separate) rotation may be applied to each object before it
is translated into the container.

I Definition 1 (strip packing). An instance for the strip packing problem consists of an axis
parallel strip and a set of axis parallel boxes, i.e. in two dimensions the width and in three
dimensions the width and the depth are fixed and the objective is to pack the boxes under
translation such that the height is minimized.

I Definition 2 (orthogonal minimal container packing – OMCOP). An instance of this
problem is a set of convex polyhedra. The aim is to pack these polyhedra non-overlapping
such that the minimal axis-parallel container has minimal volume. Variants include the kind
of motions allowed or that more specialized objects are to be packed.

This work only considers algorithms in two or three dimensions. For ease of notation we
always assume the lower left (front) corner of the container to lie in the origin. Vopt denotes
the minimal possible volume for a container.

The following algorithm was given by von Niederhäusern [11]. It will be used later as a
subroutine. For an example see Figure 1.

Algorithm 1:
Input: A list S of rectangles ri, denoted by their width wi and height hi, a width for

the strip w
1. Order the rectangles in S by decreasing width, such that if i < j then wi ≥ wj .
2. Split S in sublists Sj =

{
ri ∈ S | w

2j−1 ≥ wi > w
2j

}
for j ≥ 1.

3. Start with packing the rectangles in S1 on top of each other in the strip [0, w]× [0,∞).
4. Split the remaining strip in two substrips with width w

2 and pack the rectangles in S2
one after another into these substrips. Each rectangle ri is packed in the substrip with
current minimal height.

5. Again split the substrips into two and pack S3. Iterate that process until everything is
packed.

I Remark. Note that the strip is half filled with rectangles up to the lower boundary of the
highest rectangle that touches the upper end of the packing. Otherwise,this rectangle could
have been placed lower. That means that the strip is half filled with rectangles except for a
part with area at most w · hmax.
I Remark. Steps 1 and 2 can be done in O (n logn) time where n is the size of S. Steps 4
and 5 are presented in a simplified way in order to convey the idea of the algorithm in a more
understandable manner. In reality it may happen that sublists Sj are empty and therefore
splitting all substrips until they have the suitable width takes too much time. Hence, we split
off a new substrip of suitable width from an existing one only when needed. To maintain all
substrips with their currently occupied height, a heap-like data structure is used. Then, we
can perform steps 3 to 5 in O (n logn) time.

In this section we consider the version of OMCOP where the given objects are axis-
parallel boxes that are to be packed under translation. The idea behind the reduction of
OMCOP to strip packing is to test different base areas for the strip and to return the result
with minimal volume. Assuming that the lower left corner of the base area is located at
the origin, we test each point in a set S as a possible upper right corner for the base area.
Testing means that we call a strip packing algorithm with the given boxes and the base area

ISAAC 2016



11:4 Approximating Smallest Containers for Packing Three-Dimensional Convex Objects

half
filled

Figure 1 Result of Algorithm 1.

implied by the point of S. S will be determined by a parameter ε: the smaller ε, the more
elements S contains, the better the approximation ratio gets.

Note that for the width Wopt of an optimal container, the following inequalities hold:
1. Wopt ≤WΣ, where WΣ denotes the sum of all widths of the boxes to be packed. It is an

upper bound because the width of an optimal container has to be the sum of the widths
of some of the objects. Otherwise they can be pushed together reducing the width of the
container and thereby its volume.

2. Wopt ≥ wmax, where wmax denotes the width of the widest box. Since this box needs to
be packed, this is a lower bound for the width of the container.

The analogous bounds for the depth of an optimal container hold for the same reasons. In
the following Hopt, Wopt, Dopt, and Vopt denote the height, width, depth, and volume of the
same optimal container. Let ε′ = ε

2(ε+α) for a constant α defined later.
The set S is obtained by dividing the intervals of possible width and depth logarithmically:

S ={WΣ (1− ε′)i | i ∈ N,WΣ (1− ε′)i > wmax} ∪ {wmax}×

{DΣ (1− ε′)j | j ∈ N, DΣ (1− ε′)j > dmax} ∪ {dmax}.

For an example for S see Figure 2.

I Theorem 3. If we use an α-approximation algorithm of runtime T (n) to pack n boxes under
translation into the strips and the set S defined above, we obtain an (α+ ε)-approximation
algorithm for the OMCOP variant where n axis aligned boxes are to be packed under
translation. Its runtime is O

(
T (n) log2 n

ε2

)
.

