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Abstract 

 

Semantic role labeling is an important stage in systems for Natural Language 

Understanding.  The basic problem is one of identifying who did what to whom for 

each predicate in a sentence.  Thus labeling is a two-step process: identify constituent 

phrases that are arguments to a predicate, then label those arguments with appropriate 

thematic roles. 

 

Existing systems for semantic role labeling use machine learning methods to assign 

roles one-at-a-time to candidate arguments.  There are several drawbacks to this 

general approach.  First, more than one candidate can be assigned the same role, which 

is undesirable.  Second, the search for each candidate argument is exponential with 

respect to the number of words in the sentence.  Third, single-role assignment cannot 

take advantage of dependencies known to exist between semantic roles of predicate 

arguments, such as their relative juxtaposition.  And fourth, execution times for 

existing algorithm are excessive, making them unsuitable for real-time use. 

 

This thesis seeks to obviate these problems by approaching semantic role labeling as a 

multi-argument classification process.  It observes that the only valid arguments to a 

predicate are unembedded constituent phrases that do not overlap that predicate.  Given 

that semantic role labeling occurs after parsing, this thesis proposes an algorithm that 

systematically traverses the parse tree when looking for arguments, thereby eliminating 

the vast majority of impossible candidates.    

 

Moreover, instead of assigning semantic roles one at a time, an algorithm is proposed to 

assign all labels simultaneously; leveraging dependencies between roles and eliminating 

the problem of duplicate assignment. 

 

Experimental results are provided as evidence to show that a combination of the 
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proposed argument identification and multi-argument classification algorithms 

outperforms all existing systems that use the same syntactic information. 
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Chapter 1 

Introduction 

 

Natural Language Processing (NLP) involves the general task of finding the structure of 

text at morphologic, syntactic and semantic levels (Jurafsky & Martin, 2000).  

“Broadly speaking, analyzing a sentence consists of segmenting it into words, 

recognizing syntactic elements and their relationships within the structure, and inferring 

a syntactico-semantic representation of the many concepts the sentence may express” 

(Carreras, 2005, p.11).  Several fundamental tasks in NLP are based on recognizing 

phrases or constituents of some type.  Examples of these tasks include Noun Phrase 

Bracketing, Chunking, Clause Identification, Named Entity Identification, Syntactic 

Analysis, Natural Language Parsing and Semantic Role Labeling.  The main 

differences between these tasks concern the nature of the phrases and the relations they 

exhibit in a sentence. Semantic Role Labeling (SRL) is, fundamentally, the problem of 

discovering who did what to whom (and possibly with what, where and when) in a 

sentence.  It is an essential step toward the ultimate goal of Natural Language 

Understanding, and is the subject of study in this thesis.   

 

Generally speaking, Semantic Role Labeling (SRL) is a two step process.  Firstly, all 

arguments must be identified with exact word spans, which is the process of identifying 

all arguments for each predicate in a sentence (argument identification).  Secondly, 

these arguments must be labelled with correct semantic roles, which is the process of 

assigning to them corresponding semantic role labels (argument classification).  

Existing systems label each argument of a predicate one-at-a-time, and thus cannot take 

advantage of real semantic dependencies that exist between different roles.  This thesis 

claims that more accurate assignment will be achieved if such dependencies are 

exploited for argument classification.   
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To test this theory, a Multi-Argument Classification (MAC) technique for semantic role 

assignment is proposed.  This technique labels a group of arguments simultaneously 

using a statistical pattern-matching (PM) algorithm and uses existing Singular-Argument 

Classification techniques to complete the assignment only when the database does not 

contain a fully-matching pattern.  In addition, this thesis also proposes a new 

tree-based pre-processor algorithm, Predicate Argument Recognition Algorithm (PARA), 

for argument identification to forward unlabelled arguments to classifiers.  Generally 

speaking, valid arguments are non-overlapping and not embedded within each other.  

State-of-the-art syntactic parsers such as Collins (1999) or Charniak (2000) already 

solve the overlapping problem and their output provides an ideal structure for finding 

arguments.  The remaining problem is to select valid semantic arguments from these 

non-overlapping constituents of parse trees obtained by a parser.  Cursory examination 

of hand-corrected parses reveals that upper-most nodes that do not include predicates are 

all valid arguments.  From this observation, PARA is proposed based on a hypothesis 

that the upper-most ancestor nodes in the parse tree that do not include predicates are the 

only potentially valid arguments and need not be rediscovered during argument 

identification.   

 

Experimental results are provided as evidence in support of these claims.  They show 

that the combination of PARA and PM using very basic features not only outperforms 

systems that use the same syntactic information in the CoNLL 2005 shared task 

(Carreras and Marquez, 2005) but offers competitive performance compared to the best 

system that uses rich features and rich syntactic information.  Therefore this thesis 

concludes that the proposed Multi-Argument Classification technique provides a more 

effective way to assign semantic role labels.  

 

 

1.1  Motivation 

Since 1999, the Conference on Natural Language Learning (CoNLL) has organized 

several shared tasks exploring many NLP problems.  Each edition poses a natural 
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language problem to be solved with Machine Learning (ML) techniques, with the aim of 

comparing different learning approaches in a common problem setting.  For a given 

problem, training and test data derived from existing corpora are prepared and made 

public for system development.  Systems can then be compared in terms of their 

performance based on standard evaluation measures computed on the test set.  These 

shared tasks include Noun Phrase (NP) Bracketing in 1999, Chunking in 2000, Clause 

Identification in 2001, Name Entity Recognition in 2002 and 2003, Semantic Role 

Labeling in 2004, and 2005, and Multi-lingual Dependency Parsing in 2006.  This 

thesis focuses on the problem studied in the CoNLL 2004 and 2005 shared tasks, 

namely Semantic Role Labeling (SRL). 

 

1.1.1  Semantic Role Labeling 

The task of Semantic Role Labeling is to find the arguments for all predicates (or verbs) 

in a sentence, and classify them according to semantic roles such as AGENT, THEME, 

and TIME.  AGENT is the argument having control of the action expressed by the 

predicate, THEME is the participant affected by the action of the predicate and TIME is 

when the action happens.  AGENT, and THEME are more usually assigned abstract 

labels such as A0 and A1 in the CoNLL shared tasks respectively.   

 

As articulated in the CoNLL 2004 and 2005 shared tasks:  

A semantic role in language is the relationship that a syntactic 

constituent has with a predicate.  Typical semantic arguments 

include Agent, Patient, Instrument, etc. and also adjunctive arguments 

indicating Locative, Temporal, Manner, Cause, etc. aspects.  

Recognizing and labeling semantic arguments is a key task for 

answering "Who", "When", "What", "Where", "Why", etc. questions 

in Information Extraction, Question Answering, Summarization, and, 

in general, in all NLP tasks in which some kind of semantic 

interpretation is needed.
1
   

 

                                                 
1
 http://www.lsi.upc.edu/~srlconll/  



 

 

4 

Consider the following example sentence, annotated with semantic roles from 

PropBank
2
: 

 

[A0 He ] [AM-MOD would ] [AM-NEG n't ] [V accept ] [A1 anything of value ] [A2 from those 

he was writing about ] .  

 

The roles for the predicate, “accept” and its related arguments are defined in the 

PropBank Frames scheme as:  

 

V: verb     A0: acceptor     A1: thing accepted   

A2: accepted-from   A3: attribute     AM-MOD: modal  

AM-NEG: negation 

 

An example of a syntactic tree for the sentence “The officer came to his office” and its 

semantic roles is shown in Figure 1.1.  “The officer” is the first argument and fulfills 

the role of Agent (or A0 in the PropBank annotation), for the predicate “came”, and “to 

his office” a local adjunct, AM-LOC, that includes a preposition, “to”.  A system for 

SRL must find all the arguments for the predicates in each sentence and assign semantic 

roles to each argument.   

 

 

 

 

 

 

 

 

 

 

Figure 1.1.  An example of a syntactic tree.  

                                                 
2
 http://www.cis.upenn.edu/~ace/ 
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1.1.2 Research Aspects 

The CoNLL shared tasks for SRL have drawn a multitude of different approaches and 

techniques, such as SRL with partial syntactic information in 2004 (Carreras and 

Marquez, 2004), and with full parses in 2005 (Carreras and Marquez, 2005).  This 

thesis proposes two novel methods to solve this problem:  

 

i) a syntax-driven pre-processor for identifying unlabelled semantic 

arguments, and  

ii) a Multi-Argument Classification technique instead of the commonly used 

Singular-Argument Classification. 

 

The first issue is argument identification.  Traditional argument recognizers have to 

spend time on each phrase and word to find all possible semantic arguments.  For 

example, in Figure 1.1, there are five phrases (i.e. internal nodes), and six words (i.e. 

leaves).  Each phrase or word is considered an argument candidate.  During argument 

identification, these argument candidates must be verified as valid arguments typically 

via a ML approach (such as the statistical estimation by Palmer et al., 2005), which 

considers a lot of unnecessary invalid nodes.   

 

In order to reduce computational time, Xue and Palmer (2004) describe a pruning 

strategy as a pre-processing step to filter out constituents that are clearly not semantic 

arguments to the predicate.  Briefly, their pruning strategy keeps as argument 

candidates the upper-most ancestor nodes and their children if the ancestor nodes are PP 

that do not include predicates.  For example, in Figure 1.1, the upper-most ancestor 

nodes not including the predicate, “come”, are the NP node, “The officer”, the PP node, 

“to his office”, and the PP child node “his office”.  Such a pruning strategy, which is 

widely used in Semantic Role Labelling systems helps reduce a number of incorrect 

arguments, more than 60% as articulated in Tsai et al. (2005). 
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Cursory examination of hand-corrected sentences reveals that all valid arguments are 

upper-most nodes in the parse tree.  This makes sense when one realises that the 

process of parsing eliminates the possibility of overlapping arguments.   Moreover, if 

argument identification proceeds top-down from the parse instead of bottom-up from the 

words, the problem of overlapping arguments goes away.  Therefore, this thesis 

hypothesizes that such upper-most ancestor nodes that do not include predicates are 

valid candidates of semantic arguments and do not need validation by ML estimations.  

