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Abstract

Research on multi-label classification is concerned with developing and evaluating

algorithms that learn a predictive model for the automatic assignment of data points

to a subset of predefined class labels. This is in contrast to traditional classification

settings, where individual data points cannot be assigned to more than a single class.

As many practical use cases demand a flexible categorization of data, where classes

must not necessarily be mutually exclusive, multi-label classification has become an

established topic of machine learning research. Nowadays, it is used for the assignment of

keywords to text documents, the annotation of multimedia files, such as images, videos,

or audio recordings, as well as for diverse applications in biology, chemistry, social

network analysis, or marketing. During the past decade, increasing interest in the topic

has resulted in a wide variety of different multi-label classification methods. Following

the principles of supervised learning, they derive a model from labeled training data,

which can afterward be used to obtain predictions for yet unseen data. Besides complex

statistical methods, such as artificial neural networks, symbolic learning approaches have

not only been shown to provide state-of-the-art performance in many applications but are

also a common choice in safety-critical domains that demand human-interpretable and

verifiable machine learning models. In particular, rule learning algorithms have a long

history of active research in the scientific community. They are often argued to meet the

requirements of interpretable machine learning due to the human-legible representation

of learned knowledge in terms of logical statements.

This work presents a modular framework for implementing multi-label rule learning

methods. It does not only provide a unified view of existing rule-based approaches to

multi-label classification, but also facilitates the development of new learning algorithms.

Two novel instantiations of the framework are investigated to demonstrate its flexibility.

Whereas the first one relies on traditional rule learning techniques and focuses on

interpretability, the second one is based on a generalization of the gradient boosting

framework and focuses on predictive performance rather than the simplicity of models.

Motivated by the increasing demand for highly scalable learning algorithms that are

capable of processing large amounts of training data, this work also includes an extensive

discussion of algorithmic optimizations and approximation techniques for the efficient

induction of rules. As the novel multi-label classification methods that are presented in

this work can be viewed as instantiations of the same framework, they can both benefit

from most of these principles. Their effectiveness and efficiency are compared to existing

baselines experimentally.



Zusammenfassung

Forschung im Bereich der Multi-label Klassifizierung beschäftigt sich mit der Entwick-

lung und Bewertung von Algorithmen, die Vorhersagemodelle für die automatische

Zuweisung von Datenpunkten zu einer Untermenge vordefinierter Klassen lernen. Dies

unterscheidet sich von traditionellen Problemstellungen, die es nicht erlauben, einzelne

Datenpunkte mehr als einer Klasse zuzuordnen. Da viele praktische Anwendungen

eine flexible Zuordnung von Daten erfordern, bei der sich Klassen nicht gegenseitig

ausschließen, wurde die Multi-label Klassifizierung zu einem etablierten Thema in-

nerhalb des machinellen Lernens. Sie wird für die Zuweisung von Schlagworten zu

Textdokumenten, die Annotation von Multimedia-Dateien, wie Bildern, Videos oder

Audioaufnahmen, sowie für vielseitige Anwendungen in der Biologie, Chemie oder

der Analyse von sozialen Netzwerken verwendet. Während der letzten Dekade hat

das zunehmende Interesse an dem Thema zu einer Vielzahl von verschiedenen Klas-

sifizierungsmethoden geführt. Gemäß den Prinzipien des überwachten Lernens leiten

diese ein Vorhersagemodell von Trainingsdaten ab, das später genutzt werden kann um

Vorhersagen für noch unbekannte Daten zu ermitteln. Neben komplexen statistischen

Methoden, wie künstlichen neuronalen Netzen, können auch symbolische Lernansätze in

vielen Anwendungsbereichen eine hohe Vorhersagegenauigkeit erzielen. Sie werden vor

allem in sicherheitskritischen Bereichen verwendet, die durchMenschen interpretier- und

verifizierbare Modelle erfordern. Insbesondere Regellernalgorithmen haben eine lange

Historie aktiver Foschung vorzuweisen. Aufgrund der menschenlesbaren Repräsentation

von Wissen in Form von logischen Ausdrücken, wird häufig argumentiert, dass sie die

Anforderungen an interpretierbares maschinelles Lernen erfüllen.

Diese Arbeit stellt ein modulares System für die Umsetzung von Multi-label Regellern-

methoden vor. Es bietet nicht nur eine einheitliche Sichtweise auf existierende regelbasierte

Ansätze für die Multi-label Klassifizierung, sondern vereinfacht auch die Entwicklung

neuer Lernalgorithmen. Es werden zwei neuartige Umsetzungen dieses Systems un-

tersucht um dessen Flexibilität zu demonstrieren. Während die erste auf traditionelle

Regellerntechniken setzt und einen großen Wert auf Interpretierbarkeit legt, basiert die

zweite auf einer Generalisierung des Gradient Boosting-Systems und ist auf Vorhersagege-

nauigkeit, statt der Einfachheit von Modellen, fokussiert. Motiviert durch den steigenden

Bedarf nach skalierbaren Lernalgorithmen, die große Datenmengen verarbeiten können,

enthält diese Arbeit außerdem eine umfangreiche Diskussion von algorithmischen Opti-

mierungen und Approximierungstechniken für die effiziente Induktion von Regeln. Da

die neuartigen Klassifizierungsmethoden, die in dieser Arbeit vorgestellt werden, auf den

selben Grundprinzipien beruhen, können sie beide von diesen Techniken profitieren. Ihre

Effektivität und Effizienz wird experimentell mit existierenden Verfahren verglichen.
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Notation

Label Space
� A single label

: Variable that iterates the available labels

 The total number of available labels

L The set of available labels

Y The space of possible labelings

H Indicates whether a label is relevant to an example according to the ground truth

y The label vector of an example according to the ground truth

. A matrix of labels according to the ground truth

Λ Indicates whether a label is mostly relevant or irrelevant

Feature Space
� A single attribute

; Variable that iterates the available attributes

! The total number of available attributes

A The set of available attributes

G Specifies an example’s value for a particular attribute

x The feature vector of an example

- A matrix that stores the feature values of examples

= Variable that iterates the available examples

# The total number of available examples

X The space of possible feature vectors

Classification Models
D A (multi-label) data set that is used to train a classification model

5 A (multi-label) classification function, e.g., a single rule

C Variable that iterates the classification functions in a model

) The total number of classification functions in a model

� A (multi-label) classification model consisting of several classification functions

F The space of possible classification models

Ĥ Indicates whether a label is predicted to be relevant to an example

ŷ A label vector that is predicted for an example



.̂ A matrix of predicted labels

Performance Evaluation
M A (multi-label) evaluation measure

� A performance score according to a (multi-label) evaluation measure

� A confusion matrix


 The significance level used by statistical significance tests

A The rank of an individual classification approach

3 Variable that iterates the datasets used in an empirical study

� The total number of datasets used in an experimental study

Rule Learning Framework
1 The body of a rule

2 A condition that is contained in the body of a rule

� The threshold that is used by a condition

?̂ A prediction for an individual label that is provided by the head of a rule

p̂ A vector of predictions that are provided by the head of a rule

@ A numerical score that assesses the quality of a rule

F A weight, e.g., the weight of an individual example

w A vector of weights

, A matrix of weights

( A matrix of label space statistics that serve as a basis for learning rules

Separate-and-Conquer Rule Learning
H A (multi-label) rule learning heuristic

Δ A relaxation lift affecting the quality of a rule depending on the size of its head

� A relaxation lift function

@̂ The quality of a rule according to a relaxation lift function

Gradient Boosting
ℓ A (surrogate) loss function to be minimized during training

R The global training objective of a gradient boosting algorithm

Ω A regularization term

� The weight of a regularization term

' A regularization matrix

6 A gradient corresponding to the first partial derivative of a loss function

g A vector of gradients corresponding to individual labels



ℎ A Hessian corresponding to the second partial derivative of a loss function

� A matrix of Hessians corresponding to pairs of labels

� Shrinkage parameter (also known as learning rate)

Gradient-based Label Binning
B Set of indices that belong to a bin

< Variable that iterates the bins used by an approximation method

" The number of bins used by an approximation method

$ The width used in equal-width binning

� A criterion that is used to determine a mapping to bins
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Artificial intelligence is a longstanding subdomain of computer science that

is concerned with the development of computer programs for solving

complex tasks, which are commonly assumed to require some kind

of “intelligence” (McCarthy, 1968). Even though it is debatable what

capabilities a computer system must have to be considered intelligent,

research on the topic has resulted in algorithms that can compete with,

or even outperform humans in specific problem settings. Examples that

have received widespread attention from the general public include

computer programs that manage to beat world-class players in games

like chess (F.-H.Hsu, 2002) orGo (Gibney, 2016), advances in autonomous

driving (Thrun, 2010), or the commercial success of virtual assistance

technology that is capable of understanding and imitating the human

voice (Hoy, 2018).

Concept LearningThe technologies mentioned above have in common that they are all

tailored to a specific application. Similarly, research on concept learning
focuses on a well-defined family of problems. Its goal is to distinguish be-

tween objects of different categories and identify features that are shared

between exemplars within a particular group (Angluin, 1988). Computer

systems that are aimed at solving such classification tasks most often rely

on historical data from which they try to extract concepts that generalize

beyond the given observations. The term data mining is most commonly

used if one is interested in extracting knowledge from previously col-

lected data and gaining valuable insights. In contrast, machine learning
methods aim to incorporate patterns that can be found in historical data

into a condensed model, which allows conclusions about yet unseen data

in the future. (Mitchell, 1997). Practical use cases of the latter include

spam filters that automatically detect unsought messages (Guzella and

Caminhas, 2009) or algorithms for optical character recognition that

convert handwritten notes into machine-encoded text (Mori, Nishida,

and Yamada, 1999). As computer algorithms, unlike human analysts,

can process large amounts of data in a short amount of time, machine

learning methods are gaining importance in our increasingly digitalized

world, where data is not only generated daily by billions of individuals

that interact with electronic devices or exchange with others publicly

on social media platforms, but can also be collected in factories and

other business environments, where computers are increasingly used for

manufacturing processes and working routines.

Multi-label ClassificationIn traditional classification settings, even though several categories might

be available in total, each object is assumed to belong to exactly one of

them. The individual categories, which are usually referred to as classes,
are considered to be mutually exclusive in such cases. As a result, a

classification system is not allowed to associate an object with multiple

classes simultaneously. However, many real-world applications demand

a more flexible assignment of classes to objects. For example, consider a

computer system that should automatically assign newspaper articles
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to predefined topics to facilitate searching for documents that match a

user’s interests. In such a scenario, a single article is likely concernedwith

several related topics, such as “politics and “economics”, and should

be discovered when searching for either one of them. A classification

approach that assumes the available classes to be mutually exclusive

cannot address this problem adequately and would most likely limit the

system’s usefulness in practice. Problems of this kind, where individual

objects may be associatedwith a subset of the available classes rather than

a single one, are consideredmulti-label classification problems (Tsoumakas,

Katakis, and Vlahavas, 2009). Because of the large number of practical

use cases, such as text classification, the annotation of multimedia data,

as well as applications in the field of biology, chemistry, marketing,

or social network analysis, research on multi-label classification has

become an established topic in the machine learning community during

the past decade (Gibaja and Ventura, 2014). Due to the diverse nature

of the aforementioned applications and the large number of different

machine learning approaches that may be used to tackle this problem

domain, it comes with various interesting questions and challenges. In

particular, ongoing work on the topic is often motivated by the desire to

discover hidden interdependencies between individual classes, which

are more commonly referred to as labels. Different dependencies, such

as co-occurrences or partial exclusions, are frequently encountered in

many applications (Dembczyński, Waegeman, et al., 2012). This also

applies to the previously mentioned scenario, where newspaper articles

should be associated with topics. In this particular example, if an article

is concerned with “foreign politics”, it should probably be labeled with

the keyword “politics” because there is a hierarchical relation between

both. However, the presence of these keywords might indicate that an

article is unlikely to belong to the topic “sports”, as they seldomly overlap.

Algorithms that are capable of discovering such relations can provide

valuable insights into the data and may benefit from this ability in terms

of predictive performance. However, this does not only require models

that can express dependencies in a suitable form but can also come with

computational challenges in cases where large amounts of data should

be processed.

Rule Learning Algorithms Rule learning methods are among the most commonly used and well-

understood approaches to concept learning and have a longstand-

ing tradition in research on data mining and machine learning prob-

lems (Fürnkranz, Gamberger, and Lavrač, 2012). They belong to the family

of symbolic learning approaches, i.e., they rely on symbolical represen-

tations to incorporate domain knowledge into a model. A rule-based

model typically consists of several logical rules that describe different

parts of the data. To identify the objects that are described by a rule,

conditional clauses, which refer to the objects’ individual features, are

used. As symbolic rules can be presented in a human-legible form, they

can be analyzed and verified by domain experts. For this reason, they are

not only well-suited for data mining tasks, where the goal is to identify

interesting patterns in the data, but can also be used in machine learning

models for solving classification tasks. The use of rule-based approaches

to multi-label classification appears to be promising and has previously

been advocated for in the literature. Existing work on the topic suggests

that rules allow for modeling correlations between labels in a natural

form and help to make them explicit (Loza Mencía, Fürnkranz, et al.,
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2018). Depending on the methodology that is used for the construction

of rule-based models, their characteristics and complexity may vastly

differ. Especially in the multi-label setting, where different types of rules

are conceivable for capturing information about the interactions between

labels, the flexibility that comes with different rule learning techniques

can be considered an advantage and makes them a versatile tool for

the construction of classification models that are specifically tailored to

different use cases and requirements.

1.1 Research Challenges

The present thesis is concerned with the development and evaluation of

rule learningmethods that are specifically tailored to the particularities of

multi-label classification. Even though existing rule learning algorithms

can be applied to this particular type of classification task by relying

on well-known and model-agnostic transformation methods, which

break down a multi-label classification problem into smaller single-label

problems, machine learning approaches that can tackle this problem

domain directly may provide advantages in terms of the following

aspects.

I Interpretability. Rule learning methods are a common choice in

domains that require interpretable classification models, which

can be verified and analyzed by human experts (M. Du, N. Liu, and

X. Hu, 2019). Due to the growing number of potential use cases

for machine-guided decision-making, research on interpretable

machine learning has recently gained relevance and has received

increasing attention in the literature. In the context of multi-label

classification, rule-based models are particularly interesting, as

they allow to express different types of interactions between labels

in a natural and human-legible form.

I Exploitation of Label Dependencies. As argued above, the idea of

exploiting label dependencies to improve predictive performance is

a major motivation of many multi-label classification methods and

may help to improve the quality of predictions that are provided

by a multi-label rule learning method. Even though existing rule-

based methods are already able to capture certain types of label

dependencies, alternative representations of such interactions,

which demand different algorithmic solutions, are possible and

worth investigating (Loza Mencía, Fürnkranz, et al., 2018).

I Adaptation to Varying Target Measures. Compared to traditional

classification settings, a wide variety of evaluation measures is

commonly used in multi-label classification to assess the quality

of predictions for several labels. Prior research has shown that

these measures vastly differ in their respective characteristics and

may even conflict. Whereas the optimization of some measures

requires taking label dependencies into account, other measures

are more adequately adressed by simpler approaches that neglect

the existence of such dependencies (Dembczyński, Waegeman,

et al., 2012). Unfortunately, it often remains unclear what measure

existing multi-label classification methods aim to optimize. Ideally,
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a single approach should beflexible enough to be tailored to varying

measures, depending on the use case. To meet this requirement,

a well-justified theoretical framework for constructing rule-based

models, which can be adapted to different target measures, is

needed.

I Computational Efficiency. With the increasing access to large

amounts of data, there is an emerging need for highly scalable ma-

chine learningmethods that are capable of processing vast amounts

of historical data efficiently. This trend is also reflected by recent lit-

erature onmulti-label classification, where great emphasis is put on

the ability to deal with high-dimensional problems (Prajapati and

Thakkar, 2019). Unfortunately, only a few implementations of rule

learning algorithms are publicly available, and long-established

implementations often lack the computational efficiency of more re-

cent competitors. This work aims to make the presented algorithms

available to a broader audience. To ensure that they are useful

in practice, all algorithms in this work are published under an

open-source license. Furthermore, parts of this thesis are devoted

to algorithmic aspects that help to improve their computational

efficiency.

Despite the long history of active research on rule learning algorithms

and the availability of a wide variety of different methods for single-label

classification, only a few rule-based approaches that are specifically

tailored to multi-label classification are available today. This work con-

tributes to this growing field of research by investigating how existing

rule learning methodologies can be generalized to the multi-label setting.

Furthermore, it presents novel algorithms that are designed with the

aforementioned research challenges in mind.

1.2 Outline and Contributions

In the following, we outline the structure of this work and provide a

brief overview of the topics that are discussed in each of the following

chapters.

I Chapter 2. We start by providing an introduction to existing classi-

fication methods that are relevant to the remainder of this work.

Following the topic of this thesis, strong emphasis is put on rule

learning algorithms, but the discussion does also include decision

tree learners, as they are closely related to rule-based classifiers.

In addition, we motivate the use of ensemble techniques that may

provide advantages for both types of learning approaches and

serve as a foundation for the methodology in Chapter 6.

I Chapter 3. This chapter aims to give a basic understanding of

multi-label classification problems. It includes a formal definition

of the problem domain and introduces notations that are used in

the remainder of this work. Besides a discussion of applications

and commonly used evaluation measures, we also elaborate on es-

tablished algorithms from the field of multi-label classification that

may be used together with the rule-based approaches presented
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in this work, such as transformation methods or techniques for

dimensionality reduction.

I Chapter 4. In this chapter, a flexible and modular framework

for the implementation of rule-based approaches to multi-label

classification is presented. We do not only discuss the aspects that

such rule learningmethods have in common and highlight different

possibilities to implementing individual components in varying

ways, but also revisit existing publications on the topic and review

them in the context of the proposed framework.

I Chapter 5. Based on the framework that the previous chapter

focuses on, in Chapter 5, we investigate several aspects that are im-

portant to successfully apply the separate-and-conquer paradigm,

many traditional rule learners rely on, to the multi-label classifica-

tion setting. In particular, we present empirical results regarding

the choice of the rule learning heuristic, which guides the construc-

tion of such models, and propose a methodology for the induction

of rules that are able to model label dependencies, which is a major

focus of research on multi-label classification.

I Chapter 6. In this chapter, another instantiation of the previously

presented framework, which relies on the principles of gradient

boosting, is proposed. Unlike the approach in Chapter 5, this

particular method for learning rule-based ensembles focuses on

predictive performance rather than the interpretability of the result-

ing models. Furthermore, it can deliberately be tailored to different

multi-label evaluation measures and therefore allows to be flexibly

be adjusted to different use cases and requirements.

I Chapter 7. This chapter is devoted to algorithmic details that allow

for the efficient induction of rules. Due to the shared foundation,

they are based on, the approaches in Chapter 5 and Chapter 6

have many aspects in common. As a consequence, they can both

benefit from the optimizations that are discussed in this chapter.

Besides a technique that enables dealingwith sparse data efficiently

and the possibility of using multi-threading, the descriptions and

experimental results that are provided in this chapter are also

concerned with an approximation method that helps speed up

training on large datasets that come with many numerical features.

I Chapter 8. In addition to the algorithmic optimizations that are

considered in the previous chapter, an approximation technique,

which is deliberately targeted at the computational bottleneck of

the boosting algorithm in Chapter 6, is proposed in this chapter. It

revolves around the idea of assigning labels to a limited number of

bins, which helps reduce the computational complexity in some

particularly challenging use cases.

Finally, in Chapter 9, we summarize the content of the previous chapters

and discuss the extent to which the present thesis has contributed to the

research topic. Moreover, we provide an overview of various ideas that

might be addressed in the future to improve the methodologies that are

proposed in this work.
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Due to its long history, its diverse applications, and the wide variety of

existing approaches, machine learning can be considered a multidisci-

plinary field that is based on findings from various disciplines, such as

statistics, probability theory, information theory, psychology, and many

more (see, e.g., Mitchell, 1997, for an overview on the topic). The goal of

this chapter is to provide a basic insight into this large field of research

by discussing a small selection of well-known machine learning methods

that are relevant to this work.

Binary and Multi-class ClassificationIn adherence to the topic of this thesis, we restrict ourselves to methods

that aim to solve classification problems. Research on this particular prob-

lem domain is concerned with the development of classification systems,

also referred to as classifiers, that can provide categorical predictions for

given data examples. Most prominently, this includes binary classification
problems, where each example belongs to one out of two predefined

classes. Based on the properties of an example, which we refer to as

attributes or features, a classifier should be able to identify the class to

which an example belongs. For example, the dataset “Mushroom” that is

provided by the UCI machine learning repository
1
requires a classifier to

predict whether different species of mushrooms are edible or poisonous,

based on attributes that describe their appearance, odor, habitat, etc.

Problems that come with more than two classes are referred to as multi-
class classification problems. For example, there is also a variant of the

aforementioned “Mushroom” dataset that demands a more fine-grained

categorization of examples in terms of the classes “edible”, “poisonous”,

”unknown” and ”not recommended”. For reasons of simplicity, we focus

on binary classification problems in the following.

Supervised vs. Unsupervised LearningApproaches to classification are often characterized as either supervised
or unsupervised learning approaches (Kotsiantis, 2007). The former type

of method aim at deriving a model from given training examples for

which the true classes are known. A model that has been trained on

labeled data incorporates information about the problem domain and

can afterward be used to obtain predictions for unseen examples that

have not yet been provided to the learning method as part of the training

procedure. In contrast, unsupervised classification methods do not rely

on a representation of the problem domain in terms of a pre-trained

model, but try to identify structures that are hidden in unlabeled data by

creating groups of similar examples, referred to as clusters. In addition to

supervised and unsupervised approaches, some methods make use of

semi-supervised or reinforcement learning. The former refers to supervised

learning problems, where the classes of some training examples are

missing. The latter type of approach relies on feedback that is provided

to the learning method to improve its predictions successively over time.

All methods that are proposed in this work rely on the principles of

supervised learning, i.e., they require labeled training data to be available.

Hence, we restrict ourselves to this learning method in the following.

https://archive.ics.uci.edu
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Symbolic vs. Statistical Methods Among the supervised learning approaches that are commonly used to

tackle classification problems, onemay distinguish between statistical and
symbolic methods. The former uses statistical optimization techniques

to determine the parameters of a predictive function. Examples include

artificial neural networks, support vector machines, or logistic regression.
Textbooks that focus on this line of research include those by Bishop

(1995), Duda, Hart, and Stork (2000), Ripley (2007), Hastie, Tibshirani,

and J. H. Friedman (2009), or Goodfellow, Bengio, and Courville (2016).

Symbolic learning methods rely on symbolic descriptions to represent

learned concepts and capture knowledge about a problem domain. For

example, in decision tree learning or rule learning, models are typically

represented in terms of logical “if”-“then”-clauses that test for the

properties of given examples to determine a prediction. Books that are

concerned with this area have for example been published by Mitchell

(1997), Langley (1996), or Fürnkranz, Gamberger, and Lavrač (2012). The

algorithms and techniques that are discussed in this thesis are mostly

related to symbolic learning methods. Consequently, in the remainder

of this chapter, we focus on two well-established representatives of

this particular concept type, namely decision trees and rule learning

algorithms.

2.1 Decision Trees

Structure of a Decision Tree Decision trees are symbolic classification models organized in a hierar-

chical, flowchart-like structure. They consist of nodes that are connected
to two or more successors via edges, forming a directed, non-cyclic graph.

The top-most node of a decision tree, which does not have any predeces-

sors, is referred to as the root node. Nodes that are located at the lowest

level of the tree and therefore do not have any successors are called leaves.
Each of the internal nodes is concerned with a single attribute present in

the training data, whereas the leaves are labeled with one of the available

classes. Given an example to be classified, a decision tree is traversed

from top to bottom, starting at the root node. At each node, the example’s

value for the respective attribute is compared to several constants that

correspond to the node’s outgoing edges. Depending on which edge

is satisfied by the value at hand, the example is propagated to one of

the node’s successors. The traversal of the tree is continued until a leaf

is finally reached and the example is assigned its class label. Figure 2.1

depicts the typical structure of a decision tree. It has been learned by

applying the J48 decision tree learner, which is provided as part of the

WEKA (Hall et al., 2009) machine learning library, to a variant of the

aforementioned “Mushroom” dataset with binary classes.

Growing a Decision Tree Decision trees are usually constructed in a top-down fashion, starting

with a tree that consists of a single node. The tree is recursively refined

by following a breadth-first or depth-first strategy, where existing leaf

nodes are replaced with new internal nodes that split up the training

examples that belong to the original leaves. Introducing such a split

into an existing tree structure requires selecting an attribute the new

node should be concerned with and deciding on the conditional tests

corresponding to its outgoing edges. In the case of numerical attributes,

which come with arbitrary numerical values, relational operators like
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Figure 2.1: Exemplary decision tree that

results from applying the J48 algorithm to

the dataset “Mushroom”. Internal nodes

are represented by trapezoids, whereas

rectangular shapes are used for leaves.

For simplicity, edges that lead to leaf

nodes with identical class labels have been

merged and given the label “other”.

<, ≤, > or ≥ can be used. Nominal attributes, which are restricted

to a predefined set of discrete values, are typically dealt with using

operators like = or ≠. Among all nodes that can potentially be added

to a decision tree, the best one is chosen according to a split criterion
that takes into account the changes in predictive accuracy that result

from modifying the tree structure accordingly. Existing algorithms for

constructing decision trees differ in the split criterion they use. Among

the most popular approaches are the algorithms ID3 (Quinlan, 1986), as

well as its extension C4.5 (Quinlan, 1993). Their split criterion, which is

commonly known as information gain, is based on information-theoretic

entropy. An implementation of C4.5, referred to as J48, was used to learn

the decision tree in Figure 2.1. Another popular decision tree learner is

CART (Breiman et al., 1984), which assesses the quality of potential splits

in terms of the Gini index.

Over- and UnderfittingOn the one hand, a simple decision tree with very few nodes is often

too general because a broad separation of examples does not allow to

provide accurate predictions. Such a tree is said to underfit the data. On

the other hand, introducing too many branches into the tree structure,

which in the extreme case leads to a scenario where a leaf is created for

each one of the training examples, may result in overfitting. In such a case,

even though it delivers accurate predictions for the training examples,

the resulting decision tree must be expected to be prone to noise in the

data. Consequently, it likely performs badly when provided with unseen

examples. In order to perform well on unseen data, it is crucial to strive

for a good balance between the simplicity and complexity of a tree-based

model (Mitchell, 1997). For this reason, successful decision tree learners

like C4.5 or CART employ pruning techniques that eliminate nodes from

a previously constructed and potentially too specific tree if they turn out

to be harmful to the predictive accuracy according to an evaluation of the
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tree’s performance on a previously unused portion of the training data.

In addition, many learning algorithms allow imposing restrictions on the

growth of decision trees by limiting their maximum depth or specifying

the minimum number of training examples that must belong to a single

leaf.

2.2 Rule Learning Algorithms

Structure of Rule-based Models In addition to decision trees, rule-based classification models are another

popular approach in symbolic learning with a long history of active

research. For example, Fürnkranz, Gamberger, and Lavrač (2012) provide

a broad overview of the topic. Both types of models are closely related to

each other, as they express domain knowledge in terms of conditional

clauses that refer to attributes present in the data. In fact, each decision

tree can be transformed into an equivalent rule-based model by viewing

the paths in a tree, from the root node to each one of its leaves, as

individual rules. Each one of these rules consists of a body and a head.
Whereas the former consists of a set of conditions that correspond to the

nodes in a decision tree, the latter provides a prediction in the form of

a class label, similar to the leaves in a tree-based model. In accordance

with existing work on the topic, we use the notation

Head← Body

for the representation of rules in this work. Conjunctive rules, where

the body is given as a conjunction of several conditions, are used most

commonly in the rule learning literature. Nevertheless, there are also

approaches that make use of both, logical OR (∨) and AND (∧) operators,
for the concatenation of conditions in a rule’s body (Michalski, 1980;

Theron and Cloete, 1996). Table 2.1 illustrates the typical structure of a

rule-based classification model that consists of several conjunctive rules.

The depicted model has been obtained by applying the rule learning

algorithm JRip, a Java implementation of RIPPER (Cohen, 1995) that is

provided by the WEKA (Hall et al., 2009) project, to the “Mushroom”

dataset from the UCI machine learning repository.

Decision Trees vs. Rule Models If an example satisfies the conditions in a rule’s body, it is said to be covered
by the rule. In such a case, the prediction that is provided by the rule’s

head applies to the example. Depending on its conditions, a rule covers

an axis-aligned, hyper-rectangular region of the feature space, i.e., the
space of all possible examples. In contrast to decision trees, the individual

Table 2.1: Exemplary rule model, consist-

ing of several conjunctive rules, as well as

a default rule, that results from applying

the JRip algorithm to the dataset “Mush-

room”. If an example is covered by one the

conjunctive rules, it assigned to the class

“poisonous”. If none of these rule cover

an example, the default rule predicts the

class “edible” instead.

poisonous ← odor = foul
poisonous ← gill-size = narrow ∧ gill-color = buff
poisonous ← gill-size = narrow ∧ odor = pungent
poisonous ← odor = creosote
poisonous ← spore-print-color = green
poisonous ← stalk-surface-above-ring = silky

∧ gill-spacing = close
poisonous ← habitat = leaves ∧ cap-color = white
poisonous ← stalk-color-above-ring = yellow

edible ← ∅
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rules in a rule-based model must not necessarily be non-overlapping.

Moreover, many rule learning approaches use a default rule that does not
contain any conditions in its body and therefore applies to all examples.

It is meant to provide a default prediction, usually corresponding to

the majority class, i.e., the class that occurs most often in the training

data, for examples not covered by another rule. Due to these differences,

even though decision trees can always be transformed into a set of

equivalent rules, not all rule-based models can be encoded as a tree-like

structure. As a consequence, despite their many similarities and even

though many techniques from decision tree learning can be transferred

to rule learning approaches and vice versa, rules can be considered a

more general concept class than the commonly used decision trees and

provide additional flexibility when it comes to the selection of rules to be

included in a model.

Descriptive vs. Predictive RulesWhen it comes to techniques and algorithms for rule induction, one

needs to distinguish between descriptive and predictive rule learning. The
former is used to describe learning techniques aimed at discovering

interesting patterns in unlabeled data. Prominent examples include the

algorithms Apriori (Rakesh Agrawal, Imieliński, and Swami, 1993), FP-

Growth (Han, Pei, and Yin, 2000) and their numerous variants that allow

extracting frequent patterns of co-occurring feature values, also referred

to as association rules, from a given dataset. In contrast, predictive rule

learning methods aim to derive a model from labeled training data,

which can be used for prediction afterward. As previously mentioned,

we are primarly concerned with classification in this work. Hence, we

elaborate on the most common techniques for the induction of predictive

rules in the following.

Covering AlgorithmsOne of the most commonly used strategies for the induction of predic-

tive rules is the separate-and-conquer (SeCo) paradigm as described by

Fürnkranz (1999). Methods that are based on this particular covering

algorithm learn a set of rules by following an iterative procedure. At first,

a new rule that covers a subset of the given training examples is induced.

Afterward, the examples it covers are removed from the training set, and

the algorithm proceeds by learning the next rule. Ultimately, the training

procedure finishes as soon as no examples are left or if a certain stopping
criterion is met, as elaborated on below. The SeCo strategy results in an

ordered list of rules, commonly refered to as a decision list. Because it

was learned on a subset of the training data, where examples covered

by previously induced rules have already been removed, each rule in

the list depends on its predecessors. Given an example to predict for, the

dependence between rules is taken into account by processing the rules

in a decision list in the order of their induction. The first rule that covers

an example is responsible for its prediction. If an example is not covered

by any rule, the default rule takes effect instead. A generalization of the

SeCo paradigm, referred to as weighted covering, was independently pro-

posed by Weiss and Indurkhya (2000) and Gamberger and Lavrač (2000).

Instead of removing examples entirely once they have been covered,

weighted covering reduces the weights of individual examples whenever

an additional rule covers them. As a consequence, examples that one or

more rules have already covered have a smaller impact on the evaluation

of new rules. Uncovered examples have a greater chance to be covered in

subsequent iterations of the algorithm instead. An advantage of weighted
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covering is the reduced impact of rules learned during the early stages of

the covering algorithm. In addition, it usually results in more rules being

learned because each example is allowed to be covered several times.

Similar to ensemble methods, which are discussed in Section 2.3 below,

the combination of predictions provided by many rules tends to produce

better classification results. However, as an example may be covered by

multiple rules with varying class labels in their heads, weighted covering

demands for a prediction scheme that allows resolving conflicts between

contrary rules, e.g., by employing a voting mechanism.

Rule Learning Heuristics Similar to the construction of decision trees, individual rules are usually

built in a top-down fashion, where the rule is successively refined by

adding new conditions to its initially empty body. As a result of adding

a new condition, the rule covers fewer examples and becomes more

specific. Principally, bottom-up approaches, where a specific rule with

predetermined conditions is successively generalized, are also feasible.

However, they are less effective in practice, according to Fürnkranz (2002).

As discussed in Section 2.1, in the context of decision trees, it is essential to

strive for a balance between too general and overly specific rules to avoid

the problem of under- or overfitting the data (Janssen and Fürnkranz,

2008). It is crucial to use a suitable evaluation measure to compare the

quality of potential refinements to achieve a good trade-off between the

coverage and consistency of a rule. In the rule learning literature, measures

that guide the rule refinement process are often referred to as heuristics.
Traditionally, the development, analysis, and empirical evaluation of

reliable heuristics have played an important role in research on predictive

rule learning (see, e.g., Fürnkranz andFlach, 2005; Fürnkranz,Gamberger,

and Lavrač, 2012; Janssen and Fürnkranz, 2010), and a large number

of different heuristics have consequently been proposed in the past.

On the one hand, this includes heuristics like the Laplace metric used

by CN2 (Clark and Boswell, 1991), which assesses the quality of a rule

in terms of how many examples it covers and how accurately models

their true classes. On the other hand, heuristics like FOIL’s information

gain (Quinlan, 1990) evaluate the possible refinements of a rule relative

to its predecessor. In addition, there are also parameterizable heuristics,

such as the F-measure (Rĳsbergen, 1979) or theM-estimate (Cestnik, 1990).

They allow for an explicit trade-off between coverage and consistency by

adjusting a user-configurable parameter.

Pruning techniques Despite sophisticated rule learning heuristics, rule-based learning ap-

proaches are prone to overfitting when applied to domains with a

significant amount of noise in the data. Successful rule learning methods

often employ pruning techniques to counteract this problem (Fürnkranz,

1997). On the one hand, this includes pre-pruning methods that are

most often implemented in the form of stopping criteria. Their goal

is to terminate the training process as soon as adding new rules to a

model likely results in overfitting. For example, the stopping criterion

of CN2 (Clark and Boswell, 1991) employs a statistical significance test

to prevent the induction of unreliable rules. In contrast, FOIL (Quinlan,

1990) and RIPPER (Cohen, 1995) rely on the information-theoretic min-
imum description length (MDL) principle. On the other hand, pruning

techniques prevent the construction of overly specific rules by removing

too restrictive conditions from their bodies. In contrast to decision tree

learning, where post-pruning techniques are most commonly used to im-
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prove the reliability of a model once its construction has been completed,

the use of incremental reduced error pruning (IREP) has proved to be an

effective tool for overfitting avoidance in rule-based learning (Fürnkranz

and Widmer, 1994). Its basic idea is to learn an overly specific rule on a

random fraction of the available training examples and then generalize it

afterward by removing trailing conditions that are considered harmful to

the rule’s predictive accuracy according to an evaluation on previously

unused examples. Most notably, the principles of IREP are employed by

RIPPER (Cohen, 1995), which is one of the most competitive rule learning

algorithms available today.

InterpretabilityAs argued in the introduction of this work, many safety-critical applica-

tion domains, where unexpected behavior may lead to life-threatening

situations or economic loss, demand human-interpretable machine learn-

ingmodels that can be inspected and verified by domain experts (see, e.g.,

M. Du, N. Liu, and X. Hu, 2019; Molnar, Casalicchio, and Bischl, 2020;

Murdoch et al., 2019, for surveys on interpretable machine learning).

Symbolic classification methods, including decision trees and rule-based

models, are often considered to meet these requirements due to the

representation of domain knowledge in terms of simple conditional

statements humans can easily understand. However, the latter are of-

ten preferred over the former in applications that demand verification

by domain experts because even pruned decision trees, due to their

restriction to non-overlapping branches, tend to become quite complex

in noisy domains (Boström, 1995). Moreover, identical subtrees often

occur within a single decision tree due to the fragmentation resulting

from a separation into non-overlapping regions (Pagallo and Haussler,

1990). As the simplicity of models is generally considered an important

requirement for their interpretability, such practical issues that may

result in unnecessarily complicated models are often considered disad-

vantageous. However, even though large models are arguably harder to

comprehend by humans, other factors that may affect the plausibility and

justifiability of a model have recently been debated (Fürnkranz, Kliegr,

and Paulheim, 2020). As another trend in the literature on interpretable

machine learning, rule-based models have increasingly received atten-

tion for their ability to make the decision-making process of complex

statistical methods transparent. Existing approaches are either based on

converting entire black-box models into rule-based representations that

can be analyzed by humans (e.g., Zilke, Loza Mencía, and Janssen, 2016)

or utilize rules to provide local explanations of their predictions (e.g.,

Ribeiro, S. Singh, and Guestrin, 2016). This illustrates another attractive

property of rule models. Whereas a collection of rules provides a global

model, individual rules can be viewed as local explanations of the ex-

amples they cover (Fürnkranz, 2005). However, when using a learning

approach like the SeCo strategy mentioned above, which results in an

ordered list of rules, each rule must be interpreted in the context of its

predecessors. This is also highlighted by Lakkaraju, Bach, and Leskovec

(2016), who argue that unordered sets of rules aremore interpretable than

decision lists, as they can be decomposed into individual local patterns.

In conclusion, even though rule-based models are generally accepted as

one of the most interpretable model classes, their suitability for a manual

analysis depends on the particularities of a specific learning approach.

Moreover, as discussed in Section 2.3 below, models that are restricted

to few rules are often outperformed by larger models that result from
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ensemble methods. Due to these limitations and the increasing demand

for interpretable machine learning methods, the rule learning discipline,

after its advent in the 1980s and 90s, has again grown in relevance and

scientific interest in recent years.

2.3 Ensemble Methods

Bias-Variance Trade-off Decision trees and rule learners, especially when used without any

pruning techniques, are generally considered as learning approaches

with high variance. This means that they are very sensitive to small

changes in the training data, which may result in drastic changes in the

constructed model. On the one hand, this flexibility in model structure

causes the mentioned classification methods to be unstable, as their

predictions can easily be affected by minor perturbations of the training

inputs. On the other hand, it results in low bias, i.e., it ensures that

the learner can flexibly adjust to different data distributions and can

model complex decision boundaries. The bias and variance of a learning

method, as defined by Breiman (1996), are closely related to the risk

of under- or overfitting the data. Methods that balance these aspects

well are expected to deliver more reliable yet accurate predictions. A

well-known technique that helps to reduce the variance of a classifier

while at the same time increasing its bias is the use of ensemble methods
that combine the predictions of several unstable classifiers.

Random Forests The random forest (Breiman, 2001) method is an effective approach to

classification problems that illustrates the basic principles of ensemble

methods very well. It aims at learning ensembles of unpruned decision

trees, usually consisting of 100 or more trees, that we refer to as ensemble
members. The individual trees are constructed on different subsets of

the available training examples drawn with replacement, i.e., a single

example may occur multiple times within a single subset. In addition,

randomization is used to construct the individual trees by restricting

the possible spits at each of their internal nodes to random subsets

of the available attributes. This does not only allow for a much faster

construction of ensemble members, but also leads to a more diverse

collection of trees. Because each tree is forced to use different attributes for

modelling the provided data, the trees in a random forest can be viewed as

alternative solutions to a given classification problem. Due to the absence

of pruning techniques, the individual decision trees do not generalize

well to unseen data. However, the combination of their predictions via

majority voting results in accurate predictions that typically outperform

those of single decision trees. Moreover, because the overall predictions

of a random forest are less susceptible to changes in the training input,

this particular classification method usually provides convincing results

out-of-the-box, without the need for excessive parameter tuning.

Boosting Methods Another popular classification approach, which is based on the idea

to incorporate several unstable classifiers in an ensemble, is commonly

referred to as boosting. Its success in the machine learning community

originates from the highly influential AdaBoost (Freund and Schapire,

1997) algorithm. As ensemble members, AdaBoost traditionally uses

decision stumps, i.e., decision trees that are restricted to a single level. They

are built by following a sequential procedure, where the predictions of
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previously learned members affect the construction of their predecessors.

The basic idea is to adjust the weights of the training examples depending

on whether the existing ensemble members accurately deal with them.

Examples for which the existing decision stumps already provide accu-

rate predictions are assigned smaller weights, whereas more emphasis is

placed on mispredicted examples. The decision stump that is constructed

at a particular iteration of the training algorithm is obliged to focus on ex-

amples that are insufficiently handled by its predecessors and therefore is

meant to rectify their predictions. There is a close connection between the

basic principles of boosting and the adjustment of weights as performed

by rule learning algorithms based on weighted covering (c.f., Section 2.2).

However, rather than reducing the weights of examples, depending on

how often they are covered, boosting algorithms follow a statistically

well-justified framework for computing the updates of weights. They

employ a loss function to measure the overall quality of an ensemble’s

predictions at each training iteration and weigh the individual training

examples according to their impact on the overall performance. This

enables to guide the construction of new ensemble members such that

the resultingmodel ultimately optimizes the given loss function. An early

attempt to utilize boosting techniques for the induction of rules by extend-

ing the methodology of RIPPER (Cohen, 1995) is SLIPPER (Cohen and

Singer, 1999). Later, a more general framework that incorporates different

kinds of boosting-based rule learners, including SLIPPER as a special

case, was proposed in the form of ENDER (Dembczyński, Kotłowski,

and Słowiński, 2010). Even though boosting techniques have received

early attention in the rule learning community, they are nowadays more

commonly used to construct tree-based models. Implementations of gra-
dient boosted decision trees, such as XGBoost (T. Chen and Guestrin, 2016)

or LightGBM (Ke et al., 2017), use unpruned decision trees as ensemble

members. They are among the strongest classification methods available

today and are used successfully in numerous application domains.
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In this chapter, we discuss the fundamentals of multi-label classification.

In addition to other classification tasks, such as binary and multi-class

classification, this particular kind of classification problem has become

an established topic in the machine learning community. With regard

to the large number of publications this field of research has received

in recent years, we focus on existing work that is closely related to

the concepts discussed in the remainder of this thesis. We start by

providing a formal definition of multi-label classification problems

in Section 3.1, which is accompanied by a discussion of real-world

applications anddatasets in Section 3.2. In Section 3.3,we introducemulti-

label evaluation measures that are commonly used in the literature to

assess the performance of predictive models. The varying characteristics

of these measures are an important aspect of research on multi-label

classification. Hence, in Section 3.5, we discuss to what extent they benefit

from the ability of learning algorithms to take dependencies between

labels into account. Finally, we conclude this chapter by providing an

overviewof the capabilities and limitations of commonlyused approaches

to multi-label classification in Section 3.6, Section 3.7, and Section 3.8.

3.1 Problem Definition

Single- vs. Multi-label ClassificationIn machine learning, classification refers to tasks that require the as-

signment of objects to classes. Among the machine learning methods

that deal with such problems, binary and multi-class classification have

the longest history of active research. In the remainder of this work, we

refer to these traditional classification settings as single-label problems.
Algorithms that are aimed at these particular types of classification

problems should be capable of assigning objects, usually referred to as

examples or instances, to one out of two or several mutually exclusive

classes (cf. Chapter 2). E.g., the examples could be text documents, which

a classifier should automatically assign to one out of several predefined

topics. Classification approaches based on supervised learning aim to

deduce a predictive model from a limited set of labeled training examples

for which the true classes are known. A good model should generalize

well beyond the provided observations, such that it can be used to make

predictions for unseen examples. This is contrast to unsupervised and

semi-supervised learning, where no labeled examples are provided to

the classifier beforehand.

Label SpaceUnlike in binary or multi-class classification, where an example always

corresponds to a single class, in multi-label classification (MLC), a single

example may be associated with several class labels at the same time.

For example, in the field of text classification, a text document can often

not be assigned to a single category unambiguously but may belong

to multiple topics, such as “Politics” and ”Economy”, simultaneously.



18 3 Foundations of Multi-label Classification

1: Binary classification can be considered

as a special case of multi-label classifica-

tion where only a single label is available,

i.e., where |L| = 1.

2: If

∑
: H: = 1, amulti-label classification

task simplifies to a multi-class problem

with  mutually exclusive classes.

Hence, the goal of a multi-label classifier is to assign a particular example

to an arbitrary number of labels �: out of a predefined and finite labelset

L = {�1 , . . . ,� }.1 We specify the labels that are associated with an

example in the form of a binary label vector

y = (H1 , . . . , H ) ∈ Y , (3.1)

where each element H: ∈ {0, 1} indicates whether the :-th label is

irrelevant (H: = 0) or relevant (H: = 1) to the example.
2
The label space

Y = {0, 1} denotes all possible labelings. Themethods that are discussed

in the remainder of this work require the label vectors of individual

examples to be fully specified. We do not consider approaches that deal

with partially labeled data (see, e.g., Xie and S.-J. Huang, 2018).

Feature Space In this work, we deal with structured tabular data, where each example

can be represented by a feature vector

x = (G1 , . . . , G!) ∈ X (3.2)

that assigns constant values to numerical, ordinal, or nominal attributes
or features �; out of a predefined set A = {�1 , . . . , �!} inherent to the

application domain at hand. X ∈ R!
denotes the feature space that

consists of all possible feature vectors. A feature value that corresponds

to a numerical attribute may be any positive or negative real number, e.g.,

a temperature. In the case of ordinal attributes, the values are restricted

to a predefined finite set. Such categorical values, e.g., temperatures

specified as either “cold”, “warm” or “hot”, are usually encoded by

enumerating the available categories in a meaningful order. In contrast,

the categorical values of nominal attributes are not subject to any order.

E.g., no meaningful order can be imposed on boolean values like “true”

and “false”. In the course of this work, we also discuss means to deal

with missing feature values, i.e., datasets where individual elements in

an example’s feature vector are unspecified.

Multi-label Classifiers The methods discussed in this work treat multi-label classification as

a supervised learning problem, i.e., a model is fit to the examples in a

labeled training data set

D = {(x= , y=) | 1 ≤ = ≤ #} ⊂ X × Y (3.3)

for which the true labelings, referred to as the ground truth, are known.

The goal is to learn a model 5 : X → Y that maps from the feature

space to the label space. A model of this kind can be considered as a

classification function that provides a prediction ŷ = 5 (x) for any given

example. In the following, we will denote a binary label vector that is

predicted by a multi-label classifier as

ŷ = (Ĥ1 , . . . , Ĥ ) ∈ Y . (3.4)

Rankings and Probability Estimates Instead of providing a prediction in the form of a binary label vector,

MLC classifiers may also deliver a ranking of the available labels, where

the labels are ordered by their relevance for a particular example. Al-

ternatively, they may assess the relevance or irrelevance of individual

labels in terms of probabilities. Such representations can subsequently

be turned into a binary prediction, e.g., by applying a threshold that



3.2 Applications and Datasets 19

6: https://www.uco.es/kdis/

mllresources

separates relevant labels from irrelevant ones. However, if not stated

otherwise, we assume a classifier’s predictions to be given in the binary

form.