Proof. There exist a, b ∈ N with WΣ (1− ε′)a+1
< Wopt ≤ WΣ (1− ε′)a and

DΣ (1− ε′)b+1
< Dopt ≤ DΣ (1− ε′)b. Eventually the boxes will be packed in a strip with

base area W × D with W = WΣ (1− ε′)a and D = WΣ (1− ε′)b. Since W ≥ Wopt and
D ≥ Dopt, the minimal height for a strip packing with base area W ×D is at most Hopt.
Therefore, we obtain a packing with height H ≤ αHopt. The associated container has volume
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dmax

D∑

wmax W∑

Figure 2 Example for Set S with ε = 3
4 and α = 1.5.

V with

V = HWD

≤ (αHopt)
(
WΣ (1− ε′)a

) (
DΣ (1− ε′)b

)
≤ (αHopt)

(
Wopt

1− ε′

)(
Dopt

1− ε′

)
≤ α

(1− ε′)2Vopt

≤ α

1− 2ε′Vopt = (α+ ε)Vopt , since ε′ = ε

2 (ε+ α) .

The size of S is

|S| =
(⌈

log 1
1−ε′

WΣ

⌉
−
⌊
log 1

1−ε′
wmax

⌋
+ 1
)(⌈

log 1
1−ε′

DΣ

⌉
−
⌊
log 1

1−ε′
dmax

⌋
+ 1
)

= O
(

log2 n

(− log (1− ε′))2

)
, since WΣ

wmax
≤ n, where n is the number of boxes

= O
(

log2 n

ε2

)
,

since − log (1− x) ≥ x for x ∈ [0, 1] and ε′ ≥ cε for some constant c > 0.

Therefore we get the desired running time. J

If we use the algorithm given by Diedrich et al. [5] to pack the boxes into the strips, we
obtain the following corollary.

I Corollary 4. There exists a (7.25 + ε)-approximation algorithm for packing axis-parallel
boxes under translation into a minimum volume axis-parallel box with running time polynomial
in both the input size and 1

ε .

3 Algorithms for Variants of OMCOP

In this section, we will give algorithms for variants of OMCOP. The basic idea is to get rid
of the third dimension by dividing the set of objects into sets of objects with similar height

ISAAC 2016
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dmax

(a) Cut strip (b) Pieces obtained from one strip
stacked on top of each other

Figure 3

and then packing those using an algorithm for two-dimensional boxes. These containers then
get cut into pieces with equal base area and the pieces will be stacked on top of each other.

3.1 Packing Cuboids under Translation
Even though this algorithm gets outperformed by the construction in the previous section,
we state it here as base for the algorithms for the other variants. Let α ∈ (0, 1) and c > 1 be
two parameters that we will choose later.

Algorithm 2:
Input: A set of axis parallel boxes B = {b1, . . . , bn}

1. Partition B into subsets of boxes that have almost the same height:
Bj =

{
bi ∈ B | hmax · αj < hi ≤ hmax · αj−1}.

2. Pack the boxes of every Bj into a strip with width wmax and height hmax · αj−1

considering the depth of the boxes instead of the height, i.e., the strip grows into the
depth. This is done by applying Algorithm 1 to pack the lower facets of the boxes
(rectangles) into the lower facet of the strip (2d-strip).

3. Divide the strips into pieces with depth (c− 1) · dmax, ignoring the last part of the
strip of depth dmax. (Parts of boxes contained in this part of the strip will be covered
in step 5 anyway.)

4. Assign each box to the piece its front lies in.
5. Extend each piece to depth c · dmax such that every assigned box lies entirely in the

piece.
6. Stack the pieces on top of each other.

For an illustration of steps 3 to 6 see Figure 3. The first step can be done in O(n) time.
The second step needs time O(n logn) (see Remarks on Algorithm 1). The rest can be done
in linear time. Therefore, Algorithm 2 runs in O(n logn) time. We obtain

I Theorem 5. For suitable values of c and α Algorithm 2 computes a
(

3
3√2−1≈11.542

)
-

approximation for the variant of three-dimensional OMCOP where n axis parallel cuboids
are packed under translation in O(n logn) time.

Proof. Let Dj denote the depth of the strip obtained in step 2 for the boxes in Bj . Then we
get by step 3

⌈
Dj−dmax
(c−1)dmax

⌉
pieces. After step 5 each piece has volume c · dmaxwmaxhmaxα

j−1.
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Consider the total volume Vj of the pieces obtained for the subset Bj :

Vj = c · dmax

⌈
Dj − dmax

(c− 1) dmax

⌉
wmaxhmaxα

j−1

<
c

c− 1 (Dj − dmax)wmaxhmaxα
j−1 + c · dmaxwmaxhmaxα

j−1.