The two arguments, NP and PP, in Figure 1.1, are examples of such candidates.  By this 

hypothesis, this thesis proposes a deterministic algorithm as a pre-processing step for 

argument identification.  It can directly map syntactic parses to unlabeled semantic (or 

predicate) arguments without verifying each candidate derived from their pre-processing 

method for better speed performance.   

 

The second issue is how to classify arguments.  Current systems on SRL are based on 

Singular-Argument Classification, which labels semantic roles for arguments one by one.  

These Singular-Argument Classification techniques do not make use of the constraint of 

role dependency when classifying arguments.  As an alternative methodology, this 

thesis introduces a Multi-Argument Classification technique to achieve better 

performance.  Unlike other systems that use Singular-Argument Classification in the 

CoNLL 2005 shared task, the Multi-Argument Classification technique is a group and 

memory-based approach, which can assign semantic roles for several argument 

candidates of a predicate at the same time.  The underlying approach of 

Multi-Argument Classification is to try to find all possible patterns for a test example 

from training data then select the best one according to some probability estimation, and 

uses Singular-Argument Classification to complete the assignment only when the 

database does not contain a fully-matching pattern.   

 

This thesis focuses on exploring and developing a framework to demonstrate solutions 

to SRL via the pre-processor for argument identification and the Multi-Argument 

Classification technique for argument classification.   
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1.2 Thesis Statement 

Semantic Role Labeling is a conversion between syntactic structure and semantic 

structure, and includes two parts: converting syntactic structure to unlabeled semantic 

structure, and finishing the construction of semantic structure by filling this unlabeled 

structure with semantic roles.  This thesis demonstrates improved accuracy of 

argument classification by constructing a model of Multi-Argument Classification and 

Singular-Argument Classification to associate unlabelled semantic structure with 

semantic roles.  Such unlabelled semantic structure can be identified via either a ML 

argument recogniser or a pre-processor to map syntactic structure to unlabelled semantic 

structure that is based on finding upper-most ancestor nodes in tree-based parses. 

 

1.2.1 Syntactic Structure and Semantic Structure 

Moschitti and Bejan (2004) state  

 

“there is no linguistic theory that supports the selection of syntactic 

features to recognize semantic structures.  As a consequence, 

researchers are still trying to extend the basic features with other ones 

to improve the flat feature space” (Moschitti and Bejan, 2004, p. 18).   

 

Despite the lack of an explicit theory to prove that syntactic structure can be directly 

converted into semantic structure, the problem must still be solved.  Computational 

linguists like Gildea and Jurafsky (2002) propose feature-based systems to solve this 

conversion task.  These features (including basic ones such as phrase type, head word 

of a phrase, and so on,) found in syntactic structure are forwarded to a learning system 

and Semantic Role Labeling is inferred by finding similarity between test data and 

training data through various techniques. 

 

The aim of computational research in Semantic Role Labeling is to design a system that 

exploits the similarity between syntactic structure in a test case and a training example 

according to probability estimation of syntactic features.  Two structures can be an 



 

 

8 

exact match, partially the same, or not related.  Computational linguistics focuses on 

Machine Learning approaches to measure similarity and to infer a solution for the 

semantic roles even though there is no substantial linguistic theory yet to validate this 

process. 

 

Current research has demonstrated the feasibility of converting from syntactic to 

semantic structure.  This thesis  

i) demonstrates that it is possible to recognize unlabelled semantic arguments 

deterministically in syntactic structure, and  

ii) provides a technique to label all unlabelled semantic arguments 

simultaneously with semantic roles by utilizing role dependencies.   

 

1.2.2  Techniques for the conversion  

This thesis develops techniques for argument identification and argument classification 

using a combination of heuristic algorithms and machine learning approaches to achieve 

faster and more accurate Semantic Role Labeling than existing systems provide. 

 

Heuristic algorithms are handcrafted rules that help to offer general solutions to a 

system.  These heuristic algorithms are introduced mainly to mitigate any problems of 

data sparseness.   

 

This thesis proposes heuristic algorithms of two types: 

1) a general algorithm for argument identification (PARA); and  

2) some pre-processing and post-processing rules for SRL. 

 

Machine Learning techniques, adopted when the heuristic algorithms do not suit each 

individual case or do not perform well, serve to predict which phrases of a sentence 

form arguments for predicates, and which labels should be assigned to them.  The 

Machine Learning techniques studied in this thesis include: 

1) an improved statistical approach based on Singular-Argument Classification 

(SAC) as a baseline system; and 
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2) a new technique, Pattern-Matching (PM) for Multi-Argument Classification 

(MAC), which utilizes role relationships in the semantic structures (such as is 

found in a semantic list [A0 V A1] as shown in Figures 1.2 and 1.3). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2.  An example of a trained sentence with semantic roles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3.  An example of a test sentence. 
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The new technique is predicated on the ability to exploit relationships between roles in a 

predicate-argument list or pattern.  There exists a dependency relationship in a 

predicate-argument pattern such as [A0 V A1], [A1 V] and so on.  Such a relationship 

in a predicate-argument structure is called semantic role dependency.  For example, in 

Figure 1.2, the predicate-argument structure [A0 V A1] is a pattern with two roles “A0” 

and “A1” positioned before and after the predicate “V” respectively, where A0 must 

precede A1 on either side of the predicate, and each role must be unique.     

 

Existing argument classifiers do not make use of this semantic role dependency in their 

classification stage due to their limitation of singular argument classification.  

Therefore, they need to include some post-processor step to avoid duplicate typical roles 

or core roles (like A0 or A1).  The proposed PM, utilizing the constraint of semantic 

role dependency, helps to boost accuracy performance in the classification stage 

compared to singular-argument classifiers (like Palmers et al, 2005). 

 

This thesis outlines discriminative strategies for learning the predictors of argument 

identification and argument classification, focuses on differences between heuristic 

algorithms and machine learning techniques, and incorporates advantages of different 

models and systems. 

 

Techniques of machine learning techniques and heuristic algorithms in this thesis are 

designed with two main concerns: accuracy and speed.  

 

The first issue, accuracy, concerns the performance of the system when finding 

semantic relations that different phrases exhibit in a structure.  In a sentence, phrases 

group words that together represent a linguistic element of some nature.  For example, 

the sentence “the dog bites a tennis ball” can be segmented into three basic syntactic 

phrases: a noun phrase (the dog), a verb (bites), and another noun phrase (a tennis ball).  

Semantic Role Labeling must find constituents or groups of words related to predicates 

and classify these constituents with correct labels (for example, the semantic roles 
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defined in PropBank).  In the syntactic domain, it is common that a noun phrase is 

followed by a verb phrase.  The former is usually the agent of the predicate expressed 

in the verb phrase, as “the dog” in “the dog bites a tennis ball”.  When there is an 

Agent in a semantic structure, there will not be another Agent in the same semantic 

structure.  One of the advantages of the methods proposed in this thesis is that they can 

utilize this role dependency as a useful constraint and help to increase labelling accuracy.  

Chapter 5 details this technique (Multi-Argument Classification) and shows the 

experimental results. 

 

The second issue is speed.  Structurally, a sentence is a sequence of words.  The 

number of possible phrases in a sentence grows quadratically with the length of the 

sentence, and the space of possible phrase structures is of exponential size (Carreras, 

2005).  For example, in Figure 1.2, the number of words in the training sentence is 

three, but there are five nodes of possible phrases in the syntactic tree.  These five 

nodes are S, NP (before the predicate), VP, VBD, and NP (after the predicate).  The 

space of possible phrase structures can be all combinations of any words in the sentence, 

which form a set of {“He”, “hit”, “her”, “He hit”, “hit her”, “He hit her”, and none of 

them}.  If SRL is based on words, which is a bottom-up search, a lot of unnecessary 

calculation is entailed.  

 

As an alternative, SRL can be solved by finding constituents as argument candidates 

through a top-down search to improve the processing time.  These phrases or 

constituents are already generated by the syntactic parsers such as Collins (1999) or 

Charniak (2000) and need not be rediscovered during argument identification.  The 

CoNLL 2005 shared task shows that these state-of-the-art ML parsers can provide good 

performance for converting a syntactic structure from plain text to a syntactic tree, 

therefore role labelling can proceed considering only pre-parsed constituents. 

  

These parse trees have helped argument classifiers to reduce the different combination 

of words like the claim of the necessity of parsing for predicate argument recognition 

(Gildea and Palmer, 2002), but they also include a lot of embedded nodes.  An invalid 
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argument of a constituent “his office” in Figure.1.1 is embedded in the valid argument 

node “to his office”. This thesis proposes a refined algorithm (called 

Predicate-Argument Recognition Algorithm, PARA) that helps to convert a syntactic 

parse tree to semantic arguments more efficiently and correctly.  Chapter 4 details this 

direct mapping methodology and shows the experimental results. 

 

 

1.3 Contributions 

This thesis makes contributions in the form of new methodologies for SRL including:  

1) a direct mapping algorithm, Predicate-Argument Recognition Algorithm (PARA) 

for argument identification;  

2) a new technique, Multi-Argument Classification implemented by 

Pattern-Matching (PM) for argument classification; 

 

Specific contributions of these methodologies are itemised as follows: 

 

Contribution to the problem of argument identification: 

� Demonstration that it is possible to design a heuristic algorithm for directly 

mapping from parse trees to semantic arguments without any training. 