3.2 Applications and Datasets

Dateset RepositoriesExperiments are usually conducted on a series of benchmark datasets

to empirically evaluate an MLC method’s predictive performance and

compare the results to those of competing approaches. Several collections

of datasets from different real-world application domains are publicly

available, e.g., the datasets provided by the MEKA (Read, Reutemann,

et al., 2016) project
3

3: https://waikato.github.io/meka/

datasets

, theMULAN (Tsoumakas, Spyromitros-Xioufis, et al.,

2011) project
4

4: http://mulan.sourceforge.net/

datasets-mlc.html

, the LIBSVM (C.-C. Chang and C.-J. Lin, 2011) project
5

5: https://www.csie.ntu.edu.tw/

~cjlin/libsvmtools/datasets
or those included in the MLDA (Moyano, Gibaja, and Ventura, 2017)

tool for analyzing multi-label datasets.
6

A selection of datasets from

the mentioned sources, which are used for experiments throughout the

remainder of this work, is shown in Table 3.1. All of these datasets can

also be retrieved from a publicly available repository.
7

7: https://github.com/mrapp-ke/

Boomer-Datasets

Text ClassificationEarly approaches to multi-label classification mostly evolved around the

problem of text classification (see, e.g., Sebastiani, 2002, for an early publi-

cation on the topic). Due to the large number of benchmark datasets that

belong to this particular application domain, the automated annotation of

text documents with topics, authors, emotions, or the like remains one of

the most relevant MLC settings. The types of documents to be dealt with

by a text classification algorithm may vary. In the past, such algorithms

have been applied to news articles (Lang, 2008; Lewis et al., 2004; Read,

2010), web documents (Read, 2010; Tsoumakas, Katakis, and Vlahavas,

2008; Ueda and Saito, 2003), e-mail conversations (Read, Pfahringer, and

Holmes, 2008), legal texts (Loza Mencía and Fürnkranz, 2008), scientific

papers (Joachims, 1998; Katakis, Tsoumakas, and Vlahavas, 2008), as

well as medical and technical reports (Pestian et al., 2007; Srivastava and

Zane-Ulman, 2005).

MultimediaNowadays, MLC methods are also used to deal with diverse multimedia

resources, such as images (Boutell et al., 2004; M.-L. Zhang and Z.-H.

Zhou, 2007), videos (Snoek et al., 2006), or audio recordings (Briggs et al.,

2013; Tsoumakas, Katakis, and Vlahavas, 2008; Turnbull et al., 2008).

However, as many classification methods are restricted to relational

data, rather than being capable of dealing with highly unstructured

data, such as raw images, the data must eventually be converted into a

suitable format. For example, Boutell et al. (2004) use numerical features

to represent the colors that are predominant in different regions of

images.

BiologyApproaches to multi-label classification have also received attention in

the field of biology. Prominent examples include the assignment of genes

to functional categories (Elisseeff andWeston, 2001) and the prediction of

sub-cellular locations of proteins according to their sequences (Xu et al.,

2016).

Other ApplicationsBesides the applications of MLC methods that are mentioned above

and are relevant to this work, as we use datasets from the respective

domains for experiments, many more use cases exist. For example, this

https://www.uco.es/kdis/mllresources
https://www.uco.es/kdis/mllresources
https://waikato.github.io/meka/datasets
https://waikato.github.io/meka/datasets
http://mulan.sourceforge.net/datasets-mlc.html
http://mulan.sourceforge.net/datasets-mlc.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
https://github.com/mrapp-ke/Boomer-Datasets
https://github.com/mrapp-ke/Boomer-Datasets
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8: For example, benchmark datasets for

extreme multi-label classification can be

obtained from http://manikvarma.org/

downloads/XC/XMLRepository.html.

9: Text classification datasets often come

with binary features that indicate the pres-

ence (1) or absence (0) of keywords in

individual text documents. As most docu-

ments contain only a small fraction of the

available keywords, most feature values

are equal to zero.

includes chemical data analysis, social network mining, or applications

in marketing. For a more comprehensive list of real-world applications,

we refer to survey articles on the topic, such as those published by Gibaja

and Ventura (2014) or M.-L. Zhang and Z.-H. Zhou (2014).

Data Dimensionality In binary and multi-class classification, the amount of data that must

be processed by a supervised learning approach mainly depends on the

number of training examples and attributes. In multi-label classification,

where each example may be associated with several labels rather than a

single class, the dimensionality of the input data is also heavily affected

by the number of available labels. Table 3.1 provides an overview of the

dimensionality of selected benchmark datasets that are relevant to this

work. Whereas some of the datasets consist of thousands of examples or

features, we restrict ourselves to datasets with up to a few hundred labels.

This is a deliberate choice even tough research on MLC has increasingly

shifted towards extreme multi-label classification (XMLC), where enormous

amounts of data with thousands or even millions of labels should be

handled (see, e.g., Rahul Agrawal et al., 2013; Deng et al., 2010; Denton et

al., 2015; Prabhu, Kag, et al., 2018; Prabhu and Varma, 2014; Prajapati and

Thakkar, 2019, for applications and datasets).
8
Approaches to XMLC are

usually based on projections from a high-dimensional problem domain

to a domainwith reduced complexity, which requires strong assumptions

about the data. Rather than restricting ourselves to a particular scenario

with unique requirements, we aim at a more general investigation of

the capabilities and limitations of rule-based approaches considering a

broad range of applications and datasets with varying characteristics. For

completeness, we provide an overview of projection methods suitable

for XMLC in Section 3.8. As they can often be used with arbitrary black-

box classifiers, they can potentially be combined with the rule learning

approaches discussed in the following chapters. However, we consider

this particular direction of research to be out of the scope of this work.

Feature and Label Sparsity To gain a better impression of the benchmark datasets used in this work,

Table 3.2 provides an overview of metrics that are commonly used to

characterize multi-label data. First of all, we consider the feature and label
sparsity, i.e., the percentage of feature values and ground truth labels

that are equal to zero. These two metrics calculate as

S- (D) ≔
∑#
==1

∑!
;=1
~G=; = 0�

#!
and S. (D) ≔

∑#
==1

∑ 
:=1
~H=: = 0�

# 
,

(3.5)

where ~G� evaluates to 1 or 0 if the predicate G is true or false, respectively.

In many cases, especially when dealing with text classification datasets,

the feature values of the individual examples are often equal to zero.
9
A

similar observation can be made regarding the label sparsity, which is

typically high, regardless of the application domain. This illustrates the

tremendous potential of learning algorithms that are capable of dealing

with sparsity in the feature or label space in an efficient way. In Chapter 7,

we discuss ways to exploit such sparsity to reduce the time that is needed

to train rule-based MLC models.

Label Imbalance The sparsity in ground truth labels that is characteristic of many multi-

label datasets also imposes challenges on learning algorithms. Besides

labels that occur more frequently, a multi-label dataset typically includes

many rare labels that are only relevant to a small fraction of the available

http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
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Table 3.1: Dimensionality of selected benchmark datasets from different domains (sorted alphabetically by their names), including the

number of examples, numerical and nominal attributes and labels.

Dataset Examples Attributes Labels
Numerical Nominal

20NG (Lang, 2008) 19, 300 1, 006 0 20

Bibtex (Katakis, Tsoumakas, and Vlahavas, 2008) 7, 395 0 1, 836 159

Birds (Briggs et al., 2013) 645 258 2 19

Bookmarks (Katakis, Tsoumakas, and Vlahavas, 2008) 87, 860 0 2, 150 208

CAL500 (Turnbull et al., 2008) 502 68 0 174

Delicious (Tsoumakas, Katakis, and Vlahavas, 2008) 16, 110 0 500 983

Emotions (Tsoumakas, Katakis, and Vlahavas, 2008) 593 72 0 6

Flags (Gonçalves, Plastino, and Freitas, 2013) 194 10 9 7

Genbase (Diplaris et al., 2005) 662 0 112 27

Enron (Read, Pfahringer, and Holmes, 2008) 1, 702 0 1, 001 53

EukaryoteGO (Xu et al., 2016) 7, 766 12, 690 0 22

EukaryotePseAAC (Xu et al., 2016) 7, 766 440 0 22

EUR-Lex-SM (Loza Mencía and Fürnkranz, 2008) 19350 5, 000 0 201

Image (M.-L. Zhang and Z.-H. Zhou, 2007) 2, 000 294 0 5

IMDB (Read, 2010) 120, 900 1, 001 0 28

Langlog (Read, 2010) 1, 460 1, 004 0 75

Mediamill (Snoek et al., 2006) 43, 910 120 0 101

Medical (Pestian et al., 2007) 1, 954 1, 909 0 45

Nus-Wide cVLADplus (Chua et al., 2009) 269, 648 128 1 81

Ohsumed (Joachims, 1998) 13, 930 1, 002 0 23

Reuters-K500 (Lewis et al., 2004) 6, 000 500 0 103

Scene (Boutell et al., 2004) 2, 407 294 0 6

Slashdot (Read, 2010) 3, 782 3, 125 0 22

TMC2007 (Srivastava and Zane-Ulman, 2005) 28, 600 0 49, 060 22

Yahoo-Computers (Ueda and Saito, 2003) 12, 444 34, 096 0 33

Yahoo-Reference (Ueda and Saito, 2003) 8, 027 39, 679 0 33

Yahoo-Science (Ueda and Saito, 2003) 6, 428 37, 187 0 40

Yahoo-Social (Ueda and Saito, 2003) 12, 111 52, 350 0 39

Yeast (Elisseeff and Weston, 2001) 2, 417 103 0 14

examples. We use the label imbalance ratio (Charte et al., 2013) to measure

the degree of imbalance across the labels in a dataset as

IR (D) = 1

 

 ∑
:=1

argmax8∈[1, ]
(∑#

==1
H=8

)∑#
==1

H=:
. (3.6)

Figure 3.1 shows the frequencies of labels in a typical multi-label dataset

and the imbalance ratio for each label. It can be seen that the vast majority

of labels occur far less often than the most frequent ones. In order to

perform well, a classifier must be able to accurately identify the examples

to which these rare labels belong without considering them in cases

where they are irrelevant. Rare labels also require special treatment when

sampling from multi-label data, which is an essential aspect of many

machine learning techniques.

Distinct LabelsetsWe also characterize multi-label datasets regarding the number of distinct
labelsets (Tsoumakas, Katakis, andVlahavas, 2009) they entail. Thismetric,

which corresponds to the number of unique label vectors y= in a dataset,

is especially relevant when using classification methods that do not

consider each label independently but aim to model the relevance and
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Table 3.2: Characteristics of selected benchmark datasets (sorted alphabetically by their names), including the percentage of sparse feature

values and ground truth labels, the average label imbalance ratio, the average label cardinality and the number of distinct labelsets.

Dataset Feature Label Avg. Label Label Distinct
Sparsity Sparsity Imbalance Ratio Cardinality Labelsets

20NG 96.81 94.86 1.01 1.03 55

Bibtex 96.26 98.49 12.50 2.40 2, 856

Birds 38.64 94.66 5.41 1.01 133

Bookmarks 94.16 99.02 12.31 2.03 18, 716

CAL500 0.15 85.03 20.58 26.04 502

Delicious 96.34 98.07 71.13 19.02 15, 806

Emotions 0.33 68.86 1.48 1.87 27

Flags 59.20 51.55 2.26 3.39 54

Genbase 22.63 95.36 37.32 1.25 32

Enron 91.60 93.63 73.95 3.38 753

EukaryoteGO 99.86 94.79 45.01 1.15 112

EukaryotePseAAC 43.37 94.79 45.01 1.15 112

EUR-Lex-SM 95.26 98.90 536.98 2.21 2, 504

Image 0.22 75.28 1.19 1.24 20

IMDB 98.06 92.86 25.12 2.00 4, 503

Langlog 81.38 98.43 39.27 1.18 304

Mediamill 0.00 95.67 256.40 4.38 6, 555

Medical 99.32 97.24 89.99 1.24 94

Nus-Wide cVLADplus 0.00 97.69 95.12 1.87 18, 430

Ohsumed 96.03 92.77 7.87 1.66 1, 147

Reuters-K500 98.41 98.58 54.08 1.46 811

Scene 1.15 82.10 1.25 1.07 15

Slashdot 99.46 94.10 19.46 1.18 156

TMC2007 99.79 90.19 15.16 2.16 1, 341

Yahoo-Computers 99.62 95.43 176.70 1.51 428

Yahoo-Reference 99.59 96.44 461.86 1.17 275

Yahoo-Science 99.53 96.38 52.63 1.45 457

Yahoo-Social 99.71 96.72 257.70 1.28 361

Yeast 0.00 69.74 7.20 4.24 361

irrelevance of entire label subsets. In theory, the number of possible

label combinations 2
 
grows exponentially with the number of labels  ,

making such an approach increasingly costly. However, as can be seen

in Table 3.2, only a small fraction of the possible labelsets is typically

observed in practice and must therefore be taken into account by a

classifier.

Label Cardinality As another result of the sparsity in the ground truth labels that is inherent

to many multi-label datasets, the label cardinality (Tsoumakas, Katakis,

and Vlahavas, 2009) is often relatively small. It corresponds to the average

number of labels that are relevant to an example and computes as

C (D) ≔ 1

#

#∑
==1

 ∑
:=1

H=: . (3.7)
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Figure 3.1: Frequencies of the labels in

the dataset “Enron”, sorted in decreasing

order from left to right, as well as the

corresponding imbalance ratio for each

label.
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...

1 2 3 4 5 6 7 8 9 10

Training set Test set

Figure 3.2: Illustration of a 10-fold cross

validation, where the training and test

sets that are used for the individual folds

result from a partition of the dataset into

ten equally sized subsets.

3.3 Evaluation Measures

Training-Test SplitTo compare the predictive performance of different classifiers with each

other, evaluation measures are used to assess the quality of predictions

in terms of a single score. To obtain an unbiased estimate of a model’s

quality, labeled examples that have not been provided to the learning

algorithm as part of the training data should be used for evaluation. To

make it easier to conduct experiments, dataset repositories, such as those

mentioned in Section 3.2, often provide datasets in a preprocessed form,

where the available examples are split into disjoint training and test sets.

Alternatively, cross validation (CV) may result in a more reliable estimate

of a model’s performance. It is based on splitting up a dataset into several

non-overlapping subsets of approximately the same size. Each of these

sets is then used to evaluate a model trained on the examples from the

remaining subsets. The performance estimates for the different models

are finally averaged to obtain a single score. In this work, we primarly use

10-fold CV, as depicted in Figure 3.2. To further maintain the distribution

of labels in a dataset, Sechidis, Tsoumakas, and Vlahavas (2011) advocate

the use of stratification to create representative training and test sets from

a multi-label dataset. According to their studies, the use of stratification

reduces the variance across different CV folds and helps prevent the

creation of subsets where no examples are associated with rare labels.

Evaluation FunctionsIn multi-label classification, where the labels that may be associated

with an example are not mutually exclusive, many ways to compare a

classifier’s predictions to the ground truth labels exist. This has lead to

the proposal of many evaluation measures with varying characteristics.

In this work, we use bipartition evaluation measures that compare the set

of labels that are predicted to be relevant to the set of relevant labels

according to the ground truth.Allmeasures of this kind can be considered

functions

M(., .̂) ∈ ℝ with ., .̂ ∈ {0, 1}#× (3.8)

that assess the quality of predictions for# examples and labels in terms

of a single score � ∈ ℝ. By ., we denote the true labels according to the

ground truth, whereas .̂ corresponds to the predicted labels provided

by a classifier.

Hamming LossAmong the most commonly reported measures in empirical studies

are adaptations of the 0/1 loss known from binary classification. This

includes the Hamming loss that measures the fraction of incorrectly
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predicted labels among all labels. It calculates as

MHamm.(., .̂) ≔
1

# 

#∑
==1

 ∑
:=1

~H=: ≠ Ĥ=:�, (3.9)

where the term ~G� evaluates to 1 or 0, depending on whether the

predicate G is true or false.

Subset 0/1 Loss Similar to the Hamming loss, the subset 0/1 loss can also be considered a

generalization of the standard 0/1 loss to multiple labels, albeit in a very

different way. Unlike the former, the latter does not consider individual

labels in isolation but takes all labels of an example into account at

the same time. It corresponds to the fraction of examples for which at

least one label is mispredicted. As a false prediction for a single label is

penalized as much as predicting several labels of an example incorrectly,

the subset 0/1 loss is considered particularly challenging to optimize. It

is formally defined as

MSubs.(., .̂) ≔
1

#

#∑
==1

~y= ≠ ŷ=�. (3.10)

Limitations of Hamming and Subset 0/1 Loss Both the Hamming and the subset 0/1 loss have disadvantages when

used to evaluate the predictive performance of MLC methods. On the

one hand, the Hamming loss is often close to zero, as in many multi-label

datasets the label cardinality, i.e., the average number of labels that are

relevant to an example, is very small. Many rare labels, which are only

relevant to few examples, exist in such a dataset. Consequently, even

an overly simple classifier that predicts all labels as irrelevant performs

well with respect to these rare labels. In such a case, the Hamming loss

indicates high predictive accuracy, and more sophisticated approaches,

which can distinguish between relevant and irrelevant labels, only achieve

minor improvements in the reported score. On the other hand, the subset

0/1 loss is a very stringent measure that is often close to one. When

dealing with datasets that contain a large number of labels, it becomes

increasingly difficult to predict all labels correctly. Because the prediction

for an example is considered incorrect as a whole, if only a single

mistake is made, this particular measure does not discriminate between

approaches that predict correctly for most of the labels and methods that

perform poorly for all labels.

Confusion Matrices To compensate for the disadvantages of the Hamming and subset 0/1

loss, and to provide a more differentiated evaluation of a classifier’s

abilities and shortcomings, additional measures should be included in

an empirical analysis. Instead of merely focusing on the (in)correctness

of predictions, such measures often differentiate between predictions for

relevant and irrelevant labels. Their definition is usually based on two-

dimensional confusion matrices that characterize a model’s predictions

in terms of the number of true positives (TP), false positives (FP), true
negatives (TN), and false negatives (FN). Given predictions for # examples

and labels, one obtains# · binary confusionmatrices�=: according to

Table 3.3. The binary confusion matrices may be aggregated via element-

wise addition to assess the quality of the predictions in terms of a single

score, and the scores that are computed based on an aggregated confusion

matrix may be averaged. Depending on the order of aggregation and
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Table 3.3: A binary confusion matrix that

compares the prediction for a label Ĥ to

the corresponding ground truth H.

Ĥ = 0 Ĥ = 1

H = 0 TN FP
H = 1 FN TP

averaging, different strategies to obtain an overall performance estimate

are possible. To facilitate the notation of evaluation measures, which

are based on confusion matrices that have been aggregated in different

ways, we define various functions for the aggregation of binary confusion

matrices. First of all, this includes a function for aggregating confusion

matrices across all available examples and labels according to the formula

aggrMicro(., .̂) B �11 ⊕ · · · ⊕ �1 ⊕ · · · ⊕ �#1 ⊕ · · · ⊕ �# , (3.11)

where ⊕ denotes the element-wise addition of confusion matrices.

In addition, we also use a function that returns a single confusion matrix

for a particular example x= by aggregating the binary confusion matrices

that correspond to individual labels. It is formally defined as

aggrEx.-w.(y= , ŷ=) B �=1 ⊕ · · · ⊕ �= . (3.12)

Finally, if we are interested in obtaining an aggregated confusion matrix

for a particular label, we use the aggregation function

aggrL.-w.(y: , ŷ:) B �
1: ⊕ · · · ⊕ �#: , (3.13)

where y: and ŷ: correspond to the ground truth and predictions for a

particular label �: .

Micro AveragingIn combination with a bipartition metric M : ℕ2×2 → ℝ that takes a

previously aggregated confusion matrix as an argument, the functions

given above can be used to assess the quality of predictions for several

examples and labels in termsof a single score.Whenusing the aggregation

function in (3.11), the overall evaluation score computes as

MMicro(., .̂) BM
(
aggrMicro(., .̂)

)
. (3.14)

We refer to such an evaluation measure, where all examples and labels

are considered equally important, as micro-averaged.

Example-wise AveragingWhen using the aggregation function in (3.12), the evaluation scores

that result from applying a bipartition metric M to the aggregated

confusion matrices for individual examples must finally be averaged to

obtain a single score. As a classifier usually predicts for given examples

independently, such an example-wise averaged measure

MEx.-w.(., .̂) B
1

#

#∑
==1

M
(
aggrEx.-w.(y= , ŷ=)

)
. (3.15)

appears to be a natural choice to assess its predictive performance and is

used for most experiments in this work.

Label-wise AveragingSimilarly, a label-wise averaged evaluation measure uses the aggregation

function in (3.13). In this case, an aggregated confusion matrix is first ob-

tained for each label, and the individual scores that result from applying a

bipartitionmetricM to each one are finally averaged. Compared tomicro-

and example-wised averaged measures, which are often dominated by
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more frequent labels, such an evaluation measure

ML.-w.(., .̂) B
1

 

 ∑
:=1

M
(
aggrL.-w.(y: , ŷ:)

)
(3.16)

is particularly useful if high predictive accuracy is desired for all labels,

including the very rare ones.

Precision and Recall

Precision and recall are among the bipartition metrics that provide useful

information about the predictions of amodel. In contrast to the Hamming

loss and the subset 0/1 loss, where smaller scores are better, these two

metrics should be maximized, i.e., methods that achieve larger scores

outperform methods with smaller scores. Given a confusion matrix that

has been obtained by using one of the aggregation schemes in (3.11),

(3.12) or (3.13), precision is defined as

MPrec.(�) ≔
TP

TP + FP
. (3.17)

It penalizes cases where a label is incorrectly predicted as relevant (FP)

and therefore suffers from predicting relevant labels as irrelevant (FN).

Small scores according to this metric indicate that a model tends to

mispredict many labels as relevant. Predicting more conservatively, i.e.,

only predicting labels as relevant if they belong to an example with

high probability, improves the precision of a model but typically comes

with a deterioration in terms of recall. This is because recall suffers from

predicting relevant labels as irrelevant (FN), as can be seen in the formula

MRec.(�) ≔
TP

TP + FN
. (3.18)

F1-measure As precision and recall can both be maximized at the expense of the other,

a predictive model should ideally perform well in terms of both of these

bipartition measures. The F1-measure, which is preferred over precision

and recall in this work, strives for such a balance. Given a previously

aggregated confusion matrix, it calculates as

MF1(�) ≔
2TP

2TP + FP + FN
, (3.19)

and corresponds to the equally weighted harmonicmean of precision and

recall.
10

10: More general formulations of the mea-

sure include a parameter � ∈ [0,+∞] that
allows to control the trade-off between

precision and recall (cf. Section 5.2).

Due to the properties of the harmonic mean, poor performance

in terms of either precision or recall results in a decline of the resulting

F1 score.

Other Measures Besides the metrics used in this work, many additional measures for

evaluating multi-label classifiers can be found in the literature. Besides a

wide variety of bipartition measures, this also includes ranking measures.
This particular family of evaluation measures is useful if a predictive

model imposes an order on the labels, e.g., by sorting them according to

their probability to be relevant to an example. We refer to survey articles

for a complete overview of commonly used bipartition and ranking

measures. E.g., Tsoumakas, Katakis, and Vlahavas (2009), Sorower (2010),

Gibaja and Ventura (2014), or M.-L. Zhang and Z.-H. Zhou (2014) provide

a comprehensive overview of this aspect of multi-label classification.
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12: For a fair comparison, average ranks

should be assigned in the case of ties.

3.4 Statistical Significance Tests

Comparison Across Multiple DatasetsThe evaluation measures discussed in Section 3.3 can be used to assess

the quality of multi-label predictions that are provided by a classifier for

unseen test data in terms of a numerical score �. Usually, an empirical

investigation of an MLCmethod’s capabilities and limitations demands a

comparison of the performance estimates obtained for different datasets

D1 , . . . ,D� with those of one or several competing approaches. In the

literature, tabular or graphical representations are most commonly used

to compare the observations �81 , . . . , �8� that result from the application

of different classification methods 58 to a particular dataset. In addition,

the use of statistical significance tests may help to conclude whether

individual methods are superior to their competitors. Given a particular

approach that tends to outperform another one in a series of experiments,

statistical tests determine the probability 1 − ? that the differences in

predictive performance are not produced by chance. The differences are

considered statistically significant with respect to a significance level 
 if

the inequality ? < 
 holds.
11

11: Commonly used values for the signifi-

cance level 
 are 1%, 5% or 10% (Demšar,

2006)

Ranks and Average RanksThe application of statistical tests often requires to obtain a ranking of

competing classification approaches by their predictive performance.

Such a ranking may also be reported in scientific publications for a more

comprehensive overview of experimental results. For this purpose, we

sort the tested classifiers according to a bĳective permutation function �3 :

ℕ→ ℕ that takes their respective performance on a specific dataset D3

into account. It assigns ranks to individual competitors, such that �3 (8) <
�3 (9) ,∀8 , 9 if the evaluation score �83 achieved by the 8-th classifier

is better than the score �93 that corresponds to the 9-th classification

method.
12

The average rank of a classifier 58 across all � datasets may be

computed as

A8 =
1

�

�∑
3=1

� (8) . (3.20)

It allows to compare the performance of competing approaches across

several datasets.

Friedman TestDemšar (2006) discusses different statistical tests for the empirical evalu-

ation of machine learning methods. In this work, we rely on the Friedman
test (M. Friedman, 1937, 1940) to verify whether the evaluation scores

achieved by several classifiers in a series of experiments on different

datasets are similar. The null hypothesis to be testified or refuted by the

Friedman test states that all tested classifiers perform equally, i.e., their

evaluation scores follow the same distribution. Under the null hypothesis,

if the number of available datasets � and the number of tested classifiers

� is sufficiently large
13

13: Demšar (2006) advices to use � > 10

and � > 5 as a rule of thumb.
, the Friedman statistic

"2

� =
12�

� (� + 1)

(
�∑
8=1

A2

8 −
� (� + 1)2

4

)
(3.21)

is distributed according to a Chi-squared distribution with � − 1 degrees

of freedom. Following the suggestion of Demšar (2006), we instead use
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14: https://people.richland.edu/

james/lecture/m170/tbl-chi.html

the less conservative statistic

�� =
(� − 1) "2

�

� (� − 1) − "2

�

(3.22)

with (� − 1) (� − 1) degrees of freedom. If the statistic �� exceeds a

certain critical distance, corresponding to a quantile of the Chi-squared

distribution, the null hypothesis is rejected. Tables of maximum critical

distances, given the degrees of freedom and a desired significance level


, can be found in statistical books or online.
14

In cases where only a few

classifiers or datasets are available, exact critical distances, such as the

ones provided by Martin, Leblanc, and Toan (1993), should be used.

Nemenyi Post-hoc Test If the null hypothesis of the Friedman test is rejected, we can employ a

post-hoc test to identify classifiers that significantly outperform one or

several of their competitors. As proposed by Demšar (2006), we use the

Nemenyi test (Nemenyi, 1963) for this purpose. It states that the predictive

performance of two classifiers is significantly different if their average

ranks differ by at least the critical distance

@


√
� (� + 1)

6�
, (3.23)

where @
 corresponds to the Studentized range statistic divided by

√
2.

Critical values for @
 are provided by Demšar (2006), depending on the

number of classifiers � and the significance level 
.

3.5 Label Dependence

Examples of Label Dependencies In many real-world applications of multi-label classification, dependen-

cies between the available labels can be observed in the data. In such

case, the relevance or irrelevance of individual labels correlates with

each other. For example, in text classification, where text documents

should be annotated with one or several topics, one could observe that

the label “foreign affairs” is more likely to be relevant to a document if it

belongs to the topic “politics”. The other way around, from the relevance

of a label, one may conclude that another label is unlikely to be relevant.

For example, in text classification, this could be the case if documents

annotated with the label “sports” are unlikely to belong to the topic

“foreign affairs”. The idea of capturing and exploiting correlations, such as

co-occurrences and exclusions, between labels to improve the predictive

performance of multi-label classifiers has become a driving force for

research on multi-label classification. Many MLC methods proposed in

recent years, including approaches that are presented in this work, are

motivated by this idea.

Marginal and Conditional Dependence Dembczyński, Waegeman, et al. (2012) provide a more formal view of

the different types of stochastic dependencies that may be found in multi-

label data. The authors distinguish between conditional and marginal
(unconditional) label dependence. The former refers to dependencies

that are locally restricted to a particular region in the feature space. In

such a case, the joint distribution of a label vector y is conditioned on an

https://people.richland.edu/james/lecture/m170/tbl-chi.html
https://people.richland.edu/james/lecture/m170/tbl-chi.html
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example x, i.e.,

? (y |x) = ? (H1 |x) × · · · × ? (H |x) . (3.24)

In contrast, marginal dependence is independent of any concrete example.

Consequently, the joint distribution of a label vector y can be written in

terms of marginals ? (H:), i.e., independent of any particular observation

x, as
? (y) = ? (H1) × · · · × ? (H ) . (3.25)

Decomposability and Non-decomposabilityFurthermore, Dembczyński, Waegeman, et al. (2012) provide strong em-

pirical and theoretical arguments that not only the type of dependencies

in a dataset but also the type of evaluation measure to be optimized

strongly influence to what extent the exploitation of label correlations can

be expected to result in an improvement of predictive performance. In

the literature, one usually distinguishes between label-wise decomposable
and non-decomposable evaluation measures. On the one hand, the former

can be calculated by applying a suitable single-label evaluation function

M: to each label individually and aggregating the results, i.e.,

M(., .̂) =
 ∑
:=1

M:

(
.: , .̂:

)
, (3.26)

where.: , .̂: ∈ {0, 1}#×1

denote the ground truth and the predictions for

a single label �: , respectively. On the other hand, a non-decomposable

evaluation measure cannot be expressed in this form. For example, a

prominent representative of decomposable measures is the Hamming

loss in (3.9). In contrast, the subset 0/1 loss in (3.10) and the F-measure

in (3.19), unless applied in a label-wise manner according to (3.16), are

non-decomposable evaluation metrics.

Target Measure OptimizationGiven that the labels in a dataset are not stochastically independent, the

results provided by Dembczyński, Waegeman, et al. (2012) suggest that

learning algorithms may benefit from capturing marginal dependencies

regardless of whether a decomposable or a non-decomposable evaluation

measure should be optimized. The ability to model conditional depen-

dencies is crucial when optimizing non-decomposable measures, such

as the subset 0/1 loss. Consequently, a single MLC method can usually

not be expected to provide optimal predictions with respect to different

types of evaluation measures. For example, depending on the dataset,

minimization of the Hamming loss can result in poor performance ac-

cording to the subset 0/1 loss or vice versa. Ideally, a learning algorithm

should offer the ability to be tailored to a specific metric, depending on

the use case at hand. Unfortunately, it often remains unclear what kind

of measure different approaches aim to optimize. Instead of relying on a

methodology that is suited for a specific use case, the ability to capture

correlations in the label space is often considered a universal goal of

MLC methods, regardless of the target measure.
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3.6 Transformation Methods

Among the most popular approaches to multi-label classification are

so-called problem transformation methods. They are based on transforming

the original multi-label learning task into several sub-problems that can

be solved by means of binary or multi-class classification algorithms. In

the following, we introduce some of the most well-known transformation

methods. We also discuss their capabilities and shortcomings when it

comes to optimizing different evaluation measures, their ability to model

marginal or conditional label dependence, as well as their computational

efficiency.

Binary Relevance

Label-wise Decomposition The binary relevance (BR) method is based on decomposing a multi-label

problem into a series of binary classification tasks. Each one is concerned

with the prediction of a single label. Given a dataset with  labels, it

requires training a series of independent base classifiers 51 , . . . , 5 on

binary training sets

D̃: = {(x= , H=:) | 1 ≤ = ≤ #} , (3.27)

which are derived from the original multi-label data. Given an example to

predict for, each of the classifiers 5: : X → {0, 1} provides a prediction for

the corresponding label �: . Combining the predictions for the individual

labels results in a binary label vector

ŷ = ( 51 (x) , . . . , 5 (x)) . (3.28)

If the learning algorithm that is used to tackle the individual sub-problems

can predict probabilities, the BR method can also be used to provide a

ranking of the labels by their probability to be relevant to an example.

Advantages and Disadvantages As the information, which is provided to solve individual sub-problems,

is restricted to a single label, the BR method cannot model any label

dependence. Nevertheless, it is a natural choice when one is interested in

optimizing decomposable evaluation measures, as they allow for a label-

wise decomposition of the optimization problem, according to (3.26).

Due to its conceptional simplicity and because BR can be instantiated

with a wide variety of binary learning algorithms, it is probably the most

commonly used approach to multi-label classification. Moreover, because

each label is considered independently rather than taking combinations

of labels into account, this particular transformation method comes with

small computational overhead. The computational costs of training a BR

model and providing predictions for unseen examples scale linearly with

the number of labels.

Stacked Binary Relevance The binary relevance method has received great attention in the lit-

erature, including several proposals that aim to overcome the limita-

tions mentioned before. However, in the remainder of this work, we

restrict ourselves to the basic concept introduced above, as it provides a

straightforward solution for the label-wise optimization of decomposable

evaluation measures. M.-L. Zhang, Y.-K. Li, et al. (2018) discuss several

extensions to the BR approach. Most of them give up the strict separation
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of base classifiers to facilitate the exploitation of label correlations. They

are usually referred to as dependent or stacked binary relevance (Montañes

et al., 2014; Tsoumakas, Dimou, et al., 2009).

Label Powerset

Conversion into a Multi-class ProblemThe label powerset (LP) transformation method, which originates from

Boutell et al. (2004), transforms a multi-label classification problem into

a multi-class classification task, where each label vector that is present in

the training data is treated as a separate class. Given an injective mapping

function � : Y → ℕ that assigns a unique number to each distinct label

vector y ∈ ., the LP method transforms a multi-label dataset into a

multi-class dataset

D̃ = {(x= , � (y=)) | 1 ≤ = ≤ #} , (3.29)

which is used to train a multi-class classifier 5 : X → ℕ. The inverse of

the mapping function �−1
is used to obtain the label vector that should

be predicted for a given example. As a result, the predictions of a LP

model are restricted to label vectors that can be found in the training

dataset. Depending on the class that is predicted by the base classifier,

the multi-label prediction in form of a binary label vector computes as

ŷ = �−1 ( 5 (x)) . (3.30)

Multi-class Binarization TechniquesUnlike the BR approach that can be implemented using binary classifiers,

the LP method requires the base classifier to differentiate between

an arbitrary number of classes. Therefore, an implementation of this

particular problem transformation method using binary classification

algorithms requires further decomposition of the meta-problem via

binarization techniques, such as “one-against-all” training (see, e.g.,

Mehra and Gupta, 2013, for a survey on multi-class classification). If the

multi-class classification method, which is used by an instantiation of the

LP approach, can output a probability distribution over all classes, this

problem transformation method can also be used for label ranking. In

such a case, the rank of a label results from summing up the probabilities

of the label vectors that indicate the relevance of the respective label.

Advantages and DisadvantagesAs the label powerset transformation method treats different combina-

tions of labels as mutually exclusive classes, it takes label dependence

into account. Dembczyński, Waegeman, et al. (2012) provide theoretical

and empirical arguments that the LP approach estimates the mode of

the joint conditional distribution and therefore is a natural choice when

one is interested in minimizing the subset 0/1 loss. However, despite the

interesting theoretical properties of this problem transformation method,

its practical relevance is limited due to the computational overhead it

entails. As the number of possible label combinations 2
 
grows exponen-

tially with the number of label  , datasets with many labels and great

label cardinality are challenging to solve with the LP approach. In such a

scenario individual examples are likely associated with an unique label

vector. Consequently, the multi-class classification task, which results

from considering each label vector as a distinct class, requires dealing
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with many classes. Because of this increase in problem complexity, the

base classifier is more likely to assign the wrong class to an example.

Pruned Problem Transformation An approach that is closely related to the label powerset method is

referred to as pruned problem transformation (PPT) (Read, 2008). It aims

at reducing the complexity of the underlying multi-class problem by

omitting classes that correspond to infrequent label vectors and replacing

them with classes that refer to more frequent subsets of the affected

labelsets. Such as the LP method, PPT does not allow for a prediction of

label vectors that are missing from the training data. However, training

several PPT classifiers on random subsets of the training data may

circumvent this limitation. With such an approach, individual labels are

only associated with an example if they are considered relevant by a

majority of the meta classifiers (Gibaja and Ventura, 2014).

Random Labelsets

Dealing with Label Subsets Compared to binary relevance, where individual labels are dealt with

in isolation, and the label powerset method, where all labels associated

with an example are considered jointly, random k-labelsets (RAkEL) strives

for a compromise between these extremes. According to the authors,

Tsoumakas, Katakis, and Vlahavas (2010), the method is motivated by the

need to overcome the computational limitations and practical issues of the

LP approach in applications with a large number of examples and labels

without giving up on the ability to take label correlations into account.

Similar to pruned problem transformation, RAkEL is based on breaking

up the sets of labels that are associated with individual examples into

smaller subsets. As the name of the method suggests, the subsets are

chosen randomly, such that their size is equal to a hyper-parameter :.

Training a RAkEL model requires building a collection of LP classifiers

� = { 51 , . . . , 5)} that are concerned with different, either overlapping

or disjoint, subsets of the available labels LC ⊂ Lwith |LC | = :. RAkEL

employs a label-wise voting scheme, as described in the previous section,

to aggregate the predictions of the individual base classifiers. For each

label, the voting is restricted to classifiers that take the respective label

into account. Only if a label is included in the majority of the labelsets

provided by these meta classifiers, it is considered relevant by the overall

RAkEL classifier.

Advantages and Disadvantages In applications to large-scale data, where the training time and predictive

accuracy of the label powerset method suffer from the exponential

number of label combinations, RAkEL may exhibit superior results in

terms of training efficiency and predictive performance (Tsoumakas,

Katakis, and Vlahavas, 2010). Although both approaches are explicitly

aimed at modeling label correlations, the latter is restricted to exploiting

dependencies between up to : labels. Hence, the extent to which RAkEL

takes label dependence into account heavily depends on the hyper-

parameter setting. For this reason, and due to the label-wise combination

of the base classifiers, it remains unclear what evaluationmeasure RAkEL

seeks to optimize (Dembczyński, Waegeman, et al., 2012).

Extensions to RAkEL Similar to the problem transformation methods discussed earlier, several

extensions to RAkEL have been proposed in the literature. In particular,

this includes approacheswhere the label subsets are not chosen randomly
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but are selected deliberately. Selection methods of this kind are employed

by RAkEL++ (Rokach, Schclar, and Itach, 2014), which also comes with a

revised voting mechanism for aggregating the predictions of individual

base classifiers.

Classifier Chains

Sequences of Binary ClassifiersSimilar to the binary relevance method, a classifier chain (CC) (Read,

Pfahringer,Holmes, and Frank, 2011) employs several binary classification

models, each responsible for predicting a single label. Unlike the former

approach, which deals with the labels in isolation and therefore neglects

any dependencies between them, the exploitation of conditional label

dependence is an explicit goal of the latter. It is achieved by training

the binary classification models 51 , . . . , 5 that are part of a classifier

chain one after the other and providing information about the labels that

are handled by preceding models to subsequent ones. Given a bĳective

permutation function � : ℕ → ℕ 
that imposes an order on the labels,

the :-th model in the chain is concerned with the � (:)-th label. It is

trained on an augmented dataset

D̃: = {(x̃= , y=) | 1 ≤ = ≤ #} , (3.31)

which incorporates information about the labels for which a model has

already been trained. Each example in such a training dataset corresponds

to the form

x̃ =
(
G1 , . . . , G! , H�(1) , . . . , H�(:−1)

)
, (3.32)

i.e., it is not only represented by its original features but is augmentedwith

the ground truth labels that aremodeled by precedingmodels. As a result,

classifiers that are later in the chain may take the relevance or irrelevance

of previously handled labels into account to make decisions for the label

they are concerned with. When applying a classifier chain to an unseen

example, the binary classifiers in the chain are queried in the order they

have been trained to obtain predictions for the corresponding labels.

The predictions of preceding classifiers are passed to their successors to

comply with the form of the data used for training.

Advantages and DisadvantagesClassifier chains typically exhibit superior performance compared to the

binary relevancemethodwhen it comes to optimizing non-decomposable

evaluation measures that benefit from the exploitation of conditional

label dependence. Unlike the LP method or RAkEL, this does not come

with a significant computational overhead. Instead, the complexity of

training and prediction depends linearly on the number of labels, even

though the base classifiers cannot be trained in parallel as with a BR

decomposition. A drawback of the CC approach is its susceptibility to

the label permutation used for training and prediction. Given different

orders of the labels, the performance of the resulting classifier chains

most probably varies, as their base classifiers are trained on different

datasets. If an incorrect prediction is made by a classifier early in the

chain, the error is propagated through the chain and may negatively

impact the decision of subsequent classifiers.

Probabilistic Classifier ChainsWhereas the CC method, as proposed by Read, Pfahringer, Holmes,

and Frank (2011), relies on binary base classifiers that predict whether
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individual labels are relevant or irrelevant, Dembczyński, Cheng, and

Hüllermeier (2010) generalize the underlying concept by using base

classifiers that are capable of estimating the probability of individual

labels being relevant. This extension, which is referred to as probabilistic
classifier chains, aims to approximate the joint distribution of the labels in

a step-wise manner, as suggested by the product rule of probability in

(3.24). Due to its theoretical foundation, the use of probabilistic classifier

chains to minimize the subset 0/1 loss is well-justified (Dembczyński,

Waegeman, et al., 2012). On the downside, this approach comes with

exponential costs at prediction time, as a search for the label vector

that maximizes the joint probability requires to consider all possible

combinations of the available labels.

Ensembles of Classifier Chains To reduce the negative effect, a suboptimal choice of the label permutation

may have on the performance of a classifier chain, Read, Pfahringer,

Holmes, and Frank (2011) propose to use ensembles of classifier chains.
This approach requires training several classifier chains using different

permutations of the labels. Finally, the predictions of the individual

models are averaged to predict for an unseen example. However, similar

to RAkEL, which also employs such a label-wise averaging scheme, it is

unclear what evaluation measure ensembles of classifier chains tend to

optimize (Dembczyński, Waegeman, et al., 2012).

Dynamic Classifier Chains Another attempt to overcome the main drawback of the CC approach,

which is the susceptibility to the label permutation, is known in the

literature as dynamic classifier chains. Rather than relying on a fixed order

of the labels determined before training even starts, with this approach,

the most promising label to focus on is selected during the training

phase whenever a new base classifier should be added to the model.

The strategy for selecting the next label typically depends on the type of

classifiers in the chain. For example, methods to dynamically train CC

models have been developed in the context of tree-based models (Loza

Mencía, Kulessa, et al., 2022), including random decision trees (Kulessa

and Loza Mencía, 2018) and gradient boosted decision trees (Bohlender,

Loza Mencía, and Kulessa, 2020), or Naive Bayes classifiers (Trajdos and

Kurzynski, 2019).

3.7 Adaptation Methods

Instead of relying on problem transformation methods to decompose

multi-label problems into binary or multi-class classification tasks, as

previously discussed in Section 3.6, MLC can also be approached by

developing algorithms specifically tailored to this particular problem do-

main. We refer to this kind of approach as a problem adaptation method and
provide an overview of existing adaptation methods, which are closely

related to the approaches presented in this work, in the following. Per the

topic of this thesis, we focus on symbolic learning methods that result in

decision trees or rule-based models. However, different types of machine

learning techniques, including unsupervised approaches or statistical

methods, such as support vector machines or neural networks, have been

considered for solving MLC problems as well. A more comprehensive

overview is provided by survey articles on the topic, for example by

Gibaja and Ventura (2014) or M.-L. Zhang and Z.-H. Zhou (2014).
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Multi-Output Decision Trees

Generalization of Split CriteriaDecision trees (cf. Section 2.1) are arguably one of the oldest supervised

learning approaches, and they are commonly used to solve classification

problems. Consequently, means to apply tree-based methods to multi-

label classification tasks have been investigated very early. Compared to

traditional decision trees, as used for binary or multi-class classification,

the leaf nodes of multi-output decision trees may incorporate information

about several labels instead of being restricted to one of the available

classes. Their construction is often based on generalizations of existing

split criteria, such as the information gain, that allow assessing the quality

of possible splits with respect to multiple labels (Clare and King, 2001).

This also applies to the use of random decision trees, which have been

investigated in the context of MLC because they are faster to train than

conventional decision trees (X. Zhang et al., 2010).

Predictive Clustering TreesCompared to traditional tree learning algorithms, predictive clustering
trees (Blockeel, Raedt, and Ramon, 1998) (PCT) follow a different ap-

proach for tree construction that is well-suited for multi-dimensional

classification or regression problems. They employ a clustering algorithm

to partition the data at each node such that the intra-cluster variation is

minimized (Gjorgjioski, Kocev, and Džeroski, 2011). Each leaf node of

the resulting tree consists of prototypical training examples with similar

labels. Given an unknown example to predict for, its labeling is derived

from the prototypical examples belonging to the same leaf.

Ensembles of Multivariate TreesIn general, multi-output decision trees, including predictive clustering

trees, are often used in ensemble methods, e.g., in random forests (cf. Sec-

tion 2.3), and have been shown to achieve strong predictive results (Kocev

et al., 2007; Madjarov et al., 2012; Qingyao Wu et al., 2016).

Multivariate Boosting

Variants of AdaBoostAdaptation methods that rely on boosting (cf. Section 2.3) to learn an

ensemble of weak learners are particularly relevant to this work. In

Chapter 6, we propose to use the boosting framework for learning rule-

based multi-label classification models. Existing MLC approaches that

are based on this particular learning technique include generalizations

of the AdaBoost algorithm. Whereas AdaBoost.MH (Schapire and Singer,

2000) and its variants (e.g., Diao et al., 2002; Esuli, Fagni, and Sebastiani,

2006) aim to minimize the Hamming loss, AdaBoost.MR (Schapire and

Singer, 2000) is suited for the label-wise minimization of ranking losses.

Most boosting algorithms intended for use in MLC, including those that

focus on ranking losses, are restricted to decomposable loss functions. A

noteworthy exception is AdaBoost.LC, which enables minimizing a family

of non-decomposable losses that includes the Subset 0/1 loss as a special

case.

Boosted Multi-Output Decision TreesWhereas AdaBoost, and its successors that are deliberately designed

for MLC, traditionally use decision stumps that predict for a single

label, more recent boosting approaches to MLC tend to employ multi-

output decision trees as their ensemble members. Besides approaches

aimed at the Hamming loss (e.g, Johnson and Cipolla, 2005; Si et al.,

2017; Yan, Tešić, and Smith, 2007; Z. Zhang and C. Jung, 2020), this also
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includes algorithms that are tailored to ranking losses (e.g., Dembczyński,

Kotłowski, and Hüllermeier, 2012; Y. H. Jung and Tewari, 2018).

Rule-based Methods

Association Rules Rule-based learning methods are conceptually close to decision trees.

They are often preferred in applications where interpretable models,

which can be inspected and understood by humans, are desired. As

previously discussed in Section 2.2, rule learning approaches that rely

on techniques for association rule mining are primarily used to learn de-

scriptive models. Several approaches that apply the underlying concepts

to multi-label classification problems can be found in the literature (B. Li

et al., 2008; Thabtah and Cowling, 2007; Thabtah, Cowling, and Peng,

2004, 2006). When dealing with multi-label data, the ability to iden-

tify frequently re-occurring items is particularly well-suited to discover

patterns among the ground truth labels of training examples. Similar

to multi-output decision trees, this allows learning rules that comprise

information about several labels rather than being restricted to a single

class as in traditional classification settings.