We know from the two-dimensional packing algorithm that the base area of the strip is half
filled with boxes except for the last part of depth at most dmax (see Remarks on Algorithm 1),
so (Dj − dmax)wmax ≤ 2

∑
b∈Bj

AB (b) where AB (b) denotes the base area of box b. We also
know that for every bi ∈ Bj the inequality hmaxα

j−1 < hi

α holds. Therefore, we get for the
total volume of the packing V that

V ≤
∑
j

(
c

c− 1 (Dj − dmax)wmaxhmaxα
j−1 + c · dmaxwmaxhmaxα

j−1
)

≤
∑
j

 2c
α (c− 1)

∑
b∈Bj

V (b) + c · wmax · dmax · hmaxα
j−1


≤ 2c
α (c− 1)

∑
b∈B

V (b)︸ ︷︷ ︸
≤Vopt

+c · wmax · dmax · hmax︸ ︷︷ ︸
≤Vopt

·
∞∑
l=0

αl (1)

≤
(

2c
α (c− 1) + c

1− α

)
Vopt. (2)

The factor before Vopt in term (2) is minimized if the partial derivatives with respect to c
and α are 0. Solving the resulting system of equations we get c = 3

√
2 + 1 ≈ 2.2599 and

α = 1
3
(
2− 3
√

4 + 3
√

2
)
≈ 0.5575. This gives an approximation ratio of 3

3√2−1 ≈ 11.542. J

3.2 Packing Cuboids under Rigid Motions
3.2.1 Cuboid as Container
Now we consider the variant of OMCOP where the objects to be packed are boxes and
rigid motions are allowed. Let Vopt denote the volume of an optimal container for the given
setting. We basically use the algorithm stated above but with an extra preprocessing step,
namely rotating every box bi ∈ B such that it becomes axis parallel and hi ≥ wi ≥ di. This
can be done in O(n) time. To prove the performance bound of this algorithm we need the
following lemma.

I Lemma 6. If every bi = (hi, wi, di) ∈ B is oriented such that hi ≥ wi ≥ di, then
hmax · wmax · dmax ≤

√
6 · Vopt.

Proof. Since an optimal container has to contain the box determining hmax, it contains a
line segment of length hmax. The projection of that line segment on at least one of the axes
has to have length at least 1√

3hmax. W.l.o.g. let this axis be the x-axis. Therefore, the
optimal container has an extent of at least 1√

3hmax in x-direction.
Since every box is at least as high as wide, a box with width wmax contains a disk D with

diameter wmax and so the optimal container does. Observe that D contains a diametric line
segment l which is parallel to the y-z-plane. Consequently, the projection of l and therefore
the one of the whole box on the y-axis or on the z-axis has a length of at least 1√

2wmax.
W.l.o.g. let this be the y-axis.

ISAAC 2016
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A box with depth dmax contains a sphere with diameter dmax. The projection of this
sphere on any axis has length at least dmax.

Summarizing, each optimal box has volume at least 1√
6hmax · wmax · dmax J

Observe that every argument leading to inequality (1) still holds for this variant of the
algorithm. Using Lemma 6 to estimate hmax · wmax · dmax we get an approximation factor of

2c
α(c−1) + c·

√
6

1−α . Minimizing this expression as before yields the following theorem.

I Theorem 7. The given algorithm computes a 17.738-approximation for the variant of
three-dimensional OMCOP where n axis parallel cuboids are packed under rigid motions in
O(n logn) time.

3.2.2 Convex Container
If we allow a convex container instead of an orthogonal container, we can use the same
algorithm but adapt the analysis. The arguments leading to inequality (1) still hold since
they only use the total volume of the boxes as estimate for the volume of an optimal container.
To estimate hmax ·wmax · dmax, we use the following lemma. Note that Vopt here denotes the
volume of a minimal convex container instead of an axis parallel container.

I Lemma 8. If every bi = (hi, wi, di) ∈ B is oriented such that hi ≥ wi ≥ di, then
hmax · wmax · dmax ≤ 6 · Vopt.