� Demonstration that this approach outperforms existing systems for the CoNLL 

2005 shared task using the same syntactic information.   

� Demonstration that the proposed heuristic approach reduces execution time when 

compared to ML approaches. 

� Evidence that this algorithm can be used as a pre-processor for argument 

identification to improve existing ML role classifiers, such as Palmer et al. (2005). 

� Evidence that this algorithm is robust in a variety of corpus domains. 

 

Contribution to the problem of argument classification: 

� Demonstration that it is possible to do Multi-Argument Classification using the 

same input as was provided for the CoNLL 2005 shared task. 
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� Evidence that Multi-Argument Classification in SRL boosts the performance of 

argument classification in comparison to a statistical role classifier, (specifically 

the labeller of Palmer et al. 2005).  

� Evidence that the combination of the Predicate-Argument Recognition Algorithm 

(PARA) as a pre-processor and the proposed multi-argument technique with basic 

syntactic features achieves better performance than existing systems that use rich 

syntactic features based on the same syntactic information. 

 

 

1.4 Thesis Structure 

The research presented in this thesis is organized as follows.  

 

A background of Semantic Role Labeling is presented in Chapter 2.  The chapter 

explains the main concepts involved in Semantic Role Labeling research based on 

supervised machine learning.  It also reviews the relevant literature including 

domain-independent and specific semantic roles, basic features used in Semantic Role 

Labeling, the CoNLL shared tasks, and latest approaches. 

 

An existing statistical approach in Semantic Role Labeling is described and 

reimplemented in Chapter 3.  The chapter describes some improvements based on a 

statistical estimation proposed by Palmer et al. (2005).  This thesis uses this modified 

system as a baseline because of its simplicity.  Some heuristic improvements are 

proposed for this system, which are also included as part of the new technique in 

Chapter 5.  

     

A tree-based Predicate-Argument Recognition Algorithm (PARA) presented in Chapter 

4 is one of the main contributions of this thesis for the sub-problem, argument 

identification.  This chapter demonstrates it is possible to achieve a direct mapping 

from syntactic parses to semantic arguments in Semantic Role Labeling.  Despite being 

based solely on heuristic rules, this algorithm not only produces comparable results to 
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the best system for argument recognition in the CoNLL 2005 shared task but also 

outperforms existing approaches using the same syntactic information.   

 

Existing systems for role classification are all singular argument classifiers.  Chapter 5 

describes the second (and more significant) contribution of this thesis: argument 

labeling using Multi-Argument Classification.  In order to boost performance, the 

technique for Multi-Argument Classification builds upon the technique of 

Singular-Argument Classification introduced in Chapter 3.  This chapter first describes 

the architecture of the system and then proposes a new approach combined with 

traditional role classifiers to deal with novel role patterns.  The system is analyzed by 

extensive empirical experimentation, showing that the system provides good 

performance.   

 

The last chapter, Chapter 6, discusses conclusions to the work presented in this thesis 

and outlines future research directions. 
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Chapter 2 

Background 

 

This chapter provides the linguistic background for Semantic Role Labeling (SRL), 

which includes two types of semantic roles: domain-independent and domain-dependent.  

The SRL problem is defined in Section 2.2 and domain-independent semantic role 

assignment is discussed in Section 2.3, domain-dependent semantic role assignment in 

Section 2.4, and the CoNLL 2005 shared tasks in Section 2.5. 

 

 

2.1 Introduction 

The goal of Semantic Role Labeling (SRL) is to find all arguments for all predicates in a 

sentence (argument identification), and classify them according to semantic roles such 

as AGENT, THEME, TIME (argument classification).  AGENT is the argument having 

control of the action expressed by the predicate, THEME is the participant affected by 

the action of the predicate and TIME is when the action happens.  General thematic 

roles are classified as AGENT, THEME, and TIME.  These classifications were 

proposed in Fillmore (1968) and Jackendoff (1972) to explain the syntactic realization 

of semantic arguments.  Gildea and Jurafsky (2002, p. 279) note that “This level of 

roles, often called thematic roles, was seen as useful for expressing generalizations 

such as ‘If a sentence has an AGENT, the AGENT will occur in the subject position’, 

and such correlations might enable a statistical system to generalize from one semantic 

domain to another.”  Another set of role annotations in the PropBank
1
, introduced by 

Palmer et al., (2005) has verb-specific numbered roles, such as A0 and A1, and 

modifiers, such as temporal markers and locatives.  Palmer et al., (2005) used numeric 

                                                 
1
 http://www.cis.upenn.edu/~ace/ 
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roles beginning with zero (A0) instead of general thematic roles (such as AGENT) for 

each verb or predicate.  They use numerated roles to avoid disputing the meanings of 

labels.   Generally, A0 is the argument exhibiting features of a prototypical AGENT 

(Dowty 1991), while A1 is a prototypical THEME.  But no consistent generalizations 

can be made across verbs for the higher-numbered arguments such as A2, A3, and so on.  

More details are introduced in Section 2.2 and Section 2.3. 

 

In order to ground what has been discussed so far, an example of SRL is given for the 

following sentence. 

 

(Ex. 2.1) John, who kicked Mary this morning, was scolded by his mother at home. 

 

The parse tree of this sentence is shown in Figure 2.1.  There are two predicates “kick” 

and “scold”.  The arguments associated with the predicate “kick” are “John”, “who”, 

“Mary” and “this morning”, which are subject, reference of subject, object, and time 

modifier respectively (Gildea and Jurafsky, 2002).  Their shallow semantic roles are A0, 

R-A0, A1, and AM-TMP, respectively, using the definition from PropBank.  A0 refers 

to the subject of the predicate; R-A0 to the reference of this subject; A1 to the object of 

the predicate; and AM-TMP to the time modifier.  The arguments associated with the 

predicate “scold” are “John, who kicked Mary this morning”, “by his mother”, and “at 

home”, which are the subject, object, and location modifier respectively.  The semantic 

roles using the definition of PropBank, are denoted as A1, A0, and AM-LOC 

respectively. 
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Figure 2.1.  Parse tree for (Ex 2.1). 

 

 

2.2  Problem definition 

In a sentence, phrases group words that together represent a linguistic element of some 

nature.  For example, the sentence “the dog bites a tennis ball” can be segmented into 

three basic syntactic phrases: a noun phrase (the dog), a verb phrase (bites), and another 

noun phrase (a tennis ball).  SRL seeks to find constituents or groups of words related 

to predicates and classify these constituents with correct labels.  The following is a 

definition of the general problem discussed in this thesis, in the context of a supervised 

learning problem, and a description of the standard evaluation method of a SRL system. 

 

Let X be the space of sentences of a language.  Let Y be the space of labeled argument 

structures for sentences.  In particular, an element y belonging to Y is a set of labeled 

arguments constituting a well-formed bracketing in a sentence (that is, arguments do not 

overlap, though they admit embedding in a sentence).   
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Given a training set S = { (x1; y1), . . . , (xm; ym) }, where xi are sentences in X, and yi 

are argument structures in Y, the goal is to construct a function, R : X � Y that 

correctly recognizes arguments with correct labels on unseen sentences with given 

predicates. 

 

For example, in Figure 2.1, the sequence of words, “Mary this morning” after the 

predicate “kicked” can be a set of one argument with three words, {“Mary this 

morning”}, a set of two arguments, {“Mary”, “this morning”}, {“Mary this”, “morning”} 

or {“Mary morning”, “this”}, a set of three arguments {“Mary”, “this”, “morning”}, or 

null, which means there are no arguments in this sequence.  The valid set of arguments 

is {“Mary”, “this morning”}.  The two arguments are evaluated as correct semantic 

roles if and only if they have the correct words (or word spans in the sentence) and are 

also assigned the correct role labels, which are A1 and AM-TMP according to PropBank 

respectively.  The result would be incorrect if the semantic roles were the same but 

with different word spans, such as the set of result {“Mary this”, “morning”} with roles 

{A1, AM-TMP}. 

 

Therefore, the goal of SRL is to find all arguments with correct word spans in a sentence 

(argument identification) and classify these arguments with correct semantic roles 

(argument classification).  An argument related to a predicate is correct if and only if 

both word spans and labels in that argument are correct. 

 

There are two types of semantic roles: domain-dependent and domain-independent.  

Generally, when we refer to semantic roles like AGENT or THEME, they are 

domain-independent, which means these roles reveal a general semantic concept for 

predicates.  For example, subjects of active predicates are always “AGENTs”.  The 

subjects of an active predicate in a domain-dependent setting vary according to the 

domain concerned.  The following sections, 2.2 and 2.3, describe domain-independent 

and domain-dependent semantic roles respectively. 
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Roles Liu Rosa Description 

AGENT ＋ ＋ the argument having control of the action 

expressed by the predicate 

EXPERIENCER  ＋ the participant who does not have control of an 

action, expressing a psychological state 

CAUSE ＋ ＋ the argument that initiates the action expressed by 

the predicate without controlling it 

PATIENT  ＋ the participant affected directly by the action of the 

predicate, usually changing state 

THEME ＋ ＋ the participant affected indirectly by the action of 

the predicate without changing state 

SOURCE ＋ ＋ the entity where the action originates 

GOAL ＋ ＋ the entity towards which the action takes place 

BENEFICIARY ＋ ＋ the referent that receives some advantage or 

disadvantage from the action 

VALUE/ QUANTITY ＋ ＋ the quantity 

INSTRUMENT ＋ ＋ the tool used in the action 

MANNER ＋  the way in which the action is performed 

TIME ＋  when the action happens 

LOCATION ＋  where the action happens 

PROPOSITION ＋  the argument that is a plan, an offer, or a subject 

suggested by the predicate 

RESULT ＋  the argument that is initiated by the action 

expressed by the predicate 

 

Table 2.1.  Lists of semantic roles introduced by Liu and Soo (1993) and Rosa and 

Francozo (1999) 
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2.3 Domain-independent semantic roles 

Linguistic theory refers to the roles words have in relation to a verb as semantic roles 

(Haegeman, 1991).  The verb is called the predicate.  The semantic relationships 

between a group of words or phrases in a sentence are accounted for by the assignment 

of semantic roles. 