Separate-and-Conquer Approaches In contrast to association rule mining, methods based on the separate-

and-conquer paradigm aim to learn predictive models that can provide

accurate predictions for unseen data. The principles of separate-and-

conquer learning have first been generalized to the multi-label setting by

Loza Mencía and Janssen (2016). In their work, the authors investigate

two different approaches that aim to capture label dependencies in the

form of rules. On the one hand, they rely on a problem transformation

method similar to stacked binary relevance (cf. Section 3.6). This allows

using traditional single-label rule learners based on the SeCo principle

for tackling multi-label classification problems. Even though with the

stacked binary relevance approach, a rule model is built for each label

separately, it provides the individual base learners with information

about the predictions made for other labels and therefore allows to

model conditional label dependencies. On the other hand, the authors

investigate a multi-label SeCo approach, where rules that are learned

at a particular training iteration may test for the presence or absence of

labels according to the predictions of previous rules. Similar to the use

of stacked binary relevance, rules that are learned by this method can

model local label correlations. The multi-label SeCo approach was later

extended by Rapp, Loza Mencía, and Fürnkranz (2018). Their work is

devoted to the challenge of inducing multi-label rules, which predict for

several labels simultaneously and therefore can capture co-occurrences

or mutual exclusions between multiple labels, in a computationally

efficient manner. In Chapter 5, we propose several extensions to existing

SeCo-based multi-label classification approaches.

3.8 Dimensionality Reduction

In the digital world, where globally operating web platforms reach bil-

lions daily, the amount of availablemulti-label data increases steadily and

opens the door for novel use cases. However, applying MLC methods to

large-scale problems, such as product recommendation (Rahul Agrawal
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et al., 2013), social network analysis (Denton et al., 2015), or the catego-

rization of online documents (Prabhu and Varma, 2014) demands highly

scalable learning methods that can be trained on large amounts of high-

dimensional data. The problem transformation methods in Section 3.6, as

well as the adaptation methods in Section 3.7, are usually unable to meet

the strict time and memory constraints of such real-world applications.

Instead, to compensate for the high computational demands that come

with vast numbers of training examples, attributes, or labels, methods

for dimensionality reduction are indispensable in practice.

Sampling Techniques

Random SamplingMany classification methods, in particular ensemble methods (cf. Sec-

tion 2.3), use sampling techniques to obtain random subsets of the

available training examples. Due to the ability to produce more diverse

ensembles and increase the variance among ensemble members, which

may improve predictive accuracy, it is an essential aspect of random

forests (Breiman, 2001) and stochastic gradient boosting (J. H. Friedman,

2002). In addition, as it reduces the number of examples to be dealt

with by a learning algorithm, it may also significantly reduce training

times. For this reason, it is often used in highly scalable classification

systems. For example, LightGBM (Ke et al., 2017) incorporates gradient-
based one-side sampling (GOSS) into the training procedure. This sampling

technique prioritizes examples for which a model does not yet deliver

accurate predictions while at the same time trying to maintain the class

distribution to avoid deterioration of a model’s predictive performance

even when focusing on a small fraction of the available examples.

Stratified SamplingIn multi-label classification, where each example is associated with

several labels with varying frequency, the development of stratified

sampling methods, which result in samples that are representative of

the overall data distribution, is a conceptually challenging problem.

Sechidis, Tsoumakas, and Vlahavas (2011) propose two methods for

stratified sampling from multi-label data. They aim to maintain the

frequency of individual labels or entire labelsets, respectively. Szymański

and Kajdanowicz (2017) extend their approach by the ability to take

pairs of labels into account. Merrillees and L. Du (2021) present an

alternative method that is specifically designed for extreme multi-label

classification.

Under- and OversamplingBesides the computational challenges that come with large multi-label

datasets, the label imbalance (cf. Section 3.2) tends to bemore pronounced

in domains with large numbers of examples and labels and may hinder

the effectiveness of MLC methods. Sampling methods have recently

been shown to be an effective strategy to deal with this problem, e.g.,

by undersampling examples that are harmful to a learning method’s

predictive performance (Charte et al., 2013, 2019; B. Liu and Tsoumakas,

2020), by increasing the weight of examples that are difficult to clas-

sify (Charte et al., 2013, 2019), or even by introducing synthetic examples

to compensate for underrepresented regions in the feature space (Charte

et al., 2019; B. Liu, Blekas, and Tsoumakas, 2022).
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Feature Processing

Feature Selection The computational demands of classification methods are also affected

by the number of features that must be considered during training. To

improve the scalability of existing learning approaches, methods that re-

duce the dimensionality of the feature space have become an established

topic of research on classification methods. For example, Liang Sun, Ji,

and Ye (2019) elaborate on methods specifically tailored to the particular-

ities of MLC problems. In particular, this includes methods for feature
selection. They aim to identify a subset of the available attributes that

is well-suited to solve a given classification task by omitting irrelevant

and redundant attributes or focusing on the ones that are most strongly

correlated with the target variables. On the one hand, this includes unsu-

pervised methods, e.g., methods like principal component analysis (Wold,

Esbensen, and Geladi, 1987) or latent semantic indexing (Deerwester et al.,

1990), that are commonly used in single-label classification and can be

applied to multi-label data without anymodifications. On the other hand,

supervised methods explicitly take information about the labels into

account. Pereira et al. (2018) provide an extensive overview of feature

selection methods that are intended for use in multi-label classification

and propose a taxonomy for categorizing existing techniques. In particu-

lar, they distinguish between selection methods, which are implemented

as a preprocessing step and therefore are independent of any particular

MLC algorithm, and selection strategies, which are embedded into a

specific learning algorithm. Furthermore, the available methods differ

in how they take combinations of labels into account. On the one hand,

methods that apply a supervised method for feature selection to each

label independently are reasonable if one is interested in optimizing

label-wise decomposable evaluation measures (e.g., Tsoumakas, Katakis,

and Vlahavas, 2008; Yiming Yang and Pedersen, 1997). On the other hand,

more recent approaches usually take label dependencies into account for

selecting a subset of the available attributes. For example, they are based

on problem transformation methods, such as PPT or LP (cf. Section 3.6).

Spolaôr et al. (2013) provides a comparison of feature selection meth-

ods of this kind (e.g., Doquire and Verleysen, 2011; Reyes, Morell, and

Ventura, 2015; Trohidis et al., 2008). Other approaches can directly deal

with multiple labels without the need to transform the input data (e.g.,

Jian et al., 2016; Y. Lin, Q. Hu, J. Liu, J. Chen, et al., 2016; Y. Lin, Q. Hu,

J. Liu, and Duan, 2015; Shao et al., 2013; M.-L. Zhang, Peña, and Robles,

2009).

Feature Extraction Rather than selecting a subset of the attributes present in a dataset,

methods for feature extraction obtain new attributes by combining and

transforming existing ones. Again, this includes unsupervised methods

that are known from traditional classification settings and ignore any

information about ground truth labels present in the training data.

Prominent examples are the application of self-organizing feature maps or
latent semantic indexing in text classification (Luo and Zincir-Heywood,

2005), as well as generalizations of the linear discriminant analysis to

the multi-label setting (C. H. Park and Lee, 2008; Wang, Ding, and H.

Huang, 2010). In contrast, the mapping to a feature space with reduced

dimensions, which results from the application of supervised feature

extraction methods (e.g., Xu, 2018; Xu et al., 2016; K. Yu, S. Yu, and Tresp,

2005; M.-L. Zhang and L. Wu, 2014; Yin Zhang and Z.-H. Zhou, 2010),
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does not only depend on the feature values of the available training

examples but also results from taking their respective ground truth labels

into account.

Label Space Transformation

Hierarchy of Multi-label ClassifiersUnlike in single-label classification, where each example always corre-

sponds to a single class, the computational complexity of multi-label

classification algorithms is directly affected by the number of labels

included in a dataset. In connection with the increasing relevance of

extreme multi-label classification, where large numbers of labels should

be dealt with, methods that reduce the dimensionality of the label space

have attracted much attention in the literature. An early approach to label
space transformation is the HOMER algorithm proposed by Tsoumakas,

Katakis, and Vlahavas (2008). It transforms a multi-label problem into a

tree-shaped hierarchy of simpler MLC tasks by employing a clustering

algorithm to identify groups of similar labels. Each leaf node in the

hierarchy corresponds to a single label. In contrast, internal nodes are

concernedwith the union of the labelsets that correspond to their children.

Each node employs a multi-label classifier that is either implemented as

an adaptation method or relies on a problem transformation approach.

It is trained on the examples that are associated with at least one of the

node’s labels. The prediction of unseen examples starts at the root node.

It follows a recursive procedure where an example is passed to a child

node if it is concerned with at least one of the labels that are predicted

as relevant by their parent node. The final prediction is the union of

the labels corresponding to child nodes to which an example has been

forwarded.

Label Reduction with Association RulesCharte et al. (2012) follow a different approach where an algorithm for

association rule discovery is applied to the ground truth labels of the

training examples. The resulting association rules capture unconditional

label co-occurrences that have been found in the data, i.e., cases where

the presence of a specific label implies the presence of another label. This

representation can be used to carry out a pre-processing phase where

inferred labels are removed from the data. Finally, after an MLC method

has been trained on the dataset with reduced dimensions, its predictions

for unseen examples are amended by adding labels implicitly rendered

as relevant by the previously obtained association rules.

Label EmbeddingsThe label space transformation approaches that are most commonly used

for extreme multi-label classification are typically based on establishing

a mapping from the label vectors present in a dataset to a label space

with reduced dimensions. This enables to limit the amount of memory

and the computational efforts necessary to process datasets that come

with a large number of labels. To obtain predictions from a multi-label

classifier that has been trained on a low-dimensional subspace, the label

vector it provides for an unseen example is ultimately projected back to

the original label space. Existing embedding methods mainly differ in

the choice of their compression and decompression techniques. An early

instantiation of embedding methods is compressed sensing (D. Hsu et al.,

2009). It aims at mapping the label space to a low-dimensional subspace

via a random projection based on the label sparsity. Its main drawback is

the computationally costly prediction phase. Compressed labeling (T. Zhou,
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Tao, and X. Wu, 2012) and principal label space transformation (Tai and H.-T.

Lin, 2012) were proposed as alternatives that allow for a more efficient

decompression of labelmatrices.Whereas the former employs a clustering

approach to reconstruct labelsets from the original label space, the latter

relies on singular value decomposition. Other approaches are based

on bloom filters (Cissé et al., 2013) or landmark labels (Balasubramanian

and Lebanon, 2012; Bi and Kwok, 2013). In contrast to the previously

mentioned approaches, the idea of taking information about the feature

space into account for establishing a mapping to a low-dimensional

subspace, rather than focusing exclusively on the label vectors that are

present in a dataset, has become a driving force for the development

of novel embedding methods (e.g., Bhatia et al., 2015; Y.-N. Chen and

H.-T. Lin, 2012; Kimura, Kudo, and Lu Sun, 2016; Kumar et al., 2019;

Z. Lin et al., 2014; Liang Sun, Ji, and Ye, 2010; Yi Zhang and Schneider,

2011; Zhu et al., 2018). Other innovations in the field are motivated by the

desire to tailor embeddingmethods to different evaluationmeasures (e.g.,

K.-H. Huang and H.-T. Lin, 2017) or support applications with missing

labels (e.g., Y. Li and Youlong Yang, 2020).
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In this chapter, we provide a unified view of different rule-based ap-

proaches to multi-label classification that have been proposed in the past.

In recent years, an increasing number of publications have been devoted

to using rule learning methods for tackling this particular problem do-

main. Based on the outcome of these studies, we argue that rules enable

to model multi-label data naturally and are a versatile tool for building

classification models that are specifically tailored to different use cases

and requirements. Despite the varying characteristics of the rule-based

models that have been used for MLC, the methodologies and algorithms

used for inducing rules tend to share many of the underlying ideas

and techniques. Based on this observation, we identify the algorithmic

aspects that are essential to all rule-based problem adaptionmethods and

integrate them into a consistent and modular framework. Not only can

existing multi-label rule learning methods be viewed as instantiations of

this framework, but it may also serve as a basis for designing new rule

learning algorithms that are specifically tailored to the particularities

of multi-label classification. In Chapter 5 and Chapter 6, we present

instantiations of the presented framework to demonstrate its practical rel-

evance. Furthermore, we rely on the framework’s flexibility in Chapter 7

and Chapter 8, where we exploit its modularity to investigate several

extensions to the previously proposed algorithms.

4.1 Multi-label Rules

Rule Bodies and HeadsFollowing the notion of rules traditionally used in single-label classi-

fication, i.e., for tackling binary or multi-class classification problems

(cf. Section 2.2), we aim to model multi-label data by learning predictive

rules of the form

5 : Head← Body.

The body of a rule consists of one or several conditions that specify the

examples towhich the rule applies, and the head provides a prediction for

these covered examples. In single-label classification, conditions always

refer to one of the attributes in a dataset. Such a condition 2; compares

an example’s value for the ;-th attribute to a constant using a relational

operator, such as = and ≠, if the attribute �; is nominal, or ≤ and >,
if the attribute is numerical or ordinal. When dealing with multi-label

classification tasks, other types of bodies are also conceivable. In the

MLC setting, a variety of options also exist when it comes to the heads of

rules. Whereas single-label classification rules must assign a prediction

to the only available class, the heads of multi-label rules may comprise

information for more than a single label. In the following, we recapitulate

the terminology proposed by Loza Mencía, Fürnkranz, et al. (2018) Loza Mencía, Fürnkranz, Hüllermeier,

and Rapp (2018): ‘Learning Interpretable

Rules for Multi-Label Classification’

to

distinguish between various forms of multi-label rules. In addition, we

outline some of the most relevant methods that have been investigated
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1: For brevity, we use the shorthand no-

tation ?̂: and ¬?̂: to denote binary pre-

dictions that indicate the relevance and

irrelevance of a label, respectively.

in the literature to learn such rules and discuss to which extent they are

suited to express the different types of label dependencies that may be

hidden in multi-label data.

Deterministic vs. Probabilistic Predictions First of all, we distinguish between deterministic and probabilistic pre-

dictions. On the one hand, the former is often preferred when simple

and interpretable models are needed. In such a case, the heads of rules

assign binary values ?̂: ∈ {0, 1} to the :-th label to indicate whether

it is relevant (?̂: = 1) or irrelevant (?̂: = 0) to the covered examples.
1

Besides rule learning algorithms that rely on the separate-and-conquer

paradigm (Klein, Rapp, and LozaMencía, 2019; LozaMencía and Janssen,

2016; Rapp, Loza Mencía, and Fürnkranz, 2018, 2019), binary rules are

also used by methods based on association rule discovery (Lakkaraju,

Bach, and Leskovec, 2016; B. Li et al., 2008; Thabtah and Cowling, 2007;

Thabtah, Cowling, and Peng, 2004, 2006), genetic algorithms (Allamanis,

Tzima, and Mitkas, 2013; Cano et al., 2013), as well as evolutionary

classification systems (Arunadevi and Rajamani, 2011; Ávila-Jiménez,

Gibaja, and Ventura, 2010). Moreover, in Chapter 5, we elaborate on a

SeCo-based MLC method that makes use of deterministic rules. On the

other hand, rules with probabilistic predictions provide information

about the distribution of labels in a dataset, most commonly given in the

form of real-valued scores ?̂: ∈ ℝ. Such scores express a preference for

predicting an individual label as relevant or irrelevant. Similar to the

rules induced by boosting-based learning approaches for single-label

classification, e.g., by ENDER (Dembczyński, Kotłowski, and Słowiński,

2010), this representation is natural when using statistical optimization

techniques for solving multi-label problems. Hence, probabilistic rules

form the basis of the models that result from the boosting-based MLC

method presented in Chapter 6.

Label-dependent Rules One possibility to express correlations in the label space by means of

rules is to not only consider the attributes in a dataset but also the

labels for constructing the conditions that may be included in a rule’s

body. This is similar to classifier chains (cf. Section 3.6), where the

predictions of classifiers that are earlier in the chain may be taken into

account by subsequent classifiers. However, when transferring this idea

to rules, information about labels, for which predictions are already

available, is propagated at the level of individual rules rather than entire

models. S.-H. Park and Fürnkranz (2008) use binary rules of the form

?̂1 ← ?̂2 to capture co-occurrences of labels. Such rules predict a label

as relevant if another label is considered relevant as well. Similarly, they

model disjoint labels that do not co-occur in the data by using rules

of the form ¬?̂1 ← ?̂2. Following the naming conventions in (Loza

Mencía, Fürnkranz, et al., 2018), we characterize such rules, where all

conditions in the body are concerned with labels, as fully label-dependent.
Whereas this particular kind of rules is suited for capturingmarginal label

dependencies, which are not restricted to a specific region in the feature

space, partially label-dependent rules enable to model conditional label

dependence. Loza Mencía and Janssen (2016) utilize a stacked binary

relevance approach to induce partially label-dependent rules, such as

?̂1 ← ?̂2 ∧ 21 or ¬?̂1 ← ?̂2 ∧ 21, using RIPPER (Cohen, 1995) as a base

learner. Such rules predict a label as relevant or irrelevant, depending on

whether one or several other labels have already been associated with

the examples in a particular region of the feature space. In addition, the
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authors demonstrate that the separate-and-conquer paradigm, which

many traditional rule learners are based on, can be generalized to the

multi-label setting. Compared to using a binary black-box classifier, such

a problem adaptation approach provides more fine-grained control over

the label dependencies that individual rules should take into account.

Moreover, the rules are not susceptible to a predefined order of the labels,

as is the case with a CC approach. This is because the labels a rule should

predict for are selected implicitly during training, depending on the

objective that guides the search for the most desirable rules. In contrast to

problem transformationmethods that employ single-label base classifiers,

problem adaptation approaches are not restricted to the induction of

label-dependent rules. Instead, as discussed below, they allow for the

construction of rules that predict for multiple labels simultaneously.

Multi-label HeadsThe different types of rules discussed so far focus on the prediction

for a single label. We refer to the heads of such rules as single-label
heads. When using label-dependent rules for modeling label correlations,

as discussed earlier, combinations of several rules are necessary to

represent interactions between labels. As an alternative, the construction

of multi-label heads, which predict for several labels simultaneously,

enables to model conditional dependencies more compactly. In particular,

multi-label heads are a natural choice for the representation of co-

occurrences that hold for certain regions of the feature space. This

pattern, frequently found in multi-label data, can easily be modeled by

rules such as ?̂1 , ?̂2 ← 21. Accordingly, local exclusions of labels can also

be expressed throughmulti-label heads, e.g., by learning rules of the form

?̂1 ,¬?̂2 ← 21. The induction of multi-label heads is often implemented

as a post-processing step. For example, they can be constructed from

association rules by merging the single-label heads of rules that cover

overlapping regions of the feature space (B. Li et al., 2008; Thabtah

and Cowling, 2007; Thabtah, Cowling, and Peng, 2006). The use of

problem adaptionmethods facilitates the induction of rules withmultiple

predictions in the head. However, naive implementations of such an

approach can be computationally expensive, as the number of label

combinations that must be considered for each rule grows exponentially

with the number of available labels (cf. Section 4.3). Existing SeCo

algorithms for the induction of binary rules prune the search for multi-

label heads to overcome this limitation (Klein, Rapp, and Loza Mencía,

2019; Rapp, Loza Mencía, and Fürnkranz, 2018). This enables to omit

unpromising solutions rather than taking all possible combinations of

Body Example

Single-label head
Label-independent ?̂1 ← 21

Fully label-dependent ?̂1 ← ?̂2

Partially label-dependent ?̂1 ← ?̂2 ∧ 21

Partial multi-label head
Label-independent ?̂1 , ?̂2 ← 21

Fully label-dependent ?̂1 , ?̂2 ← ?̂3

Partially label-dependent ?̂1 , ?̂2 ← ?̂3 ∧ 21

Complete multi-label head
Label-independent ?̂1 ,¬?̂2 ,¬?̂3 , . . . , ?̂ ← 21

Table 4.1: Examples of different types of

binary multi-label rules that provide pre-

dictions for  > 3 labels and are character-

ized by the formof their body andhead. In-

stead of solely focusing on the relevance of

labels, the conditions of label-dependent

rules may also test for their irrelevance.

Accordingly, rules with multi-label heads

may indicate both the relevance and irrel-

evance of labels.
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labels into account. In the following, we characterize multi-label heads

that are concerned with a subset of the available labels as partial. In
contrast, complete heads provide a prediction for each of the available

labels.

Exemplary Rules Table 4.1 provides an overview of the terminology used to distinguish

between different types of multi-label rules, alongside examples that

illustrate their respective characteristics. For simplicity, the given table

focuses on binary rules. Nevertheless, the different representations of

a rule’s body and head are also conceivable when using probabilistic

rules. In such a case, the head of a rule predicts one or several real-valued

scores. Accordingly, the body of a label-dependent rule may contain

numerical conditions that test for the probabilistic scores provided by

other rules.

4.2 Assemblage of Rule Models

Rule Models We aim at learning predictive models that consist of several (multi-label)

rules. Without loss of generality, we assume that the rules are given in

a particular order. This enables us to account for methods where the

prediction for unseen examples depends on the order of the rules, as is

the case with SeCo algorithms (cf. Section 4.4). We denote a rule-based

model, consisting of ) rules, as a sequence

� = ( 51 , . . . , 5)) . (4.1)

All rules in a model are usually of the same form. For example, an

algorithm that aims at the induction of probabilistic single-label rules

does typically not produce rules that provide deterministic predictions

or are concerned with more than a single label.

Default Rules Unlike decision trees, which cover the entire feature space (cf. Section 2.1),

individual rules only provide predictions for a particular region of the

feature space for which the conditions in their body are satisfied. Rule-

based models typically include a default rule to account for cases where

no other rule does cover an example. It does not contain any conditions

in its body and covers all examples for which a model may predict.

Figure 4.1: A UML sequence diagram that

provides a high-level overview of the inter-

actions between the components involved

in the induction of a rule-based model.

The feature values of the training exam-

ples - and their ground truth labels .
are provided as the input to the algorithm.

Individual rules are learned with respect

to statistics ( that incorporate information

about theground truth labels of individual

examples and the corresponding predic-

tions of the current model. The loop that

is responsible for learning new rules is ex-

ited as soon as a certain stopping criterion

is met.

loop

:ModelAssemblage

fit(X, Y)

:StoppingCriterion :PostOptimization

test(R, S)

induceRule(X, Y, S)

Rule r

Model R

:RuleInduction

induceDefaultRule(Y, S)

Default rule r

optimizeRules(X, Y, S, R)

Optimized Rules R
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The predictions of a default rule may be deterministic or probabilistic,

depending on the type of predictions provided by the other rules in

the model. However, a default rule is always supposed to predict for all

available labels, regardless of whether the other rules provide partial or

complete predictions. For example, SeCo algorithms, such as those by

(Rapp, Loza Mencía, and Fürnkranz, 2018) or (Klein, Rapp, and Loza

Mencía, 2019), employbinarydefault rules that predict a label as irrelevant

unless most training examples are associated with the respective label.

In cases like these, where the order of the rules matters for prediction,

the default rule comes last, i.e., the other rules take precedence.

Sequential Rule InductionWe induce the rules to be included in amodel using an iterative algorithm,

where new rules are learned with respect to their predecessors. As can

be seen in Figure 4.1, the assemblage of a model starts with the induction

of a default rule. It applies to all examples, regardless of the region

in the feature space they belong to. The following rules should focus

on subspaces that the preceding rules do not yet handle accurately.

According to Figure 4.1, they are constructed by following a sequential

procedure. For the induction of a single rule, the following aspects must

be taken into account:

I Stopping Criterion. The number of rules included in a model

is controlled by one or several stopping criteria. If at least one

criterion is satisfied, the rule induction process is stopped rather

than learning a new rule. A straightforward implementation of

such a criterion is based on counting the number of rules induced

so far. If the model’s size has reached a predefined number of rules,

the induction of rules is put to an end. Empirical studies have

shown that the predictive performance may suffer from too many

rules being included, which introduces the risk of fitting noise in

the data Rapp, Loza Mencía, and Fürnkranz (2019) Rapp, Loza Mencía, and Fürnkranz (2019):

‘On the Trade-off Between Consistency

and Coverage in Multi-label Rule

Learning Heuristics’

. This shows

the demand for stopping criteria that are effective in preventing

overfitting.
2

2: The use of stopping criteria is also re-

ferred to as pre-pruning (Fürnkranz, 1997).

Among others, stopping criteria based on theminimum
description length (MDL) principle have successfully been used in

single-label rule learning, e.g., by RIPPER (Cohen, 1995). The

generalization of MDL-based stopping criteria to the MLC setting

remains for future work. As an alternative, early stopping, as it is
often employed by boosting algorithms, such as XGBoost (T. Chen

and Guestrin, 2016) or LightGBM (Ke et al., 2017), may be used. It is

based on keeping track of a model’s performance on an otherwise

unused portion of the training data and terminates the training

process as soon as the performance stagnates or declines.

I Rule Induction. Learning a new rule requires determining a certain

region in feature space to be covered by the rule and choosing

the conditions in its body accordingly. There is typically a trade-

off between the coverage and consistency of a rule. The former

corresponds to the size of the covered region, whereas the latter

refers to the fraction of examples within the covered subspace

for which a rule’s predictions are correct (Janssen and Fürnkranz,

2008; Rapp, Loza Mencía, and Fürnkranz, 2019). The predictions

assigned by a rule’s head should be chosen with regard to the

covered examples. If partial heads are desired, it is necessary to

decide on a fraction of the labels to predict for.



46 4 A Modular Framework for Learning Multi-label Rules

Post-Optimization An optional post-processing step may be conducted after the induction

of new rules has stopped. Initially, at each iteration of the rule induction

process, information about the current model is taken into account

to construct a new rule. However, only after the rule induction has

been completed, the model’s performance can be verified as a whole.

Consequently, this last stage of training enables to carry out optimizations

that aim at fine-tuning a model globally. This may include the removal

or addition of entire rules, as well as modifications to existing ones.

Prominent examples of such optimization strategies are post-pruning
algorithms, such as reduced error pruning (REP), that aim at improving the

quality of a model by removing superfluous conditions from individual

rules (Fürnkranz, 1997). Another successful post-optimization strategy is

employed by RIPPER (Cohen, 1995), where individual rules are relearned

in the context of all preceding and following rules.

4.3 Induction of Single Rules

Finding Body and Head At the core of the rule learning framework presented in this chapter are

the algorithmic components responsible for the induction of individual

rules, including the default rule. As previously outlined by Hüllermeier,

Fürnkranz, et al. (2020)Hüllermeier, Fürnkranz, Loza Mencía,

Nguyen, and Rapp (2020): ‘Rule-based

Multi-label Classification: Challenges and

Opportunities’

, constructing a rule requires identifying the

conditions that should be included in its body. We discuss this aspect

in the section “Candidate Generation” below. The conditions in a rule’s

body specify the region in the feature space covered by the rule. The

search for suitable conditions can be omitted when learning a default

rule, as it does not contain any conditions in its body. In addition, the

head of a rule must be found, as discussed in the section “Evaluation of

Candidates”. The predictions it provides for individual labels should

be chosen with regard to the covered region, such that the rule predicts

accurately for the covered training examples.

Label Space Statistics As depicted in Figure 4.1, we rely on so-called label space statistics as the
basis for learning rules. They incorporate information about the ground

truth labels of individual training examples and the corresponding pre-

dictions of the rules that have already been induced until a particular

iteration of the sequential rule induction process. The semantics of the

statistics may vary depending on the type of algorithm used. For example,

SeCo algorithms characterize the predictions for individual examples

and labels in terms of confusion matrix elements, i.e., they differentiate

between true positives, false positives, true negatives, and false negatives

(cf. Table 3.3), based on the ground truth and the predictions a model pro-

vides. Furthermore, maintaining binary or real-valued weights enables

tracking whether individual labels of the training examples have already

been covered in previous iterations of a SeCo or weighted covering

algorithm. In contrast, boosting methods rely on gradients that indicate

whether amodel provides accurate predictions regarding a particular loss

function or if the predictions leave room for improvement. Depending on

the target measure an algorithm addresses, the statistics for individual

examples must not necessarily be associated with individual labels but

may also correspond to pairs of labels or label subsets. As new rules

alter the predictions for training examples they cover, the corresponding

statistics must be updated when a new rule is added.
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:RuleInduction

loop

induceRule(X, Y, S)

:InstanceSampling :RuleEvaluation

Best rule r

:LabelSampling

sample(X, Y, S)

Weights w

sample(Y, S)

Labelset L'

calculatePrediction(B, S', L')

Head H, quality score q

Figure 4.2: An illustration of the individ-

ual steps that are necessary for inducing

a single rule. A rule can be learned on a

subset of the training examples, which is

specified by assigning weights w to indi-

vidual examples. The predictions of a rule

may be restricted to a subset of the labels

L. The search for the best rule 5 requires to
enumerate the candidate bodies that may

be used by potential rules. For each body,

a corresponding head must be found. Its

predictions for individual labels depend

on statistics (′ corresponding to the exam-

ples that are covered by the rule’s body.

The quality of potential rules is assessed

in terms of numerical scores @.

Candidate Generation

Search for Candidate RulesThe induction of an individual rule requires making up candidates

that can be added to an existing model. The number of candidates

that are considered when searching for a new rule is usually large and

substantially exceeds the size of the model that is eventually produced.

In general, different strategies for the generation of potential rules are

conceivable. The size of the search space, i.e., the number of rules that

can be constructed, is typically immense. Rather than employing an

exhaustive search, algorithms for rule induction are typically guided by

heuristics or rely on theoretical guarantees to focus on themost promising

candidates while pruning large regions of the search space. The quality

of potential rules must be assessed and compared to each other to decide

which one results in the greatest improvement when added to a model.

Instance SamplingThenumber of possible candidates heavily depends on thedimensionality

of the feature space. The bodies of candidate rules are usually constructed

from the feature values of the available training examples, which are

provided in a two-dimensional feature matrix - ∈ ℝ#×!
. A subset of

the training examples can optionally be selected via instance sampling
to reduce the impact a large number of training examples has on the

complexity of a rule learning algorithm.We represent a subset that results

from such a sampling scheme in terms of a weight vectorw ∈ ℝ#
, where

each element F= ∈ w assigns a real-valued weight to the corresponding

example x= . On the one hand, if F= = 0, the rule induction algorithm

ignores the corresponding example. We refer to such examples as out-
of-sample. On the other hand, if F= > 0, the corresponding example is

included in the sample used for the construction of candidate rules. Rules

are obliged to predict accurately for examples with larger weights, as

they are considered more important than examples with smaller weights.

If no sampling scheme is used, all examples are weighted equally, i.e.,

F= = 1,∀1 ≤ = ≤ # . As shown in Figure 4.2, all candidate rules are

constructed with respect to the same weights to ensure that they are

comparable to each other. Different sampling methods can be used

for dimensionality reduction and ensuring diversity within a model.

For example, they are employed in random forests (Breiman, 2001) or

stochastic gradient boosting (J. H. Friedman, 2002). The out-of-sample

examples that result from applying a sampling method can also be

helpful to obtain an unbiased estimate of a rule’s quality on independent

training examples that have not been used to construct the rule. For
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3: It is also possible to use a bottom-up
search, where rules are successively gener-

alized by removing conditions. However,

this approach has been found to be prob-

lematic when learning from dispersed

training examples (Fürnkranz, 2002).

example, out-of-sample estimates can be used to prune individual rules

once they have been learned (Fürnkranz andWidmer, 1994), as discussed

below.

Label Sampling Unlike in binary or multi-class classification, where each example is

always associated with exactly one class, the dimensionality of the

output space may vastly differ in different applications of multi-label

classification, as can be seen in Table 3.1. In contrast to many problem

transformation methods, where individual base classifiers are restricted

to a single or several predetermined labels (cf. Section 3.6), problem

adaptation methods have access to information about the entire label

space. It is given as a label matrix . ∈ {0, 1}#× , which stores the

ground truth labels of all available training examples. Inducing a new

rule requires selecting the labels it should predict for and deciding

on the predictions that should be assigned to these labels by its head.

Consequently, the complexity of the rule induction algorithm is directly

affected by the number of labels in a dataset. A subset of the available

labels can optionally be selected via label sampling to overcome the

computational demands that result from a high-dimensional label space.

We denote the set of labels that must be taken into account for generating

candidate rules as L′ ⊆ L. Instead of choosing L′ at random, the ground

truth labels . and the statistics (, which incorporate information about

a model’s predictions, may be taken into account for a more informed

selection. For example, a viable strategy is to focus on labels that the

current model inadequately handles.

Construction of Bodies and Heads As mentioned above, the induction of a new rule is based on evaluating

a large number of candidate rules. Among these candidates, the best

one is selected and added to the model. The generation of a single

candidate requires identifying the conditions to be included in its body

and constructing a corresponding head that provides accurate predictions

for the training examples that satisfy these conditions:

I Enumeration of Rule Bodies. Many rule learning algorithms con-

duct a top-down search to search for potential bodies. This includes

methods for single-label classification, such as FOIL (Quinlan,

1990), CN2 (Clark and Boswell, 1991), RIPPER (Cohen, 1995), or

ENDER (Dembczyński, Kotłowski, and Słowiński, 2010), as well

as approaches to multi-label classification (Klein, Rapp, and Loza

Mencía, 2019; Loza Mencía and Janssen, 2016; Rapp, Loza Mencía,

and Fürnkranz, 2018). A top-down search starts with an empty

body that is iteratively refined by adding new conditions.
3
Adding

a condition results in fewer examples being covered, i.e., the rule

is successively tailored to a certain feature subspace. We discuss

the details of top-down rule induction in Section 6.3. Refinements

of a body are usually selected greedily, i.e., at each iteration, the

search focuses on a single refinement. However, when learning

small models, where individual rules have a large impact on the

prediction for unseen examples, the accuracy of rules may benefit

from an expansion of the search space, as achievable by the conduc-

tion of a beam search. Rather than focusing on a single refinement, a

beam search explores a fixed number of alternatives (Fürnkranz,

Gamberger, and Lavrač, 2012). More recently, branch-and-bound
algorithms that rely on theoretical guarantees to prune the search
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space have been proposed to construct certifiably optimal rules (An-

gelino et al., 2018; Boley et al., 2021; Webb, 1995). The exploitation

of theoretical properties also forms the foundation of approaches

based on association rule mining. They have successfully been used

to generate candidate rules in the multi-label setting (Lakkaraju,

Bach, and Leskovec, 2016; B. Li et al., 2008; Thabtah, Cowling, and

Peng, 2004, 2006). Instead of directly constructing the bodies of

rules, many approaches that generate candidates from decision

trees can be found in the literature. This includes algorithms, such

as RuleFit (J. H. Friedman and Popescu, 2008) or SIRUS (Bénard

et al., 2021), that deduce small and interpretable rule sets from

much larger and less comprehensible tree-based models. Moreover,

the corpus of candidate bodies, which may be derived from an en-

semble of decision trees, has also been shown to be well-suited for

the empirical comparison of different strategies for rule evaluation

and selection (Rapp, Loza Mencía, and Fürnkranz, 2019).

I Construction of Corresponding Heads. For each candidate body

that is considered when searching for a new rule, a corresponding

head must be constructed. As a rule only provides predictions for

examples covered by its body, its head should be tailored to the

covered training examples. To consider the ground truth labels of

these examples and the corresponding predictions of the current

model, we rely on the label space statistics mentioned earlier to

construct the head of a rule. It is built with respect to a subset

of the statistics (′ ⊆ ( corresponding to the covered training

examples. Once the predictions provided by a rule’s head have

been determined, an estimate of the rule’s quality can be computed.

It serves as the basis for comparing different candidate rules to

each other and deciding on the best one. We elaborate on the

construction of rule heads and the assessment of their quality in

the following section “Evaluation of Candidates”.

Tie BreakingTwo ormore candidate rules may be assigned the same quality in practice.

Rule learning algorithms often employ a tie-breaking strategy to decide

which one should be preferred. A commonly used rule of thumb is to

prefer more general rules, i.e., rules that contain fewer conditions in their

bodies. Alternatively, rules covering fewer training examples may be

preferred, as they are less prone to overfit the training data (Fürnkranz,

Gamberger, and Lavrač, 2012).

Incremental Reduced Error PruningOnce a rule induction algorithm has decided on the best rule to be

added to a model, additional effort may be put into optimizing this

particular rule. This is especially relevant when learning small models,

where inaccurate rules heavily affect predictive accuracy. In particular,

research on single-label rule learning has shown that the quality of

rules can substantially be improved by incremental reduced error pruning
(IREP) (Fürnkranz andWidmer, 1994) while being computationally more

efficient than post-pruning strategies. IREP, as used by the rule learning

algorithm of the same name and later employed by more advanced rule

learners, such as RIPPER (Cohen, 1995) or SLIPPER (Cohen and Singer,

1999), aims at optimizing individual rules by removing trailing conditions

from their bodies that may result in overfitting of the training data. This

requires applying an instance sampling method whenever a new rule

should be learned to partition the set of available training examples
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4: Typically, one strives for a ratio of 2:1

when partitioning the training data into a

grow and a prune set (Cohen, 1995; Cohen

and Singer, 1999; Fürnkranz and Widmer,

1994).

5: Given  labels, 2
 − 1 different combi-

nations of labels exist.

into two distinct subsets. While the examples drawn by the sampling

method are used to construct a prototypical rule, the out-of-sample

examples are used to prune it afterward. We refer to the former as the

grow set, whereas the latter is called the prune set.4 The prune set is

used to obtain an unbiased estimate of the rule’s quality when applied

to examples that have not been considered for its construction. If a rule

overfits the examples in the grow set, it most likely performs poorly on

the prune set. Removing conditions from its body and keeping track of

the resulting changes in quality, measured on the prune set, enables to

find a modification of the rule’s original body that can be expected to

better generalize to unseen data. In multi-label classification, where rules

may predict for several labels simultaneously, it is possible to not only

modify the body of a rule but also its head. Removing conditions from the

body causes a rule to become more general, i.e., it is likely to cover more

examples. For some labels, this may result in a deterioration of predictive

accuracy if the distribution of the corresponding ground truth labels

changes due to covering a larger feature subspace. In such a case, it might

be beneficial to adjust the set of predicted labels to account for the changes

in the covered region. A systematic investigation of pruning methods

for the application in multi-label rule learning algorithms remains for

future research.

Evaluation of Candidates

Construction of Rule Heads As mentioned before, for each candidate body considered by a rule

induction algorithm, a corresponding head must be found. As discussed

in Section 4.1, different types of multi-label heads are conceivable. Ac-

cordingly, different implementations for the construction of heads are

necessary, depending on whether rules should be concerned with one or

several labels and whether deterministic or probabilistic predictions are

desired. Despite these variants, the construction of rule heads generally

includes the following steps:

I. Label Selection. Unless concerned with the induction of complete

rules that take all available labels into account, the construction

of rule heads requires selecting a subset of labels to predict for.

Compared to single-label heads, where a linear search may be used

to identify the label for which a rule can provide the most accurate

prediction, the construction of partial heads is more challenging.

The latter is closely related to multi-label classification with partial
abstention (Nguyen and Hüllermeier, 2020), where classifiers are

allowed to deliver predictions only for labels they are most certain

about while abstaining on others. BothMLCwith partial abstention

and the creation of partial multi-label heads demands a trade-off

between the accuracy of predictions and their completeness with

respect to the available labels. Unfortunately, due to the combina-

torial complexity that results from a large number of labels, it is

impractical to take all possible label subsets into account.
5
For this

reason, alternatives to an exhaustive search among all possible label

combinations, based on the theoretical properties of commonly

used multi-label rule learning heuristics, were investigated in the

past (Rapp, Loza Mencía, and Fürnkranz, 2018). By controlling
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6: Models that exclusively focus on the rel-

evance or irrelevance of labels are also re-

ferred to be given in disjunctive normal form
(DNF) or conjunctive normal form (CNF),

depending on whether logical AND or

OR operators are used to concatenate the

conditions in the rules’ bodies (Fürnkranz,

Gamberger, and Lavrač, 2012).

the trade-off between the accuracy and completeness of multi-

label heads via parameterization, they can successfully be used

in separate-and-conquer rule learning (cf. Section 5.4). Similarly,

Nguyen and Hüllermeier (2020) provide solutions for the efficient

computation of partial predictions with respect to different evalua-

tion measures. The problem has also been studied in the context

of multi-output decision trees that store predictions for several

labels in their leaf nodes. Si et al. (2017) use an approach based on

gradient boosting, where partial predictions for a fixed number of

labels are deduced from first-order gradients. Z. Zhang and C. Jung

(2020) extend this idea by the ability to take second-order gradients

into account to decide which labels should be addressed by a leaf.

II. Computation of Predictions. Once a set of labels to be included in

a rule’s head has been found, the values ?̂: that should be assigned

to the respective labels �: must be determined. On the one hand,

when concerned with deterministic rules, i.e., if individual labels

should be predicted as either relevant (?̂: = 1) or irrelevant (?̂: = 0),

the predicted values should be chosen such that they are correct

for most covered training examples. Some algorithms (see, e.g.,

Rapp, Loza Mencía, and Fürnkranz, 2019) are restricted to rules

that model the relevance (or irrelevance) of labels. If an example

is not covered by any of the rules, the default rule applies and

predicts previously unassigned labels as irrelevant (or relevant).

The models that result from such approaches are easy to interpret,

as no conflicts between the prediction of rules may arise, even if

several rules cover an example.
6
On the other hand, probabilistic

rules can provide information about the label distribution of ex-

amples they cover. In particular, their predictions for individual

labels may reflect conditional probabilities, as implemented by

RIPPER (Cohen, 1995) and often used in ensembles of decision

trees, e.g., in random forests (Breiman, 2001). However, alternative

representations of probabilistic predictions are conceivable. For

example, the statistical uncertainty of predictions may be taken

into account when specifying the number of relevant and irrele-

vant examples for a label (Hüllermeier and Waegeman, 2021). In

boosting algorithms like ENDER (Dembczyński, Kotłowski, and

Słowiński, 2010), where rules assign real-valued scores ?̂: ∈ ℝ to

individual labels, the semantics of the predicted values depend on

the loss function to be minimized during training. As discussed in

Chapter 6, they are derived from the statistics (′, resulting from

the loss function’s partial derivatives.

III. Quality Assessment. Comparing different candidate rules to each

other requires assessing the quality of their predictions in terms

of a numerical confidence score @ ∈ ℝ. Many traditional rule

learners rely on heuristics to estimate a rule’s quality based on

confusion matrices. A large number of rule learning heuristics

have been investigated in the literature (see, e.g., Fürnkranz and

Flach, 2005; Fürnkranz, Gamberger, and Lavrač, 2012; Janssen and

Fürnkranz, 2010, for an overview). This includes parameterized

heuristics, such as the F-measure (Rĳsbergen, 1979) or the M-

estimate (Cestnik, 1990), that allow for a flexible trade-off between

a rule’s consistency and coverage. In Section 5.3, we show that
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separate-and-conquer rule learning algorithms can be tailored

to different multi-label evaluation measures by weighing these

two aspects accordingly. When dealing with rules that predict for

several labels simultaneously, it is necessary to obtain a single score

that reflects the overall quality of a rule, considering all labels in

its head. Similar to the bipartition evaluation metrics discussed

in Section 3.3, different aggregation and averaging strategies are

conceivable when using heuristics to assess the quality of partial

or complete multi-label rules (Rapp, Loza Mencía, and Fürnkranz,

2018). With traditional heuristics, rules are evaluated in isolation,

i.e., previously induced rules do not affect the assessment of their

quality. This is different from boosting algorithms, where rules are

rated by the improvement they introduce to an existing model. As

discussed in Chapter 6, they assess the quality of rules in terms

of an objective function that depends on a particular loss function

and may include an optional regularization term to penalize overly

specific rules.

Shrinkage Once the head of a rule has been determined, the predictions it consists

of can optionally be post-processed. This is particularly relevant when

learning probabilistic rules (cf. Section 4.1), where the real-valued scores

?̂: ∈ ℝ assigned to individual labels�: may bemultiplied by a parameter

� ∈ (0, 1). This technique,which reduces the impact of individual rules on

the model, is known as shrinkage (Hastie, Tibshirani, and J. H. Friedman,

2009). It may help to prevent overfitting when learning large numbers of

rules. In the literature on gradient descent, the parameter � is commonly

referred to as the learning rate.

4.4 Rule-based Prediction

Determining Predictions After a rule model has been trained on labeled training data, it can be

used to obtain predictions for unseen examples. The method employed

for prediction should be chosen in accordance with the training algo-

rithm used to induce the rules in the first place. In any case, deducing

the predictions for an example from a rule model always involves the

following two steps:

I. Test for Coverage. As rules only predict for examples that satisfy

the conditions in their bodies, the fraction of rules that cover a

given example must be identified. This always includes the default

rule, which applies to all examples.

II. Aggregation of Predictions. A final consistent prediction for the

available labels must be deduced from the heads of the rules that

cover a given example. Depending on the types of heads, their

predictions may contradict each other. The method that is used to

aggregate the information they entail must be able to resolve such

conflicts. Ideally, the aggregation scheme should be tailored to a

specific evaluation measure, which the model aims to optimize.

Decision Lists Deterministic rules induced by a separate-and-conquer algorithm are

usually given in the form of a decision list. It stores the rules in a particular

order (typically the order of their induction). The default rule is always

appended to the end. When predicting for unseen examples, the rules are
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processed in the given order, i.e., rules that have been induced earlier take

precedence over their successors. This enables to account for the fact that

later iterations of a SeCo algorithm are restricted to feature subspaces

that have not been covered yet. As a result, rules constructed during later

iterations are not evaluated with respect to the entire feature space but

must only predict accurately for yet uncovered regions. Nevertheless,

they may overlap with previously covered regions for which one of

the previous rules predicts more accurately. To counteract this issue,

examples are always handled by the first rule they satisfy. This ensures

that rules only predict for regions they have been tailored to. When

dealing with models that meet the properties of a DNF or CNF, i.e., if

no contradictions between the predictions of individual rules may arise,

the final predictions are invariant to the order of the rules, as long as the

default rule comes last. Loza Mencía and Janssen (2016) introduce the

notion of multi-label decision lists. With their approach, the single-label

heads of rules are applied to a given example only if the respective label

has not been dealt with by one of the previous rules. This concept can also

be used to obtain predictions from multi-label rules that are concerned

with several labels at the same time (Klein, Rapp, and Loza Mencía, 2019;

Rapp, Loza Mencía, and Fürnkranz, 2018).

Linear Combination of RulesIf the rules in a model are not inherently tailored to different regions

of the feature space, as with SeCo approaches, the prediction for an

example usually results from a linear combination of rules. This applies

to boostingmethods, weighted covering, and ensembles of rules deduced

from random samples of the training data. When dealing with deter-

ministic rules that assign binary predictions ?̂: ∈ {0, 1} to individual

labels, an unweighted voting scheme may be employed to determine the

final prediction for a single label or even entire labelsets. In such a case,

each rule that covers a given example provides a vote for predicting an

individual label �: as relevant (?̂: = 1) or irrelevant (?̂: = 0). Similarly,

weighted voting may be conducted when dealing with probabilistic

predictions ?̂: ∈ ℝ, which express the degree to which a label is con-

sidered to be relevant or irrelevant by a particular rule (cf. Section 4.1).

Probabilistic rules may also provide more detailed information about the

label distribution in the region they cover. Such a representation enables

to use a wide variety of methods for the aggregation of predictions,

commonly used in ensembles of decision trees. This includes, but is not

restricted to, Laplace correction (Provost and Domingos, 2003), techniques

based on the Dempster-Shafer theory of evidence (Lu, 1996), the cautious rule
of combination (Denœux, 2006), or approaches that measure aleatoric and
epistemic uncertainty (Hüllermeier and Waegeman, 2021).

