5,962 research outputs found

    Multi-label Rule Learning

    Get PDF
    Research on multi-label classification is concerned with developing and evaluating algorithms that learn a predictive model for the automatic assignment of data points to a subset of predefined class labels. This is in contrast to traditional classification settings, where individual data points cannot be assigned to more than a single class. As many practical use cases demand a flexible categorization of data, where classes must not necessarily be mutually exclusive, multi-label classification has become an established topic of machine learning research. Nowadays, it is used for the assignment of keywords to text documents, the annotation of multimedia files, such as images, videos, or audio recordings, as well as for diverse applications in biology, chemistry, social network analysis, or marketing. During the past decade, increasing interest in the topic has resulted in a wide variety of different multi-label classification methods. Following the principles of supervised learning, they derive a model from labeled training data, which can afterward be used to obtain predictions for yet unseen data. Besides complex statistical methods, such as artificial neural networks, symbolic learning approaches have not only been shown to provide state-of-the-art performance in many applications but are also a common choice in safety-critical domains that demand human-interpretable and verifiable machine learning models. In particular, rule learning algorithms have a long history of active research in the scientific community. They are often argued to meet the requirements of interpretable machine learning due to the human-legible representation of learned knowledge in terms of logical statements. This work presents a modular framework for implementing multi-label rule learning methods. It does not only provide a unified view of existing rule-based approaches to multi-label classification, but also facilitates the development of new learning algorithms. Two novel instantiations of the framework are investigated to demonstrate its flexibility. Whereas the first one relies on traditional rule learning techniques and focuses on interpretability, the second one is based on a generalization of the gradient boosting framework and focuses on predictive performance rather than the simplicity of models. Motivated by the increasing demand for highly scalable learning algorithms that are capable of processing large amounts of training data, this work also includes an extensive discussion of algorithmic optimizations and approximation techniques for the efficient induction of rules. As the novel multi-label classification methods that are presented in this work can be viewed as instantiations of the same framework, they can both benefit from most of these principles. Their effectiveness and efficiency are compared to existing baselines experimentally

    Syntax-driven argument identification and multi-argument classification for semantic role labeling

    Get PDF
    Semantic role labeling is an important stage in systems for Natural Language Understanding. The basic problem is one of identifying who did what to whom for each predicate in a sentence. Thus labeling is a two-step process: identify constituent phrases that are arguments to a predicate, then label those arguments with appropriate thematic roles. Existing systems for semantic role labeling use machine learning methods to assign roles one-at-a-time to candidate arguments. There are several drawbacks to this general approach. First, more than one candidate can be assigned the same role, which is undesirable. Second, the search for each candidate argument is exponential with respect to the number of words in the sentence. Third, single-role assignment cannot take advantage of dependencies known to exist between semantic roles of predicate arguments, such as their relative juxtaposition. And fourth, execution times for existing algorithm are excessive, making them unsuitable for real-time use. This thesis seeks to obviate these problems by approaching semantic role labeling as a multi-argument classification process. It observes that the only valid arguments to a predicate are unembedded constituent phrases that do not overlap that predicate. Given that semantic role labeling occurs after parsing, this thesis proposes an algorithm that systematically traverses the parse tree when looking for arguments, thereby eliminating the vast majority of impossible candidates. Moreover, instead of assigning semantic roles one at a time, an algorithm is proposed to assign all labels simultaneously; leveraging dependencies between roles and eliminating the problem of duplicate assignment. Experimental results are provided as evidence to show that a combination of the proposed argument identification and multi-argument classification algorithms outperforms all existing systems that use the same syntactic information

    Concept drift learning and its application to adaptive information filtering

    Get PDF
    Tracking the evolution of user interests is a problem instance of concept drift learning. Keeping track of multiple interest categories is a natural phenomenon as well as an interesting tracking problem because interests can emerge and diminish at different time frames. The first part of this dissertation presents a Multiple Three-Descriptor Representation (MTDR) algorithm, a novel algorithm for learning concept drift especially built for tracking the dynamics of multiple target concepts in the information filtering domain. The learning process of the algorithm combines the long-term and short-term interest (concept) models in an attempt to benefit from the strength of both models. The MTDR algorithm improves over existing concept drift learning algorithms in the domain. Being able to track multiple target concepts with a few examples poses an even more important and challenging problem because casual users tend to be reluctant to provide the examples needed, and learning from a few labeled data is generally difficult. The second part presents a computational Framework for Extending Incomplete Labeled Data Stream (FEILDS). The system modularly extends the capability of an existing concept drift learner in dealing with incomplete labeled data stream. It expands the learner's original input stream with relevant unlabeled data; the process generates a new stream with improved learnability. FEILDS employs a concept formation system for organizing its input stream into a concept (cluster) hierarchy. The system uses the concept and cluster hierarchy to identify the instance's concept and unlabeled data relevant to a concept. It also adopts the persistence assumption in temporal reasoning for inferring the relevance of concepts. Empirical evaluation indicates that FEILDS is able to improve the performance of existing learners particularly when learning from a stream with a few labeled data. Lastly, a new concept formation algorithm, one of the key components in the FEILDS architecture, is presented. The main idea is to discover intrinsic hierarchical structures regardless of the class distribution and the shape of the input stream. Experimental evaluation shows that the algorithm is relatively robust to input ordering, consistently producing a hierarchy structure of high quality

    Data generation and model usage for machine learning-based dynamic security assessment and control

    Get PDF
    The global effort to decarbonise, decentralise and digitise electricity grids in response to climate change and evolving electricity markets with active consumers (prosumers) is gaining traction in countries around the world. This effort introduces new challenges to electricity grid operation. For instance, the introduction of variable renewable energy generation like wind and solar energy to replace conventional power generation like oil, gas, and coal increases the uncertainty in power systems operation. Additionally, the dynamics introduced by these renewable energy sources that are interfaced through converters are much faster than those in conventional system with thermal power plants. This thesis investigates new operating tools for the system operator that are data-driven to help manage the increased operational uncertainty in this transition. The presented work aims to an- swer some open questions regarding the implementation of these machine learning approaches in real-time operation, primarily related to the quality of training data to train accurate machine- learned models for predicting dynamic behaviour, and the use of these machine-learned models in the control room for real-time operation. To answer the first question, this thesis presents a novel sampling approach for generating ’rare’ operating conditions that are physically feasible but have not been experienced by power systems before. In so doing, the aim is to move away from historical observations that are often limited in describing the full range of operating conditions. Then, the thesis presents a novel approach based on Wasserstein distance and entropy to efficiently combine both historical and ’rare’ operating conditions to create an enriched database capable of training a high- performance classifier. To answer the second question, this thesis presents a scalable and rigorous workflow to trade-off multiple objective criteria when choosing decision tree models for real-time operation by system operators. Then, showcases a practical implementation for using a machine-learned model to optimise power system operation cost using topological control actions. Future research directions are underscored by the crucial role of machine learning in securing low inertia systems, and this thesis identifies research gaps covering physics-informed learning, machine learning-based network planning for secure operation, and robust training datasets are outlined.Open Acces
    • …
    corecore