 

2.3.1  Semantic Roles 

Various sets of semantic roles have been proposed.  For example, Liu and Soo (1993) 

described thirteen semantic roles, and Rosa and Francozo (1999) used another set of ten 

terms.  Both semantic roles or thematic role sets are shown in Table 2.1.  The 

following examples show semantic roles in brackets (using Liu’s definition): 

 

(Ex. 2.2) Bill [AGENT] knocked John [THEME] twice [QUANTITY] with a stone 

[INSTRUMENT] in school [LOCATION] yesterday [TIME]. 

(Ex. 2.3) Mary [BENEFECIARY] won $300 [QUANTITY] from Lotto [SOURCE] last 

week [TIME]. 

(Ex. 2.4) The fire [CAUSE] killed two persons [PATIENT]. 

 

In (Ex. 2.2), “Bill” has control of the “knock” action and has performed it twice to affect 

the participant “John” with an instrument “stone” in the location “school”.  The 

temporal factor of this action is “yesterday”.  In (Ex. 2.3), a beneficiary “Mary” has an 

action “win”, which was happened “yesterday”.  The QUANTITY of reward is $300 

obtained from the SOURCE, “Lotto”.  In (Ex. 2.4), “two persons” is the PATIENT and 

“the fire” is the CAUSE of the action “kill”. 

 

In general, a noun phrase constituent of a sentence may have different semantic roles for 

different verbs in different uses.  For example, “Bill” has different semantic roles in the 

following examples (using Liu’s definition). 
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(Ex. 2.5) Bill [AGENT] turned on the light. 

(Ex. 2.6) Bill [BENEFICIARY] inherited a million dollars. 

(Ex. 2.7) The magic wand turned Bill [THEME] into a frog. 

 

Even with the same predicate, the structure of semantic roles can change.  In the 

sentence 

 

(Ex. 2.8) The man [AGENT] broke the window [PATIENT] with the stone 

[INSTRUMENT], 

 

one can intuitively find an AGENT (the man), a THEME (the window), and an 

INSTRUMENT (the stone) so that one can say that break has a semantic structure with 

the roles [AGENT, PATIENT, INSTRUMENT] for ‘the man’, ‘the windows’ and ‘the 

stone’ respectively.  But this structure can change, depending on the sentence.  For the 

sentence 

 

(Ex. 2.9)  The stone broke the vase 

 

there is a different semantic structure, since the stone is a CAUSE (it causes the action) 

and the vase is a THEME.  The difference between (Ex. 2.8) and (Ex. 2.9) is that 

although the same verb is employed (break), no AGENT or INSTRUMENT is expressed 

in (Ex. 2.8); thus, the semantic structure for (Ex. 2.9) – [CAUSE, THEME] – is different 

from the semantic structure for (Ex. 2.8). 

 

There is no standard definition for general semantic roles.  Table 2.2 shows another set 

of abstract semantic roles defined in Gildea and Jurafsky (2002), with representative 

examples from the FrameNet corpus
2
 (Baker, Fillmore, and Lowe, 1998) (Fillmore and 

Baker 2000).  All predicates are underlined and italicized and the corresponding roles 

are emboldened and highlighted. 

 

 

                                                 
2
 http://www.icsi.berkeley.edu/~framenet/ 
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Role Example 

AGENT Henry pushed the door open and went in. 

CAUSE Jeez, that amazes me as well as riles me. 

DEGREE I rather deplore the recent manifestation of Pop; it doesn’t seem to me 

to have the intellectual force of the art of the Sixties. 

EXPERIENCER It may even have been that John anticipating his imminent doom 

ratified some such arrangement perhaps in the ceremony at the Jordan. 

FORCE If this is the case, can it be substantiated by evidence from the history 

of developed societies? 

GOAL Distant across the river, the towers of the castle rose against the sky 

straddling the only land approach into Shrewsbury. 

INSTRUMENT In the children with colonic contractions, fasting motility did not 

differentiate children with and without constipation.  

LOCATION These fleshy appendages are used to detect and taste food amongst the 

weed and debris on the bottom of a river. 

MANNER His brow arched delicately.  

NULL Yet while she had no intention of surrendering her home, it would be 

foolish to let the atmosphere between them become too acrimonious. 

PATIENT As soon as a character lays a hand on this item, the skeletal Cleric grips 

it more tightly.  

PATH The dung-collector ambled slowly over, one eye on Sir John. 

PERCEPT What is apparent is that this manual is aimed at the non-specialist 

technician, possibly an embalmer who has good knowledge of some 

medical procedures.  

PROPOSITION It says that rotation of partners does not demonstrate independence. 

RESULT All the arrangements for stay-behind agents in north-west Europe 

collapsed, but Dansey was able to charm most of the governments in 

exile in London into recruiting spies. 

SOURCE He heard the sound of liquid slurping in a metal container as Farrell 

approached him from behind. 

STATE Rex spied out Sam Maggott hollering at all and sundry and making 

good use of his over-sized red gingham handkerchief. 

TOPIC He said, “We would urge people to be aware and be alert with 

fireworks because your fun might be someone else’s tragedy.” 

 

Table 2.2.  Abstract semantic roles reproduced from Gildea and Jurafsky (2002). 
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Note that not all predicates or targets defined in FrameNet are verbs, for example “alert” 

in the “TOPIC” example, is an adjective. 

 

2.3.2  Proposition Bank (PropBank) 

The Proposition Bank (PropBank) (Pamler et al., 2005) is a version of the Penn 

TreeBank
3
 annotated with verb argument structure discussed here in detail because it 

will be used throughout this thesis   It introduces another domain-independent 

semantic role set with so-called shallow semantic roles such as A0, A1 (as core roles), 

representing roles similar to AGENT, THEME, and AM-TMP, AM-LOC (as adjunctive 

roles), representing temporal, locative roles. 

 

The semantic roles covered by PropBank are as follows: 

 

- Numbered arguments (core roles): Arguments defining verb-specific roles 

including A0, A1, A2, A3, A4, A5, AA; 

 

- Adjuncts (adjunctive roles): General arguments that any verb may take optionally 

including AM-ADV, AM-CAU, AM-DIR, AM-EXT, AM-LOC, AM-MNR, 

AM-MOD, AM-NEG, AM-PNC, AM-PRD, AM-REC, AM-STR, AM-TMP, AM. 

 

The following section illustrates the definition and examples of semantic roles in 

PropBank including core roles and adjunctive roles, based on the description by Olga 

Babko-Malaya
4
. 

 

 

Core roles 

Olga Babko-Malaya states that there is no attempt made to ensure consistency of 

mapping between argument labels and the "roles" played by the arguments themselves 

in PropBank.  In other words, the argument labels have no intrinsic meaning.  For any 

                                                 
3
 http://www.cis.upenn.edu/~treebank/ 

4
 http://verbs.colorado.edu/~mpalmer/projects/ace/FramingGuidelines.pdf  
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individual verb or predicate, the mapping from argument label to semantic role is 

arbitrary, but it is consistent.  For instance, in the examples below A0 maps to “agent” 

or “one offering”, A1 to “theme” or “thing offered”, and A2 to “beneficiary” or “person 

being offered to”. 

 

(Ex. 2.10) ...the company [A0] to offer [V] a 15% stake [A1] to the public[A2]. 

(Ex. 2.11) ...Sotheby[A0] offered [V] the Dorrance heirs [A2] a money-back 

guarantee[A1]. 

(Ex. 2.12) ...an amendment [A1] offered [V] by Rep. Peter DeFazio...[A0] 

(Ex. 2.13) ...Subcontractors [A2] will be offered [V] a settlement...[A1] 

 

A0 .. A2 are arguments associated with a verb predicate, defined in the PropBank 

Frames scheme.  If an argument satisfies two roles, the highest ranked argument label 

should be selected, where A0 >> A1 >> A2 >>… . 

 

The role, AA, in PropBank denotes causative agents.  An example of AA from the 

CoNLL 2005 shared task is: 

 

(Ex. 2.14) “Moreover, your hypothetical investor has forsaken the gains to be had in 

reducing risk by diversifying his portfolio.” 

 

The argument “your hypothetical investor” to the predicate “diversifying” is assigned 

the label AA denoting the causative agent for the argument, and the argument “his 

portfolio” the label A0. 

 

The semantics of core roles depend on the verb and the verb usage in a sentence.  

Generally, the most frequent roles are A0 and A1 and, commonly, A0 stands for the 

agent and A1 corresponds to the patient or theme of the proposition. 
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Adjunctive roles 

Directionals (AM-DIR), Locatives (AM-LOC), Manner Markers (AM-MNR), Temporal 

Markers (AM-TMP), Extent Markers (AM-EXT), Reciprocals (AM-REC), Markers of 

Secondary Predication (AM-PRD), Purpose clauses (AM-PNC), Cause clauses 

(AM-CAU) Discourse Markers (AM-DIS), Adverbials (AM-ADV), Modals 

(AM-MOD), Negation (AM-NEG), Stranded (AM-STR) and Bare ArgM (AM) are 

adjunctive roles or functional tags.  Those adjuncts are defined in PropBank as optional 

elements within the argument structure of a verb.  Following are more details for each 

adjunct (summarized from Olga Babko-Malaya). 