Statistically Optimal PredictionAs different evaluation metrics with varying characteristics exist in

multi-label classification, a model should ideally be built with respect

to a specific target measure. However, to obtain predictions that can

be expected to be optimal with respect to a certain measure, not only

the construction of a rule-based model but also the aggregation of in-

dividual rules at prediction time should be tailored to the measure at

hand. Whereas decomposable evaluation metrics, such as the Hamming

loss, can easily be optimized via label-wise aggregation (Dembczyński,

Cheng, and Hüllermeier, 2010), the optimization of non-decomposable

metrics is more challenging. Consequently, several publications have

been devoted to the problem of obtaining statistically optimal predictions
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from multi-label classifiers. For example, this includes algorithms for

maximizing the F-measure (Cheng et al., 2012; Dembczyński, Waege-

man, et al., 2011; Jasinska et al., 2016; Waegeman et al., 2014), which can

potentially be applied to rule-based models if they provide information

about the distribution of labels, e.g., in the form of probabilities. Similarly,

techniques that aim to improve the predictive performance of a classifier

in terms of the subset 0/1 loss have been proposed in the literature (Nam

et al., 2017; Senge, Coz, and Hüllermeier, 2013). Also closely related to

rule-based prediction, where the information provided by individual

rules must be aggregated into an overall prediction, is the work by

Nguyen, Hüllermeier, et al. (2020)Nguyen, Hüllermeier, Rapp, Loza Mencía,

and Fürnkranz (2020): ‘On Aggrega-

tion in Ensembles ofMultilabel Classifiers’

. It investigates different possibilities

to aggregate complete predictions provided by the individual classifiers

in an ensemble and includes an evaluation of their suitability for the opti-

mization of commonly used multi-label metrics. Instead of focusing on a

specific target metric, Papagiannopoulou, Tsoumakas, and Tsamardinos

(2015) propose a probabilistic framework for rectifying the probabilistic

predictions of MLC models, which can be applied to different types of

models, including rule-based ones. It aims to enforce adherence to the

marginal label dependencies that are discovered in a dataset.

4.5 Discussion

In this chapter, we presented a unified view of existing rule learning

approaches that have explicitly been designed to meet the requirements

of multi-label classification problems. Rather than discussing the algo-

rithmic details of individual methods, the goal of this chapter was to

highlight the various aspects that are essential to rule-based adaptation

methods and point out different techniques that may be used to imple-

ment them. This high-level view of the problem domain is complemented

by Chapter 5 and Chapter 6, where the underlying methodology and

technical details of two different rule learning approaches are discussed.

Whereas one of these approaches is motivated by the need for human-

interpretable models and uses the separate-and-conquer paradigm, the

other focuses on predictive performance and relies on the gradient boost-

ing framework. Despite these fundamental differences regarding the

construction and evaluation of candidate rules, both algorithms share

many similarities, such as the use of a greedy top-down search for the

refinement of rules or the possible utilization of sampling techniques. The

implementation of said methods benefits from the modular framework

that was proposed in this chapter, as its modularity allows to focus on

the algorithmic differences rather than re-implementing functionality

that both approaches have in common. It also allows both approaches to

benefit from optimizations and approximations for the effective induction

of rules that we elaborate on in Chapter 7. Moreover, the versatility of

the proposed framework is illustrated by a rule learning approach for

application to medical data recently proposed by Rapp, Kulessa, et al.

(2021)Rapp, Kulessa, Loza Mencía, and

Fürnkranz (2021): ‘Correlation-based

Discovery of Disease Patterns for

Syndromic Surveillance’

. It aims to discover indicators for infectious diseases in medical

records, based on their correlation to the number of infections that have

been reported to public health institutions for corresponding periods in

time. Even though this algorithm is not aimed at multi-label classification

but addresses a quite different learning task instead, it resembles many

algorithmic aspects that have been outlined in this chapter.
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As discussed in Section 2.2, many traditional rule learning approaches

for binary or multi-class classification, such as FOIL (Quinlan, 1990),

CN2 (Clark and Boswell, 1991), or RIPPER (Cohen, 1995), use the separate-

and-conquer paradigm for the assemblage of rule-based models. In this

chapter, we discuss a series of publications that focus on a generalization

of the SeCo covering algorithm to multi-label classification problems.

Learning algorithms that follow this particular approach are mainly

motivated by the need for simple models that can easily be analyzed

and inspected by humans. SeCo-based rule learning methods do not

only meet this requirement because they induce deterministic rules

that indicate whether individual labels are relevant or irrelevant to

the examples they cover, but also because they are well-suited for the

construction of DNFs. When learning a DNF, all rules are obliged to

focus on either the presence or absence of a particular label, depending

on whether it is irrelevant or relevant to the majority of examples, i.e., the

individual rules are meant to provide predictions for examples and labels

that are not correctly dealt with by a simple default rule. A model of this

kind is straightforward to comprehend, as the predictions of different

rules may not conflict with each other. Consequently, each rule can be

considered a local explanation that applies to all examples it covers,

regardless of the remaining rules or the order in which they have been

learned. Following a discussion of multi-label rule learning heuristics in

Section 5.2, in Section 5.3, we present an empirical study that emphasizes

the need for configurable learners that can flexibly use different heuristics,

depending onwhich evaluationmeasure should be optimized by amodel.

Whereas said study is restricted to single-label rules, we elaborate on

the possibility of capturing local label dependencies through multi-label

heads in Section 5.4. In contrast to label-dependent rules, which allow

expressing global and local dependencies by taking the predictions of

previously induced rules into account (cf. Section 4.1), multi-label heads

enable single rules to provide a joint prediction for several labels. Multi-

label rules must not be intepreted in the context of their predecessors

and therefore are more in line with the properties of a DNF.

5.1 The Label Covering Problem

Partially Covered ExamplesAs previously outlined in Section 2.2, a SeCo algorithm induces rules in a

sequential manner, where one rule is added after the other. When dealing

with single-label problems, the examples it covers are removed from the

training dataset whenever a new rule has been learned. This is referred to

as the “separate”-step. Unfortunately, a generalization of this strategy to

the multi-label setting is not straightforward. As discussed in Section 4.1,

the predictions of multi-label rules may be restricted to a subset of the

available labels or even a single label. Consequently, during the covering

process, the existing rules are likely to provide predictions for some labels
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of an example but not for others. Hence, a suitable strategy is needed to

separate uncovered examples from (partially) covered ones and decide

at which point an example should be removed from the training data.

Separation Strategies This problem is also acknowledged by Loza Mencía and Janssen (2016).

The authors present the first attempt to apply the SeCo paradigm to

multi-label classification problems and investigate several strategies to

deal with partially covered examples. On the one hand, they consider

removing an example as soon as it is covered by at least one rule, even if

this rule does not predict for all available labels. On the other hand, they

retain covered examples in the training dataset unless their labels are

fully covered or partially covered to at least a certain extent. As it remains

unclear which of these variants should be preferred, in the following, we

introduce a flexible methodology that allows implementing each one of

them.

Label Weights

Initializing and Updating Label Weights We use a matrix, ∈ {0, 1}#× to keep track of the examples and labels

covered by previously induced rules. Each element in the matrix assigns

a binary weight F=: to the :-th label of the =-th example. Initially, to

indicate that all examples and labels are fully uncovered, all elements

in the matrix are set to one. Whenever a new rule has been learned,

the weights that correspond to examples covered by the rule must be

updated. This requires setting the weights of labels for which the new

rule predicts to zero, whereas the other weights remain unchanged.

Multi-label Covering The structure of a multi-label SeCo algorithm
1

1: By using a weight matrix with real-

valued weights, as well as a suitable strat-

egy for updating them, the proposed

methodology can easily be generalized

to a weighted covering algorithm. How-

ever, we consider such an extension to be

out of the scope of this chapter.

that uses a weight matrix

, is outlined in Algorithm 1. It starts by constructing a default rule

that provides a prediction for all available labels. Typically, the default

rule predicts the majority value Λ: ∈ {0, 1} for each available label. The

majority value for a particular label �: indicates whether the label is

associated with most of the provided training examples (Λ: = 1) or

if it is absent from most training examples (Λ: = 0). Afterward, label

space statistics (, which serve as a basis for learning additional rules

with respect to a heuristicH are computed. As discussed in Section 5.2

below, the label space statistics are given as binary confusion matrices

that specify for each example and label whether the prediction of a

Algorithm 1: A multi-label separate-and-conquer algorithm

input :Training examples D = {(x= , y=)}#= , heuristicH,

at least one stopping criterion

output :List of rules �
1 51 : ŷ1 ← 11 = induce default rule

2 ( = compute label space statistics

3 , = set weight of each example and label to 1

4 for C = 2, 3, . . . until a stopping criterion is met do
5 wC = obtain a weight for each example via instance sampling

6 5C : ŷC ← 1C = induce best rule w.r.t.H and (, ignoring examples

and labels with zero weights according to wC or,
7 , = update_weight_matrix (D,,, 5C)
8 return list of rules � = ( 52 , 53 , . . . , 51)



5.1 The Label Covering Problem 57

Algorithm 2: update_weight_matrix

input :Training examples D = {(x= , y=)}#= , weight matrix, ,

rule 5 : ŷ← 1
output :Updated weight matrix,

1 foreach example x= that satisfies the body 1 do
2 for ?̂: ∈ ŷ do
3 F=: ∈, = 0

4 returnweight matrix,

candidate rule is correct or incorrect. Unlike the statistics (, which only

depend on the training examples’ ground truth labels, the weight matrix

, is updated at each iteration of the covering process according to

Algorithm 2. Examples and labels for which the corresponding weight

has been set to zero must be ignored when assessing the quality of

potential rules. In addition, an instance sampling method that assigns

a weight to each training example can optionally be used. This enables

the implementation of different strategies to deal with partially covered

examples. For example, if partially covered examples, for which most

labels have already been dealt with, should be removed from the training

process, they may be given zero weights.

Stopping Criteria

Terminating the Covering ProcessAs can be seen in Algorithm 1, the induction of new rules comes to

an end as soon as a certain stopping criterion is met. The investigation

of suitable pre-pruning techniques has traditionally been an essential

aspect of research on rule learning methods (see, e.g., Fürnkranz and

Flach, 2004, for an analysis of different techniques). They aim to prevent

overfitting by discouraging the inclusion of overly specific rules in a

model. This goal can either be achieved by early termination of a SeCo

algorithm or by filtering suboptimal rules once training has finished. For

example, CN2 (Clark and Boswell, 1991) and FOSSIL (Fürnkranz, 1994)

employ a filter criterion to decide whether individual rules should be

excluded from a model, whereas FOIL (Quinlan, 1990) and RIPPER (Co-

hen, 1995) rely on the information-theoretic MDL stopping criterion.

Unfortunately, there is no prior work on generalizing these approaches

from single-label classification to multi-label problems. Even though

their application to multiple labels is most probably feasible in a binary

relevance fashion, it can be expected that the optimization of different

multi-label evaluation measures demands varying implementations of

pre-pruning techniques.

Coverage Stopping CriterionDue to the lack of better solutions, we rely on a rather conservative

coverage stopping criterion in the remainder of this chapter. It stops the

induction of rules as soon as all examples and labels for which the default

rule provides an incorrect prediction are covered, i.e., as soon as the sum

#∑
==1

 ∑
:=1

(F=: · ~H=: ≠ Λ:�) (5.1)

equals zero or falls below a predefined threshold.
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Algorithm 3: Application of a multi-label decision list to an example

input :Example x, multi-label decision list �
output :Prediction ŷ

1 ŷ = (?, ?, . . . , ?)
2 foreach rule 5 : p̂← 1 ∈ � do
3 if example x satisfies the body 1 then
4 foreach ?̂: ∈ p̂ do
5 if Ĥ: ∈ ŷ ≠ ? then
6 Ĥ: = ?̂:

7 return prediction ŷ

Prediction for Several Labels

Multi-label Decision Lists As seen in Algorithm 1, the rules that result from a multi-label SeCo

algorithm are given in the order of their induction. The default rule is

always located at the end. Loza Mencía and Janssen (2016) refer to such

a model as a multi-label decision list. It requires the order of the rules to
be taken into account when obtaining predictions for unseen examples.

As label space statistics, which have been assigned zero weights during

previous iterations of the training algorithm, do not affect the quality

of a rule, it may provide inaccurate predictions for the corresponding

examples and labels. To counteract this potential problem, the predictions

of rules that have been induced early in the training process should be

given greater priority than the predictions of their successors.

Determining Predictions Algorithm 3 illustrates how predictions for a given example can be

obtained from amulti-label decision list. For this purpose, the rules in the

model are processed in the given order. If a rule covers an example, its

prediction for a particular label only takes effect if none of the previously

processed rules have provided a prediction for the respective label. The

default rule, located at the end of a multi-label decision list, is responsible

for assigning a default prediction to all labels that have not been dealt

with by the previous rules. If the model assembled by a multi-label

SeCo algorithm satisfies the properties of a DNF, all rules, except for the

default rule, provide the same prediction for a particular label. In such a

case, Algorithm 3 does not depend on the order of the rules. However,

even in this restricted setting, the default rule must only be applied to

labels that have not been handled by one of the other rules.

5.2 Multi-label Heuristics

Consistency-Coverage Trade-off Rule learning algorithms based on the separate-and-conquer paradigm

usually employ a heuristic-guided search for rules that model regularities

in the training data. All common rule learning heuristics weigh between

two aspects, namely consistency and coverage, and it is commonly

accepted that the choice of the heuristic has a significant impact on the

predictive performance of a learning algorithm (Fürnkranz and Flach,

2005; Fürnkranz, Gamberger, and Lavrač, 2012; Janssen and Fürnkranz,

2010). On the one hand, rules should be consistent, i.e., their predictions

should be correct for as many of the covered examples as possible. On the
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other hand, ruleswith great coverage, i.e., rules that covermany examples,

tend to be more reliable, even though they may be less consistent.

Traditional Notation

Two-Dimensional Confusion MatricesRule learning heuristics are most commonly denoted as mathematical

functionsH : ℕ2×2 → ℝ, whichmap a two-dimensional confusionmatrix

to a real-valued score that allows comparing the estimated quality of

different candidate rules. Traditionally, as shown in Table 3.3, a confusion

matrix consists of the number of true positives (TP), false positives (FP),

true negatives (TN), and false negatives (FN) predicted by a rule. Given

a ground truth label H=: ∈ {0, 1} and the prediction of a deterministic

rule ?̂=: ∈ {0, 1} for a particular label, the elements of a binary confusion

matrix �=: are defined as follows.

TP B ~H=: = 1 ∧ ?̂=: = 1� FP B ~H=: = 0 ∧ ?̂=: = 1�

TN B ~H=: = 0 ∧ ?̂=: = 0� FN B ~H=: = 1 ∧ ?̂=: = 0�
(5.2)

Limitations of the NotationHowever, in a multi-label setting, we have found this notation misleading

and limiting at times. In binary classification, a rule learner is typically

restricted to rules covering examples of the minority class, whereas the

default rule deals with examples that correspond to the majority class.

In such a case, the terms “true positives” and “false negatives” refer

to examples of the minority class, whereas examples of the majority

class are referred to as “true negatives” or “false positives”. In multi-

label classification, where each example may be associated with several

labels, the distribution of individual labels may vary. Consequently, the

semantics of the terms above differ from label to label. If the rules are

not obliged to predict the same outcome for a single label but are free to

predict positively or negatively, these terms become even more confusing.

Furthermore, the term “negatives” does not distinguish between labels

of covered examples for which a rule explicitly provides a negative

prediction and labels of uncovered examples that are not affected by

a rule’s predictions at all. In the following, we propose an alternative

notation that aims to overcome these practical issues and limitation.

AMore Flexible Notation

Three-Dimsionsal Confusion MatricesTo facilitate the definition of rule learning heuristics in a multi-label

classification setting, we propose using three-dimensional confusion

matrices consisting of eight elements in total. Multi-label rule learning

heuristics that assess the quality of rules in terms of such confusion

matrices can be viewed as functions H : ℕ2×2×2 → ℝ. To refer to

the different confusion matrix elements, we use names that consist of

three symbols. Each of these symbols corresponds to a certain aspect

characterizing the prediction of a binary rule for a particular example

and label. The first symbol specifies whether the example is “covered” (C)

or “uncovered” (U) by the rule. The second symbol identifies “relevant”

(R) or “irrelevant” (I) labels according to ground truth. The third symbol

depends on whether the rule predicts “positively” (P) or “negatively”

(N) for the respective label. Accordingly, the elements of a binary and
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three-dimensional confusion matrix �=: that characterizes a prediction

for an example x= and label �: are defined as follows.

CRP B~x= is covered ∧ H=: = 1 ∧ ?̂=: = 1�

CRN B~x= is covered ∧ H=: = 1 ∧ ?̂=: = 0�

CIP B~x= is covered ∧ H=: = 0 ∧ ?̂=: = 1�

CIN B~x= is covered ∧ H=: = 0 ∧ ?̂=: = 0�

URP B~x= is uncovered ∧ H=: = 1 ∧ ?̂=: = 1�

URN B~x= is uncovered ∧ H=: = 1 ∧ ?̂=: = 0�

UIN B~x= is uncovered ∧ H=: = 0 ∧ ?̂=: = 1�

UIP B~x= is uncovered ∧ H=: = 0 ∧ ?̂=: = 0�

(5.3)

Shorthand Notations We further introduce the following shorthand notations to denote ex-

amples and labels that are covered by a rule and for which the rule’s

prediction is correct or incorrect, respectively.

Ccorrect BCRP + CIN
Cincorrect BCRN + CIP

(5.4)

Accordingly, the following symbols refer to labels of uncovered examples

for which the prediction of a rule would be correct or incorrect if covered

by the rule.

Ucorrect BURP +UIN
Uincorrect BURN +UIP

(5.5)

The shorthand notations given above allow defining multi-label rule

learning heuristics in a simple and unambiguous way.

Selected Heuristics

Generalization to Multiple Labels In the following, we use the previously introduced notation to introduce

a selection of rule learning heuristics used in the remainder of this

chapter. All of the considered heuristics are known from the single-label

classification setting. However, if a rule is allowed to predict for several

simultaneously, different possibilities exist to obtain an overall estimate

of the rule’s quality across the respective labels. For this purpose, the

different averaging strategies that are discussed in Section 3.3 can be

used.

Label-wise averaged Heuristics First of all, an aggregated confusion matrix can be obtained for each

label individually by aggregating the corresponding binary confusion

matrices across all available training examples, as shown in (3.12). In

this case, an estimate of a rule’s quality with respect to multiple labels is

computed by applying a given heuristic function to each and averaging

the resulting scores. The overall quality of a rule according to such a

label-wise averaged heuristic calculates as

1

|ℎ |
∑̂
?:∈p̂

H(
#∑
==1

�=:F=:), (5.6)

where |p̂| denotes the number of labels for which a head p̂ predicts and

the values ?̂: ∈ {0, 1} correspond to discrete predictions it provides for
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the respective labels. As discussed in Section 5.1, the binary weights

F=: ∈ {0, 1} specify whether individual examples and labels should

affect the quality of a rule or whether they should be ignored, e.g.,

because they have already been dealt with by one of the previously

induced rules.

Micro-averaged HeuristicsIn addition, we also consider micro-averaged heuristics, where a heuristic

function is applied to a single confusion matrix resulting from an ag-

gregation across all available examples and labels, similar to (3.11). A

heuristic of this kind computes the overall quality of a rule as

H(
#∑
==1

∑̂
?:∈p̂

�=:F=:). (5.7)

Whereas the computation of an evaluation score according to the former

strategy satisfies the properties of label-wise decomposability in (3.26),

this is not necessarily the case when using the latter strategy.

Hamming Accuracy HeuristicFirst of all, we consider a heuristic function that is similar to theHamming

loss in (3.9). In contrast to loss functions like the Hamming loss, where

smaller values indicate better performance, rule learning heuristics

are traditionally designed such that greater heuristic valus are better.

Following this convention, we define theHamming accuracy of a rule as

HHamm. (�) B
�correct +*incorrect

�correct + �incorrect +*correct +*incorrect
. (5.8)

Precision HeuristicIn addition, we consider a heuristic function that corresponds to the

precision metric in (3.17). It can be written as

HPrec. (�) B
Ccorrect

Ccorrect + Cincorrect
(5.9)

and corresponds to the number of labels covered and correctly predicted

by a rule.UnlikeHamming accuracy,which comeswith a reward for labels

of uncovered examples for which a rule’s prediction would be incorrect

if covered, the precision heuristic does only take covered examples into

account.

Recall HeuristicSimilarly, we can define a heuristic that corresponds to the recall metric

in (3.18) as

HRec. (�) B
Ccorrect

Ccorrect +Ucorrect
. (5.10)

It assesses the quality of a rule as the fraction of covered examples among

all examples for which the rule’s predictions would be correct.

F-measure HeuristicThe heuristics in (5.9) and (5.10) are not useful in practice, as they focus

exclusively on the consistency or coverage of rules. Instead, rule learning

heuristics that strive for a balance between these two aspects are needed.

The question of how to trade off the consistency and coverage of rules

is especially relevant in multi-label classification, where different and

potentially competing evaluation measures exist (cf. Section 3.3). Because

a single learner cannot optimize all of them at the same time, the rule

learning heuristic it employs should most probably be adjusted to a

particular target measure. In Section 5.3, we show empirically that it

is necessary to weigh these properties differently, depending on which
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performance measure should be optimized by a model. The F-measure

allows controlling the trade-off between the precision and recall of rules,

depending on a user-configurable parameter �. A special case of this

performance metric, where � = 1, is shown in (3.19). In the general case,

a multi-label rule learning heuristic that corresponds to the F-measure

can be written as

HF (�) B
(
1 + �2

)
Ccorrect

(1 + �2)Ccovered + �2Ucorrect + Cincorrect
with � ≥ 0. (5.11)

If � < 1, the consistency of a rule is considered more important than its

consistency. If � > 1, greater emphasis is put on its coverage instead.

M-estimate Heuristic

The M-estimate (Cestnik, 1990) is another well-known rule learning

heuristic that allows controlling the trade-off between consistency and

coverage via a user-configurable parameter. We use the previously intro-

duced notation to define this heuristic as

HM (�) B
Ccorrect +

(
< Ccorrect+Ucorrect

Ccorrect+Cincorrect+Ucorrect+Uincorrect

)
Ccorrect + Cincorrect + <

with < ≥ 0. (5.12)

The parameter < controls the trade-off between the consistency and

coverage of a rule. If < = 0, the M-estimate is equivalent to the precision

heuristic in (5.9). As < approaches infinity, the M-estimate becomes

equivalent to weighed relative accuracy (WRA) (Fürnkranz, Gamberger,

and Lavrač, 2012).

5.3 A Study on Rule Selection

Motivation As previously argued in Section 5.2, the choice of a suitable rule learning

heuristic has a significant impact on the effectiveness of a learning

algorithm based on the separate-and-conquer paradigm. Whereas the

properties of different heuristics have been studied quite extensively in

the realm of single-label classification (see, e.g., Fürnkranz and Flach,

2005; Janssen and Fürnkranz, 2008), there is no such work that considers

the particularities of multi-label classification. This is surprising as the

quality of multi-label predictions is usually assessed in terms of various

performance measures that a single learner cannot optimize at the same

time (cf. Section 3.3). Even though some of them originate frommeasures

used in binary or multi-class classification, different ways to aggregate

the predictions for individual examples and labels, such as example-wise

or micro averaging, exist in MLC. Some measures like the subset 0/1

loss are even unique to the multi-label setting. For this reason, it can

be expected that different heuristics are needed, depending on which

multi-label measure should be optimized by a model.

Goals of the Study In the following, we present an experimental study that investigates the

trade-off between the consistency and coverage of individual rules in the

multi-label classification setting. The goal of this studypublished byRapp,

LozaMencía, and Fürnkranz (2019)Rapp, Loza Mencía, and Fürnkranz (2019):

‘On the Trade-off Between Consistency

and Coverage in Multi-label Rule

Learning Heuristics’

is to understand better how these two

aspects should be weighed to assess the quality of candidate rules during

training. This question is especially relevant if one is interested in a
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2: The source code is available on-

line at https://github.com/mrapp-ke/

RuleGeneration

3: We use the random forest implementa-

tion that is provided by the WEKA (Hall

et al., 2009) project. It is available at https:

//www.cs.waikato.ac.nz/ml/weka

model that optimizes a certain multi-label evaluation measure. The study

revolves around a method that allows for a flexible assemblage of rule-

based models, given a predefined set of candidate rules. Said method

enables the use of different multi-label heuristics to select candidate

rules that should be included in a model. We analyze empirically how

the predictive performance and characteristics of rule-based models

are affected by varying heuristics. Furthermore, we demonstrate how

models that aim to optimize a given multi-label evaluation measure

can deliberately be trained by choosing a suitable heuristic. Finally, by

comparing the experimental results to a state-of-the-art rule learner, we

emphasize the need for configurable approaches that can flexibly be

tailored to different multi-label measures. For reasons of brevity, we

restrict the discussion to micro averaged evaluation measures, as well as

to the Hamming and subset 0/1 loss.

Generation of Candidates

Desired PropertiesFor the following study, we rely on a method that allows us to generate

a large number of rules for a given training dataset in a short amount

of time.
2

The rules should ideally be unbiased, i.e., they should not

be biased in favor of a certain heuristic, and they should be diverse,

i.e., general rules should be included as well as specific rules. Given

that these requirements are met, we consider the generated rules to be

representative samples from the space of all possible rules, which is too

large to be explored exhaustively.We use the generated candidate rules as

a starting point for building different models. They consist of a subset of

rules selected with respect to a specific heuristic (cf. Section “Candidate

Selection”) and filtered according to a threshold (cf. Section “Threshold

Selection). Whereas the first step yields a theory with great coverage, the

threshold selection aims at improving its consistency.

Extracting Rules from Random ForestsFollowing the principles of the binary relevance transformation method

(cf. Section 3.6), we train multiple random forests (Breiman, 2001), using

varying configuration parameters, for each available label and extract

rules from their decision trees.
3
As illustrated in Algorithm 4, we repeat

the process until a predefined number of rules ) has been generated.

Each random forest consists of a predefined number of decision trees

(we restrict the number of trees to 10). To ensure that we can generate

diverse rules later, we vary the configuration parameter depth ∈ [0, 8]
that specifies the maximum depth of trees (unrestricted, if depth = 0)

(cf. Algorithm 4, train_forest). For the construction of individual trees,

Algorithm 4: Iterative generation of rules from random forests

input :Minimum number of rules to be generated )
output :Rule set �

1 � = ∅
2 while |� | < ) do
3 foreach �: ∈ L and depth ∈ [0, 8] do
4 rf = train_forest (�: , depth)
5 � = � ∪ extract_rules (rf)

6 return rule set �

https://github.com/mrapp-ke/RuleGeneration
https://github.com/mrapp-ke/RuleGeneration
https://www.cs.waikato.ac.nz/ml/weka
https://www.cs.waikato.ac.nz/ml/weka
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the random forest method samples from the available training examples

with replacement. In addition, each time a new node should be added

to a decision tree, only a random selection of attributes is considered.

This guarantees a diverse set of trees to be built. To extract rules from

a random forest (cf. Algorithm 4, extract_rules), we traverse all paths

from the root node to a leaf in each decision tree. We ignore paths that

lead to a leaf where the majority value Λ: is predicted. Consequently, all

rules that are generated with respect to a particular label have the same

head Ĥ: = 1 or Ĥ: = 0, if Λ: = 0 or Λ: = 1, respectively. A rule’s body

consists of a conjunction of all conditions encountered on the path from

the root node to the corresponding leaf.

Candidate Selection

Separate-and-Conquer Strategy We use a separate-and-conquer strategy for selecting a subset of the

available candidate rules. New rules are added to a model until the

coverage stopping criterion in (5.1) is met. Because all candidate rules

provide the same prediction for a particular label, the resulting model

meets the properties of a DNF. Whenever a new rule is added to a model,

the examples and labels it predicts for are marked as covered (cf. Sec-

tion 5.1), and the following rule is chosen according to its predictions for

yet uncovered examples and labels.

Heuristics and Tie-breaking To create different models, we select subsets of the rules generated

earlier using varying heuristicsH (cf. Section 5.2) to evaluate potential

candidates. If two candidates are assigned the same quality, we prefer the

one that covers more examples or contains fewer conditions in its body.

Whenever a new rule is added, the overall coverage of themodel increases

as more positive labels are covered. However, a new rule may introduce

incorrect predictions for some labels. As a result, the consistency of the

model may decrease.

Threshold Selection

Problems of Unfiltered Models As described earlier, we use a SeCo strategy to select more rules until

all examples and labels for which a simple default rule mispredicts are

covered. The default rule predicts the majority valueΛ1 , . . . ,Λ for each

label. In this way, the coverage of the resulting model is maximized at the

expense of consistency. This is because each rule contributes to the overall

coverage but might introduce incorrect predictions in some cases.

Filtering Rules To trade off between these two aspects, we use a threshold ) that aims

at diminishing the effects of inconsistent rules. It is compared to the

performance scores that result from applying the heuristic H to each

rule previously added to a model. For assessing the quality of a rule,

the rule’s predictions on the entire training data are taken into account.

This is different from the candidate selection, where examples that are

already covered by previously selected rules are not considered. Because

the candidate selection aims at selecting non-redundant rules, which

cover the feature space as uniformly as possible, it considers rules in the

context of their predecessors. In contrast, the threshold ) takes effect

at prediction time, when no order is imposed on the rules. Only rules

whose quality exceeds the threshold contribute to the prediction.
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Figure 5.1: Ranks and standard deviation of average ranks over several datasets with respect to Hamming and subset 0/1 loss using different

parameters < (horizontal axis) and ) (vertical axis). The best parameter settings for different datasets are specified by red + signs.

Experimental Evaluation

Experimental SetupWe have conducted a large number of experiments on different datasets

that emphasize the need to use varying heuristics for candidate selection

and filtering to obtain models tailored to specific multi-label measures.

We further compare our method to different baselines to demonstrate

the benefits of flexibly adjusting a learner to different measures rather

than employing a general-purpose learner. We applied the previously

described method to eight different data sets, namely “Birds”, “CAL500”,

“Emotions”, “Enron”, “Flags”, “Genbase”, “Medical”, “Scene” and“Yeast”

(cf. Section 3.2). We set the minimum number of generated rules to

) = 300, 000. For candidate selection, we used different instantiations of

the M-estimate in (5.12). Its parameter was set to < = 0, 21 , 22 , . . . , 219
.

For each of these variants, we applied varying thresholds ). They have

been chosen such that they are satisfied by at least 100%, 95%, . . . , 5%

of the selected rules. All experimental results have been obtained via

10-fold cross validation. In addition to the M-estimate, we also used

the F-measure heuristic in (5.11) with varying � parameters. As the

conclusions that can be drawn from these experiments are very similar

to those for the M-estimate, we mostly focus on the latter. Among the

performance measures that we report are micro averaged precision

and recall. Moreover, we assess the quality of models in terms of the

micro averaged F1 score, as well as the Hamming and subset 0/1 loss

(cf. Section 3.3). For a broad analysis, we trained 20
2 = 400 models per

dataset using the same candidate rules but selecting and filtering them

differently using varying combinations of the parameters < and ). We
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visualize the predictive performance and characteristics of the resulting

models as two-dimensional matrices of scores (cf., e.g, Figure 5.1). One

dimension corresponds to the < parameter. The other one refers to the

threshold ). Some of the used datasets (“CAL500”, “Flags” and “Yeast”)

contain very frequent labels that are relevant to most examples. This is

rather atypical in MLC and causes the unintuitive effect that the removal

of individual rules via the parameter ) results in a model with greater

recall and lower precision. To compare different parameter settings across

multiple datasets, we worked around this effect by inverting the affected

labels.

Predictive Performance Figure 5.1 and Figure 5.2 depict the average ranks of the tested configura-

tions according to different multi-label evaluation measures. For each

dataset, we determined the rank of all 400 parameter settings. Afterward,

we averaged them over all datasets. The depicted standard deviations

show that the optimal parameter settings for a specific measure may

vary depending on the dataset. However, there is always an area in the

parameter space where a good setting can be found with high certainty

for each measure. It can clearly be seen that precision and recall are

competing measures. The former is maximized by choosing small values

for < and filtering extensively. The latter benefits from large values for

< and no filtering. Interestingly, setting < = 0, i.e., selecting candidates

according to the precision heuristic, does not result in models with the

highest overall precision. This is in accordance with Figure 5.3, where the

models with the highest F1 score do not result from using the F-measure

heuristic with � = 1 for candidate selection. Instead, optimizing the F1

score requires small values for < to emphasize the consistency of rules

while enforcing a certain coverage simultaneously. The same applies

to the Hamming and subset 0/1 loss, albeit both of these evaluation

measures demand to put even more weight on consistency and filtering

more extensively than F1.

Model Characteristics Besides their predictive performance, we are also interested in the char-

acteristics of the models. Figure 5.4 shows how the number of rules in

a model and the average number of conditions are affected by varying

parameter settings. The number of rules independently declines when

using greater values for the parameter < or smaller values for ), result-
ing in less complex models that humans can comprehend more easily.

The average number of conditions is mostly affected by the parameter

<. Table 5.2 provides an example of how different parameters affect

the model characteristics. It shows rules that predict the same label

but have been selected by two fundamentally different approaches. The

first approach (< = 16, ) = 0.3) reaches high scores according to the

F1-measure, Hamming loss, and subset 0/1 loss, whereas the second one

(< = 262144, ) = 1.0) results in high recall.

Baseline Comparison Although the goal of the presented study was not to develop a method

that generally outperforms existing rule learners, we want to ensure

that we achieve competitive results. For this reason, we compared our

method to JRip, WEKA’s implementation of RIPPER (Cohen, 1995), using

the binary relevance method. RIPPER uses incremental reduced error

pruning (IREP) and post-optimizes the induced rule set by default.

Although our approach could use such optimizations, this is out of

the scope of our experimental study. For a fair comparison, we also

report the results of JRip without using IREP and with post-optimization
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Figure 5.2: Ranks and standard deviation of average ranks over several datasets with respect to micro averaged precision, recall and F1

measure. The best parameter settings for different datasets are specified by red + signs.
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Table 5.1: Predictive performance of RIPPER using IREP and post-optimization ('3), without using post-optimization ('2) and using

neither IREP nor post-optimization ('1) compared to different approaches for candidate selction that try to optimize micro averaged F1

("�1
), Hamming loss ("� ) or subset 0/1 loss ("0/1).

Dataset Micro averaged F1 Hamming loss Subset 0/1 loss

'1 '2 '3 "�1 '1 '2 '3 "� '1 '2 '3 "
0/1

Birds 43.65 41.12 46.01 45.33 5.61 5.52 4.83 4.90 55.80 54.43 48.52 51.15

CAL500 33.63 33.18 33.76 40.10 17.86 16.34 14.61 13.98 100.00 100.00 100.00 100.00

Emotions 56.96 58.68 60.97 65.20 24.88 24.62 22.79 22.35 81.96 79.60 76.40 77.58

Enron 50.57 53.05 55.33 51.07 5.65 5.30 5.07 5.46 93.83 92.01 90.84 92.19

Flags 71.81 72.96 74.85 72.83 26.98 25.92 24.80 26.61 84.53 82.95 79.00 90.18

Genbase 98.83 98.68 98.68 99.14 0.11 0.12 0.12 0.08 2.72 3.17 3.17 2.11
Medical 81.40 83.67 84.81 81.67 0.99 0.90 0.85 1.02 33.26 30.09 27.84 33.57

Scene 63.97 63.25 64.55 67.44 12.13 12.75 11.97 11.07 53.39 55.46 53.76 50.27
Yeast 58.65 60.41 61.19 64.25 21.50 21.71 21.23 20.76 91.27 92.14 90.82 88.25

Avg. rank 3.44 3.00 1.67 1.78 3.44 2.89 1.67 1.89 2.89 2.67 1.56 2.11

4: We do not consider the random forests

from which we generate rules as relevant

baselines. This is because random forests

use voting to make a prediction, which is

fundamentally different from rule learners

that model a DNF. Also, we train random

forests consisting of a vast number of trees

with varying depths to generate diverse

rules. In our experience, these random

forests perform poorly compared to com-

monly used configurations.

turned off.
4
We tested three different configurations of our approach.

The parameters< and ) used by these approaches have been determined

on a validation set using nested 5-fold cross validation on the training

data. For the approach "�1, the parameters have been chosen such that

the F1-measure is maximized."� and"
0/1 were tuned with respect to

the Hamming and subset 0/1 loss, respectively. According to Table 5.1,

our method can achieve reasonable predictive performance. With regard

to the measure they try to optimize, our approaches generally rank

before JRip with optimizations turned off ('1), which is the competitor

that is conceptually closest to our method. Although IREP positively

affects the predictive performance, our approaches tend to outperform

JRip with IREP enabled but without any post-optimization ('2). Despite

the absence of advanced pruning and post-processing techniques, our

approaches can even surpass the fully-fledged variant of JRip ('1) on

some data sets. We consider these results as a clear indication that it

is indispensable to flexibly adapt the heuristic used by a rule learner if

one aims at deliberately optimizing a specific multi-label performance

measure.
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Figure 5.4: Ranks and standard deviation of average ranks over several datasets with respect to the number of rules and conditions. A

smaller rank means more rules or conditions.

Table 5.2: Exemplary rule sets predicting the label 786.2:Cough of the dataset “Medical”, which consists of textual radiology reports that

were categorized into diseases.

< = 16, ) = 0.3 Mi. Precision = 74.07%, Mi. Recall = 78.26%

Cough← cough ∧ aldrich ∧ opacity ∧ ¬ tachypnea ∧ ¬ streaky ∧ ¬ side ∧ ¬ distal ∧ ¬ diaphragm
Cough← cough ∧ ¬ x-rays ∧ ¬ vomiting ∧ ¬ proximity ∧ ¬ hematuria ∧ ¬ focal
Cough← cough ∧ ¬ group ∧ ¬ edema ∧ ¬ fever
Cough← cough ∧ ¬ lobe ∧ ¬ breathing
Cough← coughing
< = 262144, ) = 1.0 Mi. Precision = 65.61%, Mi. Recall = 89.57%

Cough← cough ∧ ¬ ureteral ∧ ¬ stones ∧ ¬ contrast
Cough← coughing
Cough← code
Cough← substance
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5.4 Search for Multi-label Heads

Motivation In Section 5.3,we demonstrated that a separate-and-conquer rule learning

algorithm can be tailored to varying evaluation measures by trading off

the consistency and coverage of rules differently. However, the study

presented in the previous section is restricted to single-label rules, which

are not allowed to provide predictions for more than a single label. If one

is interested in optimizing a non-decomposable evaluationmeasure, such

as the F1-measure or the subset 0/1 loss, the use of single-label rules most

likely limits the effectiveness of such an approach, as there is a consensus

that non-decomposable measures require taking interactions between

labels into account (cf. Section 3.5). In the following, we investigate a

method by Klein, Rapp, and Loza Mencía (2019)Klein, Rapp, and Loza Mencía (2019):

‘Efficient Discovery of Expressive Multi-

label Rules using Relaxed Pruning’

that aims to overcome

this limitation by constructing partial multi-label heads if appropriate.

Including predictions for multiple labels in the head of a rule enables

to model local dependencies, such as co-occurrences and other types of

interdependencies, between the respective labels (cf. Section 4.1).

Computational Challenges As the number of label combinations for which a rule may predict

increases exponentially with the number of available labels, the induction

of multi-label rules is computationally challenging. The methodology

discussed in this section is built upon theoretical findings by Rapp, Loza

Mencía, and Fürnkranz (2018)Rapp, Loza Mencía, and Fürnkranz

(2018): ‘Exploiting Anti-monotonicity

of Multi-label Evaluation Measures for

Inducing Multi-label Rules’

, who have shown that rules with multiple

labels in their heads can be constructed efficiently by exploiting certain

properties of multi-label rule learning heuristics and pruning the search

for multi-label heads accordingly. However, preliminary experiments

revealed that multi-label heads are unlikely to be learned by such an

approach due to its restrictiveness. Therefore, in (Klein, Rapp, and Loza

Mencía, 2019), we propose to relax the pruning by introducing a bias

towards larger multi-label heads to circumvent this practical issue. They

further show empirically that their approach indeed results in more

multi-label heads being found and does not come with a significant

drawback in terms of training efficiency.

Label Space Pruning

Structure of the Algorithm The construction of deterministic multi-label heads is particularly chal-

lenging, as the number of label combinations that can potentially be

included in a head increases exponentially with the number of available

labels. In (Rapp, LozaMencía, and Fürnkranz, 2018) we propose to exploit

certain properties of commonly used multi-label rule learning heuristics

to mitigate the computational complexity of searching for multi-label

heads. More specifically, they rely on anti-monotonicity and decomposability
to prune the search space. Amulti-label rule learning algorithm based on

the separate-and-conquer principle is used in their work. As discussed

in Section 5.1, it learns new rules iteratively by focusing on examples

and labels for which no predictions are available yet. If a significant

fraction of an example’s labels has already been dealt with, the respective

example is ignored entirely in subsequent iterations. The resulting rules

are included in a multi-label decision list. The rules are applied in the

order of their induction to obtain predictions for yet unseen examples

(cf. Algorithm 3). If a rule covers an example, its predictions take effect

unless a previous rule has already predicted for the respective labels. The
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algorithm performs a top-down greedy search to learn new rules, starting

with an empty body. By adding additional conditions to a rule’s body,

the rule is successively specialized and covers fewer examples in the

process. For each candidate body, a corresponding single- or multi-label

head, which models the labels of the covered examples as accurately as

possible, must be found.

Search Through the Label SpaceWhen a suitable (multi-label) head should be found for a given body,

potential label combinations are evaluated with respect to a heuristic

using a breadth-first search. Instead of performing an exhaustive search

through the label space, which is infeasible in practice due to its exponen-

tial complexity, the search is pruned by leaving out unpromising label

combinations, as illustrated in Figure 5.5. Depending on the characteris-

tics of the given heuristic function, the search for multi-label heads may

either be pruned by exploiting anti-monotonicity or decomposability.

In both cases, the best possible solution is still guaranteed to be found.

We focus on the latter in the following because decomposability is a

stronger criterion compared to anti-monotonicity. It enables pruning the

search space more extensively and comes with linear costs, i.e., the best

multi-label head can be inferred from considering each label separately.

Definition 5.4.1 A multi-label heuristicH allows for “pruning by decompos-
ability” if the following conditions are met:

I. If the head p̂ of a multi-label rule p̂← 1 includes a discrete prediction
?̂: ∈ p̂ for which the corresponding single-label head rule ?̂: ← 1 does
not reach the heuristic quality @max, the multi-label rule cannot reach that
quality either (and vice versa).

∃: (?̂: ∈ p̂ ∧H(?̂: ← 1) < @max) ⇐⇒ H(p̂← 1) < @max

II. If all single label head rules ?̂: ← 1 which correspond to the predictions
of the multi-label head p̂ reach the heuristic quality @max, the multi-label
rule p̂← 1 reaches said quality as well (and vice versa).

H(?̂: ← 1) = @max , ∀?̂: (?̂: ∈ p̂) ⇐⇒ H(p̂← 1) = @max

Pruning by DecomposabilityAccording to Definition 5.4.1, we can safely prune the search space by

restricting the evaluation to all possible single-label heads for a given

body. To construct the best possible multi-label head, the highest heuristic

quality among all single-label heads is determined, and those that

achieve the highest quality are combined, while the others are discarded.

In particular, Definition 5.4.1 is less restrictive than the definition of

decomposability in (3.26). The latter requires that the predictive quality

across several labels can be computedby aggregating the quality estimates

for individual labels in a suitable way. The former does not require the

ability to compute the overall quality across multiple labels directly. It

rather guarantees that the best-rated prediction for multiple labels results

from a combination of the predictions that achieve the highest quality

when considered in isolation. As we have shown formally in (Rapp,

Loza Mencía, and Fürnkranz, 2018), some multi-label heuristics, such

as the micro-averaged F1-measure, which are not decomposable in the

traditional sense, are still suited for pruning by decomposability.
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Figure 5.5: Search for the best discrete multi-label head given the labels �1, �2, �4 and �4. The examples with ground truth label vectors y4,

y5, y6 are assumed to be covered, whereas those that correspond to y1, y3 and y4 are not. Label combinations below the solid line can be

pruned by decomposability, whereas the dashed line corresponds to relaxed pruning.

Practical Limitations Although pruning by decomposability enables to efficiently induce multi-

label heads, experiments have revealed that such patterns are unlikely

to be learned in practice. This is due to the characteristics of common

heuristic functions that focus exclusively on the consistency of a rule’s

predictions and on its generality regarding the covered examples but do

not reward the increase in coverage that results from the inclusion of

multiple predictions in the head. Such heuristics tend to prefer single-

label predictions over multi-label heads because the predictive quality

for different labels usually varies. For example, if two rules with the

same body but different single-label heads achieve a quality of 0.89 and

0.88, respectively, predicting both labels usually results in a performance

decline compared to the value 0.89 — typically resulting in a value

between 0.89 and 0.88. However, opting for the multi-label head would

arguably be a good choice. First, the resulting rule would have greater

coverage with respect to the available labels. Second, it evaluates to a

quality score that is only slightly worse than that of the best single-label

rule. In the following, we present a strategy to overcome the bias towards

single-label predictions, referred to as relaxed pruning. We argue that

strict upper bounds in terms of computational complexity can still be

guaranteed when relaxing the search for multi-label heads. Moreover,

as shown empirically, the training process tends to terminate earlier

due to the increased coverage of the induced rules. An experimental

evaluation also reveals that the proposed approach discovers more label

dependencies and that the use of relaxed pruning results inmore compact

models that reach predictive results comparable to existing approaches.

Table 5.3: Exemplary calculation of lifted

heuristic values @̂ as the product of a rule’s
original quality @ and the relaxation lift

that is obtained from a relaxation lift func-

tion �.

|ℎ | @ � (|ℎ |) @̂

1 0.70 1.00 0.70 · 1.00 = 0.7000

2 0.67 1.07 0.67 · 1.07 = 0.7169

3 0.63 1.12 0.63 · 1.12 = 0.7056
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Relaxation Lift Functions

Introducing a Bias Towards Multi-label HeadsThe pruning strategy described in the previous section completely ne-

glects combinations of labels with similar, but not equal, heuristic quality.

As illustrated by the example above, when pruning by decomposability,

single-label heads with marginally greater heuristic quality are preferred

to multi-label heads that are rated slightly worse. Relaxed pruning aims

at tolerating minor declines in terms of a rule’s overall quality in favor

of greater coverage. We expect more expressive rules to be learned by

relaxing the pruning constraints and introducing a bias towards multi-

label heads. The main challenge of introducing such a bias revolves

around two questions. First, the desired degree of the bias is unclear,

i.e., how much of a decline in heuristic quality is tolerable. Second, the

ideal number of labels in the head is unknown, particularly if rules may

also predict the absence of labels. As both factors highly depend on the

dataset at hand, providing any recommendations is difficult. Moreover,

the training efficiency potentially suffers from relaxed pruning, as more

label combinations are considered.

Lifted Heuristic ValuesWe introduce a bias towards multi-label heads by multiplying a rule’s

heuristic quality @ with a dynamic weight Δ ∈ ℝ, which we refer to as a

relaxation lift. In order to prefer larger multi-label heads, Δmust increase

with the number of labels in the head. The relaxation lift, which we refer

to as lift in the remainder of this chapter, affects the decline in a rule’s

heuristic quality that is acceptable in favor of predicting for more labels.

To specify a relaxation lift for every number of labels |ℎ | ∈ [1,  ] possibly
contained in a head p̂, we use relaxation lift functions � : ℝ+ → ℝ that

map a given number of labels to a relaxation liftΔ. Although the function

is only applied to natural numbers, explicitly allowing real numbers as

the input of the function � facilitates its definition. Given the heuristic

quality of a rule @ and the number of labels |ℎ | for which it predicts, a

lifted heuristic value @̂ can be calculated via a lift function � as

@̂ = @ · � (|ℎ |) . (5.13)

An example of how to calculate lifted heuristic values is given in Table 5.3.