Proof. Consider the line segment, disk and sphere from the proof of Lemma 6. The line
segment has length hmax. The disk with diameter wmax contains a line segment of length
wmax that is perpendicular to the first line segment. The sphere with diameter dmax contains
a line segment of length dmax that is perpendicular to the first two line segments. It is well
known (see, e.g., Lemma 6 from [8]) that the convex hull of these three line segments has a
volume of at least 1

6hmaxwmaxdmax. J

This leads with inequality (1) to the approximation ratio 2c
α(c−1) + c·6

1−α . Minimizing this
term as before yields the following theorem.

I Theorem 9. Using the algorithm described in section 3.2 we get a 29.135-approximation
for packing n axis parallel boxes under rigid motions into a smallest-volume convex container
in time O(n logn).

3.3 Packing Convex Polyhedra under Rigid Motions
3.3.1 Cuboid as Container
We use the algorithm from the previous sections to pack convex polyhedra under rigid
motions into an axis-parallel box of minimal volume. To do so, we add another preprocessing
step where we compute a bounding box for every polyhedron according to the following
lemma. We then pack these boxes with the algorithm discussed in the previous section.

I Lemma 10. For every m-vertex convex polyhedron K in Rd, there is a box B that contains
K with V (B) ≤ d!V (K) that can be computed in O(d2m2) time, or O(m logm) time if d = 3.

Proof by induction on the dimension d. In one dimension, the Lemma holds obviously.
In higher dimensions d, let P,Q be two points of K with maximum distance and |PQ| = l.

Let πP be the hyperplane normal to PQ in the point P . Let K ′ be the orthogonal projection
of K onto πP . By the inductive hypothesis there is a (d−1)-dimensional box B′ containing K ′
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T

L

R

B

F

D

D′

T ′

R′L′

F ′

Figure 4 Box with a point of the enclosed polyhedron in every facet and the projection of the
box on a plane perpendicular to TB. By construction, the images of T and B under the projection
are the same.

for which V ′(B′) ≤ (d−1)!V ′(K ′) where V ′ denotes the (d−1)-dimensional volume. Then K
is contained in the box B with base B′ and height l and V (B) = lV ′(B′) ≤ l(d−1)!V ′(K ′). It
is well known (see e.g. [8]) that for any convex body K, its projection K ′ on some hyperplane
πP , and a line segment l perpendicular to πP , it holds: V (K) ≥ 1

d · l · V
′ (K ′). Hence, we

get for the volume of B: V (B) ≤ d!V (K). B can be computed by testing every pair of
vertices to find P and Q that have maximal distance. This takes O(dm2) time. Then K gets
projected on a hyperplane perpendicular to PQ. This is possible in O(dm) time. Then we
proceed recursively with the projection of K. In total we need O(d2m2). The asymptotically
fastest algorithm for dimension three however has runtime O(m logm), see [10]. J

The construction in the proof of Lemma 10 is the same as in Lemma 7 from [8]. We get a
total running time of O (m logm) for computing the bounding boxes of three-dimensional
polyhedra with m vertices in total.

For the analysis of the algorithm presented in this section we need several notations
and lemmata that follow. Consider the box b = (h,w, d) obtained from the polyhedron p
by Lemma 10 after the algorithm rotated it in axis-parallel position such that h ≥ w ≥ d.
Notice that in every facet of b lies at least one point of p. We call the top and bottom one T
and B, which are unique by construction. In the left and right facet of b, we choose such a
point from each and call them L and R. By construction, the distance from them to the
front facet has to be the same. We do the same for the front and rear facet and call them F

and D respectively. We know from the construction that |TB| = h and TB is parallel to
the longest edge of b. If we project the polyhedron onto a plane perpendicular to TB, we
call the images of T , L, R, F and D under the projection T ′, L′, R′, F ′ and D′, respectively.
See Figure 4 for illustration. Due to the construction of b, |L′R′| = w holds.

I Lemma 11. Let b = (h,w, d) with h ≥ w ≥ d be the enclosing box obtained for polyhedron
p by the algorithm from Lemma 10. Then, parallel to any given plane, p contains a line
segment of length at least w · 1√

5 .

Proof. Consider the points T , B, L and R as described above. The distance between line
segment TB and L or the distance between line segment TB and R is at least w

2 . Let w.l.o.g.
L be the point with larger distance to TB. Consider the triangle 4(T,B,L) with edges and
angles labeled according to Figure 5a. Notice that α ≤ 90° and β ≤ 90°. Let at be the height
of the triangle on edge t, ab on edge b, and al on edge l.