 

1. Directionals (DIR) 

Directionals are markers that show motion along some path.  Both source 

and goal are grouped under the directional tag, and if there is no clear path 

being followed, a location marker should be used instead.  For example, 

“walk along the road” is a directional, but “walk around the countryside” is a 

location. 

 

2. Locatives (LOC) 

Locatives indicate where an action takes place.  The label is not restricted to 

physical locations, but abstract locations are included as well.  For example, 

the italic words in the sentence of “in his speech he was talking about …” are 

labeled as a location. 

 

3. Manner Markers (MNR) 

A classical adverb shows how an action is performed.  For example, works 

well with others is a marker of manner.  Manner tags should be used when an 

adverb is an answer to a question starting with how. 

 

4. Temporal markers (TMP) 

Temporal markers show when an action took place, such as in 2007, next 

Wednesday, sooner or later or now.  Adverbs of frequency (e.g. often, 
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always, or sometimes, but never is an exception, see NEG below), adverbs of 

duration (for a year/in an year), order (e.g. first), and repetition (e.g. again) 

are also included in this category. 

 

5. Extent Markers (EXT) 

Extent Markers indicate the amount of change occurring from an action.  It is 

mostly used for numerical adjuncts like “raised prices by 10%”, quantifiers 

such as a lot, and comparatives such as “he raised prices more than she did”. 

 

6. Reciprocals (REC) 

Reciprocals include reflexives and reciprocals such as himself, itself, 

themselves, together, each other, jointly, both, which refer back to one of the 

other arguments.  These two arguments are co-indexed.  Thus, “John and 

Mary killed each other” is a reciprocal.  This marker is also used for 

reflexives, as in “John killed himself.” 

 

7. Markers of secondary predication (PRD) 

Markers of secondary predication are used to show that an argument (or rarely 

an adjunct) of a predicate is in itself capable of carrying some predicate 

structure.  Typical examples include resultatives (e.g. “The boys pinched 

them dead”, and depictives (e.g. “upplied as security in the transaction”. 

 

8. Purpose clauses (PRP) 

This is a special type of secondary predication, which is used to show the 

reason or motivation for some action.  Therefore, clauses starting with 

“because of” or “in order to” belong to the purpose clauses. 

 

9. Cause clauses (CAU) 

Similar to “Purpose clauses”, Cause clauses indicate the reason for an action.  

Clauses starting with “because” or “as a result of” are cause clauses.  

Questions with ‘why’ also belong to this marker. 
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10. Discourse Markers (DIS) 

Discourse Markers are tags which connect a sentence to other sentences in the 

context.  They include small items such as also and however but also clauses 

such as we have seen before.  Examples of discourse markers are also, 

however, too, as well, but, and, as we have seen before, instead, on the other 

hand, for instance, etc.  Conjunctions such as but or and are only marked as 

DIS, if they occur at the beginning of the sentence. 

 

11. Adverbials (ADV) 

Adverbials are used for syntactic elements which clearly modify the event 

structure of the verb in question, but which do not fall under any of the 

headings above. 

 

12. Modals (MOD) 

Any of the modal verbs will be assigned as modal markers.  Modals are: will, 

may, can, might, should, could, would, probably.  Phrasal modals such as 

going to and used to are included in this category. 

 

13. Negation (NEG) 

The negation tag is used for elements such as not, n't, never, no longer and 

other markers of negative sentences. 

 

14. Stranded (STR) 

The stranded tag is not a modifier tag, meaning that it does not mark a certain 

type of modifier and does not appear in the final, or released, version of 

Propbank annotations.  The use of the tag is motivated by technical reasons.  

This research disregards this tag because no examples of this tag appeared in 

the data of the CoNLL 2005 shared task. 
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15. Bare ArgM 

A bare ArgM is often used as an adjunctive clause, which modifies one of the 

arguments of the verb, but is syntactically attached as an adjunct of the VP.  

An example of a Bare ArgM marker from the CoNLL 2005 shared task is: 

 

(Ex. 2.15) “At the new rate, that would give them about $30 to travel on.” 

 

The argument, “about $30” to the predicate “travel” is assigned as Bar ArgM, 

which is used as an extra posed relative clause to modify the argument, 

“them” assigned as A0, but attached as an adjunctive role. 

 

References, Continuation and Predicate 

There are another two general roles assigned to all core roles and adjuncts, 

which are reference and continuation roles denoted as R-*, and C-*.  

Example 2.1 from Section 1.1 shows the referential role on A0, denoted as 

R-A0 for the predicate, “kick”. 

 

Predicates denoted as V include the continuation role as well, denoted as C-V.  

For example, the sentence “Kao [A0] took [V] U.S. market share [A1] away 

[C-V] from the mighty P&G [AM-MNR]” shows there is a continuation 

predicate (or verb particle) in the argument “away”. 

 

 

2.4 Domain-dependent semantic roles 

Domain-dependent semantic role assignment includes different semantic frames, and 

frame elements (like semantic roles), and related target words (also called predicates or 

lexical units).  Domain-dependent semantic roles represent the participants in an action 

or relationship captured by a semantic frame, which is a script-like conceptual structure 

that describes a particular type of situation, object, or event along with its participants 

and props.  For example, the Cooking_creation frame describes a common situation 
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involving a Cook, some Produced_food, raw Ingredients, and Heating_Instrument 

according to the definition in the FrameNet database as follows: 

 

“Cooking_creation : This frame describes food and meal preparation.   

A Cook creates a Produced_food from (raw) Ingredients. The 

Heating_Instrument and/or the Container may also be specified.  

(ex) Caitlin BAKED some cookies from the pre-packaged dough.” 

 

“Current information extraction and dialogue understanding systems are based on 

domain-dependent frame-and-slot templates to extract facts about such things as 

financial news, or interesting political events” (Gildea and Jurafsky, 2002).  For 

example, systems for booking airplane information are based on domain-dependent 

frames with slots like FROM_AIRPORT, TO_AIRPORT, or DEPART_TIME (Stallard 

2000).  Systems for studying mergers and acquisitions are based on slots like 

JOINT_VENTURE_COMPANY, PRODUCTS, RELATIONSHIP, and AMOUNT 

(Hobbs et al. 1997). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2.  Sample semantic frames from the FrameNet Lexicon. 

Frame:    Giving 

Frame Elements:  Donor 

    Recipient 

    Theme 

Lexical Unit: bequeath.v, donate.v, donation.n, donor.n, endow.v, 

fob_off.v, foist.v, gift.n, gift.v, give.v, give_out.v, hand_ 

in.v, hand.v, hand_out.v, hand_over.v, pass.v, pass_out.v, 

treat.v 

 

Frame:    Adding_up 

Frame Elements:  Cognizer 

    Numbers 

    Result 

Lexical Unit:  add_up.v, number.v, tally.v, total.v 
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A hand-labeled dataset called the FrameNet database (Baker, Fillmore, and Lowe, 1998; 

Fillmore and Baker 2000) (http://www.icsi.berkeley.edu/~framenet/) proposes roles that 

are neither as general as the ten abstract thematic roles, nor as specific as the thousands 

of potential verb-specific roles.  The latest FrameNet lexical database (release 1.3) 

contains more than 10,000 targets words, more than 6,000 of which are fully annotated, 

in nearly 800 semantic frames, exemplified in more than 135,000 annotated sentences.  

Figure 2.2 illustrates two semantic frames, Giving and Adding_up, and their 

corresponding frame elements. 

 

The Giving frame is invoked by semantically related verbs – bequeath, donate, endow, 

fob_off, foist, gift give, give_out, hand_in, hand, hand_out, hand_over, pass, pass_out, 

and treate as well as the nouns donation, donor, and gift.  The roles defined for this 

frame, and shared by all its lexical entries, include three frame elements, Donor, 

Recipient and Theme.  Theme is the object that changes ownership.  Recipient is the 

entity that ends up in possession of the Theme.  And Donor is the person that is in 

possession of the Theme and causes it to be in the possession of the Recipient.   

Similarly, the Adding_up frame has the roles Cognizer, Numbers, and Result, and is 

invoked by verbs like add_up, number, tally and total.  Cognizer is the person doing 

the calculation.  Numbers are the numbers that are used in the calculation, and Result is 

the outcome of the Cognizer’s calculation. 

 

A number of annotated examples from the JUDGMENT frame by Gildea and Jurafsky 

(2002) are included in Figure 2.3.  The related frame elements or semantic roles are 

bracketed.  More details and resources are listed in the FrameNet project.
5
 

 

There are many resources related to SRL such as a free Lexical Conceptual Structure 

(LCS)
6
 knowledge database for thematic and semantic roles, a lexical database for 

English language called WordNet
7
, a verb-structure database called VerbNet

8
, and so on.  

                                                 
5
 http://framenet.icsi.berkeley.edu/ 

6
 http://www.umiacs.umd.edu/~bonnie/LCS_Database_Documentation.html 

7
 http://wordnet.princeton.edu/ 

8
 http://www.cis.upenn.edu/~mpalmer/project_pages/VerbNet.htm 



 

 

31 

The SRL systems presented in this thesis do not include these resources.  The reason is 

that it would not be fair to compare a system that has those extra resources to systems 

that do not. 

 

[Judge She] blames [Evaluee the Government] [Reason for failing to do enough to 

help.] 

 

Holman would characterize this as blaming [Evaluee the poor.] 

 

The letter quotes Black as saying that [Judge white and Navajo ranchers] 

misrepresent their livestock losses and blame [Reason everything] [Evaluee on 

coyotes.] 

 

The only dish she made that we could tolerate was [Evaluee syrup tart which] 

[Judge we] praised extravagantly with the result that it became our unhealthy 

staple diet. 

 

I’m bound to say that I meet a lot of [Judge people who] praise [Evaluee me] 

[Reason for speaking up] but don’t speak up themselves.    