Such values are meant to be used as substitutes for the numerical scores

that result from a heuristic functionH.

KLN Relaxation Lift FunctionThe proposed framework for relaxed pruning flexibly allows for the

utilization of different relaxation lift functionswith varying characteristics

and effects on the rule induction process. The first lift function that is

considered in this work, is referred to as the KLN relaxation lift function. It
is defined as

�KLN (|ℎ |) B 1 + : · ln (|ℎ |) , (5.14)

i.e., it calculates the natural logarithm of the number of labels |ℎ | for
which a rule predicts, multiplied by a user-configurable parameter : ≥ 0.

Adding an offset of 1 to the calculated lift ensures that Δ = 1 in the case

of single-label heads. The extent of the lift increases with greater values

for the parameter :. Due to the natural logarithm, the function becomes

less steep as the number of labels increases. This is necessary to prevent

a bias towards multi-label heads with a very large number of labels.

Peak Relaxation Lift FunctionThe second lift function used in this work is referred to as the Peak lift
function. Compared to the KLN lift function, it puts more emphasis on
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preventing too many labels from being included in the head of a rule.

With an increasing number of labels 1, . . . , :, where : is a configurable

parameter, referred to as the peak, the lift first becomes greater until it

decreases again. This enables to introduce a bias towards heads that

predict for a specific number of labels, as their quality is lifted more

than others. Given the peak :, the desired lift at the peak Δmax, the

total number of labels  , and a parameter 2 that affects the function’s

curvature (2 = 1 results in a linear slope), the peak relaxation lift function

calculates as

�Peak (|ℎ |) B
{
5 (|ℎ |, :, 1) if |ℎ | ≤ :
5 (|ℎ |, :,  ) otherwise,

(5.15)

where the auxiliary function 5 is defined as

5 (G, 0, 1) B 1 +
(
G − 1
0 − 1

) 1

2

· (Δmax − 1)

As a potential advantage of the peak lift function, we consider its ability to

control the impact on training efficiency introduced by relaxed pruning.

Using smaller values for the peak : is expected to result in more extensive

pruning and, therefore, less computational overhead. Compared to the

KLN lift function, it is also less susceptible to including too many labels

in the heads of rules, which may result in a deterioration of a model’s

predictive accuracy. In addition, the peak lift function can be adapted

more flexibly via the parameters :, Δmax and 2. On the downside, as

these parameters significantly affect the learned model, this flexibility

also comes with a certain risk of misconfiguration. A visualization of the

peak lift function and the KLN lift function is given in Figure 5.6.

Relaxed Pruning

Modifications of the Search Algorithm When assessing the quality of potential rules in terms of a lifted heuristic

value @̂ rather than the value @ that results from a traditional heuristic

function, it is necessary to adjust the search for multi-label heads. In the

following, we show that strictly pruning according to Definition 5.4.1, as

suggested in (Rapp, Loza Mencía, and Fürnkranz, 2018), does not yield

the best head in terms of @̂. Hence, we propose an alternative pruning

strategy and discuss the necessary changes in detail. The discussion is

accompanied by an example that illustrates the proposed approach.

Suboptimal Pruning When pruning by decomposability, the best (multi-label) head is ob-

tained by combining all single-label heads with the best heuristic value

(cf. Figure 5.5). By giving a simple counter-example, we show that this is

impossible when searching for the head with the highest lifted heuristic

value. Consider two heads {?̂1} and {?̂2}, with heuristic values of 0.8

and 0.75, respectively. As we do not lift the quality of single-label heads,

the lifted and unlifted heuristic values are equal in this case. When

using label-wise averaging, the unlifted heuristic value of the multi-label

head {?̂1 , ?̂2} calculates as 0.8 + 0.75 / 2 = 0.775. Assuming that greater

values are better, the single-label head {?̂1} would therefore be preferred

over the combination of both heads. However, assuming that the lift

for two labels is 1.1, the lifted heuristic value of the latter evaluates to
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Figure 5.6: Visualization of the KLN relax-

ation lift function (with : = 0.2) and the

Lift relaxation function with (: = 4, 2 = 2

and Δmax = 1.3) for 1, . . . , 10 labels.

0.775 ∗ 1.1 = 0.8525. Consequently, the combination of both heads is

rated better than both of the corresponding single-label heads when con-

sidering their lifted heuristic values and, therefore, should be preferred.

As a result, we conclude that the search space pruning we suggested in

(Rapp, Loza Mencía, and Fürnkranz, 2018) is not suited to find the best

head in terms of its lifted quality.

Relaxed Pruning for Decoposable HeuristicsWe adjust the original pruning algorithm, as previously described in

section “Label Space Pruning”, based on two observations. First, the best

lifted head of size : results from applying the lift to the head with the

highest unlifted heuristic value of size :. As all heads that predict for :

labels are subject to the same lift, a head of size : with a worse unlifted

heuristic value cannot achieve a better lifted heuristic value. Thus, we

obtain the best head of a certain size in terms of its lifted heuristic value by

finding the best unliftedhead. Second,whendealingwith adecomposable

heuristic function, we can guarantee that the best unlifted head of size :

results from combining the : best single-label heads. In particular, this

applies to heuristics that are computed according to label-wise averaging,

as shown in (5.6). The basic structure of the relaxed pruning algorithm

is shown in Algorithm 5. Similar to the original pruning algorithm, we

need to evaluate all single-label heads for a given rule body (cf. solid

line in Figure 5.5). In accordance with our observations, we sort the

individual single-label heads in decreasing order by their respective

heuristic values (Algorithm 5, line 2). Afterward, we process the available

single-label heads in sorted order, starting with the best-rated one. At

each step, we consider adding the next single-label prediction to the

existing head. This requires first computing the unlifted heuristic value

of the resulting multi-label head. When using a decomposable heuristic

function, it is not necessary to re-evaluate each considered multi-label

head. Instead, its unlifted quality can be calculated as the average of the

heuristic values that correspond to the single-label predictions it consists

of (cf. Algorithm 5, line 6). Afterward the lift for a head of the current size

is retrieved from the lift function (cf. Algorithm 5, line 7). Multiplying

the lift with the unlifted heuristic value results in the lifted quality of

the current multi-label head (cf. Algorithm 5, line 8). During the entire

process, we keep track of the head with the best lifted heuristic value

@̂best. Instead of generating all possible multi-label heads, we determine

an upper bound @̂upper of the lifted heuristic value that can be reached
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Algorithm 5: Search for multi-label heads using relaxed pruning

input :Label-wise aggregated confusion matrices �1 , . . . , � with

�: =
∑
= (�=:F=:), label-wise averaged heuristicH,

relaxation lift function �
output :Single- or multi-label head p̂, lifted heuristic value @̂

1 compute unlifted heuristic values @1 , . . . , @ with @: = H (�:)
2 find permutation � : ℕ+ → ℕ+ such that @�(8) ≥ @�(8+1) ,∀8 ∈ [1,  )
3 initialize best head p̂ =

{
?̂�(1)

}
4 initialize best lifted heuristic value @̂best = @�(1)
5 for : = 2 to  do
6 @ = avg

(
@�(1) , . . . , @�(:)

)
7 Δ = � (:)
8 @̂ = @ · Δ
9 if @̂ ≥ @̂best then
10 @̂best = @̂
11 add prediction ?̂�(:) to p̂

12 Δmax = max:<8≤ � (8)
13 @̂upper = @ · Δmax
14 if @̂upper < @̂best then
15 break

16 return best head p̂, lifted heuristic value @̂best

by adding more predictions to the current head. The upper bound is

obtained bymultiplying the unlifted heuristic value @: of the current head

with size : by the highest remaining liftΔmax (cf. Algorithm 5, line 12), i.e.,

it calculates as @̂upper = @: · Δmax (cf. Algorithm 5, line 13). If @̂upper < @̂best,

we can abort the search procedure, as the best quality encountered so

far cannot be reached by larger heads (cf. Algorithm 5, line 14). This

is due to the fact that the unlifted heuristic value of the current head

cannot be improved by adding more predictions, as the search starts with

the best-rated single-label head. When using a decomposable heuristic,

pruning the search for multi-label heads in this way still guarantees the

best-rated head in terms of its lifted heuristic value to be found.

Example In addition to Algorithm 5, we illustrate the relaxed pruning algorithm

by providing an example. It is based on the rule heads that are depicted

in Figure 5.5 and assumes the KLN lift function with : = 0.14 to be used.

Given heads that predict for two, three or four labels, this particular lift

function evaluates to � (2) = 1.1, � (3) = 1.15, and � (4) = 1.19. Once the

unlifted heristic values of all possible single-label rules are computed, the

multi-label heads on the outer left path of Figure 5.5 are constructed. For

the head {?̂1}, the lifted heuristic value and the maximum lifted value

calculate as @̂ = 2 / 3 = @̂best and @̂upper = 2 / 3 · 1.19 = 0.793 (rounded to

three decimal places). Because @̂upper ≥ @̂best, we cannot stop the search at

this point. For the head {?̂1 , ?̂2}, the upper bound @̂upper stays the same,

but the lifted heuristic value evaluates to @̂ = 2 / 3 ·1.1 = 0.733 = @̂best and

exceeds the best quality seen so far. As @̂upper ≥ @̂best, we must continue

the search by considering the head {?̂1 , ?̂2 , ?̂3}, for which we obtain

@̂ = 5 / 9 · 1.15 = 0.639 and @̂upper = 5 / 9 · 1.19 = 0.661. As the pruning

criterion @̂upper < @̂best is satisfied, we terminate the search and return the

best head found so far. The dashed line in Figure 5.5 indicates which

heads need to be examined when using relaxing pruning. By chance, the

best lifted and unlifted heads are the same in this example.
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Pruning for Non-decomposable HeuristicsIn (Rapp, Loza Mencía, and Fürnkranz, 2018) we show that many multi-

label heuristics, even some of those not computed via label-wise averag-

ing, meet the requirements in Definition 5.4.1 and therefore are suited

for pruning by decomposability. In contrast, relaxed pruning does not

guarantee to find the best multi-label head in terms of lifted heuristic

values unless the heuristic function is decomposable according to (3.26).

When dealing with a non-decomposable heuristic, combining the best :

single-label heads according to Algorithm 5 does not necessarily result in

the best lifted head because the individual labels are not weighed equally.

For example, this applies to the micro-averaged F-measure according to

(5.7) and (5.11). Despite this limitation, we still utilize non-decomposable

heuristics in the experimental study below and acknowledge that the use

of relaxed pruning can merely be considered as an approximation in this

case. According to our experiments, even though it does not guarantee

the best head for a given body to be found, this approximation seems

to work well in practice — most likely because we relax the search for

optimal heuristic values anyway.

Computational OverheadBecause relaxed pruning computes the unlifted and lifted heuristic values

of multi-label heads based on the heuristic values of the corresponding

single-label heads, it does not require any additional computations

of quality estimates compared to the original pruning algorithm as

described in section “Label Space Pruning”. Nevertheless, in the worst

case, it requires constructing  − 1 additional multi-label heads (cf. outer

left path in Figure 5.5). However, as the quality of these heads can be

computed based on the confusion matrices of the corresponding single-

label heads, these additional steps are computationally cheap. Moreover,

our experiments reveal that the computational overhead introduced by

relaxing the search for multi-label heads is often negligible, as it tends to

result in simpler models with fewer rules that are learnedmore quickly.

Retaining Previously Constructed HeadsRules are specialized during the rule refinement process by adding addi-

tional conditions to their bodies. According to preliminary experiments,

searching for a new (multi-label) headwhenever a rule has beenmodified,

as we suggested in (Rapp, Loza Mencía, and Fürnkranz, 2018), often

results in situations where previously constructed heads are discarded in

favor single-label heads with lower coverage but a higher (lifted) heuristic

value. Keeping the original head and modifying the body often results

in a better rule in such situations. Based on this finding, we decided to

retain the original head instead of searching for a new one each time the

body is modified. As a positive side effect of this modification, the time

required for building a model usually decreases because the search for

new heads must be conducted less frequently.

Constraints on RulesIn addition to retaining previously constructed heads, we require each

rule to provide as least as many correct predictions as incorrect ones,

which effectively imposes a lower bound on the quality of the rules.

In preliminary experiments, we found this constraint to be helpful to

prevent suboptimal predictions from being included in the heads for the

sake of increasing its lift. Moreover, we require each prediction provided

by a head to result in at least one uncovered label to be predicted correctly.

This prevents the inclusion of predictions that do not affect a rule’s

unlifted heuristic but increase its lift. For example, such a situation might

occur if previously induced rules already deal with all occurrences of a

particular label.
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5: The source code and datasets are

available at https://github.com/keelm/

SeCo-MLC/tree/relaxed-pruning.

Experimental Evaluation

Experimental Setup To demonstrate the effectiveness of our approach, we conducted an em-

pirical study using several benchmark datasets and varying rule learning

heuristics to evaluate candidate rules. Besides the predictive performance

achieved by different approaches, we also analyze the characteristics of

the resulting models, compare the time they require for training, and pro-

vide examples of multi-label rules learned by the proposed method. We

tested the proposed method using relaxed pruning on seven multi-label

datasets, namely “Birds”, “CAL500”, “Emotions”, “Flags”, “Medical”,

“Scene”, and “Yeast” (cf. Section 3.2), using predetermined splits into

a training and a test set and compared it to the approach in (Rapp,

Loza Mencía, and Fürnkranz, 2018) using the same configuration.
5
. To

isolate the influence relaxed pruning has on the learned models, we

implemented the idea of retaining previously constructed heads and

imposing additional constraints on the learned rules not only in the

algorithm that makes use of relaxed pruning, but also integrated it into

the baseline. Both approaches were able to learn label-dependent rules as

proposed by Loza Mencía and Janssen (2016), i.e., conditions that check

for the presence or absence of labels that previous rules have assigned

may be included in the bodies of rules. In the following, we refer to

such conditions as label conditions. For evaluating candidate rules during

training, we used the F-measure in (5.11) with � = 0.5, using micro-

and label-wise averaging according to (5.7) and (5.6). In addition, we

considered the Hamming accuracy heuristic in (5.8), which is invariant to

the averaging strategy used. For all of these heuristics and each dataset,

we determined the best configuration of the KLN and peak relaxation

lift function by conducting a 5-fold cross validation on the training data.

If two settings achieved the same performance, we chose the one with

a greater lift, as it typically results in a more compact model. After the

best parameter setting had been determined, we used it to train a model,

which was afterward evaluated on the test set. Unlike in Section 5.3, we

did not enforce that the predictions of rules for individual labels are

either positive or negative. Instead, we tested different configurations,

where the rules were either obliged to focus exclusively on the relevance

of labels (denoted as +) or were allowed to predict both positively and

negatively (denoted as ±).

Figure 5.7: Analysis of how the number

of rules in a model and the average num-

ber of labels in their heads are affected by

different configurations of the KLN relax-

ation lift function on the dataset “Flags”.

Larger values for the parameter : result

in greater relaxation lifts. With increas-

ing lift, the rule heads tend to predict for

more labels, resulting in less rules being

included in a model overall.
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Model CharacteristicsFigure 5.7 shows the number of rules learned on the dataset “Flags”

and the average number of labels included in their heads, depending

on the extent of the lift that results from using the KLN lift function

and the label-wise averaged F-measure. As expected, greater lifts tend

to result in heads that predict for more labels on average. At the same

time, the number of rules in a model usually decreases because rules that

predict for several labels rather than a single one have greater coverage,

and therefore fewer rules are needed to cover the entire training data.

However, if the lift is too high, the training procedure likely results in

overly generic rules that predict the majority value for individual labels.

Consequently, the learning algorithm fails to model the training data

accurately. When using the peak lift function, the same effects can be

observed. However, due to the shape of this particular lift function, the

maximumnumber of labels that are included in the rule heads is typically

limited. In addition to the sensitivity analysis in Figure 5.7, we provide

additional information about the characteristics of models that have been

learned on the dataset “Birds”, using the optimal configuration of our

approach according to parameter tuning, in Table 5.4. It allows for a

comparison between the models that result from relaxed pruning or

pruning by decomposability, respectively. Regardless of the heuristic

employed for the evaluation of candidate rules, the use of relaxation

lift functions tends to result in more multi-label heads being learned

compared to the baseline. In accordance with Figure 5.7, this usually

comes with a decrease in a model’s complexity in terms of the number of

rules and conditions. Moreover, we observe that models with more and

larger multi-label heads typically include fewer label conditions. From

this observation, we conclude that label-dependendent rules and rules

with multiple predictions in their heads, at least partly, serve the same

purpose, namely capturing local label dependencies. As the use of lift

functions introduces a reward for the latter but not for the former, an

algorithm that uses relaxed pruning favors the construction of multi-label

heads over label conditions.

Characteristic + ±

Micro-averaged F-measure (with � = 0.5)
Rules 140 140 132 92

Conditions 219 213 184 146

Label conditions 7 4 1 2

Multi-label heads 1 5 0 22

Labels per multi-label head 2.0 2.0 − 2.59

Label-wise averaged F-measure (with � = 0.5)
Rules 140 129 132 113

Conditions 220 199 184 175

Label conditions 7 3 1 1

Multi-label heads 1 8 0 14

Labels per multi-label head 2.0 2.0 − 2.57

Hamming accuracy
Rules 162 136 58 23

Conditions 254 204 58 29

Label conditions 3 0 1 0

Multi-label heads 1 30 0 12

Labels per multi-label head 2.0 2.1 − 17.0

Table 5.4: Characteristics of models that

have been learned on the dataset “Birds”.

For each heuristic, we trained models

where each rule is restricted to predict

the relevance of labels (+) or is allowed

to predict both positively and negatively

(±). For each of these variants, the left and

right column shows the values that result

from pruning by decomposability and re-

laxed pruning, respectively.
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Figure 5.8:Comparison of the time needed

for building models with respect to differ-

ent heuristics when using relaxed pruning

or pruning by decoposability. The train-

ing time of the latter (in seconds) is show

on the horizontal axis, whereas the ver-

tical axis corresponds to the speedup or

slowdown (in percent) that results from

relaxed pruning.
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Computational Costs In Figure 5.8, we compare the training time that results from the use

of relaxed pruning to the time needed by the baseline, which relies

on pruning by decomposability. The horizontal axis denotes the time

required by the baseline for training when using different heuristics. The

vertical axis denotes the relative speedup (or slowdown) that results from

using relaxed pruning. Even though more candidates must potentially be

evaluated when relaxing the search for multi-label heads, the proposed

method is faster in most cases. Typically, it achieves a speedup between

10 and 25%. As we isolate the effects of relaxed pruning from other

modifications of the learning algorithm, the speedup most likely results

from fewer rules being learned due to their increased coverage. In

addition, fewer candidate rules must be taken into account because

the average number of conditions often decreases when using relaxed

pruning.

Predictive Performance In the following, we discuss the differences in predictive performance

that result from the use of relaxed pruning compared to pruning by

decomposability. We conclude from the number of wins, losses, and ties

listed in Table 5.5 that relaxed pruning can achieve competitive results,

despite learning more compact models. If the rules are restricted to

positive predictions, we observe a decline in performance when using

label-wise averaged F-measure or Hamming accuracy as the rule learning

heuristic. If the rules are allowed to predict both positively and negatively

the same heuristics — especially Hamming accuracy — result in an

improvement instead. The wins, losses, and ties are distributed more

Table 5.5:Number of wins / losses / ties

of different approaches that make use of

relaxed pruning, compared to the predic-

tive performance in terms of the micro-

averaged and label-wise F1-measure,Ham-

ming loss and Subset 0/1 loss that is

achieved when using pruning by decom-

posability.

Approach Micro Label-wise Hamming Subset 0/1
F1 F1 loss loss

Micro-averaged F-measure (with � = 0.5)
+ 3/3/1 3/3/1 3/3/1 3/2/2
± 1/3/3 1/3/3 3/1/3 2/1/4

Label-wise averaged F-measure (with � = 0.5)
+ 1/5/1 3/3/1 1/5/1 2/3/2
± 2/1/4 2/1/4 2/1/4 2/1/4

Hamming accuracy
+ 1/5/1 2/4/1 2/4/1 0/4/3
± 4/2/1 2/4/1 5/1/1 5/0/2



5.4 Search for Multi-label Heads 81

Table 5.6: Exemplary rules that predict for selected labels of the datasets “Yeast”, “Flags” and “Birds”. Rules that result from pruning by

decomposability are shown to the left, whereas rules that have been learned by relaxed pruning are shown to the right. In addition, the

number of true positives and false positives that are covered by each rule are shown in parantheses (TP, FP). For brevity, the thresholds
of conditions are omitted. Instead, we only show the names of the attributes they correspond to. In case of the dataset “Birds”, we use

the abbreviations “Red-breasted Nuthatch” (RBN), “Black-headed Grosbeak” (BHG), “MacGillivray’s Warbler” (MGW), “Warbling Vireo”

(WV), “Stellar’s Jay” (SJ) and “audio-ssd” (ssd).

“Yeast” (using label-wise F-measure heuristic, restricted to positive rules)

Class5 ← Att61 (112, 50) Class4,Class5 ← Att61 (230, 94)
Class4 ← Class5 (118, 44)
Class3 ← Attr50 (84, 50) Class2,Class3 ← Att50 (174, 111)
Class2 ← Class2 (146, 141)

“Flags” (using micro-averaged F-measure heuristic, allowing positive and negative rules)

red ← colours1 ∧ area1 ∧ bars ∧ crescent (85, 9) red,white ← colours1 (166, 38)
red ← bars ∧ crescent ∧ colours2 ∧ area1 ∧ stripes (13, 6) ¬green, red ← colours2 (71, 35)
¬red ← area2 ∧ circles (9, 1) green,¬red ← ∅ (2, 0)
red ← sunstars1 (4, 0)
¬red ← sunstars2 (1, 0)
red ← ∅ (1, 0)

“Birds” (using label-wise F-measure heuristic, allowing positive and negative rules)

¬RBN ← ssd59 (288, 0) ¬BHG,¬WV,¬MGW,¬SJ,¬RBN ← ssd64 (1012, 3)
¬RBN ← ssd89 (21, 0) ¬MGW,¬RBN ← ssd56 (141, 0)
RBN ← ssd153 (4, 0) ¬CN,¬RBN ← ssd7 ∧ ssd145 (190, 0)
¬RBN ← ∅ (9, 0) ¬RBN ← ssd8 (16, 0)

RBN ← ssd45 (4, 0)
¬RBN ← ∅ (1, 0)

evenly among approaches that utilize the micro-averaged F-measure as

a rule learning heuristic. This is despite the fact that relaxed pruning

cannot guarantee optimal rule heads to be found in this particular setting.

Among all considered approaches, the one that employs relaxed pruning

for optimizing the Hamming accuracy heuristic and allows rules to

predict positively and negatively ranks best for Hamming and Subset

0/1 loss. In terms of micro-averaged and label-wise F1-measure, the

best rated models are obtained using relaxed pruning, relying on the

micro-averaged F-measure heuristic and restricting the rules to positive

predictions. This illustrates that the F1-measure puts greater emphasis

on relevant labels than the Hamming loss. In conclusion, relaxing the

pruning constraints and deliberately preferring rules with a slightly

worse heuristic value in favor of increasing the coverage across multiple

labels does not seem to harm the predictive performance of the models

and even results in improvements in some cases. As mentioned earlier,

we used parameter tuning to determine the best configuration of the

KLN or peak relaxation lift function for a particular dataset. An analysis

of the chosen configurations reveals that the latter is preferred to the

former in most cases.

Exemplary RulesIn Table 5.6, we show exemplary rules that have been induced with

and without the use of relaxed pruning. It can be seen that multi-label

heads and label conditions are both suited to model label dependencies.

Depending on the model, these different representations may even be

equivalent inmeaning (cf. Table 5.6, first row).Whereas the use of relaxed

pruning likely causes fewer label conditions to be included in a model, it

often results in more multi-label heads being constructed. This makes
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a quantitative analysis of the number of label dependencies discovered

by different approaches more difficult. Nevertheless, our experimental

results suggest that relaxed pruning helps to model label dependencies

in the form of multi-label heads. Such heads often provide a more

compact representation of the discovered correlations. In contrast to label

conditions, rules with multi-label heads provide useful information on

their own. They do not require to take the order of the rules into account

and must not be interpreted in the context of other rules. Due to these

advantages, we argue that multi-label heads are easier to understand in

many cases.

5.5 Discussion

In this chapter, we presented a generalization of the separate-and-conquer

paradigm, which is used by many traditional rule learning algorithms, to

the multi-label classification setting. Because rules that are restricted to

deterministic predictions are unlikely to provide accurate predictions for

all labels in a dataset, we either rely on single-label rules, which predict

for a single label, or partial multi-label rules, which are concerned with

a subset of the available labels. The use of rules that focus on a certain

label subset demands a strategy to deal with partially covered training

examples. For this purpose, we introduced the notion of label weights,

which allow us to keep track of regions in the label space that have not

been addressed by a rule. In addition, we presented generalizations of

commonly used rule learning heuristics to multiple labels, including

decomposable and non-decomposable ones. Based on these foundations,

we presented empirical results regarding two important aspects of a

multi-label SeCo algorithm. On the one hand, we investigated the effects

of different rule learning heuristics and pre-pruning strategies on the

characteristics and predictive performance. Compared to single-label

classification, the choice of the rule learning heuristic appears to be

less straightforward in the multi-label setting, as different heuristics are

needed depending on which evaluation measure should be optimized.

On the other hand,wepresented an approach that enables learning partial

multi-label rules in an efficient way, despite the exponential number

of possible label combinations that may be included in the head of a

rule. Besides the aspects adressed in this chapter, several issues remain

to be solved to provide a strong out-of-the-box learner for multi-label

classification. Research on traditional rule learning approaches suggests

that additional measures are needed to deal with the high variance of

SeCo-based classifiers. For example, this includes pruning techniques

that aim to improve the accuracy of individual rules In addition, stopping

criteria or post-processing techniques can play an important role in

overfitting avoidance. As all of these aspects should most probably be

tailored to a particular multi-label evaluation measure that one seeks

to optimize, it is unclear how existing approaches of this kind should

be implemented in the multi-label setting. As illustrated by several

examples in this chapter, SeCo algorithms are particularly well-suited for

tackling MLC problems if one is interested in simple models that can be

inspected and analyzed as a whole. In particular, this applies to models

that meet the requirements of a DNF. Compared to models, where rules

are allowed to provide positive and negative predictions, a DNF is easier
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to understand, as individual rules can be viewed in isolation, without

the need to take the order of the rules into account. For the same reason,

we argue that multi-label heads are often preferable to label-dependent

rules. Unlike the latter, which must be interpreted in the context of

their predecessors, the former allow a more compact representation

of local co-occurrences and other types of label dependencies. In use

cases where global interpretability is not a major requirement, more

complex learning methods are often a better choice as they are likely to

outperform the models that result from a SeCo algorithm. Hence, in the

following chapter, we investigate ways to tackle MLC problems by means

of rule-based ensembles. As will be seen, ensembles of probabilistic

rules overcome several drawbacks of the methodology discussed in this

chapter. In particular, learning approaches should ideally be able to

deliver predictions that perform well for a certain measure of interest.

However, due to their reliance on local heuristics, SeCo algorithms cannot

optimize a givenmeasure globally.As our experiments revealed, extensive

parameter tuning is needed to tailor a SeCo-based learning algorithm

to a particular multi-label evaluation measure. Its behavior is not only

affected by a rule learning heuristic but is also subject to a large number

of additional parameters. For example, this includes the configuration of

a lift function, which heavily impacts the performance of a model and is

prone to misconfiguration. Moreover, even though the relaxed pruning

approach discussed in this chapter enables the efficient construction

of multi-label heads, it does not guarantee finding optimal predictions

for several labels if the heuristic function is non-decomposable. As the

induction of multi-label heads is particularly relevant in cases where a

non-decomposable evaluation measure should be optimized, this can be

considered a significant limitation.
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In this chapter,we discuss BOOMER—an algorithm for learning gradient

boostedmulti-label rules. It can be considered to be an instantiation of the

framework presented in Chapter 4. Due to its modularity, individual as-

pects of the algorithm are interchangeable and can be tailored to different

applications and datasets by choosing a suitable implementation. In this

chapter, we focus on the most essential aspects of the algorithm. Possible

optimizations and extensions are left for discussion in Chapter 7 and

Chapter 8. Most importantly, we present a generalization of the popular

and well-researched gradient boosting framework to multivariate prob-

lems that enables minimizing decomposable and non-decomposable loss

functions. This generalized framework forms the basis of the BOOMER

algorithm, which relies on gradient boosting for the induction of single-,

as well as multi-label rules. The algorithmic details of the rule learning

method and the formal framework it is built upon, were first published

by Rapp, LozaMencía, Fürnkranz, Nguyen, et al. (2020) Rapp, Loza Mencía, Fürnkranz, Nguyen,

and Hüllermeier (2020): ‘Learning Gra-

dient Boosted Multi-label Classification

Rules’

. In the following,

we recapitulate the methodology that is proposed in this work and revisit

the experimental study that has been conducted to investigate its abilities

and limitations.

The BOOMER software package
The algorithm discussed in this chapter is implemented as

part of an open source software package, which is publicly

available under the MIT license. Its source code can be

found online at https://github.com/mrapp-ke/boomer.

A high-level description of the implementation is given by

Rapp (2021)
Rapp (2021): ‘BOOMER – An Algorithm

for Learning Gradient BoostedMulti-label

Classification Rules’

. In the remainder of this work, we provide

information about its usage and configuration. Unless

stated otherwise, the given remarks refer to version 0.8.2,

which was the latest release at the time this thesis was

published.

6.1 Boosted Multi-label Rules

Ensembles of Additive FunctionsThe algorithm, which is discussed in the following, is concerned with

learning ensembles of probabilistic rules. Like other ensemble methods

(cf. Section 2.3), it focuses on the predictive performance of models at the

expense of their simplicity and interpretability. In accordance with (4.1),

we denote an ensemble that consists of ) additive classification functions

5C ∈ F , referred to as ensemble members, as

� = ( 51 , . . . , 5)) . (6.1)

By F we denote the set of potential classification functions. Given an ex-

ample x= , all of the ensemble members provide probabilistic predictions,

https://github.com/mrapp-ke/boomer
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given as a vector of real-valued confidence scores

p̂C= = 5C (x=) =
(
?̂C=1

, . . . , ?̂C= 
)
∈ ℝ , (6.2)

where each score expresses a preference for predicting the label �: as
irrelevant, if ?̂: < 0, or relevant, if ?̂: > 0. The scores provided by

individual members of an ensemble can be aggregated into a single

vector of confidence scores by calculating the element-wise vector sum

p̂= = � (x=) = p̂1

= + · · · + p̂)= ∈ ℝ , (6.3)

which can subsequently be turned into thefinal prediction of the ensemble

in the form of a binary label vector (cf. Section 6.5).

The BOOMER algorithm allows to specify the number

of rules to be included in a model via the parameter

--max-rules. By default, 1000 rules are learned.

Rules as Classification Functions As individual ensemble members, we use conjunctive classification rules

as introduced in Section 4.1. Such rules can be viewed as classification

functions, where the body is a mathematical function 1 : X → {0, 1}
that evaluates to 1 if a given example satisfies all conditions in the body

or to 0 if at least one of its conditions is not met. An individual condition

compares the value of the ;-th attribute of an example to a constant, by

using a relational operator, such as = and ≠, if the attribute �; is nominal,

or ≤ and >, if �; is numerical or ordinal. In accordance with (6.2), the

head of a rule assigns a numerical score to each label. If a given example

x belongs to the axis-parallel region in the feature space X covered by

the rule, i.e., if it satisfies all conditions in the rule’s body, a vector p̂
is predicted. If the example is not covered, a null vector is predicted

instead. Consequently, a probabilistic rule of this kind can be considered

a mathematical function 5 : X → ℝ 
, defined as

5 (x) = 1 (x) p̂. (6.4)

This is similar to the notation used by Dembczyński, Kotłowski, and

Słowiński (2010) in the context of single-label classification. However,

in the multi-label setting, we consider the head as a vector rather than

a scalar to enable rules to predict for several labels. In this chapter,

we restrict ourselves to rules with single-label or complete multi-label

heads. Whereas the latter assign a non-zero confidence score to each

available label, the vector predicted by the former provides a non-zero

prediction for exactly one label and assigns zeros to the others. In general,

the notation introduced above is also suitable for representing partial

heads.

The BOOMER algorithm allows to specify the preferred

type of rule heads via the following parameter:

--head-type [auto,single-label,complete]

If set to auto (the default value), the most suitable type is

chosen automatically, depending on the loss function.
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1: According to (3.1), ground truth labels

are given in the form H=: ∈ {0, 1}. Such a

representation can easily be transformed

into the form H=: ∈ {−1,+1} required
here.

6.2 Multivariate Boosting

Surrogate Loss FunctionsAn ensemble of additive functions � = ( 51 , . . . , 5C), as introduced in

Section 6.1, should be trained such that the expected empirical risk

with respect to a certain (surrogate) loss function ℓ is minimized. As the

members of an ensemble predict numerical confidence scores rather

than binary label vectors, discrete functions, such as the evaluation

measures introduced in Section 3.3, are not suited to assess the quality

of potential ensemble members during training. Instead, continuous loss

functions that can be minimized in place of the actual target measure

shoudl be used as surrogates. For this purpose, we use multivariate loss

functions ℓ : {−1,+1} ×ℝ → ℝ. They take two vectors y= and p̂= as

arguments. The former corresponds to the true labeling of an example

x= . It specifies whether individual labels �: are relevant (H=: = +1) or

irrelevant (H=: = −1) to the respective example.
1
The latter represents

the predictions of the ensemble members according to (6.3). Section 6.4

presents surrogates for minimizing the Hamming loss and the subset 0/1

loss. They are used for the experiments in Section 6.6.

Stagewise Additive ModelingGiven a specific loss function ℓ to be optimized, we are concerned with

the minimization of the regularized training objective

R (�) =
#∑
==1

ℓ (y= , p̂=) +
)∑
C=1

Ω ( 5C) , (6.5)

whereΩ denotes an (optional) regularization term that may be used to

penalize the complexity of the individual ensemble members. It may help

avoid overfitting and ensure the convergence towards a global optimum

if ℓ is not convex. Unfortunately, constructing an ensemble of additive

functions that minimizes the objective given above is a hard optimization

problem. In gradient boosting, this problem is tackled by training the

model in a stagewise procedure, where the individual ensemblemembers

are added one after the other, as originally proposed by J. H. Friedman,

Hastie, and Tibshirani (2000). At each iteration C, the vector of scores

that the existing ensemble members predict for an example x= can be

calculated based on the predictions of the previous iteration. We denote

it as

�C (x=) = �C−1 (x=) + 5C (x=) =
(
p̂1

= + · · · + p̂C−1

=

)
+ p̂C= . (6.6)

Substituting the additive calculation of the predictions into the objective

function given in (6.5) yields the objective to be minimized by the

ensemble member added at the C-th iteration. It calculates as

R ( 5C) =
#∑
==1

ℓ (y= , �C−1 (x=)) +Ω ( 5C) . (6.7)

Taylor ApproximationTo efficiently minimize the training objective when about to be adding a

new ensemble member 5C , we rewrite (6.7) in terms of the second-order

multivariate Taylor approximation

R ( 5C) ≈
#∑
==1

(
ℓ (y= , �C−1 (x=)) + g= p̂C= +

1

2

p̂C=�= p̂C=

)
+Ω ( 5C) , (6.8)

where g= = (6=1 , . . . , 6= ) denotes the vector of first-order partial deriva-
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tives of the loss function ℓ with respect to the existing ensemble members’

predictions for a particular example x= and individual labels �: . Accord-
ingly, the Hessian matrix �= = ((ℎ=11 , . . . , ℎ=1 ) , . . . , (ℎ= 1 , . . . , ℎ=  ))
consists of second-order partial derivatives corresponding to pairs of

labels. We compute individual gradients and Hessians as

6=8 =
%ℓ

%?̂=8
(y= , �C−1 (x=)) and ℎ=89 =

%ℓ

%?̂=8%?̂=9
(y= , �C−1 (x=)) . (6.9)

Training Objective By removing constant terms, (6.8) can be further simplified, resulting in

the approximated training objective

R̃ ( 5C) =
#∑
==1

(
g= p̂C= +

1

2

p̂C=�= p̂C=

)
+Ω ( 5C) . (6.10)

At each training iteration, the objective function R̃ can be used as a quality

measure to decide which of the potential ensemble members improves

the current model the most. This requires the predictions of the potential

ensemble members for examples x= to be known. How these predictions

can be found depends on the type of ensemble members and the loss

function at hand. Section 6.3 presents solutions to this problem when

using classification rules as the additive functions of an ensemble.

6.3 Induction of Rules

Sequential Model Assemblage In the following, we outline the algorithm used by BOOMER for learning

an ensemble of gradient boosted single- ormulti-label rules thatminimize

a given loss function in expectation. It is based on the mathematical

foundations introduced in Section 6.2 and is implemented in adherence

to the modular framework presented in Chapter 4. The basic structure

of the iterative procedure used for assembling an ensemble is shown in

Algorithm 6. As previously discussed in Section 4.2, rules only provide

predictions for examples they cover. The first rule 51 : ŷ1 ← 11 in the

ensemble is a default rule covering all examples, i.e., 11 (x) = 1,∀x. In
subsequent iterations of the algorithm, more specific rules are added. All

rules 5C , including the default rule, contribute to the final predictions of

the ensemble according to the probabilistic scores assigned to individual

labels by their heads p̂C . The scores are chosen such that the objective

function in (6.10) is minimized. At each iteration C, this requires the

label space statistics (, consisting of gradients and Hessians, to be (re-

)calculated based on the scores ?̂=: predicted by the current model for

each example x= and label �: , as well as the corresponding true labels

H=: ∈ {−1,+1} (cf. Algorithm 6, line 1 and line 5). At the first iteration,

the predictions for all examples and labels are zero, i.e., ?̂=: = 0,∀=, :
if C = 1. While the default rule always provides confidence scores for

each label, the remaining rules may either predict for a single label or all

labels. As previously mentioned in Section 6.1, the type of rule heads can

be specified via a hyper-parameter. Both variants are considered in the

experimental study presented in Section 6.6. The computations that are

necessary to obtain loss-minimizing predictions for the default rule and

each of the remaining rules are presented in the section “Computation

of Predictions” below.
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Algorithm 6: Learning an ensemble of boosted classification rules

input :Training examples D = {(x= , y=)}#= , first and second

derivative ℓ ′ and ℓ ′′ of the loss function, number of rules ),
shrinkage parameter �

output :Ensemble of rules �

1 ( = {(g= , �=)}#= = calculate gradients and Hessians w.r.t. ℓ ′ and ℓ ′′

2 w1 = set weights for each example to 1

3 51 : ŷ1 ← 11 with 11 (x) = 1,∀x and ŷ1 = find_head (D,w1 , (, 11)
4 for C = 2 to ) do
5 ( = update gradients and Hessians of examples covered by 5C−1

6 wC = obtain a weight for each example via instance sampling

7 5C : ŷC ← 1C = refine_rule (D,wC , ()
8 ŷC = find_head (D,wC , (, 1C)
9 ŷC = � · ŷC

10 return ensemble of rules � = { 51 , . . . , 5)}

Induction of Individual RulesTo learn the rules 52 , . . . , 5) , we use a greedy top-down search, where

the body is iteratively refined by adding new conditions, and the head is

adjusted accordingly at each step. The algorithm used for the refinement

of rules is outlined in the section “Refinement of Rules”. As discussed

in Section 4.3, instance sampling can be used to learn each rule on a

different sample of the training examples (cf. Algorithm 6, line 6). As

more diversified and less correlated rules are learned, this reduces the

variance of the ensemble members. However, once the construction of

a rule has finished, its predictions are recomputed with respect to the

entire training data (cf. Algorithm 6, line 8), which we have found to

be an effective countermeasure against overfitting the sample used for

constructing the rule. As an additional measure to reduce the risk of

fitting noise in the data, the scores predicted by a rule may be multiplied

by a shrinkage parameter � ∈ (0, 1] (cf. Algorithm 6, line 9). As discussed

in Section 4.3, small values for � reduce the impact of individual rules on

the overall model.

The reassessment of predictions with respect to the en-

tire training data can be turned off via the parameter

--recalculate-predictions. The weight of individual

rules can be controlled via the shrinkage parameter

--shrinkage. Its default value is 0.3.

Computation of Predictions

In Algorithm 6, the function find_head is used to find optimal confidence

scores to be predicted by a particular rule 5C , i.e., scores that minimize

the objective function R̃ introduced in (6.10). In addition, it provides an

estimate of their quality. Because rules provide the same predictions for

all examples they cover and abstain for others, the objective function in

(6.10) can be further simplified. We can sum up the gradient vectors and

Hessian matrices that correspond to the covered examples, resulting in

the objective

R̃ ( 5C) = gp̂ + 1

2

p̂� p̂ +Ω ( 5C) , (6.11)
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where g =
∑
= (1 (x=)F= g=) denotes the element-wise weighted sum of

the gradient vectors and � =
∑
= (1 (x=)F=�=) corresponds to the sum

of the Hessian matrices. As shown in Algorithm 7, the sums of gradients

and Hessians are provided to the function find_head to determine a

rule’s predictions and a corresponding estimate of its quality.

!2 Regularization To penalize extreme predictions, we use the !2 regularization term

ΩL2 ( 5C) =
1

2

�


p̂C

2

2

, (6.12)

where ‖x‖
2
denotes the Euclidean norm and � ≥ 0 is a hyper-parameter

that controls the weight of the regularization term.

The weight of the !2 regularization term can be speci-

fied via the parameter --l2-regularization-weight. Its

default value is 1.0.

System of Linear Equations To ensure that predictions p̂ minimize the regularized training objective

R̃, we equate the first partial derivative of (6.11) with respect to p̂ with

zero:

%R̃
%p̂
( 5C) =g + � p̂ + �p̂ = g + (� + ') p̂ = 0

⇐⇒(� + ') p̂ = −g ,
(6.13)

where ' = diag (�) is a diagonal matrix with the elements on the

diagonal set to the value �. (6.13) can be considered as a system of  

linear equations, where � + ' is a matrix of coefficients, −g is a vector

of ordinates and p̂ is the vector of unknowns to be determined. For

commonly used loss functions, including those in Section 6.4, the sums

of Hessians ℎ8 9 and ℎ 98 are equal. Consequently, the matrix of coefficients

is symmetrical.

Closed-form Solution In the general case, i.e., if the loss function is non-decomposable, the linear

system in (6.13) must be solved to determine the optimal multi-label

head p̂. However, when dealing with a decomposable loss function, the

first and second derivative with respect to a particular element ?̂8 ∈ p̂
is independent of any other element ?̂ 9 ∈ p̂. This causes the sums of

Algorithm 7: find_head

input :Sums of gradients g =
∑
= (1 (x=)F= g=),

sums of Hessians � =
∑
= (1 (x=)F=�=)

output :Single- or multi-label head p̂, quality @
1 g =

∑
= 1 (x=)F= g= , � =

∑
= 1 (x=)F=�=

2 if loss is decomposable or searching for a single-label head then
3 p̂ = obtain ?̂: w.r.t. g and � for each label acc. to (6.14)

4 if searching for a single-label head then
5 p̂ = find best single-label prediction ?̂: ∈ p̂ w.r.t. (6.10)

6 else
7 p̂ = obtain (?̂1 , . . . , ?̂ )w.r.t. g and � by solving (6.13)

8 @ = evaluate (6.11) w.r.t. g , � and p̂
9 return head p̂, quality @
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Hessians ℎ8 9 that do not exclusively depend on ?̂8 , i.e., if 8 ≠ 9, to become

zero. In such a case, the linear system reduces to independent equations

— one for each label. This enables to compute the optimal prediction ?̂8
for the 8-th label via the closed-form solution

?̂8 = −
68

ℎ88 + �
. (6.14)

Similarly, when interested in single-label rules that predict for the 8-th

label, the predictions ?̂ 9 with 9 ≠ 8 are known to be zero because the

rule will abstain for the corresponding labels. Consequently, (6.14) can

be used to determine the predictions of single-label rules even if the loss

function is non-decomposable.

Refinement of Rules

Top-down Hill ClimbingTo learn a new rule, we use a greedy top-down search, also referred to

as top-down hill climbing (Fürnkranz, Gamberger, and Lavrač, 2012), as

previously mentioned in Section 4.3. Algorithm 8 is meant to outline the

general procedure of such a search algorithm. For brevity, it does not

include any algorithmic optimizations that can drastically improve the

computational efficiency in practice. An efficient implementation, as well

as possible extensions to the basic procedure, are discussed in Chapter 7.

The search for a new rule starts with an empty body that is successively

refined by adding additional conditions.

Adding conditions to its body causes a rule to become more specific

and results in fewer examples being covered. The conditions, which may

be used to refine an existing body, result from the feature values of the

training examples in the case of nominal attributes or from averaging

adjacent values in the case of numerical attributes. In addition to instance

sampling, we use feature sampling to select a subset of the available

attributes whenever a new condition should be added (cf. Algorithm 8,

Algorithm 8: refine_rule

input :Training examples D = {(x= , y=)}#= , weights w,

statistics ( = {(g= , �=)}#= , current rule 5 ,
its quality @ (both optional)

output :Best rule 5 ∗
1 best rule 5 ∗ = 5 , best quality @∗ = q

2 A′ = select a random subset of attributes from D
3 foreach possible condition 2 on attributes A′ and examples D do
4 5 ′ : 1′→ p̂′ = copy of current rule 5
5 add condition 2 to body 1′

6 g =
∑
= (1 (x=)F= g=) , � =

∑
= (1 (x=)F=�=)

7 head p̂′, quality @′ = find_head (g , �)
8 if @′ < @∗ then
9 update best rule 5 ∗ = 5 ′ and its quality @∗ = @′

10 if 5 ∗ ≠ 5 then
11 D′ = subset of D covered by 5 ∗

12 return refine_rule (D′,w , (, 5 ∗ , @∗)
13 return best rule 5 ∗
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line 2). This leads to more diverse ensembles of rules and reduces

the computational costs by limiting the number of potential candidate

rules. For each condition that may be added to the current body at a

particular iteration, the head of the rule is updated via the function find_-

head discussed in the previous section “Computation of Predictions”

(cf. Algorithm 8, line 7). When learning single-label rules and if not

configured otherwise, each refinement of the current rule is obliged to

predict for the same label (omitted in Algorithm 8 for brevity). Among

all refinements, the one that minimizes the regularized objective in (6.10)

is chosen. If no refinement results in an improvement according to said

objective, the refinement process stops. By default, no additional stopping

criteria are used, and therefore they are omitted from Algorithm 8.

The specificity of rules can optionally be restricted via the

parameters --max-conditions and --min-coverage. The

former specifies the maximum number of conditions to be

included in a rule’s body, whereas the latter allows stop-

ping the refinement of rules as soon as they cover fewer

examples than required (no restrictions apply by default).

In addition, theparameter--max-head-refinements spec-

ifies the number of successive refinements that are allowed

to predict for different labels (defaults to 1).

6.4 Surrogate Loss Functions

Logistic Surrogate Losses As mentioned in Section 6.2, we use continuous and differentiable

surrogate loss functions in place of the actual target measure to assess

the quality of individual candidate rules during training. As surrogates

for the Hamming loss and the subset 0/1 loss (cf. Section 3.3), we use

different variants of the logistic loss. This loss function, which is equivalent

to cross entropy, is the basis for logistic regression and is commonly used

in boosting approaches to single-label classification (early uses go back

to J. H. Friedman, Hastie, and Tibshirani, 2000).