ISAAC 2016
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T B

L

tb

l
α

β

γ

at
ab

al

(a) Labelled triangle 4(T,B,L)
T B

al

(b) Possible triangles 4(T,B,L)

Figure 5

Due to the construction of 4(T,B,L), we know that al ≥ w
2 . We will later show that

ab ≥ w√
5 and at ≥ w√

5 . If we choose a plane parallel to the given one, such that the intersection
between the plane and 4(T,B,L) contains T , B or L but is not only one point, then we
know that the intersection is at least a line segment with length at least min (at, ab, al) ≥ w√

5
which completes the proof. It remains to show that at, ab ≥ w√

5 .
We only show that ab ≥ w√

5 since the proof for at is analogous. Figure 5b depicts possible
triangles with given distance |TB| and height al. ab is the distance between B and the line
defined by T and L. Since β ≤ 90° this distance is minimal for β = 90°.

Let A be the area of 4(T,B,L) with β = 90°.

It holds

al · |TB|
2 =A = ab · |TL|

2 .

Hence

al · h = ab ·
√
h2 + a2

l ,

since |TB| = h and using Pythagoras’ theorem for replacing |TL|. That gives

ab = al · h√
h2 + a2

l

= 1√
1
a2

l

+ 1
h2

≥ 1√
4
w2 + 1

w2

= w√
5

J

I Lemma 12. Let b = (h,w, d) with h ≥ w ≥ d be the enclosing box obtained for a convex
polyhedron p by the algorithm from Lemma 10. Then the projection of p onto any arbitrary
line g has length at least 1

8
√

3d.

This Lemma is shown by an elaborate construction, where we find four line segments inside
p such that the projection of at least one of them onto g has length at least 1

8
√

3d. See
Appendix A for the complete proof.

Summarized, the algorithm for packing convex polyhedra works as follows: First, we
compute a bounding box for every polyhedron with the algorithm from Lemma 10, then we
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rotate each box bi together with its contained polyhedron pi in an axis-prallel orientation
such that hi ≥ wi ≥ di. Finally, we run Algorithm 2 with the rotated boxes.

Now consider the polyhedra p1, p2, p3 that determine hmax, wmax and dmax in the place-
ment of the enclosing boxes the described algorithm computes. p1 contains a line segment of
length hmax and so its projection to at least one of the axes is at least 1√

3hmax. W.l.o.g. let
this axis be the x-axis. Furthermore, by Lemma 11 the projection of p2 onto the y-z-plane
contains a line of length at least 1√

5wmax. Therefore, the projection of p2 onto the y-axis or
the one onto the z-axis has length at least 1√

2 ·
1√
5wmax = 1√

10wmax. The projection of p3

to the remaining axis has length at least 1
8
√

3dmax by Lemma 12. An axis parallel box with
minimal volume containing p1, p2, p3 has at least the described side lengths and so we get
the following lemma:

I Lemma 13. For packing convex polyhedra under rigid motions into a minimum-volume
axis parallel container, the following inequality holds: hmax · wmax · dmax ≤ 24

√
10Vopt.

From Lemma 10 we know that the volume of the smallest enclosing box for a polyhedron is
at most 6 times the volume of the polyhedron. With the previous lemma and this knowledge
we derive the following approximation ratio from inequality (1):

12c
α (c− 1) + c · 24

√
10

1− α . (3)

The running time of this algorithm is determined by the computation of the bounding boxes
and the packing of these boxes: O (m logm+ n logn) = O (m logm) where m is the total
number of vertices of the polyhedra. Hence, by minimizing term (3) as before we get the
following theorem.

I Theorem 14. The given algorithm computes an orthogonal container with volume at
most 277.59 times the volume of an orthogonal minimal container for the variant of three-
dimensional OMCOP where a set of convex polyhedra having m vertices in total are to be
packed under rigid motions. The runtime of the algorithm is O (m logm).

3.3.2 Convex Container
Next, we show that the algorithm from the previous section is not only a constant factor
approximation for the smallest axis parallel cuboid under rigid motions but even for the
smallest convex container. Of course, the approximation factor is higher and, first, we get
the following lemma instead of Lemma 13:

I Lemma 15. For packing convex polyhedra under rigid motions into a minimum-volume
convex container, the following inequality holds: hmax · wmax · dmax ≤ 48

√
15Vopt.