 

Specimens of her verse translations of Tasso, Jerusalem Delivered and Verri 

Roman Nights circulated to [Manner warm][Judge critical] praise but unforeseen 

circumstances prevented their publication.     

 

And if Sam Snort hails Doyler as monumental, is he perhaps erring on the side 

of being excessive in [Judge his] praise? 

 

Figure 2.3.  Examples of domain-dependent semantic roles, or frame elements, for 

target word JUDGMENT in the FrameNet database (reproduced from Gildea and 

Jurafsky, 2002). 
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2.5 CoNLL shared tasks in 2004 and 2005 

The Conference on Natural Language Learning (CoNLL) has organized different shared 

tasks since 1999, including syntactic chunking, clause identification, name entity 

recognition, Semantic Role Labeling (SRL), and multi-lingual dependency parsing.  In 

the problem of SRL as used in CoNLL 2004 and 2005 (Carreras and Marquez, 2004, 

2005), the goal is to recognize all the arguments and their corresponding labels of given 

predicates in a sentence.  Arguments related to a predicate are mostly phrases in the 

sentence that form a relationship with the predicate.  This relationship is called a 

semantic role.  The PropBank corpus discussed in Section 2.3.2 is used to annotate the 

predicate-argument relations of the verbs in the Wall Street Journal (WSJ) corpus with 

their semantic roles.  In a sentence, each verb has a set of labeled arguments.  In the 

following example sentence, the arguments of the verb “issue” are indicated: 

 

(Ex. 2.16) (The San Francisco Examiner) [A0] (issued) [V] (a special edition) [A1] 

(around noon) [AM-TMP] (yesterday) [AM-TMP] (that was filled 

entirely with earthquake news and information) [C_A1]. 

 

According to PropBank, A0 is the issuer of the predicate “issue”, and A1 is the thing 

issued (in the example, this argument is broken down into two pieces, the second 

annotated as C-A1).  V stands for the verb, and AM-TMP is a general modifier 

expressing a temporal relation.  For the verb “fill” the arguments are: 

 

The San Francisco Examiner issued (a special edition) [A1] around 

noon yesterday (that) [R_A1] was (filled) [V] (entirely) [AM-MNR] 

with (earthquake news and information) [A2]. 

 

A1 is the destination, R-A1 is a referent to A1, and A2 is the theme.  AM-MNR stands 

for a general modifier expressing a manner relation. 
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(S 

 (NP (DT The) 

  (ADJP 

   (QP ($ $) (CD 1.4) (CD billion) ) 

) 

  (NN robot) (NN spacecraft)  

) 

 (VP (VBZ faces) 

  (NP (DT a) (JJ six-year) (NN journey) 

   (S 

    (VP (TO to) 

     (VP (VB explore) 

      (NP 

       (NP (NNP Jupiter) ) 

       (CC and) 

       (NP (PRP$ its) (CD 16) (JJ known) (NNS moons)) 

) 

) 

) 

) 

) 

) 

(. .)  

) 

 

Figure 2.4.  An example in Penn Treebank. 
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Figure 2.5.  Syntax tree for a sentence illustrating the PropBank tags. 

 

2.5.1 Data Format in CoNLL 2004, 2005 

The Propbank corpus is based on the Penn TreeBank project
9
.  In the following, we 

discuss an example structure extracted from the PropBank corpus used in the CoNLL 

shared tasks.  The textual tree format for (Ex. 2.17) from the Penn TreeBank is in 

Figure 2.4, and the graphical representation is shown in Figure 2.5. 

 

(Ex. 2.17) “The $1.4 billion robot spacecraft faces a six-year journey to explore 

Jupiter and its 16 known moons.” 

 

The CoNLL 2005 input data based on the syntax tree is shown in Figure 2.6.  There is 

one line for each word (token), and a blank line after the last token.  The columns, 

separated by spaces, represent different annotations of the sentence with a tagging 

alongside the words.  Column 1 shows words in a sentence, Column 2, the name entity 

tags, Column 3, part-of-speech tags, and Columns 4 and 5 the partial syntactic 

information including phrase chunks and clauses.  Column 6 covers the full syntactic 

information from the parse tree, and Column 7 has the target predicates.   

                                                 
9
 http://www.cis.upenn.edu/~treebank/ 
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WORDS        NE  POS   PARTIAL_SYNT   FULL_SYNT    TARGETS     PROPS            

 

The        *   DT    (NP*    (S*   (S(NP*       -        (A0*    (A0* 

$           *   $         *   *     (ADJP(QP*       -           *       * 

1.4          *   CD       *    *     *               -           *       *  

billion       *   CD       *    *     *))             -           *       *  

robot        *   NN       *   *     *              -           *       *  

spacecraft    *   NN       *)  *     *)              -           *)      *)     

faces        *   VBZ   (VP*)  *     (VP*              face      (V*)      *        

a            *   DT    (NP*   *     (NP*              -        (A1*       *        

six-year      *   JJ        *    *     *               -           *       *        

journey      *   NN       *)   *     *               -           *       *        

to           *   TO    (VP*   (S*   (S(VP*           -           *       *        

explore      *   VB       *)   *     (VP*              explore      *     (V*)      

Jupiter   (ORG*)  NNP   (NP*)   *     (NP(NP*)         -           *    (A1*        

and         *   CC       *   *    *               -           *       *        

its          *   PRP$  (NP*   *    (NP*             -           *       *        

16          *   CD       *   *    *               -           *       *        

known       *   JJ        *    *    *               -           *       *        

moons       *   NNS     *)   *)    *)))))))         -           *)      *)     

.            *   .         *    *)    *)              -           *       *     

 

Figure 2.6.  A tabular format for Ex. (2.4) in the CoNLL 2004, and 2005 shared tasks. 

 

If a word is a predicate, the corresponding row contains the lemma of the predicate, 

otherwise a null node, “-”.  The seventh and twelfth rows correspond to the two 

predicates, “face” and “explore”, and Columns 8 and 9 specify their respective 

arguments and roles. 

 

The Start-End format in the CoNLL 2005 shared tasks represents phrases (chunks, 

arguments, and syntactic constituents) that constitute a well-formed bracketing in a 

sentence (that is, phrases do not overlap, though they admit embedding).   The first six 

elements of the ninth column in Figure 2.6 are an example of how a syntactic constituent 

is specified.   “(A0*” in the first line represents the start of the first argument for the 
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predicate, “face”, and “*)” in the sixth line shows the end of the first argument.  Each 

tag is of the form STARTS*ENDS, and represents phrases that start and end at the 

corresponding word. 

 

2.5.2  Syntactic information 

There are three kinds of syntactic information in the data of the CoNLL 2005 shared 

task: partial syntactic (UPC) notes, Collins’ parses, and Charniak’s parses.  The partial 

syntactic notes (UPC) are located in the fourth column of Figure 2.6.  A full syntactic 

parse tree (Collins’ or Charniak’s parses) appears in the fifth column of Figure 2.6.  

Note that some systems in the CoNLL 2005 shared task used lists of different syntactic 

parses including n-best parsings generated by other available tools.  For example, 

n-best parsings for Charniak’s parser is denoted as “n-cha” (Pradhan et al., 2005), and 

“n-bikel” for Collins’ parser based on Bikel’s implementation (Sutton and McCallum, 

2005).  Most of the best performing systems in the CoNLL 2005 shared task used such 

additional syntactic input structures; such as the best system, Punyakanok et al., (2005), 

using five kinds of Charniak’s parses and one Collins’ parse. 

 

2.5.3 Features 

There are many features used in the CoNLL shared tasks (2004 and 2005).  The basic 

features for Semantic Role Labeling (SRL) used by Palmer et al. (2005) are predicate, 

path, phrase type, position, voice, and head word, as shown in Table 2.3.  All these 

features (except the predicate) are extracted from the syntactic parse tree of a given 

sentence.  Some of the features, such as predicate, voice, and verb sub-categorization, 

are shared by all the nodes in the parse tree.  All the others change with the constituent 

under consideration.  For evaluation purposes, the CoNLL 2005 shared task only 

considers predicates and arguments which were annotated in PropBank.  In an actual 

application, all verbs, such as the verb is and so on, would obviously also be considered 

as predicates. 
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 Basic Features 

．．．． Predicate – The given predicate lemma (a verb without inflection by any tenses) is 

used as a feature. 

． Path – The syntactic path through the parse tree. From the parse constituent to the 

predicate being classified.   

For example, in Figure 2.7, the path from A0 – “The officer” to the predicate 

“came”, is represented with the string “NP↑S↓VP↓VBD” representing upward 

and downward movements in the tree respectively.  There are 11 nodes in this 

sentence.  Only three are valid arguments, which are the “NP” before the 

predicate, “VBD”, and “PP”. 

．．．． Phrase Type – This is the syntactic category (NP, PP, S, etc.) of the phrase 

corresponding to the semantic argument. 

．．．． Position – This is a binary feature identifying whether the constituent is before or 

after the predicate.  

．．．． Voice – Whether the predicate is realized as an active or passive construction.  As 

Pradhan et al. (2004) mentioned, approximately 11% of the sentences in PropBank 

exhibit with a passive instantiation. 

．．．． Head Word – The syntactic head of the phrase.  This is simply calculated by 

finding the last noun in a noun phrase.  For example, in Figure 2.7, a valid NP 

argument, “The officer”, for the predicate “come” has its last noun, “officer” as the 

head word of this valid argument.   

 

Table 2.3.  Basic features used in Palmer et al. (2005). 

 

In total, the systems used in the CoNLL shared tasks (2004 and 2005) introduce more 

than 40 features (including feature combinations) to detect the arguments and roles of 

given predicates, such as first word, last word, length of the target constituent and so on.  