Figure 6.1: Value of the logistic loss func-
tion, given a real-valued prediction ?̂ for

a single label with ground truth H = −1

and H = 1, respectively.
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Label-wise Logistic Loss

Function DefinitionTo cater for the characteristics of the Hamming loss, the label-wise logistic
loss applies the logistic loss function in Figure 6.1 to each label individually:

ℓl.w.-log. (y= , p̂=) B
 ∑
:=1

log (1 + exp (−H=: ?̂=:)) . (6.15)

Following the formulation of this objective, ?̂=: can be considered as

log-odds, which estimate the probability of H=: = 1 as

logistic (?̂=:) =
1

1 + exp (−?̂=:)
. (6.16)

Under the assumption of label independence, the logistic loss has been

shown to be a consistent surrogate loss for the Hamming loss (Dem-

bczyński, Kotłowski, andHüllermeier, 2012; Gao and Z.-H. Zhou, 2013).

First and Second-order DerivativesTo compute the gradients and Hessians that guide the training process,

the first and second partial derivative of the loss function are required.

Given an example x= , the gradient with respect to the current prediction

for its 8-th label is

6=8 =
−H=8

1 + exp (H=8 ?̂=8)
, (6.17)

whereas the corresponding Hessian calculates as

ℎ=88 =
1

1 + exp (H=8 ?̂=8)
− 1

(1 + exp (H=8 ?̂=8))2
. (6.18)

Numerical StabilityComputing (6.17) and (6.18) in a naive way is likely to cause numerical

problems due to the limited precision of floating point operations. As

the exponential function exp (G) grows very fast, overflows may occur

even for moderately large values G. To implement the calculation of

gradients in a numerically stable way, we make use of a numerically

stable formulation of the logistic function in (6.16), defined as

logistic (?̂=8) =
{

1/(1 + exp (−?̂=8)) if ?̂=8 ≥ 0

exp (?̂=8) /(1 + exp (?̂=8)) otherwise.
(6.19)

It can be used to rewrite the calculation of gradients in (6.17) as

6=8 =

{
logistic (?̂=8) − 1 if H=8 = 1

logistic (?̂=8) otherwise.
(6.20)

The logistic function in (6.19) is also used to rewrite the calculation of

Hessians. In addition, the reformulation uses the function

logistic
2 (?̂=8) =

{
1/(1 + exp (−?̂=8))2 if ?̂=8 ≥ 0

exp (?̂=8)2 /(1 + exp (?̂=8))2 otherwise.
(6.21)

By making use of these two functions, the calculation of Hessians in

(6.18) can be computed in a numerically stable way as

ℎ=8 = logistic (?̂=8) − logistic
2 (?̂=8) . (6.22)
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Example-wise Logistic Loss

Function Definition As the label-wise logistic loss can be calculated by aggregating the

values that result from applying the logistic loss function to each label

individually, it is label-wise decomposable. In contrast, the example-wise
logistic loss

ℓex.w.-log. (y= , p̂=) B log

(
1 +

 ∑
:=1

exp (−H=: ?̂=:)
)

(6.23)

is non-decomposable, as it cannot be computedvia label-wise aggregation.

This smooth and convex surrogate is proposed byAmit, Dekel, and Singer

(2007), who show that it provides an upper bound of the subset 0/1

loss.

First and Second-order Derivatives The gradients with respect to the current prediction for the 8-th label of

a particular example x= can be computed according to the first partial

derivative of the example-wise logistic loss as

6=8 =
−H=8 exp (−H=8 ?̂=8)

1 +∑ 
:=1

exp (−H=: ?̂=:)
. (6.24)

The Hessian with respect to the prediction for a single label �8 , i.e., an
element that corresponds to the diagonal of theHessianmatrix, computes

as

ℎ=88 =
exp (−H=8 ?̂=8)

1 +∑ 
:=1

exp (−H=: ?̂=:)
·
(
1 − exp (−H=8 ?̂=8)

1 +∑ 
:=1

exp (−H=: ?̂=:)

)
, (6.25)

whereas the Hessian with respect to two different labels �8 and � 9 , i.e., an
element that corresponds to the upper (or lower) triangle of the Hessian

matrix, calculates as

ℎ=89 =
−H=8H=9 exp

(
−H=8 ?̂=8 − H=9 ?̂=9

)
1 +∑ 

:=1
exp (−H=: ?̂=:)

· 1

1 +∑ 
:=1

exp (−H=: ?̂=:)
. (6.26)

Numerical Stability To compute the gradients and Hessians with respect to the example-wise

logistic loss in a numerically stable manner, we exploit the equality

exp (−H=8 ?̂=8)
1 +∑ 

:=1
exp (−H=: ?̂=:)

=
exp (−H=8 ?̂=8 − <)

exp (−<) +∑ 
:=1

exp (−H=: ?̂=: − <)
,

(6.27)

where < = max

(
0,max

 
:=1
(H=: ?̂=:)

)
. It can be used to rewrite the

computation of gradients in (6.24) as

6=8 =
−H=8 exp (−H=8 ?̂=8 − <)

exp (−<) +∑ 
:=1

exp (−H=: ?̂=: − <)
. (6.28)

Moreover, it enables to rewrite the computation of Hessians, previously
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introduced in (6.25) and (6.26), as

ℎ=88 =
exp (−H=8 ?̂=8 − <)

exp (−<) +∑ 
:=1

exp (−H=: ?̂=: − <)

·
(
1 − exp (−H=8 ?̂=8 − <)

exp (−<) +∑ 
:=1

exp (−H=: ?̂=: − <)

)
,

(6.29)

when it comes to gradients that corresponds to the diagonal of the

Hessian matrix, and

ℎ=89 =
−H=8 ?̂=8 exp

(
−H=8 ?̂=8 − H=9 ?̂=9 − <

)
exp (−<) +∑ 

:=1
exp (−H=: ?̂=: − <)

· exp (−<)
exp (−<) +∑ 

:=1
exp (−H=: ?̂=: − <)

,

(6.30)

when Hessians that correspond to the upper (or lower) triangle of the

Hessian matrix should be computed.

The BOOMER algorithm can be instructed to use one of the

mentioned losses by specifying the following parameter:

--loss [logistic-label-wise,logistic-example-wise]

A description of additional loss functions can be found in

the documentation.

6.5 Loss-Minimizing Prediction

Predicting for an example x= involves two steps: First, the scores that are

provided by individual rules are aggregated into a vector of confidence

scores p̂= according to (6.3). Second, the vector p̂= must be turned into a

binary label vector ŷ= ∈ Y . It should minimize the expected risk with

respect to the used loss function, such that

ŷ= = argminŷ=
ℓ (y= , ŷ=) .

Label-wise PredictionIn case of the label-wise logistic loss in (6.15), we compute the binary

label vector in a label-wise manner as

ŷ= = (sgn (?̂=1) , . . . , sgn (?̂= )) , (6.31)

where sgn (G) evaluates to 1 if G > 0 and 0 otherwise.

Example-wise PredictionTo predict the label vector that minimizes the example-wise logistic

loss given in (6.23), we return the label vector among the vectors in the

training data, which minimizes the loss, i.e.,

ŷ= = argminy∈Dℓex.w.-log. (y, p̂=) . (6.32)

Similar to the label powerset transformation method (cf. Section 3.6),

the prediction is restricted to the label vectors that are present in the

training data. Senge, Coz, and Hüllermeier (2013) argue that often only
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a small fraction of the 2
 
possible label combinations are observed in

practice. For this reason, the correctness of an unseen label combination

becomes increasinglyunlikely for largedatasets.According topreliminary

experiments, predicting one of the known label vectors usually results

in an improvement of predictive performance in terms of the subset 0/1

loss.

The prediction scheme to be used by the BOOMER algo-

rithm can be specified via the following parameter:

--predictor [auto,label-wise,example-wise]

If set to auto (the default value), the most suitable scheme

is chosen automatically depending on the loss function.

6.6 Experimental Evaluation

Experimental Setup In an experimental study, we evaluated the ability of the BOOMER

algorithm
2

2: The experiments that are discussed in

this section were conducted using version

0.1.0 of the BOOMER algorithm. It is avail-

able at https://github.com/mrapp-ke/

Boomer/releases/tag/0.1.0.

to minimize the Hamming and subset 0/1 loss, using the

label-wise and example-wise logistic loss as surrogates. In each case, we

considered both, single- and multi-label rules, resulting in four different

variants (l.w.-log. single, l.w.-log. multi, ex.w.-log. single, and ex.w.-log. multi).
For each of them, we tuned the shrinkage parameter � ∈ {0.1, 0.3, 0.5}
and the regularization weight � ∈ {0.0, 0.25, 1.0, 4.0, 16.0, 64.0}, using
bootstrap bias corrected cross validation (BBC-CV) (Tsamardinos, Greasidou,

and Borboudakis, 2018), which allows incorporating parameter tuning

and evaluation in a computationally efficient manner.

Bootstrap Bias Corrected Cross Validation The idea of BBC-CV is to train a model for each parameter configuration

using regular cross validation as described in Section 3.3. When perform-

ing a CV, each example in the given dataset is included exactly once in

the test set. As a result, one obtains a prediction for all available examples

and each parameter setting. These predictions serve as the basis for the

randomized procedure that is outlined in the following:

I. Parameter Tuning. First, a subset of the available examples is drawn

with replacement. Then, for each parameter setting, the quality of

the predictions provided for the selected examples is assessed in

terms of a particular target measure. This allows for determining

the best configuration for the selected examples.

II. Evaluation. To obtain an independent estimate of the best configu-

ration’s quality, its out-of-sample predictions are evaluated with

respect to different evaluation measures.

The previously described procedure should be repeated several times (we

used 100 iterations). The evaluation results obtained at each iterationmust

be averaged to obtain a final estimate of an algorithm’s strength, given

the option to pick optimal parameters from predefined configurations.

https://github.com/mrapp-ke/Boomer/releases/tag/0.1.0
https://github.com/mrapp-ke/Boomer/releases/tag/0.1.0
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(a) Marginal independence (b) Strong marginal dependence (c) Strong conditional dependence

l.w.-log. single l.w.-log. multi ex.w.-log. single ex.w.-log. multi

Figure 6.2: Predictive performance of different approaches with respect to the Hamming loss and the subset 0/1 loss on three synthetic

datasets. Starting at the top right, each curve shows the performance as more rules are added. The slope of the isometrics refers to an even

improvement of Hamming and subset 0/1 loss. The symbols indicate 1, 2, 4, 8, . . . , 512, 1000 rules in the model.

Synthetic Data

Properties of the DataWe used three synthetic datasets, each containing 10, 000 examples and

six labels, as proposed by Dembczyński, Waegeman, et al. (2012). Our

goal was to analyze the effects of using single- or multi-label rules given

different types of label dependencies. The attributes correspond to two-

dimensional points drawn randomly from the unit circle and the labels

are assigned according to linear decision boundaries through its origin.

The results are shown in Figure 6.2.

Marginal IndependenceIn the case of marginal independence, points are sampled for each label

independently. Noise is introduced by randomly flipping 10% of the

labels, such that the scores achievable by the Bayes-optimal classifier

on an independent test set are 10% for Hamming loss and ≈ 47% for

subset 0/1 loss. As it is not possible — by the construction of the dataset

— to find a rule body that is suited to predict for more than one label,

multi-label rules cannot be expected to provide any advantage. In fact,

despite very similar trajectories, the single-label variants achieve slightly

better losses in the limit. This indicates that, most probably due to the

number of uninformative features, the approaches that aim at learning

multi-label rules struggle to induce pure single-label rules.

Strong Marginal DependenceFor modeling a strong marginal dependence between the labels, a small

angle between the linear boundaries of two labels is chosen, such that

they mostly coincide for the respective examples. Starting from differ-

ent default rules, depending on the loss function they minimize, the

algorithms converge to the same performances, which indicates that all

variants can similarly deal with marginal dependencies. However, when

using multi-label rules, the final subset 0/1 score is approached faster

and more steadily, as a single rule provides predictions for several labels

at once. In fact, it is remarkable that the ex.w.-log. multi variants already

converge after two rules, whereas ex.w.-log. single needs six, one for each

label, and optimizing for label-wise logistic loss takes much longer.

Strong Conditional DependenceFinally, strong conditional dependence is obtained by randomly switching

all labels for 10% of the examples. As a result, the score that is achievable

by the Bayes-optimal classifier is 10% for both losses.While the trajectories
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are similar to before, the variants that optimize the non-decomposable loss

achieve better results in the limit. Unlike the approaches that consider the

labels independently, they seem to be less prone to the noise introduced

at the example-level.

Real-world Benchmark Data

Baselines We also conducted experiments on eight benchmark datasets from the

Mulan and MEKA projects and compared the results to those of different

baselines. A description of the datasets can be found in Section 3.2. As

baselines, we considered the problem transformation methods binary

relevance (BR), label powerset (LP), and classifier chains (CC), using

XGBoost (T. Chen and Guestrin, 2016) as the base classifier. A detailed

discussion of these transformationmethods is given in Section 3.6. For BR

and CC, we used the logistic loss. For LP, we used the softmax objective.

Table 6.1: Predictive performance (in percent) of different approaches with respect to Hamming loss, subset 0/1 loss and the example-wise

F1 measure. For each evaluation measure and dataset, we report the ranks of the different approaches (small numbers) and highlight the

best approach (bold text).

Dataset l.w.-log. ex.w.-log. XGBoost

single multi single multi BR LP CC

Subset 0/1 loss
Birds 38.72 2 40.43 6 39.57 4.5 39.15 3 39.57 4.5 40.85 7 38.30 1

Emotions 73.33 6.5 73.33 6.5 70.48 3.5 65.24 2 70.48 3.5 60.00 1 71.43 5

Enron 87.81 7 86.82 6 84.35 4 83.53 2 85.34 5 82.70 1 83.86 3

Langlog 78.85 5 78.85 5 78.27 3 76.35 2 80.96 7 70.38 1 78.85 5

Medical 28.45 3 30.16 4 23.90 2 23.04 1 56.90 7 41.11 5 44.95 6

Scene 39.33 7 33.93 5 25.17 3 23.26 1 34.72 6 24.16 2 30.11 4

Slashdot 65.29 5 62.89 4 53.30 3 49.75 1 72.04 7 52.94 2 66.96 6

Yeast 83.72 7 82.27 5 78.60 4 75.81 2 82.72 6 75.70 1 76.59 3

Avg. rank 5.31 5.19 3.38 1.75 5.75 2.50 4.13

Hamming loss
Birds 3.52 5 3.16 1 3.58 6 3.23 2 3.43 3 4.03 7 3.45 4

Emotions 18.81 5 20.00 7 18.17 2 18.41 3 18.73 4 18.02 1 19.29 6

Enron 4.56 3 4.49 1 4.90 5 4.91 6 4.52 2 5.75 7 4.63 4

Langlog 1.48 2.5 1.48 2.5 1.49 4.5 1.45 1 1.49 4.5 2.13 7 1.60 6

Medical 0.84 2.5 0.86 4 0.84 2.5 0.79 1 1.69 7 1.55 6 1.36 5

Scene 8.16 7 7.42 6 7.21 4 6.63 1 7.19 3 7.27 5 6.85 2

Slashdot 4.15 1 4.17 2 5.03 6 4.64 5 4.61 4 5.16 7 4.54 3

Yeast 19.27 2 19.84 5 19.44 4 19.29 3 19.13 1 21.22 7 20.11 6

Avg. rank 3.56 3.56 4.19 2.75 3.56 5.88 4.50

Example-wise F1 measure
Birds 70.38 4 72.42 1 68.00 7 71.18 2 69.68 6 70.06 5 70.96 3

Emotions 58.19 7 59.06 6 64.56 3 65.75 2 61.90 5 69.24 1 62.59 4

Enron 52.86 6 53.87 4 53.73 5 53.91 3 54.76 2 46.61 7 56.46 1

Langlog 22.51 6 23.21 5 23.28 4 26.30 2 19.36 7 33.17 1 24.16 3

Medical 81.68 3 80.07 4 85.51 2 85.97 1 53.14 7 71.34 5 64.72 6

Scene 65.90 7 71.69 5 80.30 2 81.69 1 70.30 6 79.72 3 74.23 4

Slashdot 40.94 5 44.04 4 54.78 2 58.62 1 32.57 7 54.01 3 39.15 6

Yeast 61.56 6 61.03 7 62.78 3 63.41 1 62.54 4 61.71 5 62.92 2

Avg. rank 5.50 4.50 3.50 1.63 5.50 3.75 3.63
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While we tuned the number of rules ) ∈ {50, 100, . . . , 10000} for our
algorithm, XGBoost comes with an integrated method for determining

the number of trees. The learning rate and the !2 regularization weight

were tuned in the same value ranges for both. Moreover, we configured

the BOOMER algorithm to use sampling with replacement to obtain a

subset of the available training examples whenever a new rule should

be learned and choose from blog
2
(! − 1) + 1c random attributes at each

refinement iteration. For a fair comparison, we instructed XGBoost to

sample 66% of the training examples at each iteration and select the same

number of attributes at each split. As classifier chains are sensitive to the

order of labels, we chose the best order among ten random permutations.

According to their respective objectives, the BR baseline was tuned with

respect to Hamming loss, LP and CC were tuned with respect to subset

0/1 loss.

Experimental ResultsIn Table 6.1, we report the predictive performance of our methods

and their competitors in terms of Hamming and subset 0/1 loss. For

completeness, we also report the example-wise F1 score (cf. Section 3.3).

The Friedman test (cf. Section 3.4) indicates significant differences for

all measures but the Hamming loss. The Nemenyi post-hoc test yields

critical distances between the average ranks of 2.91/3.19 for 
 = 0.1/0.05.

On average, ex.w.-log. multi ranks best in terms of subset 0/1 loss. It is

followed by LP, its counterpart ex.w.-log. single, and CC. As all of them

aim to minimize the subset 0/1 loss, it is expected that they rank better

than their competitors directed at the Hamming loss. Most notably, since

example-wise optimized multi-label rules achieve better results than

single-label rules on all datasets (statistically significant with 
 = 0.1),

we conclude that the ability to induce such rules, which is a novelty of

the proposed method, is crucial for minimizing subset 0/1 loss. On the

other hand, in terms of Hamming loss, rules that minimize the label-wise

logistic loss are competitive to the BR baseline, without a clear preference

for single- or multi-label rules. Interestingly, although the example-wise

logistic loss aims at minimizing subset 0/1 loss, when using multi-label

rules, it also achieves remarkable results for the Hamming loss on some

datasets and consequently even ranks best on average.

Dependence-Awareness

Goals of the StudyThe Hamming loss and the subset 0/1 loss, used in the previous experi-

ments, are often considered prototypical examples of decomposable and

non-decomposable multi-label evaluation measures. Whereas the former

can principally be optimized by considering each label individually,

the latter requires taking correlations between labels into account and

therefore is often used to quantify a classifier’s ability to model label

dependencies. However, as argued in Section 3.3, the Hamming loss and

the subset 0/1 loss can both be criticized for being rather extreme. On the

one hand, since the distribution between relevant and irrelevant examples

for each label is typically quite unbalanced and because it does not take

any dependencies between labels into account, the Hamming loss is often

close to 0. On the other hand, since an entirely correct prediction becomes

more difficult with an increasing number of labels, the subset 0/1 loss

is usually close to 1. For the following experiments, we employ a family

of “dependence-aware” multi-label loss functions that allow for a more
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detailed analysis of a classifier’s ability to capture label dependencies.

First, we briefly recapitulate the formulation of these loss functions as

proposed by Hüllermeier, Wever, et al. (2022)Hüllermeier, Wever, Loza Mencía,

Fürnkranz, and Rapp (2022): ‘A flexible

class of dependence-aware multi-label

loss functions’

. Afterward, we discuss

the experimental results that are presented in said paper, focusing on a

comparison of the BOOMER algorithm to a variety of established MLC

approaches.

Dependence-Aware Evaluation Measures Hüllermeier, Wever, et al. (2022) leverage the mathematical framework of

non-additive measures (Sugeno, 1974) and Choquet integrals (Choquet, 1954)
to formulate a class of multi-label evaluation measures that model the

importance of correct predictions for label subsets rather than individual

labels in a flexible way. In the following, we focus on two parameterized

loss functions belonging to this class, namely the polynomial loss and the

binomial loss. These loss functions comprise the Hamming loss and the

subset 0/1 loss as special cases, where full importance is given to single

labels or the entire labelset, and allow to interpolate between these two

extremes. Using an ordered weighted averaging (OWA) aggregation (Yager

and Filev, 1999; Yager and Kacprzyk, 2012), the polynomial and binomial

loss can be written as evaluation measures of the form

MOWA(., .̂) =
1

#

#∑
==1

 ∑
8=1

F8D=�(8) with D=�(8) = |H=�(8) − Ĥ=�(8) |, (6.33)

where the permutation function � is such that 0 ≤ D=�(1) ≤ D=�(2) ≤ · · · ≤
D=�( ) ≤ 1 and the weights F1 + · · · + F = 1 specify the importance

of a correct prediction for the � (8)-th label. Both losses are so-called

counting measures, where the impact of a label subset on the overall

performance is not affected by the labels in the set but only depends on

its cardinality. This kind of symmetry property is certainly meaningful in

MLC, where different labels are typically considered equally important,

and performance metrics are usually invariant to the permutation of

labels. In the case of counting measures, the weight of the � (8)-th label on

the overall performance can be assessed in terms of a function E : ℝ→ ℝ

as

F8 = E

(
 − 8 + 1

 

)
− E

(
 − 8
 

)
. (6.34)

Polynomial Loss Depending on a parameter 
, the polynomial loss assesses the importance

of individual labels in terms of the convex function

E (G) = G
 with 
 ≥ 1. (6.35)

If 
 = 1, the polynomial loss is equivalent to the Hamming loss. With

increasing values for the parameter 
, more emphasis is put on the

correct prediction of larger label subsets. In the limit, i.e., if 
→∞, the

polynomial loss becomes equivalent to the subset 0/1 loss.

Binomial Loss The binomial loss focuses on label subsets with a predefined number

of labels :. It assesses the weights of individual labels in terms of the

function

E
( G
 

)
=

(G
:

)( 
:

) . (6.36)

Similar to the polynomial loss, the binomial loss comprises the Hamming

loss and the subset 0/1 loss as special settings, where : = 1 and : =  ,

respectively. Again, it is possible to interpolate between the two losses by
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3: The experiments in this section are

based on version 0.4.0 of BOOMER, avail-

able at https://github.com/mrapp-ke/

Boomer/releases/tag/0.4.0

4: https://github.com/KIuML/

DependenceAwareMLCLoss

5: https://dtai.cs.kuleuven.be/

clus

setting the parameter : to values in-between. However, in contrast to the

polynomial loss, the binomial loss does not reward predictions for small

labelsets with less than : elements.

Experimental SetupTo demonstrate how the polynomial and binomial loss can be used to

analyze the “dependency awareness” of different multi-label classifiers,

i.e., their ability to capture label dependencies, Hüllermeier, Wever, et al.

(2022) evaluate the predictive performance of several MLC methods

in terms of these losses. Their empirical study is based on a selection

of nine benchmark datasets (cf. Section 3.2) and relies on 10-fold cross

validation (cf. Section 3.3) to obtain unbiased estimates of a classifier’s

predictive performance. It includes a wide variety of commonly used

problem transformation approaches and adaptation methods discussed

in Section 3.6 and Section 3.7. The considered problem transformation

approaches include the binary relevance (BR) and label powerset (LP)

method, classifier chains (CC), and RAkEL. The latter was configured

to use label subsets of varying sizes. We denote a first variant that deals

with pairs of labels as RAkEL-2. A second variant that uses labelsets with

five labels is referred to as RAkEL-5. The problem adaptation methods

include ensembles of predictive clustering trees (EPCT) and BOOMER.
3

Similar to previous experiments, the label- and example-wise logistic

loss in (6.15) and (6.23) were both used as the latter’s training objective.

We refer to these variants as BOOMER-l.w.-log. and BOOMER-ex.w.-

log., respectively. The experiments can be reproduced by using the

publicly available source code.
4
It employs the problem transformation

methods provided by the MEKA (Read, Reutemann, et al., 2016) project,

using decision trees as base learners, and relies on CLUS
5

for the

implementation of PCT-based baselines. For all experiments, the default

configurations of the different algorithms were used. This also applies to

the BOOMER algorithm, which was configured to learn 1000 rules and

use default values for shrinkage (� = 0.3) and L2 regularization (� = 1.0).

Each of the rules was constructed on a subset of the training examples,

drawn with replacement. The refinements of a rule were restricted to

a random subset of the available attributes. Whereas single-label rules

were induced by the BOOMER-l.w.-log. approach, complete rules were

used by the BOOMER-ex.w.-log. method. In addition, the latter also

made use of gradient-based label binning (cf. Chapter 8).

Analysis on a Single DatasetAll considered MLCmethods were evaluated in terms of different instan-

tiations of the binomial and polynomial loss. Whereas the parameter : of

the former was set to values in {1, . . . ,  }, the parameter 
 of the latter

was varied between 1 and 1000. In both cases, the lowest parameter value

1 corresponds to the Hamming loss and the highest value to the subset

0/1 loss. Intermediate values interpolate between these two extremes.

To illustrate the properties of the dependence-aware loss functions, we

start our analysis with a comparison of the evaluated algorithms on the

dataset “Scene”. Figure 6.3 shows the value of the parameters : and


 on the x-axis. The y-axis indicates the loss that is achieved by the

different methods. Naturally, the curves are monotonically increasing

because the losses become more demanding and difficult to minimize

with an increasing dependence-awareness. The intersections between

two curves are particularly interesting, as they indicate that the rank-

ing of the respective approaches has changed. On close examination,

we can observe that some algorithms tend to work better than their

https://github.com/mrapp-ke/Boomer/releases/tag/0.4.0
https://github.com/mrapp-ke/Boomer/releases/tag/0.4.0
https://github.com/KIuML/DependenceAwareMLCLoss
https://github.com/KIuML/DependenceAwareMLCLoss
https://dtai.cs.kuleuven.be/clus
https://dtai.cs.kuleuven.be/clus
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Figure 6.3: Comparison of different multi-label classification methods with respect to parameterized instantiations of the polynomial loss

and the binomial loss on the dataset “Scene”.

competitors for small : or 
. However, the ranking of the different ap-

proaches may change as the values of these parameters increase, and

the losses demand greater dependence-awareness. For example, we can

see that BR performs favorably to LP for small : or 
, but LP catches

up with increasing parameter values until it finally outperforms BR.

In general, the dependence-awareness of a method is reflected by the

slope of the corresponding curve — the flatter the curve, the better

the method’s dependence-awareness. For example, even though the

approaches RAkEL-2 and RAkEL-5 are competitive for small parameter

values, the latter has greater dependence-awareness and therefore out-

performs its counterpart for larger values. Similar observations can be

made for the BOOMER algorithm, where the variant BOOMER-ex.w.-log.

outperforms BOOMER-l.w.-log. for large parameter values.

Comparison of BOOMER Approaches For a more focused comparison between two methods over several

datasets, Hüllermeier, Wever, et al. (2022) suggest using a different

visualization of the experimental results than in Figure 6.3. For each

dataset, they plot the parameter : or 
 of a dependence-aware loss

function (on the x-axis) against the ratio of the losses achieved by two

learners (on the y-axis). A point above the horizontal H = 1 indicates

better performance of the first method, whereas a point below the

horizontal indicates that the second method performs better. Thus,

specifically interesting are the intersections of curves with the horizontal.

Additional information is provided by the derivative of individual

curves. A monotonically decreasing (increasing) shape indicates better

dependence-awareness of thefirst (second)method, as it improves relative

to the second (first) method with an increasing demand for dependence-

awareness. In contrast, a parallel trajectory indicates a similar behavior

regarding dependence-awareness. A visualization of this kind is shown

in Figure 6.4, where we compare the dependence-awareness of the

different BOOMER approaches to each other. As the parameter 
 of the

polynomial loss allows for a more fine-grained analysis of dependence-

awareness than the : parameter of the binomial loss, we restrict ourselves

to the former for the pair-wise comparison of competing approaches.
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Figure 6.4: Comparison of the BOOMER-

l.w.-log. and BOOMER-ex.w.-log. ap-

proaches in terms of parameterized instan-

tiations of the polynomial loss on different

datasets. The value of the 
 parameter

is shown on the x-axis. The y-axis corre-

sponds to the ratio between the losses that

are achieved by the former and the lat-

ter approach. Points above the horizontal

H = 1 indicate better performance of the

BOOMER-l.w.-log. method. Points below

the horizontal line indicate that BOOMER-

ex.w.-log. performs better.

Figure 6.4 shows that the method BOOMER-ex.w.-log., which aims to

optimize a non-decomposable surrogate of the subset 0/1 loss, achieves

strong results and tends to outperform the BOOMER-l.w.-log. approach,

which uses a surrogate for the Hamming loss. In accordance with our

previous findings, it performs surprisingly strongly for small values of the

parameter 
 (all points are below the horizontal). This advantage usually

increases for instantiations of the polynomial loss that demand greater

dependence-awareness (indicated by monotonically decreasing curves).

However, the shapeof the individual curves in Figure 6.4 dependsnot only

on the models being compared but also on the dataset. This is expected

because the performance of a method differs from dataset to dataset, just

like the label-dependence. Thus, while dependence-awareness might

be an advantage for one dataset, it could be a disadvantage for another

one. For example, in the complete absence of label dependencies, an

approach that dealswith labels in an isolatedmanner can be very effective,

whereas a method that deals with combinations of labels is unnecessarily

complicated.

Comparison with BaselinesFigure 6.4 compares the BOOMER-l.w.-log. approach to the BR, LP,

RAkEL, CC, and EPCT baselines. For small values of the parameter 
,
it tends to outperform its competitors (indicated by points above the

horizontal), even though it performs worse than RAkEL-5, CC, and EPCT

on the dataset “Medical”. For increasing values of 
, the differences

between BOOMER-l.w.-log. and methods capable of modeling label

dependencies, i.e., LP, RAkEL, CC, and EPCT, tend to become smaller

(indicated by monotonically decreasing curves). This suggests that the

use of a decomposable loss function and the restriction to single-label

rules results in a lack of dependence-awareness. This is also emphasized

by the results in Figure 6.6, where the BOOMER-ex.w.-log. method

is compared to the different baselines. Unlike the BOOMER-l.w.-log.

approach, it can generally outperform its competitors, regardless of the

parameter 
. Its strong performance with regard to parameter settings

that demand great dependence-awareness suggests that the use of a

non-decomposable loss function and the ability to use multi-label heads

benefit the dependence-awareness of the BOOMER algorithm.
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Figure 6.5: Pair-wise comparison of the BOOMER-l.w.-log. approach and competing MLC methods in terms of parameterized instantiations

of the polynomial loss on different datasets. The value of the 
 parameter is shown on the x-axis. The y-axis corresponds to the ratio between

the losses that are achieved by two methods. Points above the horizontal H = 1 indicate better performance of the BOOMER method. Points

below the horizontal line indicate that the respective competitor performs better.
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Figure 6.6: Pair-wise comparison of the BOOMER-ex.w.-log. approach and competingMLCmethods in terms of parameterized instantiations

of the polynomial loss on different datasets. The value of the 
 parameter is shown on the x-axis. The y-axis corresponds to the ratio between

the losses that are achieved by two methods. Points above the horizontal H = 1 indicate better performance of the BOOMER method. Points

below the horizontal line indicate that the respective competitor performs better.
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6.7 Discussion

Our experiments on synthetic and real-world data confirm that the

proposed algorithm for learning ensembles of single- or multi-label

classification rules can successfully target different losses. It is able to

outperformconventional state-of-the-art boostingmethods, aswell as tree-

based problem transformation and adaptation approaches, on datasets

of moderate size. Moreover, an analysis of the algorithm’s dependence-

awareness suggests that the ability to minimize non-decomposable

surrogate loss functions, as well as the use of multi-label rules that

allow to capture local label dependencies, is crucial for the effective

optimization of non-decomposable evaluation measures like the subset

0/1 loss. The main drawback of the proposed method, as used in this

first series of experiments, are the computational demands that come

with large datasets. In particular, the minimization of non-decomposable

loss functions comes with high computational costs due to the need to

solve a linear equation system for calculating the predictions of potential

candidate rules. To compensate for this, in Chapter 7, we discuss various

algorithmic enhancements to the basic methodology introduced in this

chapter. In Chapter 8, we further introduce an approximation technique

that aims to address the computational bottleneck of the algorithm,

which is the need to solve a linear system in the non-decomposable case.

Additional enhancements, such as the possibility to exploit sparsity in

the label space, are left for future work. We elaborate on these ideas in

Section 9.2.



1: The training times in Table 7.1 result

fromversion 0.2.3 of theWittgenstein algo-

rithm, available at https://github.com/

imoscovitz/wittgenstein.

Table 7.1: Training times (in seconds) of

JRIP and Wittgenstein, averaged across

10 cross validation folds, when applied

to different multi-label datasets using the

binary relevance transformation approach

(cf. Section 3.6).

Dataset JRip Wittgenstein

Birds 10.0 877.3

CAL500 28.5 776.0

Emotions 1.6 13.6

Flags 0.6 1.3

Image 13.9 820.2

Ohsumed 771.4 2820.9

Scene 16.1 605.1

Slashdot 371.3 11424.2

Yeast 19.7 521.6
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In Section 4.3, an overview of the different components that are involved

in the induction of individual rules is provided. Most importantly, this

includes components for the enumeration of candidate bodies and the

construction of corresponding rule heads. This chapter focuses on the

former and discusses an algorithm for the efficient conduction of a

greedy top-down search, as used by the BOOMER algorithm previously

introduced in Chapter 6. The methodology discussed in this chapter can

also be applied to SeCo-based algorithms, as discussed in Chapter 5.

Compared to the naive implementation in Algorithm 8, computational

efficiency may vastly benefit from implementing a “pre-sorted” search

algorithm. It is based on the idea to avoid redundant computations

by evaluating the possible candidate rules in a predetermined order.

This eliminates the need to identify the examples covered by different

candidates and aggregate the corresponding label space statistics for

each of them individually. Implementations of rule learning methods

that employ a pre-sorted search algorithm, e.g., JRip, an implementation

of RIPPER (Cohen, 1995) that is part of the WEKA (Hall et al., 2009)

software package, can be found to drastically outperform rule learners

that do not comewith such an optimization. This is illustrated by Table 7.1,

which compares the training times of JRip and Wittgenstein1 , another
implementation of RIPPER that does not rely on a predetermined order

for the evaluation of candidate rules. In the following, we introduce the

basic structure of the pre-sorted search algorithm used by the BOOMER

algorithm for the efficient induction of rules. We further discuss how

sparsity in the feature space, which is characteristic of many multi-label

datasets (cf. Section 3.2), can be exploited to further reduce computational

costs and describe how the algorithm deals with nominal attributes

and missing feature values. In addition, we discuss a histogram-based

search algorithm for the efficient induction of rules in domains with

many numerical features, where the ability to exploit sparsity in the

feature space does not provide any significant advantages in terms of

scalability. Finally,we elaborate on the BOOMERalgorithm’s ability to use

parallelization to further speed up the training of predictive models.

7.1 Pre-Sorted Search Algorithm

The idea of using a pre-sorted algorithm goes back to early work on

the efficient construction of decision trees (Mehta, Rakesh Agrawal,

and Rissanen, 1996; Shafer, Rakesh Agrawal, and Mehta, 1996). Due to

the conceptual similarities between tree- and rule-based models, it can

easily be generalized to rule learning methods. Both learning approaches

require enumerating the thresholds that may be used to make up nodes

in a decision tree or conditions in a rule, respectively. These thresholds

result from the feature values of the training examples, given in the

form of a feature matrix - ∈ ℝ#×!
. For each training example x= , it

https://github.com/imoscovitz/wittgenstein
https://github.com/imoscovitz/wittgenstein
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2: To facilitate column-wise access to the

feature matrix, it should be given in the

Fortran-contiguousmemory layout (see Fig-

ure 7.4 for an example).

1 −5.0
−4.0

2 −3.0
−2.0

3 −1.0
−0.5

4 0.0

5 0.0

6 0.0
1.0

7 2.0
2.5

8 5.0
6.5

9 8.0

Figure 7.1: Exemplary vector of numerical

feature values for a particular attribute,

sorted in increasing order. The thresholds

that result from averaging two adjacent

feature values are shown to the right.

assigns a feature value G=; to each of the available attributes �; . In this

section, we restrict ourselves to numerical attributes. Means to deal

with nominal attributes or missing feature values are discussed in the

sections “Nominal Attributes” and “Missing Feature Values” below.

When searching for the best condition that may be added to a rule, the

available attributes are dealt with independently. For each attribute �;
to be considered by the algorithm, the thresholds that may be used

by the first condition of a rule result from a vector of feature values

(G1; , . . . , G=;) that corresponds to the ;-th column of the feature matrix.
2

As different attributes are dealt with in isolation, we omit the index of

the respective attribute for brevity. To enumerate the thresholds for a

particular attribute, the elements in the corresponding column vector

must be sorted in increasing order. For this purpose, we use a bĳective

permutation function � : ℕ+ → ℕ+, where � (8) specifies the index of the

example that corresponds to the 8-th element in the sorted vector(
G�(1) , . . . , G�(#)

)
with � (8) ≤ � (8 + 1) ,∀8 ∈ [1, #) . (7.1)

An exemplary vector of sorted feature values, together with the cor-

responding thresholds, is shown in Figure 7.1. Each of the thresholds

is computed by averaging two adjacent feature values. Because these

values do not change as additional conditions or rules should be learned,

sorting the values that correspond to a particular attribute is necessary

only once during training, and previously sorted vectors can be kept

in memory for repeated access. If an existing rule should be refined by

adding a condition to its body, only a subset of the feature values must

be considered to make up potential thresholds. The subset corresponds

to the examples that satisfy the existing conditions. We use an indicator

function 1- : ℕ+ → {0, 1} to check whether individual examples should

be taken into account by the search algorithm:

1- (=) =
{

1 if example x= is currently covered

0 otherwise.
(7.2)

If an example is not covered, its feature value may not be used to make

up thresholds for additional conditions. A data structure that helps to

keep track of the covered examples efficiently, rather than comparing the

feature values of each example to the existing conditions, is presented

in the following section “Exploiting Feature Sparsity”. It also facilitates

dealing with sparse feature values.

Enumeration of Conditions As shown in Algorithm 9, the feature values that correspond to a partic-

ular attribute are processed in sorted order to enumerate the thresholds

of potential conditions. When dealing with numerical attributes, the

thresholds result from averaging adjacent feature values (cf. Algorithm 9,

line 9). The calculation of thresholds is restricted to the feature values

of examples that are covered according to the indicator function 1- and

have non-zero weights according to a weight vector w. The weights

result applying an (optional) instance sampling method, as described

in Section 4.3 (cf. Algorithm 9, line 3 and line 7). When dealing with

numerical attributes, each threshold can be used to form two distinct

conditions, using the relational operator ≤ or >, respectively. As can be

seen in Figure 7.2, when a condition that uses the former operator is

added to a rule, it results in all examples that correspond to the previously



7.1 Pre-Sorted Search Algorithm 109

1 −5.0 
≤1.0

2 −3.0

3 −1.0

4 0.0

5 0.0

6 0.0

7 2.0 >1.08 5.0

9 8.0

Figure 7.2: Coverage of numerical condi-

tions that can be created from a single

threshold using the ≤ or > operator.

g′ ,

�′

 g ,

�



1 −5.0 
≤1.0

2 −3.0

3 −1.0

4 0.0

5 0.0

6 0.0

g−g′ ,
�−�′


7 2.0 >1.08 5.0

9 8.0

Figure 7.3: Aggregation of statistics de-

pending on the coverage of conditions

that use the ≤ or > operator and a sin-

gle threshold. In case of the > operator,

the statistics are obtained by computing

thedifference (orange) betweenpreviously

aggregated statistics (green), which corre-

spond to already processed feature values,

and globally aggregated statistics that are

computed beforehand (blue).

processed feature values being covered. In contrast, a condition that uses

the latter operator covers all of the other examples.

Aggregation of StatisticsAs previously discussed in Section 6.3 and illustrated in Algorithm 7, it

is necessary to construct a head for each candidate rule that results from

adding a new condition to a rule. In addition, the quality of the resulting

rule must be assessed in terms of a numerical score. Both the predictions

provided by a head and the estimated quality depend on the aggregated

label space statistics of the covered examples. We exploit the fact that

conditions using the ≤ operator, when evaluated in sorted order by

increasing thresholds, are satisfied by a superset of the examples covered

by the previous condition using the same operator but a smaller threshold.

Processing the possible conditions in the aforementioned order enables

the pre-sorted search algorithm to compute the aggregated statistics

(g′ and �′) incrementally (cf. Algorithm 9, line 8). For the efficient

evaluation of conditions that use the > operator, the search algorithm

is provided with the statistics that result from the aggregation over all

training examples that are currently covered and have a non-zero weight

(g and �). The difference between the globally aggregated statistics and

the previously aggregated ones (g− g′ and�−�′) yields the aggregated
statistics of the examples covered by such a condition (cf. Algorithm 9,

line 13). As the global aggregation of statistics does not depend on a

particular attribute, this operation must be performed only once, even

when searching for a rule’s best refinement across multiple attributes.

Figure 7.3 provides an example of how the aggregated statistics are

computed for the conditions that can be created from a single threshold.

Algorithm 9: Pre-sorted algorithm for the evaluation of refinements

input :Vector of sorted feature attributes

(
G�(=)

)#
=
,

quality of the current rule @, indicator function 1- ,

weights of training examples w, statistics ( = {(g= , �=)}#= ,
globally aggregated statistics g =

∑
= (1- (=)F= g=) and

� =
∑
= (1- (=)F=�=)

output :Best refinement A∗, quality of the refinement @∗

1 best refinement A∗ = ∅, best quality @∗ = @
2 for 8 = 1 to # do
3 if 1- (� (8)) = 1 and F�(8) > 0 then
4 break

5 initialize sum of gradients g′ = g�(8) and Hessians �′ = ��(8)
6 for 9 = 8 + 1 to # do
7 if 1- (� (9)) = 1 and F�(9) > 0 then
8 update sum g′ = g′ + g�(9) and �′ = �′ + ��(9)
9 threshold � = avg

(
G�(8) , G�(9)

)
10 updated head p̂′, quality @′ = find_head (g′, �′)
11 if @′ < @∗ then
12 update refinement A∗ = {C , ≤, p̂′} and its quality @∗ = @′

13 p̂′, @′ = find_head (g − g′, � − �′)
14 if @′ < @∗ then
15 update refinement A∗ = {C , >, p̂′} and its quality @∗ = @′

16 8 = 9

17 return best refinement A∗, its quality @∗
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3× 3 matrix:

3 4 2

0 0 6

1 0 0

Fortran-contiguous:

3 0 1 4 0 0 2 6 0

CSC format:

values: 3 1 4 2 6

row indices: 0 2 0 0 1

column indices: 0 2 3

Figure 7.4: Representation of a 3 × 3 ma-

trix in the Fortran-contiguous and com-

pressed sparse column (CSC) format. The

former uses a single one-dimensional ar-

ray to store all values in column-wise order,

whereas the latter uses the following three

arrays: (1) The array values stores all non-
zero values in column-wise order. (2) For

each value in values, row_indices stores the
index of the corresponding row, starting at

zero. (3) The 8-th element in column_indices
specifies the index of the first element in

values and row_indices that belongs to the

8-th column.

1 −5.0
−4.0 (I)

2 −3.0
−2.0 (I)

3 −1.0
−0.5 (III)

...
1.0 (III)

4 2.0
3.5 (II)

5 5.0
6.5 (II)

6 8.0

Figure 7.5: Sparse representation of the

vector of numerical features in Figure 7.1,

where values that are equal to zero are

omitted. The thresholds that result from

averaging two adjacent feature values are

shown to the right. The numbers in paren-

theses (I, II, III) specify the phases of the

sparsity-aware search algorithm that are

responsible for the evaluation of individ-

ual thresholds.

Exploiting Feature Sparsity

As shown inTable 3.2, high feature sparsity is a commonproperty ofmulti-

label datasets, especially those used in text classification. When dealing

with training data where most feature values are equal to zero, using a

sparse representation of the featurematrix reduces the amount ofmemory

required for storing its elements and facilitates the implementation of

algorithms that can deal with such data in a computationally efficient way.

In the following, we discuss a variant of the pre-sorted search algorithm

introduced above that allows to search for potential refinements of rules

using both dense and sparse feature matrices. As shown experimentally,

the use of sparse input data, where feature values are provided in the

compressed sparse column (CSC) format (see Figure 7.4 for an example),

may drastically reduce training times.

The BOOMER algorithm allows to specify the preferred

format of the feature matrix via the following parameter:

--feature-format [auto,dense,sparse]

If set to auto (the default value), themost suitable format is

chosen automatically, depending on which representation

is expected to require less memory.

When dealing with a sparse representation of the feature matrix, the

sorted column vector for each attribute, which serves as a basis for

enumerating possible thresholds, only contains non-zero feature values.

An example is given in Figure 7.5. On the one hand, because only non-zero

values must be processed, this reduces the algorithm’s computational

complexity. However, on the other hand, the algorithm cannot identify

the examples with zero feature values.

Enumeration of Thresholds To enumerate all thresholds that result from a sparse vector, including

those that result from examples with zero feature values, a “sparsity-

aware” search algorithm must follow three phases:

I. It starts by processing the sorted feature values in increasing order

as before. Traversal of the feature values must be stopped as soon

as a positive value or a value equal to zero is encountered.

II. Afterward, it processes the sorted feature values in decreasing

order until a negative value or a value equal to zero is encountered.

III. After all elements in a given vector have been processed, it is

possible to deal with the thresholds that eventually result from

examples with zero feature values. To determine whether such

examples exist, the number of elements with non-zero weights

processed so far can be compared to the total number of examples in

a dataset or a sample thereof. If all available examples have already

been processed, a single threshold can be formed by averaging

the largest negative feature value and the smallest positive one

that has been encountered in the previous phases. Otherwise, two

thresholds between zero and each of these values can be made up.

An algorithm that follows the aforementioned procedure is not only

able to deal with dense and sparse vector representations, but also
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g−g′′ ,
�−�′′

 g ,

�



1 −5.0 
≤1.0

2 −3.0

3 −1.0

...

g′′ ,

�′′


4 2.0 >1.05 5.0

6 8.0

Figure 7.6: Evaluation of conditions that

separate examples with positive feature

values from the remaining ones. The con-

dition that uses the ≤ operator requires to

compute the difference (orange) between

the statistics of examples with positive

feature values (red) and the globally ag-

gregated ones (blue).

enumerates all thresholds that are considered by Algorithm 9. However,

if a large fraction of the feature values are equal to zero, it involves far

less computational steps.

Aggregation of Statistics (Phase I)The first phase of the sparsity-aware search algorithm, where examples

with negative feature values are processed, is identical to Algorithm 9.

During this initial phase, the aggregated statistics of examples that

satisfy potential conditions are obtained as illustrated in Figure 7.3. If

a condition uses the ≤ operator, the statistics of the examples it covers

correspond to the previously aggregated statistics (g′ and �′) of already
processed examples. To obtain the statistics of examples covered by a

condition using the > operator, the difference (g− g′ and�−�′) between

the globally aggregated statistics (g , �) and the previously aggregated

ones are computed. The first phase ends as soon as an example with

a positive or zero feature value is encountered. The statistics that have

been aggregated until this point (g′ and �′) include all examples with

negative feature values and must be retained for later use during the

third phase of the algorithm.