Proof. As before let p1, p2, p3 be the polytopes that determine hmax, wmax and dmax. p1
contains a line segment of length hmax. By Lemma 11, p2 contains a line segment of length
wmax√

5 that is perpendicular to the first line segment. By Lemma 12, p3 contains a line
segment with length dmax

8
√

3 that is perpendicular to the first two lines. Since any convex body
containing three pairwise perpendicular line segments of length a, b, c has volume at least
1
6abc (cf. Lemma 6 in [8]), we get a lower bound on the volume of the convex hull which is
also a lower bound for the volume of an optimal container. J

As before we use Lemma 10 and the previous lemma to estimate inequality (1) and obtain
the following approximation ratio: 12c

α(c−1) + c·48
√

15
1−α . Minimizing this term as before yields

the following result.
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I Theorem 16. The algorithm given in Section 3.3 computes a convex container with volume
at most 511.37 times the volume of a minimal convex container for packing a set of convex
polyhedra having m vertices in total under rigid motions in time O (m logm).
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A Proof of Lemma 12

We construct four line segments inside of p such that the projection of at least one of them
onto the line has the desired length.

Consider the projection of p onto a plane perpendicular to TB as described above
(Figure 4). Then 4(L′, R′, F ′) or 4(L′, R′, D′) has an area A ≥ dw

4 . The perimeter of the
projection of the box, namely 2(w + d), gives an upper bound for the perimeter u of the
triangles. It is well known (see, e.g.,[4]) that the radius of the incircle of a triangle with area
A and perimeter u is r = 2A

u . Hence, we know that the projection of p contains a circle with
radius r where

r = 2A
u
≥ dw

4(d+ w) ≥
1
8d , since d ≤ w. (4)

See Figure 6a for an example.
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L′

F ′

R′

D′

(a) Circle in the projection of p that has radius at least
1
8d

T ′

W ′

V ′U ′

(b) Construction of U ′, V ′ and
W ′

Figure 6

Now we can find points U ′, V ′, W ′ in the projection, such that U ′, V ′, W ′ lie on the
circle with radius r and |T ′V ′| = k ≥ r, |U ′W ′| = l = 2r and T ′V ′ ⊥ U ′W ′. To obtain V ′,
we shoot a ray from T ′ through the center of the circle until we hit the circle and call this
point V ′. U ′W ′ is the diameter of the circle perpendicular to T ′V ′. See Figure 6b for an
example.

Let U , V , W be preimages of U ′, V ′, W ′ under the projection. Hence, they lie inside p.
The line segments whose projections on the given line g we consider are BT , BV , V T and
WU .

The length of the projection of a line segment onto g is the scalar product of the vector
between the endpoints of the line segment and a unit vector with same direction as g. To
simplify the computation of the scalar product, we define the coordinate system as follows:
B is equal to the origin. T lies on the z-axis. The y-coordinate of V is 0. Then U and W
have the same x-coordinate. Now we have

−→
BT =

 0
0
h

 −−→
BV =

 k

0
hV

 −→
V T =

 −k
0

h− hV

 −−→
WU =

 0
l

hWU

 ,

for values k, l with properties described above, and hV , hWU where 0 ≤ hV ≤ h and

|hWU | ≤ h. Let −→g =

 x

y

z

 be the direction of g in the defined coordinate system, with

|−→g | = 1. We now look at the lengths of the projections of the line segments onto the given
line and distinguish four cases.

Case 1: |x| ≥ 1√
3
. Then, using inequality (4), if sgn(z) = sgn(x)

|
−−→
BV · −→g | ≥ k|x| ≥ r|x| ≥ 1√

3 · 8
d

or, if sgn(z) 6= sgn(x)

|
−→
V T · −→g | ≥ k|x| ≥ 1√

3 · 8
d.

ISAAC 2016



11:14 Approximating Smallest Containers for Packing Three-Dimensional Convex Objects

Case 2: |z| · h ≥ 1√
3·8

d. Note, that this inequality is satisfied if |z| ≥ 1√
3 . Then

|
−→
BT · −→g | = h · |z| ≥ 1√

3 · 8
d.

Case 3: |y| ≥ 1√
3
and sgn(y) = sgn(hW U z). Then

|
−−→
WU · −→g | ≥ l|y| ≥ 1√

3 · 8
d.

Case 4: |y| ≥ 1√
3
and sgn(y) 6= sgn(hW U z) and |z| · h < 1√

3·8
d. Note: |hWUz| ≤

h|z| < 1√
3·8d and l|y| = 2r|y| ≥ 2√

3·8d, hence

|
−−→
WU · −→g | = l|y| − |hWUz| ≥

1√
3 · 8

d.

Since |−→g | = 1, |x| ≥ 1√
3 or |y| ≥ 1√

3 or |z| ≥ 1√
3 holds. Hence, at least one of the 4 cases

occurs because h ≥ d .
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