Table 2.4 lists some of these features.  The partial path is a path from the constituent to 
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the lowest common ancestor of the predicate and the constituent.  For example, in 

Figure 2.7, the lowest common ancestor of the predicate “come” and the constituent “the 

officer” is the S node, and the partial path for it is represented with the string “NP↑S”.   

 

 Some Rich Features 

．．．．POS of Head word: the POS of the head word 

．Partial path: Path from the constituent to the lowest common ancestor of the 

predicate and the constituent.   

．．．．Named Entities in constituents: Person, Organization, Location and 

Miscellaneous. 

．．．．First and Last words and their POS tags in constituents 

．．．．Punctuation: punctuation before and after the constituent 

 

Table 2.4.  Some rich features in SRL. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7.  Illustration of path “NP↑S↓VP↓VBD” from a constituent “The officer” 

to the predicate “came”. 

 

V 

AM-LOC 

A0 
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In the same way, the partial path for the constituent “to his office” is “PP↑VP”.  Some 

words in the CoNLL 2005 shared task are chunked and labeled with name entities as 

input for classification.  These name entities are classified to Person, Organization, 

Location and Miscellaneous.  The punctuation feature is used for if a constituent 

contains punctuation at the first and last words.  More details of these rich features can 

be found in the description of the CoNLL shared tasks (2004 and 2005). 

 

2.5.4  Probability Estimations 

Many kinds of machine learning (ML) approaches for SRL were evaluated in the 

CoNLL 2005 shared task, including Maximum Entropy (ME) (Che et al. 2005, Haghighi 

et al 2005, Park and Rim 2005, Sang Tjong Kim 2005, Sutton and McCallum 2005, Tsai 

et al. 2005, Venkatapathy et al. 2005, Yi and Palmer 2005), Support Vector Machine 

(SVM) (Mistsumori et al. 2005, Moschitti et l. 2005, Ozgencil and McCracken 2005, 

Pradhan et al. 2005, Sang Tjong Kim 2005, Tsai et al. 2005), a Winnow-based 

networking of linear separators (SNoW) (Punyakanok et al. 2005), Decision Tree 

learning (Ponzetto and Strube 2005), AdaBoost algorithm (Marquez et al. 2005, 

Surdeanu and Turmo 2005), Memory-based Learning (MBL) (Sang Tjong Kim et al. 

2005), Relevant Vector Machine (RVM) (Johansson and Nugues 2005), Tree 

Conditional Random Fields (T-CRF) (Cohn and Blunsom 2005), and a preliminary 

Multi-Argument Classification (Lin and Smith 2005).  Palmer et al. (2005) proposed a 

statistical system based on Gildea and Jurafsky (2002).  Some of most-used ML 

methods are briefly described as follows. 

 

Support vector machines map input vectors to a higher dimensional space where a 

maximal separating hyperplane is constructed.  Two parallel hyperplanes are 

constructed on each side of the hyperplane that separates the data.  The separating 

hyperplane is the hyperplane that maximises the distance between the two parallel 

hyperplanes.  An assumption is made that the larger the margin or distance between 

these parallel hyperplanes the better the generalisation performance (i.e. error rates on 

test sets) of the classifier will be.   
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The principle of maximum entropy first expounded by Jaynes (1957) is a method for 

analyzing the available information in order to determine a unique subjective probability 

distribution.  It states that the most unbiased representation of knowledge from given 

information is that which maximizes the information entropy.   

 

A decision tree is a predictive model, which is a mapping from observations about an 

item to conclusions about the item’s target value.  More descriptive names for such tree 

models are classification tree for discrete outcome or regression tree for continuous 

outcome.  The machine learning technique for inducing a decision tree from data is 

called decision tree learning, or decision trees.  In a decision tree, its internal or 

non-leaf nodes are tests on input data, and its leaf nodes are categories.  A decision tree 

assigns a classification to a new input pattern by filtering the pattern down through the 

tests in the tree. 

 

AdaBoost (or Adaptive Boosting) is an algorithm for constructing a “strong” classifier 

as a linear combination of “simple” “weak” classifiers.  It can be used in conjunction 

with many other weak or basis algorithms (for example each feature can be considered 

as a weak classifier for SRL) to improve their performance.   

 

A memory-based learning system is an extended memory management system that 

decomposes the input space either statically or dynamically into sub-regions for the 

purpose of storing and retrieving functional information.  The main generalization 

techniques employed by memory-based learning systems are the nearest-neighbor 

search, space decomposition techniques, and clustering. 

 

Generally, the main principal of ML approaches for SRL is to find the candidate 

arguments with the highest probabilities or scores.  The probability or score function 

can be summarized as the probability of the optimal role assignment by Gildea and 

Jurafsky (2002): 
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argmax r1 ... n Σ P(r1…n | f1,..,n, predicate) 

 

where P(r1…n | f1,..,n, predicate) represents the probability or score of an overall 

assignment of roles r1..n to the n constituents or possible arguments of a sentence, given 

the predicate predicate and the various features f1,..,n of each of the constituents.  

Details are shown in Section 3.3. 

 

2.5.5  Results 

The data used in this task consists of sections of the Wall Street Journal (WSJ) from the 

Penn TreeBank (Marcus et al., 1993), and three sections of the Brown corpus (namely, 

ck01-03).  The evaluation is calculated with respect to precision, recall and Fβ=1 (or F1) 

measure of the predicated arguments.  Precision (P) is the proportion of arguments 

classified by a system that are actually correct.  Recall (R) is the proportion of correct 

arguments that are actually predicated by a system.  The F1 measure computes the 

harmonic mean of precision and recall.  Chapter 3 will discuss these data and the 

evaluation measurements in detail. 

 

Carreras and Marquez, (2005) state that the optimum achievable accuracy on these 

given parses from Charniak’s parser is 88.25 in F1 measurement on the WSJ 23 data, 

and 80.84 on the Brown corpus sections.  Based on these parse trees, the best system 

(Punyakanok et al., 2005) in Table 2.5 can achieve F1:79.44 on the WSJ domain and 

F1:67.75 on the Brown corpus domain.  This constitutes a drop of F1:8.81 on the WSJ 

domain between the optimum achievable result and the result obtained by Punyakanok 

et al. (2005).  This drop reveals processing propagating errors in Natural Language 

Processing applications when moving to different applications.  It is mainly caused by 

the chained modules, which means errors are carried forward to next processing steps.  

These propagating errors affect results even more in other domains; there is a 13.09 drop 

in F1 measurement (from 80.84 to 67.75) by Punyakanok et al., 2005) on the Brown 

corpus base on the given Charniak’s parses.  Performances by Charniak’s parses show 
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an about F1:7.41 of degradation before classification from moving WSJ (88.75) to 

Brown (80.84) domains, but performances by Punyakanok et al. (2005) increase to 

11.69 after classification.  The additional 4.28 drop is caused by the SRL classifier, 

Punyakanok et al. (2005).  The CoNLL 2005 shared task organisers state that “Error 

propagation and amplification through the chained modules (such as PoS Tags, 

Chunking, Parses, and so on) make the final output generalize very badly when 

changing the domain of application” (CoNLL 2005, p. 163). 

 

It is also clear that systems with multi-syntactic parses outperform other systems that 

just use one syntactic parse.  The best performing system, Punyakanok et al. (2005) 

uses seven different types of syntactic information (“Synt” in Table 2.5).  The best 

system, developed by Surdeanu and Turmo (2005), in the CoNLL 2005 shared task that 

used only one type of syntactic information obtains 76.36 in F1 measurement, which is 

about 3 points below the best performing system. 

 

  WSJ   Brown   

System P R F1 P R F1 Synt 

Punyakanok 82.28 76.78 79.44 73.38 62.93 67.75 7 

Haghighi 79.54 77.39 78.45 70.24 65.37 67.71 3 

Marquez 79.55 76.45 77.97 70.79 64.35 67.42 5 

Pradhan 81.97 73.27 77.37 73.73 61.51 67.07 2 

Surdeanu 80.32 72.95 76.46 72.41 59.67 65.42 1 

Tsai 82.77 70.90 76.38 73.21 59.49 65.64 1 

Che 80.48 72.79 76.44 71.13 59.99 65.09 1 

Moschitti 76.55 75.24 75.89 65.92 61.83 63.81 1 

Tjongkimsang 79.03 72.03 75.37 70.45 60.13 64.88 1 

Yi 77.51 72.97 75.17 67.88 59.03 63.14 1 

 

Table 2.5.  Top ten systems in the CoNLL 2005 shared task 



 

 

43 

 

 

Not all systems submitted to the CoNLL 2005 shared task reported their training and 

execution time.  McCracken, (2005) highlighted training size and training time for each 

system.  The training time varies from 9.7 hours (Haghighi et al., 2005) to about two 

and half days (Moschitti et al., 2005).  Ponzetto and Strube (2005) used a “lazy 

learning” configuration for SRL.  Although they do not provide details on their 

approach, they reported that the training time for all 21 datasets is approximately 2.5 

hours on a 2 GHZ Opteron dual processor server with 2GB memory based on using only 

a single CPU at runtime, since the implementation is not parallelised.  Execution time 

varies from 0.12 to 5.7 sec/sentence.  Table 2.6 lists the training and execution time 

and hardware for some systems used in the CoNLL 2005 shared task. 

 

 

System Training time Testing (Sec/Sen)  Hardware 

Punyakanok 16.5 hours 5.7  

Haghighi 9 hours 40 mins  3.6GHz, 4GB RAM 

Marquez About 2 days 1.34 6-Linux cluster, 2 GB RAM 

Che 20 hours 0.12 2.4 GHz, 1GB RAM 

Moschitti About 2.5 days  2.4 GHz, 4GB RAM 

Ozgencil 30 hours 3.3  

Cohn 15 hours 0.22 20-node PowerPC cluster, 

62GB RAM 

Ponzetto 2.5 hours 0.76 2GHz Opteron, 2GB RAM 

 

Table 2.6.  List of training and execution time for some systems in the CoNLL 2005 

shared task. 
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2.6  Summary 

Semantic Role Labeling (SRL) must find all arguments for all predicates in a sentence 

and classify these arguments according to semantic roles.  There are two types of 

semantic roles: domain-independent and domain-dependent.  PropBank belongs to the 

former category, and FrameNet to the latter. 

