Protein structure classification represents an important process in understanding the associations
between sequence and structure as well as possible functional and evolutionary relationships.
Recent structural genomics initiatives and other high-throughput experiments have populated the
biological databases at a rapid pace. The amount of structural data has made traditional methods
such as manual inspection of the protein structure become impossible. Machine learning has been
widely applied to bioinformatics and has gained a lot of success in this research area. This work
proposes a novel ensemble machine learning method that improves the coverage of the classifiers
under the multi-class imbalanced sample sets by integrating knowledge induced from different base
classifiers, and we illustrate this idea in classifying multi-class SCOP protein fold data. We have
compared our approach with PART and show that our method improves the sensitivity of the
classifier in protein fold classification. Furthermore, we have extended this method to learning over
multiple data types, preserving the independence of their corresponding data sources, and show
that our new approach performs at least as well as the traditional technique over a single joined
data source. These experimental results are encouraging, and can be applied to other bioinformatics
problems similarly characterised by multi-class imbalanced data sets held in multiple data
sources