Aggregation of Statistics (Phase II)The second phase, where examples with positive feature values are

considered, follows the same principles as the previous phase. However,

the examples are processed in decreasing order of their corresponding

feature values. Consequently, the incrementally aggregated statistics

(denoted as g′′ and �′′ to distinguish them from the variables used in

the first phase) updated at each step correspond to the examples that

cover a condition using the > operator. To obtain the aggregated statistics

of examples that satisfy a condition using the ≤ operator, the difference

(g − g′′ and � − �′′) between the globally aggregated statistics and the

previously aggregated ones must be computed. The end of the second

phase is reached as soon as an example with a negative or zero feature

value is encountered. The statistics aggregated during this phase (g′′ and
�′′) include the statistics of all examples with positive feature values.

They are kept in memory for use during the third and final phase.

Aggregation of Statistics (Phase III)After the second phase has finished, the algorithm is able to decide

whether any examples with zero feature values, which are neither stored

by a sparse representation of the feature values nor can explicitly be

accessed by the rule induction algorithm, are available. This is the case if

the sumof theweights of all examples processed until this point is smaller

than the total sum of weights of all examples in a dataset or a sample

thereof. In any case, it is necessary to evaluate potential conditions that

separate the examples with positive feature values from the remaining

ones (possibly including examples with zero feature values). As shown

in Figure 7.6, this requires considering two conditions with the operator

≤ and >, respectively. The statistics of examples that satisfy the latter

correspond to the statistics aggregated during the algorithm’s second

phase (g′′ and �′′). To obtain the statistics of examples that are covered

by the former, the difference (g − g′′ and � − �′′) between the statistics

aggregated during the second phase and the globally aggregated ones

must be computed. In addition, if any examples with zero feature values

are available, additional conditions using the operators ≤ and > that

separate the examples with negative feature values from the remaining

ones must be considered. The statistics of examples that are covered

by the former correspond to the statistics that have been aggregated

during the first phase of the algorithm (g′ and �′′). In contrast, the



112 7 Efficient Induction of Rules

g′ ,

�′


g ,

�



1 −5.0 ≤−0.52 −3.0

3 −1.0

g−g′ ,
�−�′
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
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5 5.0

6 8.0

Figure 7.7: Evaluation of conditions that

separate examples with negative feature

values from the remaining ones. The dif-

ference (orange) between the statistics of

examples with negative feature values

(green) and the globally aggregated ones

(blue) is required in case of the ≤ operator.

statistics of examples that satisfy the latter must again be computed by

taking the globally aggregated statistics into account. They calculate as

the difference (g − g′ and � − �′) between the statistics corresponding

to examples with negative feature values, which have been processed

during the first phase of the algorithm, and the globally aggregated ones

that have been computed beforehand. An example of how the aggregated

statistics for the evaluation of these conditions are obtained is given in

Figure 7.7. If no examples with zero feature values are available, the

evaluation of additional conditions, as depicted in Figure 7.7, can be

omitted.

Keeping Track of Covered Examples Once the best condition among all available candidates has been found

and has been added to a rule, it is necessary to keep track of the examples

that are covered by the modified rule. This is crucial because additional

conditions thatmay be addedduring later refinement iterationsmust only

be created from the feature values of examples that satisfy the existing

conditions. When dealing with a dense representation of feature values,

as shown in Figure 7.1, the feature values of all examples can directly be

accessed. Keeping track of the covered examples is straightforward in

this case. However, given a sparse representation, as shown in Figure 7.5,

it becomes a non-trivial task since the algorithm does not know which

examples come with zero feature values. To overcome this problem, the

BOOMER algorithm employs a data structure suited to keep track of the

covered examples in both cases, regardless of the feature representation

used. It maintains a vector that stores a value for each example in a

dataset, as well as an indicator value. If the value that corresponds to a

certain example is equal to the indicator value, it is considered to be

covered. This enables to answer queries to the indicator function 1- (=),
as defined in (7.2), in constant time by comparing the value of the =-th

example to the indicator value. Initially, when a new rule does not contain

any conditions yet, the indicator value and the values in the vector are

all set to zero, i.e., all examples are considered to be covered by the rule.

An example of such a data structure for nine examples that correspond

to the feature values in Figure 7.5 is shown in Figure 7.8. In order to

update the data structure after a new condition has been found, the

range of examples it covers must be taken into account. If only examples

with negative (or positive) feature values satisfy a condition, i.e., if the

condition’s threshold is less than (greater than or equal to) zero and it uses

Figure 7.8: Visualization of the data struc-

ture that is used to keep track of the exam-

ples that are covered by a rule. For each

example, it stores a value that indicates

whether the example is covered or not.

An example is considered to be covered

if its value is equal to an indicator_value.
Initially, all examples are marked as cov-

ered (top).When a new condition is added

to the rule, the data structure is updated

by following one of the following strate-

gies: (1) If the examples that satisfy the

condition do not have zero feature values,

the corresponding elements and the indi-
cator_value are both set to the total number

of conditions. (2) Otherwise, the elements

that correspond to uncovered examples

are updated, whereas the indicator_value
remains unchanged.

0 0 0 0 0 0 0 0 0 indicator value = 0

1 2 3 4 5 6 7 8 9

(1) Condition ≤ −2.0

0 0 0 0 0 0 01 1 indicator value = 1

1 2 3 4 5 6 7 8 9

(2) Condition > −2.0

1 1 0 0 0 0 0 0 0 indicator value = 0

1 2 3 4 5 6 7 8 9

Covered examples Examples with zero feature value
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1 −2
≠02 −1

3 −1

...

]
=0

4 1
≠05 2

6 2

Figure 7.9: Coverage of nominal condi-

tions that can be created from a single

threshold using the = or ≠ operator.

the ≤ (>) operator, the values that are maintained by the data structure

to specify whether the respective examples are covered can be updated

directly. In such a case, the values of covered examples and the indicator

value are set to the number of conditions that are currently contained in

the rule’s body, marking them as covered. If a condition is satisfied by

examples with zero feature values, for which the corresponding indices

are unknown, the values that correspond to the uncovered examples are

updated instead by setting them to the current number of conditions.

However, the indicator value remains unchanged, which renders the

examples that correspond to the updated values uncovered, whereas

examples with unmodified values remain covered if they have already

satisfied the previous conditions.

Nominal Attributes

One-Hot-EncodingAn advantage of rule learning algorithms is their ability to deal with

nominal attributes by using operators like = or ≠ for the conditions in

a rule’s body. This is in contrast to many statistical machine learning

methods, such as logistic regression, support vector machines, or neural

networks, that cannot deal with nominal attributes directly. Instead, they

require to apply preprocessing techniques to the data before training.

Most commonly, one-hot-encoding is used to convert nominal attributes

to numerical ones. It replaces a single nominal attribute with a fixed

number of discrete values with several binary attributes that specify for

each of the original values whether it is set to an example or not. Such a

conversion may drastically increase the number of attributes in a dataset

and therefore can negatively affect the complexity of a learning task.

The BOOMER algorithmprovides the following parameter

to specify whether one-hot-encoding should be used to

deal with nominal attributes:

--one-hot-encoding [true,false]

By default, the algorithm relies on its native support for

this particular type of attributes.

Enumeration of ThresholdsTo handle nominal attributes, the BOOMER algorithm relies on the

same principles used by its pre-sorted search algorithm to deal with

numerical attributes, including the ability to use sparse representations

of feature values. In the case of a nominal attribute, the feature values

associated with the individual training examples are not arbitrary real

numbers but are limited to a predefined set of discrete values that do

not necessarily correspond to a continuous range and possibly include

negative values. As a result, the thresholds that potential conditions may

use are not formed by averaging adjacent feature values but correspond

to the discrete values associated with the available training examples.

Two conditions must be evaluated for each of the values encountered by

the algorithm in a sorted vector of feature values. As shown in Figure 7.9,

they use the operator = and ≠, respectively. Whereas a condition that

uses the former operator covers neighboring examples with the same

value, the examples that satisfy a condition with the latter operator

do not correspond to a continuous range in a sorted vector of feature
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Figure 7.10: Evaluation of conditions that

separate examples with a particular fea-

ture value from the remaining ones. The

difference (orange) between the statistics

of the covered examples (green) and the

globally aggregated ones (blue) is used to

evaluate conditions with the ≠ operator.
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Figure 7.11: Evaluation of nominal con-

ditions that separate examples with zero

feature values from the remaining ones.

The aggregated statistics of the former are

computed as the difference (orange) be-

tween the globally aggregated statistics

(blue) and the ones that correspond to all

previously processed examples (red).

values. This requires adjustments to the algorithm when it comes to

aggregating statistics that correspond to examples that are covered by

nominal conditions.

Aggregation of Statistics (Phase I and II) The algorithm follows the same order for processing the sorted feature

values as outlined in the previous section “Exploiting Feature Sparsity”

to facilitate the use of sparse feature representations when dealing

with nominal attributes. At first, it processes the examples associated

with negative feature values. Afterward, it evaluates the conditions

that result from positive feature values, and finally, in a third phase,

potential conditions with zero thresholds are considered. During the

first and second phase, the statistics of examples with the same feature

value are aggregated individually. In accordance with the notation in

Figure 7.10, we denote the aggregated statistics for different feature values

as g′, g′′, . . . and �′, �′′, . . . . This is in contrast to the aggregation of

statistics in the case of numerical attributes, where the statistics of all

examples with negative and positive feature values are aggregated. As

illustrated in Figure 7.10, the globally aggregated statistics (g and �) that

are provided to the algorithm beforehand are used to obtain the statistics

corresponding to examples that satisfy conditions using the ≠ operator.

This requires to compute the difference between the globally aggregated

statistics and the aggregated statistics of all examples associated with a

particular discrete value.

Aggregation of Statistics (Phase III) During the third phase of the algorithm, special treatment is required to

evaluate conditionswith zero thresholds if any exampleswith zero feature

values are available. To determine whether such examples exist, the sum

of the weights of all examples that have previously been processed in

the first and second phases of the algorithm is compared to the weights

of all examples in a dataset or a sample thereof, as described earlier. To

obtain the aggregated statistics that correspond to the examples with

zero feature values, the statistics g′, g′′, . . . and �′, �′′, . . . that have
been computed during the previous phases must be aggregated. We

denote the resulting accumulated statistics as g∗ = g′ + g′′ + . . . and
�∗ = �′+�′′+ . . . , respectively. As shown in Figure 7.11, they correspond

to the examples with non-zero feature values covered by a condition that

uses the ≠ operator. To evaluate a condition that uses the = operator

and covers all examples with zero feature values, inaccessible by the

algorithm when using a sparse feature representation, the difference

between the globally aggregated statistics (g and�) and the accumulated

ones are computed.

Missing Feature Values

Possible Strategies Although none of the benchmark datasets introduced in Section 3.2

comes with missing feature values, the ability to deal with training data,

where the feature values of individual examples are partly unknown, is

a common requirement of many real-world classification problems. We

therefore elaborate on how the BOOMER algorithm deals with unknown

feature values in the following. Different strategies for handling missing

values can be found in the rule learning literature (see, e.g., Wohlrab

and Fürnkranz, 2011, for an overview). BOOMER ignores examples with

missing values when evaluating the conditions that can be added to a

rule’s body with respect to a certain attribute. Consequently, rules that
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4: For all experiments that are discussed

in this chapter we used version 0.6.2 of

the BOOMER algorithm, which is avail-

able at https://github.com/mrapp-ke/

Boomer/releases/tag/0.6.2.

contain conditions on an attribute �; in their body can never be satisfied

by examples for which the feature value G; is missing.
3

3: Other variants include the opposite

strategy, i.e., conditions on missing fea-

ture values are always satisfied, as well

as the possibility to learn conditions that

explicitly test for unknown values. Alter-

natively, some learning algorithms come

with strategies to impute the values that

are unknown for an example or ignore

examples with missing values entirely

(Fürnkranz, Gamberger, and Lavrač, 2012).

For example, this

strategy is also used by RIPPER (Cohen, 1995).

Adjustments to the AlgorithmOnly minor adjustments are necessary to apply the pre-sorted search

algorithm, which is used by BOOMER for the evaluation of conditions,

to an attribute for which some examples may lack a value. First of all,

the examples that do not assign a value to the respective attribute are

excluded from the sorted feature vector in (7.1) and therefore are ignored

when enumerating the possible thresholds of conditions and aggregating

the statistics of examples they cover. Instead, the algorithm keeps track

of the examples that do not assign a value to a particular attribute

in a separate data structure. When searching for possible conditions

concerned with the respective attribute, the statistics of the examples

that are known to lack a value for the attribute must be subtracted from

the globally aggregated statistics (previously denoted as g and �). This

ensures that the statistics that are aggregated while processing a vector

of sorted feature values, as well as the statistics that are computed as

the difference between previously aggregated statistics and the globally

aggregated ones, do not include examples with missing values, the

considered refinements of a rule cannot cover.

Experimental Evaluation

Experimental SetupTo evaluate the efficiency of the pre-sorted search algorithm employed

by BOOMER and, in particular, the advantages that result from using its

sparsity-aware variant, we applied the algorithm to several benchmark

datasets introduced in Section 3.2. For a complete picture, we included

datasets with varying degrees of feature sparsity in the experimental

study and considered both dense and sparse feature representations for

the experiments. Unlike in Section 6.6, we did not use any parameter

tuning for the experiments but relied on default parameters that have

been found to work well on average in preliminary experiments.
4
To

deal with nominal attributes that are included in some of the datasets,

we relied on the BOOMER algorithm’s native support for this kind

Table 7.2: Average training times (in seconds; rounded to one decimal place) per cross validation fold on different datasets (the feature

sparsity is given in parentheses). The small numbers indicate the speedup that results from using sparse feature representations, compared

to dense feature representations. By default, BOOMER prefers a sparse representation for datasets that are marked with an asterisk.

Dataset Dense Sparse

20NG
∗ (96.81) 9.7 1.1 8.82

Bibtex
∗ (96.26) 12.1 1.9 6.37

Birds (38.64) 0.6 0.6 1.00

Bookmarks
∗ (94.16) 308.4 44.0 7.01

Delicious
∗ (96.34) 159.6 20.0 7.98

Emotions (0.33) 0.5 0.5 1.00

Enron
∗ (91.60) 1.0 0.2 5.00

EukaryoteGO
∗ (99.86) 5.1 0.4 12.75

EukaryotePseAAC (43.37) 6.5 4.6 1.41

EUR-Lex-SM
∗ (95.26) 70.9 9.3 7.62

Image (0.22) 2.3 2.3 1.00

IMDB
∗ (98.06) 126.0 12.2 10.33

Langlog
∗ (81.38) 0.9 0.3 3.00

Dataset Dense Sparse

Mediamill (0.00) 235.2 235.5 1.00

Medical
∗ (99.32) 0.9 0.2 4.50

Ohsumed
∗ (96.03) 7.4 0.9 8.22

Reuters-K500
∗ (98.41) 4.5 1.0 4.50

Scene (1.15) 3.2 3.0 1.07

Slashdot
∗ (99.46) 2.6 0.2 13.00

TMC2007
∗ (99.79) 33.9 1.3 26.08

Yahoo-Computers
∗ (99.62) 19.6 0.9 21.78

Yahoo-Reference
∗ (99.59) 9.9 0.6 16.50

Yahoo-Science
∗ (99.53) 8.8 0.5 17.60

Yahoo-Social
∗ (99.71) 17.3 0.9 19.22

Yeast (0.00) 2.7 2.6 1.04

https://github.com/mrapp-ke/Boomer/releases/tag/0.6.2
https://github.com/mrapp-ke/Boomer/releases/tag/0.6.2
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Figure 7.12: The average speedup in train-

ing time per cross validation fold that

results from a search algorithm that is

capable of exploiting sparsity in the fea-

ture space, compared to an algorithm that

uses dense data structures. The consid-

ereddatasets are groupedby small (green),

medium (orange) and high (blue) feature

sparsity.
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of attribute rather than applying one-hot-encoding to the data. For

each dataset, we trained models that consist of ) = 1000 rules. The

!2 regularization weight was set to � = 1.0, whereas the shrinkage

parameter was set to � = 0.3. The algorithm was configured to obtain a

subset of blog
2
(! − 1) + 1c random attributes whenever a rule should be

refined. To learn individual rules, all available training examples were

used rather than employing a sampling method as in Section 6.6. We

further restricted ourselves to the minimization of the label-wise logistic

loss function in (6.15), which serves as a surrogate for the Hamming

loss, using rules with single-label heads. The BOOMER algorithm’s

ability to utilize multiple computational threads was not used in the

experiments. A discussion of different possibilities to speed up training

via multi-threading, accompanied by performance benchmarks, can be

found in Section 7.3 below.

Experimental Results Table 7.2 provides an overview of the BOOMER algorithm’s training

times, averaged across the folds of a 10-fold cross validation,when applied

to different datasets and using dense or sparse representations of feature

values. In addition, it also shows the speedups in training time that result

from the exploitation of sparsity in the feature spacewhen using the latter

type of feature representation. As expected, when applied to datasets

with low feature sparsity (“Emotions”, “Image”, “Mediamill”, “Scene”

and “Yeast”), the training times remainmostly unaffected by using sparse

data structures. A minor speedup can be observed on datasets with a

feature sparsity between 30 and 50% (“Birds”, “EukaryotePseAAC”).

On the remaining datasets, where at least 80% of the feature values

are equal to zero, the sparsity-aware rule induction algorithm clearly

outperforms the baseline and significantly reduces training time. This

is also illustrated by the graphical representation of the experimental

results in Figure 7.12, where the speed up that results from using a sparse

feature representation is related to the feature sparsity of the considered

datasets.
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7.2 Histogram-based Search

Limitations of the Sparsity-aware AlgorithmThe exploitation of feature sparsity, as discussed in the previous section,

helps reduce training times on many benchmark datasets used in this

work, as they typically come with high feature sparsity. However, it does

not provide significant advantages on datasets with low feature sparsity.

The BOOMER algorithm provides an alternative to the pre-sorted search

algorithm introduced in Section 7.1 to efficiently deal with the latter type

of datasets. It is based on assigning examples with similar feature values

for a particular attribute to a predefined number of bins and using an

aggregated representation of their corresponding label space statistics,

referred to as histograms. Depending on how many bins are used, this

approach drastically reduces the number of candidate rules the rule

induction algorithm must consider. Histogram-based approaches have

previosuly been used to dealwith complex single-label classification tasks

in modern implementations of gradient-boosted decision trees, such as

XGBoost (T. Chen and Guestrin, 2016) or LightGBM (Ke et al., 2017). In

the following, we discuss a generalization of the underlying concept,

which has evolved from prior research on decision tree learning (see, e.g.,

Alsabti, Ranka, and V. Singh, 1998; Jin and G. Agrawal, 2003; Kamath,

Cantú-Paz, and Littau, 2002; P. Li, Qiang Wu, and Burges, 2007), to rule

learning methods and investigate its impact on predictive performance

and training efficiency in an empirical study.

The BOOMER algorithm allows to use histogram-based

rule induction by specifying the following parameter:

--feature-binning [equal-width,equal-frequency]

Information on how to configure the number of bins can

be found in the documentation.

Assigning Examples to Bins

Feature Binning MethodsThe histogram-based rule induction algorithm requires grouping the

available training examples into a predefined number of bins. Different

approaches can principally be used to determine such amapping (see, e.g.,

Kotsiantis and Kanellopoulos, 2006, for a survey on existing techniques).

We restrict ourselves to unsupervised binning methods, where the

assignment is solely based on the feature values of the training examples.

This is in contrast to supervised methods, such as the weighted quantile
sketch approach that originates from the XGBoost classification system (T.

Chen and Guestrin, 2016), where information about the ground truth

labels of individual examples, or even their label space statistics, are

taken into account. Compared to approaches that utilize the label space

statistics to map from examples to bins, unsupervised binning methods

can usually be implemented more efficiently. This is because a mapping

solely based on feature values remains unchanged for the entire training

process, whereas the statistics for individual examples are subject to

change and require adjusting themappingwhenever amodel is refined.

Equal-width Feature BinningThe first binning method that is supported by the BOOMER algorithm is

referred to as equal-width binning. This method, which is commonly used
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to discretize numerical feature values, is based on dividing the range of

values for a particular attribute into equally-sized intervals, such that

the absolute difference between the smallest and largest value in each

bin are the same. Given a predefined number of bins", the maximum

difference between the values that are assigned to an interval calculates

as

$ =
max−min

"
, (7.3)

where min and max denote the largest and smallest value in a bin,

respectively. Based on the value $, a mapping � : ℝ → ℕ+ from

individual feature values G= to the index of the corresponding bin can be

obtained as

�eq.-width (G=) = min

(
b G= −min

$
c + 1, "

)
. (7.4)

Equal-frequency Feature Binning Another well-known method to discretize numerical features imple-

mented by the BOOMER algorithm is equal-frequency binning. Unlike
equal-width binning, which is supposed to result in bins with values

close to each other, this particular discretization method aims to obtain

bins that contain approximately the same number of values. The available

examples are first sorted in ascending order by their respective feature

values to obtain the bins for a particular attribute. This results in a sorted

vector of feature values

(
G�(1) , . . . , G�(#)

)
, where the permutation func-

tion � (8) specifies the index of the example that corresponds to the 8-th

element in the sorted vector, as previously defined in (7.1). Afterward,

the sorted values are divided into a predefined number of intervals, such

that each bin contains the same number of values. Given an individual

feature value G= , the index of the corresponding bin calculates as

�eq.-freq. (G=) = b� (=) − 1c + 1. (7.5)

In practice, examples with identical feature values should be prevented

from being assigned to different bins. However, for reasons of brevity,

this is omitted from the above formula.

Dealing with Nominal Attributes To handle datasets that do not only include numerical feature values,

but also come with nominal attributes, we use an appropriate binning to

deal with the latter. It creates a bin for each discrete value encountered

in the training data and assigns examples with identical values to the

same bin.

Enumeration of Thresholds

Numerical Thresholds We denote the set of example indices that have been assigned to the <-th

bin via a mapping function � as

B< = {= ∈ {1, . . . , #} | � (G=) = <} . (7.6)

Given " bins previously created for a particular attribute, one can

obtain" − 1 thresholds that the conditions of potential candidate rules

may use. Depending on whether the ≤ or > operator is used by a

condition, the <-th threshold separates the examples that correspond to

the binsB1 , . . . ,B< from the examples that have been assigned to the bins
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B<+1 , . . . ,B" . The individual thresholds �1 , . . . , �"−1 calculate as the

average of the largest and smallest feature value in two neighboring bins

B< and B<+1. Depending on the characteristics of the binning method at

hand, some bins may remain empty. For the enumeration of potential

thresholds, bins that are not associated with any examples should be

ignored.

Nominal ThresholdsWhen dealing with bins that have been created from nominal feature

values, all examples in a particular bin have the same feature value. In

this case, a threshold can be obtained from each available bin, resulting

in " thresholds overall. Each of these thresholds corresponds to the

discrete feature values assigned to one of the available bins.

Creation of Histograms

Caching of HistogramsWhen using unsupervised binning methods, the mapping of examples

to bins and the thresholds resulting from individual bins must only be

determined once during training. They are obtained when a particular

attribute is considered by the rule induction algorithm for the first time

and are kept in memory for repeated access. In contrast, the histograms

that serve as a basis for evaluating candidate rules must be created from

scratch whenever a rule should be refined. As shown in Algorithm 10,

they result from aggregating the label space statistics of examples that

have been assigned to the same bin.

Keeping Track of Covered ExamplesExamples that do not satisfy the conditions that have previosuly been

added to the body of a rule must be ignored. As defined in (7.2), we

use an indicator function 1- to keep track of the examples that are

covered by a rule. In addition, the extent to which the statistics of

individual training examples contribute to a histogram depends on their

respective weights. This enables the histogram-based search algorithm

to use different samples of the available training examples to induce

individual rules.

Algorithm 10: Creation of histograms from label space statistics

input :Bins (B<)"< , statistics ( = {(g= , �=)}#= , indicator function
1- ,

weights of training examples w
output :Histogram (′

1 initialize empty histogram (′ = {(g′< , �′<)}"< , where all elements of

g′< and �′< are set to zero

2 for = = 1 to # do
3 if 1- (=) = 1 and F= > 0 then
4 obtain bin index < = � (G=)
5 update g′< = g′< + F= g= and �′< = �

′
< + F=�=

6 return histogram (′

Evaluation of Refinements

Creating Conditions from BinsWhen using the histogram-based search algorithm, evaluating candidate

rules in terms of a given loss function follows the same principles as its
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pre-sorted counterpart in Algorithm 9. However, instead of taking the

feature values of individual training examples into account for making

up the conditions that can be added to a rule’s body, the conditions to be

considered by the histogram-based algorithm result from the predeter-

mined thresholds that correspond to bins for a particular attribute. Even

when an existing rule should be refined, i.e., when an existing rule covers

only a subset of the training examples, the thresholds remain unchanged

to increase the algorithm’s efficiency.

Aggregation of Statistics Similar to the pre-sorted rule induction algorithm, the histogram-based

approach is based on incrementally aggregating the statistics of train-

ing examples that are covered by the considered refinements. However,

instead of aggregating statistics at the level of individual training ex-

amples, it relies on the statistics that correspond to the individual bins

of a histogram. For the efficient evaluation of conditions that use the

> operator in case of numerical attributes, or the ≠ operator in case of

nominal attributes, the algorithm is provided with globally aggregated

statistics that are determined beforehand and computes the difference

between previously processed statistics that correspond to individual

bins and the globally aggregated ones as illustrated in Figure 7.3.

Missing Feature Values The statistics of examples with missing feature values are excluded from

the globally aggregated statistics, as previously described in the context

of the pre-sorted algorithm. In addition, the respective examples are

ignoredwhen determining themapping to individual bins. Consequently,

the histogram-based rule induction method can handle missing feature

values.

Experimental Evaluation

Experimental Setup To compare the histogram-based rule induction algorithm to its pre-

sorted counterpart, we investigated the predictive performance and

training times of both approaches in an experimental study. We restricted

our experiments to large datasets with many examples and low feature

sparsity, as the histogram-based algorithmaims to reduce the timeneeded

for training in such use cases. Among the benchmark datasets that are

used in this work (cf. Section 3.2), only two datasets, namely “Mediamill”

and “Nus-Wide cVLADplus”, meet these criteria. For our experiments,

we configured the BOOMER algorithm in the same way as described in

Section 7.1, i.e., we learned models of single-label rules that minimize the

label-wise logistic loss function in (6.15) and relied on the algorithm’s

default parameters otherwise. However, the algorithm’s ability to use

multi-threading was again not used. It is elaborated on in Section 7.3

below. The main goal of our experiments was to investigate how the

training time and predictive performance in terms of the Hamming loss,

the subset 0/1 loss, and the example-wise F1-measure are affected by

varying numbers of bins. Hence, we set the number of bins to be used

by the histogram-based approach to 64, 32, 16, 8, or 4% of the distinct

feature values available for a particular attribute. In addition, we also

included a rather extreme setting, where the number of bins was limited

to 8 bins. To assign the available training examples to the available bins,

we further tested both binning methods supported by BOOMER, i.e., the

equal-width and equal-frequency method.
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Table 7.3: Predictive performance of the pre-sorted and histogram-based rule induction algorithm in terms of Hamming loss, Subset 0/1

loss and example-wise F1 measure, as well as the average training times (in seconds) per cross validation fold. The number of bins to be used

by the histogram-based approach was set to 64, 32, 16, 8 or 4% of the distinct feature values that are available for an attribute, or to 8 bins.

Dataset Pre-sorted
algorithm

Equal-frequency binning

64% 32% 16% 8% 4% 8 bins

Hamming loss
Mediamill 3.16 3.22 3.23 3.22 3.23 3.22 3.24

Nus-Wide cVLADplus 2.19 2.23 2.23 2.23 2.23 2.23 2.24

Subset 0/1 loss
Mediamill 93.01 93.89 93.93 93.84 93.89 93.89 93.99

Nus-Wide cVLADplus 77.03 77.52 77.53 77.54 77.52 77.55 77.55

Example-wise F1 measure
Mediamill 50.61 49.67 49.67 49.75 49.69 49.65 49.27

Nus-Wide cVLADplus 27.54 25.52 25.53 25.57 25.54 25.57 25.10

Training time
Mediamill 238.6 167.0 109.8 71.9 52.8 46.1 39.6
Nus-Wide cVLADplus 4623.7 760.3 641.1 514.4 402.3 281.9 208.3

Dataset Pre-sorted
algorithm

Equal-width binning

64% 32% 16% 8% 4% 8 bins

Hamming loss
Mediamill 3.16 3.22 3.22 3.22 3.22 3.22 3.27

Nus-Wide cVLADplus 2.19 2.23 2.23 2.23 2.23 2.23 2.24

Subset 0/1 loss
Mediamill 93.01 93.91 93.82 93.78 93.81 93.81 94.10

Nus-Wide cVLADplus 77.03 77.53 77.54 77.53 77.52 77.56 77.58

Example-wise F1 measure
Mediamill 50.61 49.64 49.70 49.75 49.68 49.74 48.79

Nus-Wide cVLADplus 27.54 25.51 25.52 25.54 25.52 25.59 25.09

Training time
Mediamill 238.6 106.9 75.9 58.6 50.1 45.8 40.0
Nus-Wide cVLADplus 4623.7 634.3 513.6 391.5 284.6 241.5 206.7

Experimental ResultsTable 7.3 shows the predictive performances and training times that

result from applying the pre-sorted and histogram-based algorithm to

the considered datasets. It can be seen that the latter can reduce the

time needed for training, regardless of the dataset and the configura-

tion. As expected, the speedup in training time that results from the

histogram-based approach increases when fewer bins are used. The

equal-width binning method tends to be slightly more efficient than the

equal-frequency method. This is most probably because the former does

not require sorting the training examples based on their feature values

and therefore comeswith linear instead of logarithmic complexity. On the

dataset “Mediamill“, equal-width binning reduces the training time up to

a factor of ≈ 4.8, whereas the training algorithm finishes up to ≈ 22 times

faster on the dataset “Nus-Wise-cVLADplus”. Regardless of the number

of bins, we observe a minor deterioration in predictive performance

for all reported evaluation measures compared to the pre-sorted rule

induction algorithm. Even though the performance of the histogram-

based approach appears to be very resilient against a limitation of the

available bins, the variant that is limited to 8 bins always comes with

the most significant drop in predictive performance. On the considered

datasets, the evaluation scores that are achieved by the equal-width and
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equal-frequency binning methods are close to each other and do not

differ to a degree that is statistically significant.

7.3 Multi-Threading

Possibilties for Parallelization To make use of the multi-core architecture of today’s CPUs, modern

implementations of classification algorithms, such as XGBoost (T. Chen

and Guestrin, 2016) or LightGBM (Ke et al., 2017), which put great em-

phasis on scalability, often allow to speed up training by executing certain

algorithmic aspects in parallel rather than sequentially. Unlike ensemble

methods, where individual members are independent of each other, e.g.,

in random forests (Breiman, 2001), boosting-based rule learning methods

or approaches based on the separate-and-conquer paradigm do not allow

to construct individual rules in parallel due to the sequential nature

of their training procedure, where each rule is built with respect to its

predecessors. Instead, in a multi-label setting, the following possibilities

exist to parallelize computational steps that are involved in the induction

of a single rule:

I Multi-threaded Evaluation of Refinement Candidates. The eval-
uation of conditions that can possibly be added to a rule’s body

requires enumerating the feature values of the training examples

for each available attribute, aggregating the label space statistics of

examples they cover, and computing the predictions and quality of

the resulting candidates. Multi-threading can be used to evaluate

refinements for different attributes in parallel.

I Parallel Computation of Predictions and Quality Scores. For each
candidate considered during the construction of a single rule, the

predictions for different labels and an estimate of their quality

must be obtained. These operations are particularly costly when

interactions between labels should be considered. In such a case,

the parallelization of these operations across several labels may

help reduce training times.

I Distributed Update of Label Space Statistics.After a rule has been

learned, the label space statistics of all examples it covers must be

updated. The complexity of this operation depends on how many

examples are covered and is affected by the number of labels for

which a rule predicts. Moreover, the update becomes more costly

if statistics are not only provided for individual labels but also for

pairs of labels or entire labelsets. Depending on the methodology

used by a particular rule learning approach, training times may be

reduced by updating the statistics for different examples in parallel.

Possible Limitations The benefits of using the different possibilities for parallelization heavily

depend on the characteristics of a particular dataset and the configuration

of a learning algorithm. In some cases, the overhead of managing and

synchronizing multiple threads outweighs the speedup that the parallel

execution of computations may achieve. Consequently, the use of multi-

threading may even have a negative effect on the time that is needed

for training. Due to the large variety of possible configurations of the

BOOMER algorithm, we restrict ourselves to two common use cases: First,

we investigate a setting where single-label rules are used to minimize a
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label-wise decomposable loss function. Second, we consider optimizing a

non-decomposable loss function using completemulti-label rules. Similar

to Section 7.1, we use default settings for the remaining parameters,

including the ability to use sparse feature representations if appropriate

(cf. Table 7.2).

The Decomposable Case

Experimental SetupIn the first experiment, we investigated how the time needed by the

BOOMER algorithm for learning single-label rules is affected by the

use of multi-threading. According to preliminary experiments, training

efficiency is unlikely to benefit from updating the label space statistics in

parallel in this particular setting. This is because such rules only affect

the statistics that correspond to a single label. Due to the small costs of

such an update operation, there is only a small potential for runtime

improvements. Similarly, we have observed that the benefits of using

multiple threads for computing predictions and quality scores tend to be

small in the decomposable case. During the first iteration of top-down hill

climbing, where candidate rules that contain a single condition in their

body are considered, the algorithm must yet decide on a label to predict

for. During this initial phase of rule construction, the aforementioned

operations come with linear complexity. When evaluating the possible

refinements of an existing rule, after the algorithm has decided on a

particular label, they even reduce to constant-time operations that cannot

be parallelized. Based on these findings, we restrict our study to the

multi-threaded evaluation of refinement candidates across different

attributes.

The following parameter allows to specify whether the

evaluation of candidate rules should be parallelized across

different attributes:

--parallel-rule-refinement [auto,true,false]

If set to auto (the default value), multi-threading is only

used if expected to result in a runtime improvement.

Experimental ResultsTable 7.4 reports the training times that result from using a single- or

multi-threaded implementation to evaluate candidate rules. By default,

BOOMER randomly selects a subset of the available attributes when a

rule should be refined. This ensures that the resulting model consists of

diverse rules that achieve high predictive accuracy in combination and

results in a significant reduction of training time. With such a method

for complexity reduction in place, the degree to which multi-threading

can be expected to result in runtime improvements mostly depends

on the feature sparsity of the training data. Whereas training can be

three times faster on datasets with low feature sparsity, multi-threading

tends to negatively affect training times if feature sparsity is very high.

To investigate how runtimes are affected by the number of attributes

that the rule induction algorithm must consider, we also conducted

experiments with feature sampling disabled. In such a setting, the multi-

threaded implementation outperforms the single-threaded baseline on

all considered datasets. As shown in Figure 7.13, the parallelization
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5: We usedOpenBLAS for all experiments

in this work (see https://www.openblas.

net).

6: When using OpenBLAS, this can be

achieved by setting the enviroment vari-

able OPENBLAS_NUM_THREADS.

generally has greater potential for significant speedups (up to a factor of

7) when the training algorithm must process more attributes.

The Non-Decomposable Case

Experimental Setup A key functionality of BOOMER is its capability to minimize non-

decomposable loss functions. In addition to previous section’s experi-

ments, we investigate the use of multi-threading to speed up training in

this particular scenario. As the training objective, we use the example-

wise logistic loss function in (6.23). According to the experimental results

in Section 6.6, the use of multi-label rules is crucial for the successful

minimization of this loss function that acts as a surrogate for the subset

0/1 loss. We learn complete rules that provide predictions for all available

labels in the following study to cater to these results. As discussed in

Section 6.3 and shown in (6.13), calculating loss-minimizing predictions

for different candidate rules requires solving a linear system in the

non-decomposable case. Moreover, a matrix-vector multiplication must

be performed to obtain estimate a candidate’s quality by substituting

its predictions into the objective function in (6.11). The BOOMER algo-

rithm relies on the software libraries LAPACK (Anderson et al., 1999) and

BLAS (Blackford et al., 2002) to implement these linear algebra operations.

Depending on the implementations of these libraries, multiple computa-

tional threadsmay be utilized to solve the aforementioned operations.
5
In

addition, multi-threading can optionally be used to update the statistics

that correspond to different examples in parallel whenever a new rule is

added to a model. When dealing with a non-decomposable loss function,

the number of Hessians that must be maintained for each example grows

exponentially with the number of available labels. Compared to the

decomposable case, this makes the update operation more complex and

offers potential for runtime improvements via parallelization. Finally,

we also consider using multi-threading to parallelize the search for

refinements across different attributes. As the evaluation of candidate

rules involves the previously mentioned linear algebra operations, this

particular parallelization strategy cannot be used in combination with the

multi-threading capabilities offered by BLAS and LAPACK, which must

be disabled to avoid problems due to nested multi-threading.
6
However,

if the number of labels for which a rule may predict is reasonably small

and depending on the feature sparsity of a particular dataset, a parallel

search for refinements may exhibit greater speedups than achievable by

using multi-threaded linear algebra operations. As recent versions of

BOOMER come with an approximation technique, which imposes an

upper bound on the number of distinct predictions that may be provided

by a rule, the former strategy for parallelization appears to be promising

in many use cases. In our experiments, we limited the number of distinct

predictions to 4% of the available labels. A detailed discussion of the

mentioned approximation method is provided in Chapter 8.

Experimental Results The training times that result from the use of different multi-threading

strategies in thenon-decomposable case are shown inTable 7.5. Compared

to a configuration where multiple computational threads are only used

for linear algebra operations, the additional use of parallelization to

update the statistics of different examples reduces training times on 15

out of the 21 considered datasets. Whether a speedup (up to a factor of

https://www.openblas.net
https://www.openblas.net
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Table 7.4: Average training times (in seconds; rounded to one decimal place) per cross validation fold on different datasets (the feature

sparsity is given in parantheses) when minimizing a decomposable loss function. The small numbers indicate the speedup that results

from the use of multi-threading to evaluate the potential refinements of rules with respect to different attributes in parallel, compared to a

single-threaded implementation. By default, the BOOMER algorithm uses multi-threading for experiments that are marked with an asterisk.

Dataset Single Multi

With Feature Sampling
20NG (96.81) 1.1 1.6 0.69

Bibtex (96.26) 1.9 2.5 0.76

Birds
∗ (38.64) 0.6 0.3 2.00

Bookmarks (94.16) 44.0 35.3 1.25

Delicious (96.34) 20.0 19.6 1.02

Emotions
∗ (0.33) 0.5 0.2 2.50

Enron (91.60) 0.2 0.3 0.67

EukaryoteGO (99.86) 0.4 0.6 0.67

EukaryotePseAAC
∗ (43.37) 6.5 2.6 2.50

EUR-Lex-SM (95.26) 9.3 9.4 0.99

Image
∗ (0.22) 2.3 0.8 2.88

IMDB (98.06) 12.2 12.0 1.02

Langlog (81.38) 0.3 0.4 0.75

Medical (99.32) 0.2 0.3 0.67

Ohsumed (96.03) 0.9 1.2 0.75

Reuters-K500 (98.41) 1.0 1.5 0.67

Scene
∗ (1.15) 3.2 1.0 3.20

Slashdot (99.46) 0.2 0.3 0.62

Yahoo-Computers (99.62) 0.9 1.4 0.64

Yahoo-Reference (99.59) 0.6 0.9 0.67

Yahoo-Science (99.53) 0.5 0.8 0.63

Yahoo-Social (99.71) 0.9 1.4 0.64

Yeast
∗ (0.00) 2.7 0.9 3.00

Dataset Single Multi

Without Feature Sampling
20NG

∗
39.0 14.6 2.67

Bibtex
∗

86.1 20.2 4.26

Birds
∗

15.7 2.8 5.61

Bookmarks
∗

3729.1 1571.0 2.37

Delicious
∗

261.4 129.9 2.01

Emotions
∗

4.5 1.0 4.50

Enron
∗

11.7 5.2 2.25

EukaryoteGO
∗

71.3 62.2 1.15

EukaryotePseAAC
∗

258.0 36.6 7.05

EUR-Lex-SM
∗

1677.0 445.0 3.77

Image
∗

60.3 9.7 6.22

IMDB
∗

500.0 121.8 4.11

Langlog
∗

17.7 4.5 3.93

Medical
∗

6.4 5.4 1.19

Ohsumed
∗

40.7 12.2 3.34

Reuters-K500
∗

36.2 8.8 4.11

Scene
∗

83.4 13.7 6.09

Slashdot
∗

21.0 15.7 1.34

Yahoo-Computers
∗

1080.3 392.7 2.75

Yahoo-Reference
∗

759.8 282.7 2.69

Yahoo-Science
∗

733.4 274.0 2.68

Yahoo-Social
∗

1608.5 576.7 2.79

Yeast
∗

32.9 5.3 6.21
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Figure 7.13: The average speedup (or slow-

down) in training time per cross validation

fold that results from the use of multi-

threading to evaluate the potential refine-

ments of rules with respect to different

attributes in parallel, compared to a single-

threaded implementation. Regardless of

whether feature sampling is used (circles)

or not (crosses), the speedup depends

on whether a dataset has low (green),

medium (orange) or high (blue) feature

sparsity.
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Table 7.5:Average training times (in seconds; rounded to one decimal place) per cross validation fold on different datasets (the feature sparsity

and the number of labels are given in parentheses) when minimizing a non-decomposable loss function. Three different configurations

that use multi-threading to parallelize different aspects of the BOOMER algorithm are considered. Multi-threading can be used for linear

algebra operations, to update the statistics of different examples in parallel or to evaluate the potential refinements of rules with respect to

different attributes in parallel. By default, BOOMER only uses multi-threading for linear algebra operators. On datasets with 20 labels or

more (marked with an asterisk) multi-threading is used to update statistics as well.

Dataset Linear Linear Algebra Statistic Update
Algebra & Statistic Update & Refinements

20NG
∗ (96.81, 20) 6.3 5.6 1.13 4.1 1.54

Bibtex
∗ (96.26, 159) 171.7 99.1 1.73 86.4 1.99

Birds (38.64, 19) 32.8 34.0 0.97 46.1 0.71

Emotions (0.33, 6) 16.5 17.5 0.94 28.2 0.59

Enron
∗ (91.60, 53) 5.8 4.6 1.26 2.6 2.23

EukaryoteGO
∗ (99.86, 22) 3.9 2.5 1.56 2.6 1.50

EukaryotePseAAC
∗ (43.37, 22) 236.7 237.7 1.00 335.4 0.71

EUR-Lex-SM
∗ (95.26, 201) 2483.8 2062.7 1.20 1309.5 1.90

Image (0.22, 5) 71.7 74.4 0.96 195.1 0.37

IMDB
∗ (98.06, 28) 80.5 48.3 1.67 41.3 1.95

Langlog
∗ (81.38, 75) 14.9 11.1 1.34 6.6 2.26

Medical
∗ (99.32, 45) 4.7 2.1 2.24 1.9 2.47

Ohsumed
∗ (96.03, 23) 6.3 5.5 1.15 4.0 1.58

Reuters-K500
∗ (98.41, 103) 130.2 104.1 1.25 88.6 1.47

Scene (1.15, 6) 187.8 189.8 0.99 519.7 0.36

Slashdot
∗ (99.46, 22) 2.9 2.8 1.04 3.5 0.83

Yahoo-Computers
∗ (99.62, 33) 9.7 8.2 1.18 7.7 1.26

Yahoo-Reference
∗ (99.59, 33) 7.5 6.3 1.19 5.8 1.29

Yahoo-Science
∗ (99.53, 40) 8.5 7.2 1.18 6.3 1.35

Yahoo-Social
∗ (99.71, 39) 13.0 9.7 1.34 9.3 1.40

Yeast (0.00, 14) 87.4 88.3 0.99 128.7 0.68

≈ 2) can be achieved primarily depends on the number of labels. On

datasets with less than 20 labels (“Birds”, “Emotions”, “Image”, “Scene”

and “Yeast”), the overhead that is introduced by the additional use of

multiple threads negatively affects the time needed for training. Similarly,

the benefits of using multi-threading to evaluate possible refinements of

rules across different attributes in parallel, rather than utilizing multiple

threads for linear algebra operations, depend on the dataset. Unlike in

the decomposable case, where this particular parallelization strategy is

particularly efficient on datasets with small feature sparsity, the opposite

can be observed in the non-decomposable setting. To understand this

behavior, it is necessary to recall the principles of the sparsity-aware

rule induction algorithm in Section 7.1. When dealing with datasets that

come with highly sparse feature values, the number of candidate rules

that must be considered by the algorithm drastically reduces. Therefore,

compared to a dataset with small feature sparsity, the amount of training

time spent on linear algebra operations is significantly smaller in such a

case. Consequently, there is less potential to speed up these operations by

using multi-threading. For this reason, multi-threading should be used

to parallelize the search for refinements across multiple attributes on

datasets with high feature sparsity (resulting in speedups up to a factor

of ≈ 2.5). In contrast, the available processor cores are better utilized for

parallelizing linear algebra operations if the feature sparsity is small.
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Parallelized Prediction

Predicting for Different Examples in ParallelIn addition to the use of multi-threading to speed up training, paral-

lelization can also be used when predictions for several examples should

be obtained. Delivering predictions for a given set of examples requires

first enumerating the rules in a model and identifying those rules that

cover each of the provided examples. Second, the predictions provided

by the heads of these rules must be aggregated to obtain an overall

prediction. As both of these steps may be carried out independently

for each example, multi-threading can be used to predict for different

examples in parallel.

By default, the BOOMER algorithm obtains predictions

for different examples in parallel. This behavior may be

adjusted via the parameter --parallel-prediction.

However, prediction time is usually not a limiting factor when dealing

with datasets comparable to those presented in Section 3.2 in terms of

dimensionality. Hence, we leave it at the mention of this possibility and

forego a closer examination of its advantages and disadvantages.

7.4 Discussion

This chapter provided a detailed discussion of the pre-sorted search

algorithm used for the efficient induction of rules by successful rule

learning algorithms like RIPPER. We also discussed extensions to the

basic algorithm that enable dealing with both nominal attributes and

missing feature values. Furthermore, we demonstrated how sparse data

structures can be used to represent feature values. Our experiments

suggest that the exploitation of feature sparsity drastically improves

training efficiency in many cases, especially when dealing with text

classification datasets. These results are complemented by a study on the

histogram-based induction of rules. We showed that the latter approach

helps to reduce training times on datasetswith low feature sparsity,where

the ability to use sparse feature representations does not provide any

benefits. Although the basic principles that are discussed in this chapter

are widely adopted by existing algorithms for the construction of rule-

or tree-based models, publications on the topic are typically restricted

to a high-level view of the discussed techniques. Hence, the goal of this

chapter is to supplement existing literature and provide an extensive

and unified view of commonly used optimizations and approximations.

Moreover, an empirical investigationusing real-worldbenchmarkdatasets

provided us with valuable insights for the practical use of our algorithms.

In particular, this applies to our study regarding the possibilities to

speed up different aspects of a multi-label rule learning algorithm via

parallelization. We observed that even though parallelization helps to

reduce training times in many cases, its potential benefits heavily depend

on the characteristics of a dataset and the configuration of an algorithm.

The experimental results presented in this chapter helped us provide

sane defaults for the publicly available BOOMER algorithm that can be

expected to work well in practice.
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As argued in Section 3.5, the ability to model dependencies between

labels is crucial to effectively optimize non-decomposable evaluation

measures if such patterns exist in the data. As this is often the case in real-

world scenarios, research on multi-label classification is heavily driven

by the requirement to capture correlations in the label space. Following

this common trend and motivated by the need for MLC methods that

can flexibly be adjusted to different evaluation measures, including non-

decomposable ones, we presented the BOOMER algorithm in Chapter 6.

It is based on the gradient boosting framework that provides a well-

studied foundation for learning approaches specifically tailored to a

particular loss function. Furthermore, the experiments in Section 6.6

show its ability to achieve high predictive accuracy and demonstrate

that multi-label rules that capture information about multiple labels in

their heads are well-suited to minimize non-decomposable losses, such

as the subset 0/1 loss. Our results suggest that the utilization of second-

order derivatives, as used by many recent boosting approaches (e.g.,

T. Chen and Guestrin, 2016; Ke et al., 2017; Z. Zhang and C. Jung, 2020),

helps to minimize non-decomposable losses due to the information

about pairs of labels it incorporates into the optimization process. On

the downside, this comes with high computational costs, even if the

number of labels is small. In this chapter, we address the computational

bottleneck of such an approach — the need to solve a system of linear

equations — by integrating a novel approximation technique, referred to

as gradient-based label binning (GBLB), into the boosting procedure. Based

on the derivatives computed during training, it dynamically groups the

labels into a predefined number of bins to impose an upper bound on

the dimensionality of the linear system. The proposed methodology,

together with experiments using the BOOMER algorithm, was first

published by Rapp, Loza Mencía, Fürnkranz, and Hüllermeier (2021) Rapp, Loza Mencía, Fürnkranz, and

Hüllermeier (2021): ‘Gradient-based Label

Binning in Multi-label Classification’

.

The empirical results presented in said work show that the use of GBLB

may boost the speed of training without any significant loss in predictive

performance.

8.1 Complexity Analysis

Aggregation of Gradients and HessiansThe objective function in (6.11), the BOOMER algorithm aims tominimize

at each training iteration, depends on gradient vectors and Hessian

matrices that correspond to individual training examples. Given  labels,

the former consist of  elements, whereas the latter are symmetric

matrices with  ( + 1) / 2 non-zero elements, one for each label and

each pair of labels. The induction of a new rule, using a search algorithm

as described in Chapter 7, requires summing up the gradient vectors and

Hessian matrices of the covered examples to form the linear system in

(6.13). Instead of computing the sums for each candidate rule individually,

the candidates are processed in a predetermined order, such that each one
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Algorithm 11:Candidate evaluationwithout (left) /withGBLB (right)

input :Gradient vector g , Hessian matrix �,

!2 regularization weight �
output :Predictions p̂, quality score @, mapping m (if GBLB is used)

1 ' = diag (�)

2 p̂ = DSYSV (−g , � + ')
3 @ = DDOT (p̂, g) +
(0.5 · ddot (p̂,DSPMV (p̂, �)))

4 return p̂, @

m = map_to_bins (g , �, �)
g , �, ' = aggregate (m , g , �, �)

|
same as left
|

return p̂, @,m

covers one or several additional examples compared to its predecessor.

As a result, an update of the sums with complexity O
(
 2

)
must be

performed for each example and attribute that is considered for making

up new candidates.

Complexity of Linear Algebra Operations Algorithm 11 shows the steps that are necessary to compute the confi-

dence scores to be predicted by an individual candidate rule, as well as a

score that assesses its quality, if the loss function is non-decomposable.

The modifications that are necessary to implement GBLB are shown

to the right of the original lines of code. Originally, the given gradi-

ent vector and Hessian matrix, which result from summation over the

covered examples, are used as a basis to solve the system of linear

equations in (6.13). For solving such a linear system with a symmetric

coefficient matrix, the BOOMER algorithm’s implementation uses the

routine DSYSV provided by the LAPACK (Anderson et al., 1999) software

library (cf. Algorithm 11, line 2). The computation of a corresponding

quality score requires substituting the calculated scores into (6.11). It

involves invocations of the BLAS (Blackford et al., 2002) operations DDOT

for vector-vector multiplication and DSPMV for vector-matrix multipli-

cation (cf. Algorithm 11, line 3). Whereas the operation DDOT comes

with linear costs, the DSPMV and DSYSV routines have quadratic and

cubic complexity, i.e., O
(
 2

)
and O

(
 3

)
, respectively.

1

1: Information on the complexity of the

BLAS and LAPACK routines referred

to in this chapter can be found on-

line at http://www.netlib.org/lapack/

lawnspdf/lawn41.pdf.

As Algorithm 11

must be executed for each candidate rule, it is the computationally most

expensive operation taking part in a multivariate boosting algorithm that

minimizes a non-decomposable loss function.

Dimensionality Reduction GBLB addresses the computational complexity of Algorithm 11 by map-

ping the available labels to a predefined number of bins" and aggregat-

ing the elements of the gradient vector and Hessian matrix accordingly.

If " �  , this significantly reduces their dimensionality and limits

the costs of the BLAS and LAPACK routines. As a result, given that the

overhead introduced by the mapping and aggregation functions is small,

we expect an overall reduction in training time.

Limitations In this chapter, we do not address the computational costs of summing

up the gradients and Hessians that correspond to individual examples.

However, the proposed method is designed such that it can be combined

with methods dedicated to this aspect. Albeit restricting themselves

to decomposable losses, Si et al. (2017) have proposed a promising

method that ensures many gradients evaluate to zero. This approach,

which was partly adopted by Z. Zhang and C. Jung (2020), restricts

the labels that must be considered to those with non-zero gradients.

However, to maintain sparsity among the gradients, strict requirements

http://www.netlib.org/lapack/lawnspdf/lawn41.pdf
http://www.netlib.org/lapack/lawnspdf/lawn41.pdf
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must be fulfilled by the loss function. Among many others, the logistic

loss function in (6.23) does not meet these requirements. In contrast,

the approach that is investigated in the following does not impose

any restrictions on the loss function. Even though it can potentially be

used with any loss function, it is intended for use cases where a non-

decomposable loss should be minimized. This is because it explicitly

addresses the computational bottleneck of such a training procedure,

i.e., the need to solve the linear system in (6.13), which reduces to an

operation with linear complexity in the decomposable case.

8.2 Mapping Labels to Bins

Gradient-based MappingGBLB evolves around the idea of assigning the available labels to a

predefined number of bins whenever a potential ensemble member is

evaluated during training (cf. map_to_bins in Algorithm 11). This is simi-

lar to problem transformation methods like LP or RAkEL, where subsets

of labels are dealt with jointly by a learning algorithm (cf. Section 3.6).

However, as these transformation methods require training a model for

each considered labelset, they usually come with high computational

demands. To compensate for this, the label space transformation ap-

proaches introduced in Section 3.8 aim to reduce the complexity of the

label space to be dealt with by multi-label classifiers. Notwithstanding

that such a reduction in complexity is indispensable in cases where

thousands or even millions of labels should be handled, it often remains

unclear what measure such dimensionality reduction methods aim to

optimize. Unlike the reduction methods mentioned above, GBLB is inte-

grated into the gradient boosting framework and therefore is inherently

tailored to a particular loss function. Such a tight integration also allows

to dynamically adjust to different regions in input space for which an

ensemble member may predict. By taking into account the derivatives

guiding the optimization process to determine the mapping from labels

to bins, the impact of the approximation is kept at a minimum.

Mapping CriteriaThe goal of GBLB is to map the available labels�1 , . . . ,� to a predefined

number of bins B1 , . . . ,B" . To obtain the index of the bin, a particular

label �: should be assigned to, we use a mapping function � : ℝ→ ℕ+

that depends on a given criterion �: ∈ ℝ. In this work, we use the

criterion

�: = −
6:

ℎ:: + �
, (8.1)

which takes the gradient and Hessian for the respective label, as well

as the !2 regularization weight, into account. Per (6.14), it corresponds

to the optimal prediction when considering the label in isolation, i.e.,

when assuming that the predictions for other labels will be zero. The

criterion can be obtained for each label individually, so the computational

overhead is kept at a minimum. Based on the assignments that are

provided by a mapping function �, we denote the set of label indices that

belong to the <-th bin as

B< = {: ∈ {1, . . . ,  } | � (�:) = <} . (8.2)

Binned PredictionsLabels should be assigned to the same bin if the corresponding confidence

scores, which will be presumably be predicted by an ensemble member,
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are close to each other. If the optimal scores to be predicted for certain

labels are very different in absolute size or even differ in their sign,

the respective labels should be mapped to different bins. Based on this

premise, we limit the number of distinct scores an ensemble member

may predict by enforcing the restriction

?̂8 = ?̂ 9 ,∀8 , 9 ∈ B< . (8.3)

It requires that a single score is predicted for all labels that have been

assigned to the same bin. Given that the mentioned prerequisites are

met, we expect the difference between the scores that are predicted for a

bin and those that are optimal with respect to the original labels to be

reasonably small.

Equal-Width Label Binning

Properties of Equal-width Binning Principally, different approaches for implementing the mapping function

� are conceivable.We use equal-width binning, as this well-knownmethod

provides two advantages: First, unlike other methods, such as equal-

frequency binning, it does not involve sorting and can therefore be

applied in linear time. Second, the boundaries of the bins are chosen

such that the absolute difference between their smallest and largest value,

referred to as the width, is the same for all bins. As argued in the previous

section, this is a desirable property in our particular use case.

Negative and Positive Bins Furthermore, we want to prevent labels for which the predicted score

should be negative from being assigned to the same bin as labels for

which the prediction should be positive. Otherwise, the predictions

would be suboptimal for some of these labels. Therefore, we strictly

separate between negative and positive bins. Given �	 negative and �⊕
positive bins, the width calculates as

$	 =
max	 −min	

�	
and $⊕ =

max⊕ −min⊕
�⊕

, (8.4)

for the positive and negative bins, respectively. By max	 and max⊕ we

denote the largest value in {�1 , . . . , � } with negative and positive sign,

respectively. Accordingly, min	 and min⊕ correspond to the smallest

value with the respective sign. Labels for which �: = 0, i.e., labels with

zero gradients, can be ignored. As no improvement in terms of the loss

function can be expected, we explicitly set the prediction to zero in such

a case.

Mapping Function Once the width of the negative and positive bins has been determined,

the mapping from individual labels to one of the" = �	 + �⊕ bins can

be obtained via the function

�eq.-width (�:) =


min

(
b �:−min	

$	
c + 1, �	

)
, if �: < 0

min

(
b �:−min⊕

$⊕
c + 1, �⊕

)
+ �	 , if �: > 0.

(8.5)

Aggregation of Statistics

Reformulizations By exploiting the restriction introduced in (8.3), the gradients and Hes-

sians that correspond to labels in the same bin can be aggregated to
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Figure 8.1: Illustration of how a gradient

vector, a Hessian matrix, and a regular-

ization matrix for five labels �1 , . . . ,�5

are aggregated with respect to two bins

B1 = {1, 2, 4} andB2 = {3, 5}when using

!2 regularization with � = 1. Elements

with the same color are added up for ag-

gregation.

obtain a gradient vector and a Hessian matrix with reduced dimensions

(cf. aggregate in Algorithm 11). To derive a formal description of this

aggregation, we first rewrite the objective function (6.11) in terms of sums

instead of using vector and matrix multiplications. This results in the

formula

R̃ ( 5C) =
#∑
==1

 ∑
8=1

©­­­«6
=
8 ?̂8 +

1

2

?̂8

©­­­«ℎ
=
88 ?̂8 +

 ∑
9=1,
9≠8

ℎ=89 ?̂ 9

ª®®®¬
ª®®®¬ +Ω ( 5C) . (8.6)

Aggregation of Gradients and HessiansBased on the constraint given in (8.3) and due to the distribution property

of the multiplication, the equality

 ∑
8=1

G8 ?̂8 =
"∑
9=1

(
?̂ 9

∑
8∈B9

G8

)
, (8.7)

where G8 is any term dependent on 8, holds. It can be used to rewrite (8.6)

in terms of sums over the bins, instead of sums over the individual labels.

For brevity, we denote the sum of the gradients, as well as the sum of the

elements on the diagonal of the Hessian matrix, that correspond to the

labels in bin B< as

6̃< =
∑
8∈B<

68 and ℎ̃<< =
∑
8∈B<

ℎ88 . (8.8)

To abbreviate the sum of Hessians that correspond to a pair of labels that

have been assigned to different bins B< and B@ , we use the short-hand

notation

ℎ̃<@ =
∑
8∈B<

∑
9∈B@

ℎ8 9 . (8.9)

By exploiting (8.7) and using the abbreviations introduced above, the

objective function in (8.6) can be rewritten as

R̃ ( 5C) =
#∑
==1

"∑
<=1

©­­­«?̂< 6̃
=
< +

1

2

?̂<
©­­«?̂< ℎ̃=< +

"∑
@=1,
@≠<

?̂@ ℎ̃
=
<@

ª®®®¬
ª®®®¬ +Ω ( 5C) , (8.10)

which can afterwards be turned into the original notation based on vector

and matrix multiplications. The resulting formula

R̃ ( 5C) =
#∑
==1

(
g̃= p̂C= +

1

2

p̂C=�̃= p̂C=

)
+Ω ( 5C) (8.11)
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2: The experiments that are discussed in

this section were conducted using version

0.5.0 of the BOOMER algorithm. It is avail-

able at https://github.com/mrapp-ke/

Boomer/releases/tag/0.5.0

has the same structure as shown initially in (6.11). However, the gradient

vector g and the Hessian matrix � have been replaced by g̃ and �̃,

respectively. Consequently, when calculating the scores to be predicted

by an ensemble member by solving (6.13), the coefficients and ordinates

that take part in the linear system do not correspond to individual labels

but result from the sums in (8.8) and (8.9). As a result, the number of

linear equations has been reduced from the number of labels  to the

number of non-empty bins, which is at most".

Conversion of the Regularization Matrix An example that illustrates the aggregation of a gradient vector and a

Hessianmatrix is given in Figure 8.1. It also shows how the regularization

matrix ' is affected. When dealing with bins instead of individual labels,

the !2 regularization term in (6.12) becomes

ΩL2 ( 5C) =
1

2

�
"∑
<=1

(
|B< | ?̂2

<

)
, (8.12)

where |B< | denotes the number of labels that belong to a particular bin.

As a consequence, the regularization matrix becomes

'̃ = diag (� |B1 | , . . . , � |B" |) . (8.13)

8.3 Experimental Evaluation

Experimental Setup To investigate the effectsGBLBhas onpredictive performance and training

time in isolation, we chose a single configuration of the BOOMER

algorithm as the basis for our experiments.
2

We used 10-fold cross

validation (cf. Section 3.3) to train models on 15 benchmark datasets

(cf. Section 3.2) using the logistic loss function in (6.23) as a surrogate

for minimizing the subset 0/1 loss. Each model consists of 5, 000 rules

that have been learned on varying subsets of the training examples,

drawn with replacement. Feature sampling has been used to restrict

the refinement of rules to random subsets of the available attributes.

As for the learning rate and the !2 regularization weight, we used the

default values 0.3 and 1.0, respectively. Besides the original algorithm,

as presented in Chapter 6, we tested an implementation that uses GBLB.

For a broad analysis, we set the maximum number of bins to 32, 16, 8,

and 4% of the available labels. In addition, we investigated an extreme

setting with two bins, where all labels with positive and negative criteria

are assigned to the same bin, respectively.

The BOOMER algorithmprovides the following parameter

to specify whether GBLB should be used:

--label-binning [auto,equal-width,None]

If set to auto (the default value), GBLB is enabled automat-

ically for the minimization of non-decomposable losses.

Information on how to configure the number of bins can

be found in the documentation.

Speedup in Training Time Table 8.1 shows the average time per cross validation fold needed by

the considered approaches for training. Compared to the baseline that

https://github.com/mrapp-ke/Boomer/releases/tag/0.5.0
https://github.com/mrapp-ke/Boomer/releases/tag/0.5.0
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Table 8.1: Average training times (in seconds) per cross validation fold on different datasets (the number of labels is given in parentheses).

The small numbers specify the speedup that results from using GBLB with the number of bins set to 32, 16, 8, and 4% of the labels or using

two bins. Variants that are equivalent to two bins are omitted.

Dataset No
GBLB

GBLB

32% 16% 8% 4% 2 bins

EUR-Lex-SM (201) 46947 54985 0.85 44872 1.05 38222 1.23 33658 1.39 21703 2.16

EukaryotePseAAC (22) 16033 3593 4.46 2492 6.43 2195 7.30 — 1534 10.45

Reuters-K500 (103) 12093 6930 1.75 4197 2.88 3353 3.61 2803 4.31 2743 4.41

Bibtex (159) 2507 2599 0.96 2765 0.91 2649 0.95 2456 1.02 2125 1.18

Yeast (14) 2338 998 2.34 761 3.07 525 4.45 — 521 4.49

Birds (19) 2027 701 2.89 505 4.01 337 6.01 — 336 6.03

Yahoo-Social (39) 1193 261 4.57 217 5.50 192 6.21 139 8.58 175 6.82

Yahoo-Computers (33) 874 172 5.08 134 6.52 126 6.94 101 8.65 123 7.11

Yahoo-Science (40) 735 200 3.67 160 4.59 135 5.44 106 6.93 136 5.40

Yahoo-Reference (33) 571 174 3.28 141 4.05 129 4.43 110 5.19 137 4.17

Slashdot (20) 518 154 3.36 117 4.43 86 6.02 — 119 4.35

EukaryoteGO (22) 191 79 2.42 74 2.58 60 3.18 — 64 2.98

Enron (53) 181 69 2.62 52 3.48 48 3.77 47 3.85 44 4.11

Medical (45) 170 60 2.83 57 2.98 55 3.09 50 3.40 51 3.33

Langlog (75) 132 126 1.05 112 1.18 105 1.26 101 1.31 102 1.29

Avg. Speedup 2.81 3.58 4.61 4.86 4.00

does not use GBLB, the training time can always be reduced by utilizing

GBLB with a suitable number of bins. Using fewer bins tends to speed

up the training process, although approaches that use the fewest bins are

not always the fastest. On average, limiting the number of bins to 4% of

the labels results in the most significant speedup (by factor 5). However,

the possible speedup depends on the dataset at hand. For example, on

the dataset “EukaryotePseAac”, the average training time is reduced by

factor 10, whereas no significant speedup is achieved for “Bibtex”.

Effects on Predictive PerformanceTo be useful in practice, the speedup resulting from GBLB should not

comewith a significant deterioration in terms of the target loss. Therefore,

we report the predictive performance of the considered approaches in

Table 8.2. Besides the subset 0/1 loss, which we aim to minimize in this

chapter, we also include the Hamming loss as a commonly used repre-

sentative of decomposable loss functions (cf. Section 3.3). When focusing

on the subset 0/1 loss, we observe that the baseline algorithm without
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Figure 8.2: Relative difference in training

time and Subset 0/1 loss (both calculated

as the baseline’s valuedividedby the value

of the respective approach) per cross vali-

dation fold that results from using GBLB

with the number of bins set to 4% of the

labels.
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Table 8.2: Predictive performance of different approaches in terms of the subset 0/1 loss and the Hamming loss (smaller values are better).

Dataset Label-
wise

No
GBLB

GBLB

32% 16% 8% 4% 2 bins

Subset 0/1 loss
EUR-Lex-SM 61.63 69.53 45.07 45.03 45.30 45.08 47.32

EukaryotePseAAC 85.09 65.43 65.37 65.28 65.68 — 65.52

Reuters-K500 71.37 71.07 53.70 53.22 53.07 52.90 53.40

Bibtex 85.99 81.31 77.28 77.44 77.55 77.32 78.95

Yeast 84.94 76.54 76.91 76.42 76.87 — 76.21
Birds 45.29 45.30 45.14 45.45 45.60 — 46.53

Yahoo-Social 50.65 64.30 34.49 34.40 34.84 35.47 35.37

Yahoo-Computers 58.04 46.26 46.65 47.09 46.94 47.70 47.42

Yahoo-Science 74.00 85.80 50.89 51.20 52.07 52.79 52.04

Yahoo-Reference 58.19 74.14 39.82 40.16 40.73 40.51 40.48

Slashdot 63.88 46.62 46.64 46.64 47.73 — 47.22

EukaryoteGO 30.63 28.35 28.39 28.24 28.10 — 28.55

Enron 88.19 83.14 83.32 83.32 83.38 82.91 82.97

Medical 28.25 28.82 23.13 22.62 23.08 23.23 22.77

Langlog 79.59 78.84 79.11 79.25 78.63 79.45 79.45

Hamming loss
EUR-Lex-SM 0.55 0.91 0.40 0.39 0.40 0.40 0.42

EukaryotePseAAC 5.02 5.65 5.64 5.63 5.67 — 5.66

Reuters-K500 1.11 1.71 1.11 1.09 1.09 1.09 1.10

Bibtex 1.25 1.45 1.27 1.27 1.27 1.28 1.31

Yeast 19.75 19.01 18.87 19.08 19.01 — 18.80
Birds 3.91 3.79 3.80 3.79 3.73 — 3.87

Yahoo-Social 1.90 3.81 1.79 1.80 1.83 1.87 1.87

Yahoo-Computers 3.10 2.97 3.00 3.02 3.03 3.08 3.06

Yahoo-Science 2.83 5.85 2.74 2.75 2.81 2.84 2.79

Yahoo-Reference 2.30 4.95 2.28 2.30 2.34 2.33 2.32

Slashdot 4.02 4.24 4.24 4.25 4.37 — 4.30

EukaryoteGO 1.89 1.95 1.95 1.94 1.92 — 1.98

Enron 4.53 4.72 4.77 4.77 4.72 4.72 4.73

Medical 0.84 1.05 0.80 0.77 0.79 0.81 0.79

Langlog 1.52 1.52 1.50 1.51 1.50 1.52 1.52

GBLB exhibits subpar performance on some datasets, namely “EUR-

Lex-SM”, “Reuters-K500”, “Bibtex”, “Yahoo-Social”, “Yahoo-Science”,

“Yahoo-Reference”, and “Medical”. This becomes especially evidentwhen

compared to an instantiation of the algorithm that targets the Hamming

loss via minimization of the label-wise decomposable logistic loss func-

tion in (6.15). In said cases, the latter approach performs better even

though it is not tailored to the subset 0/1 loss. Although the baseline

performance could probably be improved by tuning the regularization

weight, we decided against parameter tuning, as it exposes an interesting

property of GBLB. On the mentioned datasets, approaches that use GBLB

appear to be less prone to converge towards local minima. Regardless of

the number of bins, they clearly outperform the baseline. According to

the Friedman test (cf. Section 3.4), these differences are significant with


 = 0.01. The Nemenyi post-hoc test yields critical distances for each

of the GBLB-based approaches when compared to the baseline. On the

remaining datasets, where the baseline without GBLB already performs

well, the use of GBLB produces competitive results. In these cases, the
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Figure 8.3: Average proportion of training

time per cross validation fold that is used

for the evaluation of candidate rules with-

out GBLB and when using GBLB with the

number of bins set to 4% of the labels.

Friedman test confirms the null hypothesis with 
 = 0.1. In Figure 8.2,

an overview of how the training time and the predictive performance in

terms of the subset 0/1 loss are affected when restricting the number of

bins to 4% of the labels.

Analysis of Training TimeTo better understand the differences in speedups that may be achieved

using GBLB, a detailed analysis is given in the following for four datasets

with varying characteristics. Figure 8.3 depicts the training time needed

by the baseline approach and a GBLB-based approach with the number

of bins set to 4% of the labels. Besides the total training time, we also

show the amount of time spent on the evaluation of candidate rules

(cf. Algorithm 11), which is the algorithmic aspect addressed by GBLB.

For all given scenarios, it can be seen that the time needed for candidate

evaluation could successfully be reduced. Nevertheless, the effects on

the overall training time vastly differ. On the datasets “Bibtex” and

“EUR-Lex-SM”, the time spent on parts of the algorithm other than

the candidate evaluation increased when using GBLB, resulting from

more specific rules being learned. On the one hand, this required more

candidates to be evaluated and therefore hindered the overall speedup.

On the other hand, the resulting rules clearly outperformed the baseline,

according to Table 8.2. On the dataset “Bibtex”, even without GBLB,

the candidate evaluation was not the most expensive aspect of training.

Due to its binary attributes, the number of potential candidates is small

compared to the large number of examples. As a result, most of the

computation time is spent on summing up the gradients and Hessians

of individual examples (cf. Section 8.1). The impact of speeding up the

candidate evaluation is therefore limited. On the datasets “Medical” and

“EukaryotePseAAC”, where the candidate evaluation was originally the

most expensive aspect, a significant reduction of training time could

be achieved by making that operation more efficient. The time spent

on other parts of the algorithm remained mostly unaffected in these

cases. As mentioned earlier, this includes the summation of gradients

and Hessians, which becomes the most time-consuming operation when

using GBLB. Addressing this aspect holds the greatest potential for

further performance improvements.

8.4 Discussion

In this chapter, we discussed an approximation technique that dynam-

ically assigns the available labels to a predefined number of bins. The
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mapping from labels to bins is based on the gradients and Hessians

that guide the training process of a multivariate boosting algorithm.

Our experiments confirm that this dimensionality reduction successfully

reduces the training time needed for minimizing non-decomposable

loss functions, such as the subset 0/1 loss. According to our results, this

speedup does not come with any significant loss in predictive perfor-

mance. In several cases, the proposed method even outperforms the

baseline by a large extent due to its ability to overcome local minima

without the necessity for extensive parameter tuning. Despite the promis-

ing results, the use of non-decomposable loss functions in the boosting

framework remains computationally challenging. Ideas to address the

remaining limitations, such as additional measures that allow exploiting

sparsity in the label space, are left for future work and are discussed in

Section 9.2.
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The large variety of different rule learning techniques found in the litera-

ture provides a solid foundation for designing rule-based approaches

to multi-label classification. Different implementations of the individual

aspects that make up an effective multi-label rule learning algorithm

allow the training of models that differ quite drastically in their charac-

teristics and come with their own advantages and disadvantages. On

the one hand, rules can be considered a versatile tool for tackling multi-

label classification problems due to this flexibility. On the other hand,

as there is no rule-based solution to this problem domain that can be

expected to behave optimal in any given use case, a multi-label rule

learning algorithm should carefully be tailored to the requirements at

hand. Therefore, two fundamentally different directions with varying

goals have been pursued in this work. In addition to a rule learning

approach for the induction of compact models that consist of discrete

rules, a second method for learning large ensembles of probabilistic rules

was investigated. In Section 9.1, we summarize of the results that have

been obtainedwith regard to these approaches and discuss towhat extent

they address the research challenges outlined in Section 1.1, including

the interpretability of predictive models, the importance of capturing

label correlations, the desire to cater to different target measures, and the

need for computationally efficient algorithms. Beyond the algorithms

and concepts that have been discussed in this work, the large number of

possibilities to tackle the multi-label classification setting by means of

rules leaves room for future research. In Section 9.2, we outline several

extensions to the methodologies that have been discussed in this work.

They may help to enhance the capabilities of the proposed methods or

overcome some of their limitations in the future.

9.1 Summary of Results

Multi-label Rule Learning FramworkAs the first contribution of this work, in Chapter 4, a unified frame-

work for implementing rule-based multi-label classification methods

was presented. It was designed in a modular fashion, which enables to

implement certain aspects of the framework in different ways, depending

on the goals a particular approach should achieve. For example, the

methods proposed in Chapter 5 and Chapter 6 mostly rely on a greedy

top-down search for the generation of candidate rules, whereas an al-

ternative approach that extracts rules from ensembles of decision trees

is used for the empirical study in Section 5.3. Besides other techniques

that may be considered for candidate generation, such as association rule

mining or branch-and-bound algorithms, the framework also provides

freedoms when it comes to the construction of rule heads. Whereas rules

that provide deterministic predictions should probably be preferred

in applications where great emphasis is put on the interpretability of
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models, probabilistic rules appear to be a natural choice in rule-based en-

semble methods. In both cases, depending on the multi-label evaluation

measure one is interested in, the rules may either be restricted to single

labels or provide information about several labels in their heads. Our

experiments suggest that single-label heads are often better if decompos-

able evaluation measures should be optimized. In contrast, the effective

optimization of non-decomposable target measures demands complete

or partial multi-label rules that can capture local label dependencies.

Compared to ensemble methods that use probabilistic rules, approaches

that focus on compact models with deterministic rules come with high

variance and therefore are prone to overfitting. To overcome this issue, we

have discussed countermeasures, such as pruning techniques, stopping

criteria, or possible post-optimizations, that are successfully used in

traditional rule learning methods for single-label classification. Finally,

the framework in Chapter 4 also allows the use of complexity reduction

methods by tailoring individual rules to a subset of the available training

examples, restricting their conditions to specific attributes, or deciding

on a subset of labels for which they may predict.

Separate-and-Conquer Approach Chapter 5 investigated the first instantiation of the framework previ-

ously introduced in Chapter 4. It is based on the separate-and-conquer

paradigm many traditional rule learners use. Similar to existing SeCo-

based approaches for single-label classification, it results in a sorted list

of deterministic rules. They are applied in the order of their induction

to obtain predictions. As illustrated by several examples throughout

the chapter (cf. Table 5.2 and Table 5.6), such a model representation

appears to be promising if human domain experts should be enabled

to analyze a model globally. However, one may consider the necessity

to interpret individual rules in the context of their predecessors as a

disadvantage. By restricting the predictions of rules for particular labels

to be either positive or negative, a multi-label SeCo algorithm can be used

to obtain a model in disjunctive normal form. Such a model, where the

predictions of individual rules may not conflict, can likely be understood

more easily by human analysts. As argued in Section 5.1, an application

of the SeCo principle to multi-label data demands for a strategy to keep

track of partially covered training examples. As a solution to this prob-

lem, we have introduced the notion of label weights, which are flexible

enough to deal with partially covered examples in different ways and

allow for a straightforward extension to weighted covering strategies.

In addition, generalizations of traditional rule learning heuristics are

needed to assess the quality of multi-label rules for multiple labels. In

Section 5.2, we have introduced a novel notation to define such heuris-

tics more intuitively and less ambiguously. To investigate the effects of

different heuristics on the characteristics and predictive performance of

rule-based models, we have conducted an extensive experimental study

in Section 5.3. Unlike in single-label classification, the choice of a suitable

rule learning heuristic is less obvious in the multi-label setting, where a

variety of potentially competing evaluation measures exists. Motivated

by the properties of non-decomposable evaluation measures and the

desire to reveal interesting patterns in the label space, we have proposed

a novel method for constructing partial multi-label rules in Section 5.4.

Following prior research on this particular aspect of multi-label rule

learning, it relies on guarantees provided by commonly used heuristics

to prune the search for multi-label heads, which is otherwise infeasible
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due to high computational costs. Compared to existing approaches, the

proposed methodology is more likely to discover label dependencies

in practice, as it introduces a user-controllable bias towards rules that

predict for several labels. The induction of multi-label rules appears

to be a promising alternative to label-dependent rules. The latter have

previously been used to model label dependencies. However, they rely on

a particular order of the rules and thus are less in line with the properties

of a DNF.

Gradient Boosting ApproachAs an alternative to the SeCo-based approach in Chapter 5, we have

proposed an algorithm for learning ensembles of multi-label rules in

Chapter 6. It relies on a generalization of the gradient boosting framework

to multivariate problems and can be viewed as another instantiation of

the rule learning framework in Chapter 4. Relying on the established

and theoretically well-justified gradient boosting methodology appears

to be particularly appealing in the multi-label classification setting. It

allows for global optimization of different target loss functions and can

thus be adjusted to varying multi-label evaluation measures. Unlike

most problem adaptation methods, the BOOMER algorithm presented

in Chapter 6 does not only allow for the optimization of decompos-

able loss functions but can also deal with non-decomposable ones. As

prototypical representatives of these fundamentally different types of

measures, we have considered the Hamming loss and the subset 0/1 loss

as objective functions for our experiments. On the one hand, as discussed

in Section 6.4, differentiable surrogate losses are needed to guide the

construction of rules toward optimizing a particular target measure. On

the other hand, we have argued that the surrogate loss function should

also be considered for inference. In Section 6.5, we have proposed two

strategies to obtain predictions from a previously trained model. They

are tailored to the Hamming and subset 0/1 loss, respectively. For the

experiments in Section 6.6, we relied on synthetic and real-world bench-

mark data, as well as on recently proposed evaluation measures for the

analysis of a classifier’s dependence-awareness. The results have shown

that the proposed methodology can address both of the considered

target losses. Our analysis further suggests that complete multi-label

rules provides significant advantages if one is interested in optimizing

non-decomposable evaluation measures, such as the subset 0/1 loss. This

is in contrast to optimizing decomposable measures like the Hamming

loss, where single-label rules are most often sufficient. Compared to state-

of-the-art baselines, which use different kinds of problem transformation

methods, the BOOMER algorithm generally achieves strong predictive

performances and is frequently able to outperform its competitors in

terms of the respective target measure. Compared to the SeCo-based

approach in Chapter 5, gradient boosting provides several advantages.

As it aims to learn complex ensembles, where the predictions of many

ensemble members are combined, it can be expected to outperfom the

former in terms of predictive performance. Due to the reduced variance

that comes with an ensemble method and because BOOMER can easily

be tailored to different target measures, it is also more likely to produce

strong predictive results out-of-the-box, i.e., without using techniques for

overfitting avoidance or the need for extensive parameter tuning. On the

downside, due to the large number of rules in an ensemble, it becomes

nearly impossible for human analysts to comprehend a model as a whole

or reason about the predictions it provides without additional tools.



142 9 Conclusions

1: An efficient implementation of the SeCo

algorithm in Chapter 5, which is based on

the BOOMER algorithm’s source code and

benefits from its numerous optimizations,

was still in development at the time this

thesis was published. It can be obtained

from the author of this thesis.

Optimizations and Approximations Motivated by the increasing need for highly scalable machine learning

algorithms that can process large amounts of training data in a timely

manner, we have also elaborated on implementation details that allow for

the efficient induction of rules in thiswork.As the SeCo-based approach in

Chapter 5 and the BOOMERalgorithm inChapter 6 are based on the same

framework, both methods can potentially benefit from the optimizations

that have been discussed in Chapter 7.
1

First of all, the principles

of a pre-sorted search algorithm, as existing rule learning methods

commonly use it, have been discussed in Section 7.1. Furthermore, we

have discussed ways to deal with nominal and missing feature values

and presented an extension to the basic algorithm that allows dealing

with sparsity in the feature space more efficiently. Our experiments have

shown that the ability to use sparse feature representations drastically

reduces training times on many multi-label datasets. To handle large

datasets with many numerical features, where the exploitation of feature

sparsity does not provide any benefits, in Section 7.2, we have considered

a histogram-based approximation technique as an alternative. It has

previously been used in decision tree learning. According to our findings,

its use reduces the training time of the BOOMER algorithm while at

the same time preserving its predictive performance. In addition to the

experiments mentioned above, we have also investigated the potential

benefits in terms of training efficiency that result from the use of multi-

threading to parallelize different aspects of a multi-label rule learning

algorithm. We have found that the speedup that can be achieved through

parallelization depends on the dataset and the configuration of an

algorithm. In particular, it is heavily influenced by the characteristics

of the evaluation measure to be dealt with. Whereas optimizing a non-

decomposable measure benefit from multi-threading only in certain

scenarios, there is a much larger potential for improvements if a non-

decomposable target measure is used due to the greater computational

demand this use case entails. Said use case is also the focus of Chapter 8,

where we proposed gradient-based label binning as an approximation

technique that deliberately addresses the computational bottleneck of

the BOOMER algorithm. When dealing with a non-decomposable loss

function, where the computation of a rule’s predictions requires solving a

linear system, GBLB can significantly reduce training time. By restricting

the predictions to bins of similar labels rather than considering each label

individually, an upper bound is imposed on this costly and frequently

performed operation. The experimental study in Section 8.3 has shown

that GBLB generally preserves a learner’s predictive capabilities and

revealed that it results in drastic improvements in some cases, most

probably due to a regularization effect it introduces.

9.2 Future Work

Extensions to the SeCo Approach Even though we have addressed several aspects crucial to the effective-

ness of a SeCo-basedmulti-label rule learningmethod, there are still open

questions that have not been investigated yet. In particular, due to the lack

of suitable stopping criteria that work well across a various multi-label

datasets, it is necessary tomanually filter the rules that should be included

in a model if one is interested in strong predictive performance. This

contrasts with single-label classification, where established algorithms
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like RIPPER come with integrated pre-pruning strategies that work well

on average and allow for strong out-of-the-box performance even with-

out excessive parameter tuning. However, a generalization of existing

pre-pruning techniques to the multi-label setting, e.g., the MDL stop-

ping criterion (Quinlan, 1990), is not straightforward. Although existing

techniques can be applied to several labels in a binary relevance fashion,

optimizing varying target measures most probably demands different

stopping or filter criteria. Furthermore, the predictive performance of

decision lists, including those learned by our multi-label SeCo approach,

is heavily affected by inaccurate rules that overfit the data. This is in

contrast to large rule-based ensembles, where individual rules have only

a small impact on the overall performance and can be rectified by other

ensemble members. To overcome this problem, techniques for overfitting

avoidance, such as incremental reduced error pruning (Fürnkranz and

Widmer, 1994) or RIPPER’s post-optimization procedure (Cohen, 1995),

are typically employed by single-label rule learners. Again, a generaliza-

tion of suchmethods to themulti-label setting remains for future research

and most probably requires considering the particularities of multi-label

classification. For example, when learning multi-label rules that predict

for several labels, it remains unclear if a pruning strategy should only

affect the conditions in a rule’s body, as is the case in single-label classi-

fication, or if the predictions that are provided by a rule’s head should

also be adjusted. Finally, there is ongoing research on branch-and-bound

algorithms (see, e.g., Angelino et al., 2018; Boley et al., 2021; Webb, 1995)

that aim to overcome the search myopia of greedy rule learning methods,

such those used formost of this work. Despite higher computational costs,

branch-and-bound algorithms may come with advantages if compact

models should be learned, as they can be expected to result in more

accurate rules. However, we are not aware of any existing work where

they have been applied to multi-label classification problems.

Interpretable Additive ModelsAsmentioned earlier, the use of the SeCoparadigm ismainlymotivated by

the need to learn compact models that are simple enough to be analyzed

andverifiedbydomain experts as awhole.However, thegradient boosting

methodology, which we proposed as an alternative primarily focused

on predictive performance, could also serve as a foundation for learning

such simple models. Compared to the SeCo approach, the latter’s use is

appealing because it does not rely on heuristics to guide the induction

of individual rules but follows a statistically well-justified procedure

to optimize a target measure globally. Constraints may be imposed on

the complexity of the models that result from a boosting approach to

facilitate their interpretation. For example, besides limiting the number

of rules, one could restrict their predictions to small integer values rather

than continuous real-valued scores or even binary outputs. The main

difference between such models and those learned by a SeCo algorithm

is the aggregation of individual rules at prediction time. Whereas the

SeCo approach results in an ordered decision list, where the first rule

that covers an example is responsible for making a prediction, boosted

rules are combined in an additive way by summing up their predictions

and applying a threshold afterward. Which one of these representations

is preferable in terms of interpretability remains unclear. However, small

additive models are often argued to be inherently interpretable (C.-H.

Chang et al., 2021). By enforcing the predictions for individual labels

to be either positive or negative, the boosting methodology might even
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be used to learn models that resemble the properties of a DNF. In the

single-label setting, SLIPPER (Cohen and Singer, 1999) can be considered

an early attempt to make use of boosting principles for the construction

of this kind of simple model. Imposing constraints on the complexity of

a boosting model most likely comes with a deterioration in predictive

performance because it reduces bias at the expense of variance. This

presumably results in models that are more prone to overfitting. To

counteract these effects, existing rule learning techniques for overfitting

avoidance, such as pruning or post-optimization methods, are most

probably needed in such a scenario. However, these techniques have not

yet been studied extensively in the context of probabilistic models. In

applications where the ability to analyze entire models is not a strict

requirement, but one is merely interested in local explanations of the

predictions made for individual examples, complex ensembles should

probably bepreferred over simplemodels due to their advantages in terms

of predictive performance. Compared to complex statistical methods like

neural networks, which are entirely intransparent and must be treated as

black-boxes, a rule-based ensemble, even if it is very complex, arguably

encodes a lot of valuable information post-hoc interpretation methods

may directly access.

Optimization of Additional Target Measures Amajor advantage of the BOOMERalgorithm is its ability to learnmodels

that are deliberately tailored to a given target measure. In particular, it

is not only capable of optimizing decomposable loss functions but can

also deal with non-decomposable ones. In this work, we have restricted

ourselves to the Hamming and subset 0/1 loss as they are prototypical

examples of these two types of multi-label evaluationmeasures. However,

as argued in Section 3.3, both measures are rather extreme and come

with practical limitations when dealing with large datasets that consist

of hundreds or even thousands of labels. The subset 0/1 loss becomes

increasingly difficult to optimize as the number of labels increases and

often fails to provide meaningful estimates of a classifier’s performance.

Moreover, as the distribution of labels tends to be rather imbalanced in

such use cases (cf. Section 3.2), individual examples are often associated

with only a small fraction of the available labels. As a result, theHamming

loss is dominated mainly by irrelevant labels, and models that perform

well for this particular measure often suffer from low recall because

negative predictions have a higher chance of being correct than positive

ones. Other measures, such as the example-wise F1-measure or the

Jaccard index (see, e.g., Gouk, Pfahringer, and Cree, 2016, for a definition),

appear better suited in the scenario mentioned above. For example, the

F1-measure strives to balance precision and recall and therefore penalizes

classifiers that predict too cautiously for relevant labels. By implementing

a suitable surrogate loss function and an appropriate prediction strategy,

the BOOMER algorithm may be extended by the ability to optimize the

example-wise F1-measure. Surrogates for the F1-measure have previously

been proposed for use in logistic regression (M. Zhang, Ramaswamy,

and Agarwal, 2020) or deep neural networks (Bénédict et al., 2021). The

problem of inferring binary predictions from probabilistic classification

models, such that they are optimal with respect to the example-wise

F1-measure, has also been studied quite extensively in the literature (see,

e.g., Dembczyński, Jachnik, et al., 2013; Dembczyński, Waegeman, et al.,

2011).
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Exploitation of Label SparsityA significant amount of the BOOMER algorithm’s training time is spent

updating and aggregating the label space statistics, i.e., the gradients and

Hessians, that correspond to individual examples and labels. Compared

to using a decomposable loss function, where the number of label space

statistics depends linearly on the number of labels, this is especially

problematic if a non-decomposable loss function should be optimized

because the number of statistics grows quadratically in this case. As

shown in Chapter 8, gradient-based label binning helps to diminish the

computational costs of deriving loss-minimizing predictions from the

quadratic number of statistics. Nevertheless, the minimization of non-

decomposable losses remains costly. Our analysis has revealed that the

computation and aggregation of statistics become the new computational

bottleneck when GBLB is used. Therefore, reducing the number of

statistics that the algorithmmust dealwith is inevitable if one is interested

in applying it to large-scale datasets that includemany labels. Fortunately,

there is prior research that might help to achieve this goal. Si et al. (2017)

propose to exploit the fact that large multi-label datasets typically come

with high label sparsity. If this is the case, a simple default rule, which

predicts each label as irrelevant, already predicts correctly in most cases.

Consequently, the remaining rules can be focused on regions of the label

space where positive predictions are needed. By using surrogate loss

functions that fulfill specific mathematical properties, it can be ensured

that their gradients and Hessians evaluate to zero if a label is already

correctly dealt with by the default rule. This enables the use of sparse data

structures to store the label space statistics and reduces the computational

costs needed to update and aggregate them. In addition, to maintain a

high degree of sparsity among the statistics even after new rules have

been learned, individual rules should be restricted to small subregions of

the label space. This prohibits the use of complete rule heads that predict

for all available labels and thus are likely to introduce a large number

of non-zero statistics. Instead, a method for inducing partial multi-label

rules is required. Although the work of Si et al. (2017), which was partly

adopted by Z. Zhang and C. Jung (2020), is restricted to decomposable

loss functions and assumes first-order gradient boosting to be used,

it may serve as a foundation for enhancing the BOOMER algorithm’s

computational capabilities. Besides a methodology for the induction

of partial rules, this requires the investigation of non-decomposable

surrogate loss functions that fulfill the properties above.

Use of Dimensionality Reduction MethodsAs mentioned in Section 3.2, research on multi-label classification has

lately shifted towards applications with vast numbers of labels. Rather

than focusing on this emerging topic, which is referred to as extreme

multi-label classification, we have restricted ourselves to smaller datasets

that can be tackled without complexity reduction methods. However,

in the future, it might be desirable to apply the methods developed in

this thesis, in particular the BOOMER algorithm, to such large-scale

problems. As BOOMER is a problem adaptation method that can deal

with multiple labels directly, i.e., without the need for problem transfor-

mation approaches, it appears to be well-suited as a base learner in label

space transformation methods, such as those discussed in Section 3.8. For

example, this includes HOMER, which transforms a multi-label problem

into a hierarchy of smaller MLC tasks, or label embedding methods

that map a high-dimensional label space to a smaller subspace. Unlike

the problem adaptation methods typically used by said dimensionality
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reduction methods (cf. Section 3.7), BOOMER is capable of optimizing

non-decomposable loss functions. An experimental comparison to ex-

isting baselines may reveal whether this ability is advantageous when

applied to label subspaces. Another possible direction for future research

is the integration of dimensionality reduction methods into the rule

learning framework presented in Chapter 4. The framework provides

means to restrict individual rules to predetermined subsets of the avail-

able features, examples, or labels. Strategies for selecting random subsets

of the available features or examples have partly been used for the experi-

ments in this work, as they typically speed up training and result in more

diverse rules being learned. However, one could also investigate more

sophisticated methods that take information about the feature values of

the training examples or the distribution of their ground truth labels into

account. This does not only include existing feature selection methods

that have deliberately been designed for multi-label problems but also

enables rules to be tailored to specific subsets of the training data. The

latter appears to be especially interesting when combined with methods

for label selection. By identifying regions in the feature space where cer-

tain combinations of labels occur more frequently, one could learn rules

that are deliberately tailored to the respective subregion. Other labels,

which are ideally known to be uncorrelated with the considered labels

within the given subregion, can be ignored, as even the optimization

of non-decomposable loss functions cannot be expected to benefit from

taking interactions between them into account.

Comparison of Boosted Trees vs. Rules In this work, we have preferred rule-based model representations over

the closely related decision trees, not only due to their advantages in

terms of interpretability, but also as ensemble members in our gradient

boosting approach, where interpretability is not a key aspect. Even

though we have shown experimentally that the use of rules in a gradient

boosting setting can compete with gradient boosted decision trees in

terms of predictive performance, it remains unclear whether one of these

approaches provides significant advantages over the other. On the one

hand, both types of models rely on conditional statements that test for

the feature values of given examples and thus are restricted to decision

boundaries parallel to the axes of the feature space. Hence, it appears

unlikely that one approach is significantly more potent than the other,

given that the hyper-parameters of the respective learning algorithm

are chosen appropriately. On the other hand, decision trees are global

models that provide predictions for any given example, whereas a single

rule focuses on a particular region of the feature space. Compared to

the combination of global models, as is the case in gradient boosted

decision trees, rules might allow more efficient use of computational

resources by learning more rules for regions where accurate predictions

are difficult and fewer rules for regions that are easier to model. Such

behavior has also been found to be beneficial for computational efficiency

by the authors of LightGBM (Ke et al., 2017). Based on prior work by Shi

(2007), their GBDT method uses a “best-first” strategy, where only a few

branches of a decision tree — which can be viewed as individual rules

— are grown to the full extent, whereas less computational effort is put

into others. Nevertheless, a systematic comparison between the use of

decision trees and probabilistic rules in gradient boosting methods, with

a focus on computational efficiency, remains for future work.
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