 

The CoNLL 2005 shared task evaluated SRL systems based on the domain-independent 

category.  More than 40 features (including feature combinations) were used in the 

CoNLL 2005 shared task.  Most of the systems in the CoNLL shared tasks (2004, and 

2005) split SRL into two sub-problems: argument identification and argument 

classification.  Most systems use Charniak parses, some use combinations of parsers 

including Charniak parses, Collins parsers, chunk-based parses, and n-best parsers such 

as n-cha for Charniak’s parses, and n-bik for Collins’ parses. 

 

The four top-performing systems combine many individual SRL systems, each working 

on different syntactic structures to improve robustness and overcome the limitations in 

coverage and precision that occur when working with a single and incorrect syntactic 

structure.  The best system obtained 79.44 in F1 on the WSJ 23 dataset, and was 

implemented by Punyakanok et al. (2005) and used seven parse trees.  Surdeanu and 

Turmo (2005) presented the best system based on only one type of syntactic informant.  

When moving to another domain such as the Brown Corpus, performance of each 

system is about 10 points in F1 lower than in the WSJ domain. 

 

Timing evaluation is not mentioned for each system applied to the CoNLL shared tasks 

(2004, and 2005).  McCracken (McCracken, 2005) shows the training time varies from 

2.5 hours to about 2.5 days, depending on system architectures and hardware. 

 

There are many methods that have been used to address the problem of SRL.  Gildea 

and Jurafsky (2002) have addressed the SRL problem with basic features and tree parses 

for domain-dependent semantic roles and thematic roles.  Palmer et al.’s, (2005) 
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system based on Gildea and Jurafsky’s work implemented this statistical approach with 

basic features for shallow SRL in PropBank annotations, which is similar to the CoNLL 

2005 shared task.  The system by Palmer et al. (2005) is a good starting point for a 

researcher who is new to the SRL problem because of its simplicity and easy 

implementation.  Their statistical approach has been embedded in the system described 

in Chapter 5 as a baseline to compare against the multi-argument architecture advanced 

in this thesis.  This baseline system is the subject of the next chapter including 

improvements. 
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Chapter 3 

Extension of a statistical system 

 

This chapter discusses existing statistical systems (Gildea and Jurafsky, 2002, Palmer et 

al., 2005), and improvements for these systems.  Palmer et al. (2005) include a 

statistical argument recognizer (SAR) for argument identification, and a statistical role 

classifier for role classification.  In this chapter, we re-implement SAR and modify the 

statistical role classifier with additional features and heuristics to increase the overall 

performance by more than 8 points in F1 on WSJ 23.  

 

Section 3.1 identifies different tasks and features used in SRL.  Section 3.2 shows the 

features used by the systems.  The systems themselves are described in Section 3.3.  

Improvements to Palmer et al. (2005)’s system are described in Sections 3.4.  The data, 

evaluation method, and results are discussed in Section 3.5, and 3.6.  Section 3.7 

provides some conclusions, remarks and a summary for this chapter.  

 

 

3.1  Introduction  

The problem of Semantic Role Labeling is described in Chapter 2.  Figure 3.1 shows 

an example of a parse tree with syntactic information for the sentence “He has helped 

his father for a while”.  Each node in the parse tree can be classified as a semantic 

argument candidate (i.e. a Potential Argument node) or one that does not represent any 

semantic argument (i.e. a NULL node).  The Potential Argument nodes can then be 

further classified into the set of arguments labels.  For example, in Figure 3.1, the node 

PP that encompasses “for a while” is a Potential-Argument node, since it does 

correspond to a semantic argument – “AM-TMP”.  But the NP that encompasses “a 

while” is a NULL or invalid node because the NP is part of the valid semantic argument, 
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“for a while” and does not correspond to a valid semantic argument to the predicate, 

“help”. 

 

Once all potential arguments are identified, these arguments can be labeled with 

semantic roles.  The results of Semantic Role Labelling for the example in Figure 3.1 

are A0 for “he”, V (or Predicate) for “help”, A1 for “his father”, and AM-TMP for “for a 

while”.   

 

SRL can be solved as one problem, like in (Gildea and Jurafsky, 2002), or separated into 

two sub problems, argument identification, and argument classification.  Pradhan et al., 

(2004) summarizes the possible division of labour as follows: 

 

 

 

Figure 3.1.  A sample sentence with syntactic information and semantic labels. 

 

 

 

AM-TMP 

A0 NULL 

V 

A1 
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．．．． Argument identification – This is the process of identifying phrases, constituents, or  

groups of words in a given sentence that represent valid semantic arguments for a 

related predicate or verb. 

．．．． Argument classification – This is the process of classifying given constituents or 

arguments.  The given constituents, known to represent valid arguments of a 

predicate, are assigned appropriate semantic labels.  

．．．． Argument identification and classification – This is the process of combining the 

above two tasks, thus handling both the task of identifying probable constituents or 

phrases that represent semantic arguments of a predicate, and assigning to these 

constituents or semantic arguments the most likely semantic labels at the same time.  

 

 

3.2  Features for Palmer et al. (2005) 

Six features are used in the system of Palmer et al. (2005).  These are Predicate, Path, 

Phrase type, Position, Voice and Head word.  These basic features are shown in Table 

2.3 and are widely used in most systems for SRL. These features are found or derived 

from a parse tree of a sentence.  For example, features for the valid semantic argument 

“for a while” in Figure 3.1 are  the predicate feature “help”, the path feature “PP↑NP

↑VP↓VBN”, the phrase type feature “PP”, the position feature “after” and the head 

word feature “while” since this argument includes a child NP with “while” as the last 

noun.  The “↑”in the path feature represents moving from the present node upward 

to the parent node and the “↓”, downward to the child node.   

 

 

3.3  Probability Estimation Classifiers 

This subsection describes the statistical systems used by Gildea and Jurafsky (2002) and 

Palmer et al., (2005) including their implementation.  Both systems use statistical 



50 

approaches for argument identification and argument classification.  

 

3.3.1  Argument classification 

To label the semantic role of a constituent or semantic argument automatically, Palmer 

et al. (2005) use a probability distribution indicating how likely the semantic argument 

is in filling each possible role, given the features described in Table 2.3, using the 

following estimation formula:  

 

P (r | hw, pt, path, pos, voice, predicate) 

where r indicates the semantic role, hw the head word, pt the phrase type, and pos the 

position.   

 

Gildea and Jurafsky (2002) claim that it is possible to calculate this distribution directly 

from the training data by counting the number of times each role appears with a 

combination of features and dividing by the total number of times the combination of 

features appears, such that: 

 

         # (r, hw, pt, path, pos, voice, predicate) 
P (r | hw, pt, path, pos, voice, predicate) = 

                                               
 

         # (hw, pt, path, pos, voice, predicate) 

 

Instead of using the whole feature set for the probability calculation, Gildea and 

Jurafsky (2002) built a classifier by combining probabilities from distributions 

conditioned on a variety of subsets of the features, to compensate for sparseness of data 

to avoid zero frequency.  Gildea and Jurafsky (2002) point out that these probabilities 

can be simply calculated from the empirical distributions of the training data.  In this 

way, the occurrences of each role and of each set of conditioning events are counted in a 

table, and probabilities are calculated by dividing the counts for each role by the total 

number of observations for each conditioning event.  For example, the distribution P(r 

| pt, predicate) is calculated as follows: 
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         # (r, pt, predicate) 
P (r | pt, predicate) = 

                             
 

        # ( pt, predicate) 

 

There is a trade-off between more highly specified distributions, which result in higher 

accuracy but lower coverage, and less specified distributions, which have lower 

accuracy but higher coverage.  The lexical head word statistics in particular are 

valuable for the system performance, as shown in Section 3.6.3, but are particularly 

sparse because of the large number of possible head words. 

 

To combine the strengths of the various distributions, Gildea and Jurafsky (2002) merge 

them in various ways in order to obtain an estimate of the full distribution P (r | hw, pt, 

path, pos, voice, predicate).  They investigate several combinations.  The first 

combination method is linear interpolation, which simply averages the probabilities 

given by each of the distributions for each Potential-Argument: 

 

P ( r | hw, pt, path, pos, voice, predicate) =  

λ1*P(r | predicate) +λ2*P(r | pt, predicate) +λ3*P(r | pt, path, predicate) + 

λ4*P(r | pt, pos, voice) +λ5*P(r | pt, pos, voice, predicate) +λ6*P(r | hw) + 

λ7*P(r | hw, predicate) +λ8*P(r | hw, pt, predicate) 

where Σiλi = 1 and λi =λi+1, i.e. λi = 1/8. 

 

 

 

An alternative is to use the geometric mean, expressed in the logarithmic domain in a 

similar way as: 
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P ( r | hw, pt, path, pos, voice, predicate)=  

1/z *exp{ λ1*log P(r | predicate) +λ2*log P(r | pt, predicate) + 

λ3*log P(r | pt, path, predicate) +λ4*log P(r | pt, pos, voice) + 

λ5*log P(r | pt, pos, voice, predicate) +λ6*log P(r | hw) + 

λ7*log P(r | hw, predicate) +λ8*log P(r | hw, pt, predicate) 

} 

where z is a normalizing constant ensuring thatΣr P(r | Potential-Argument) = 1 

 

 

Gildea and Jurafsky (2002) also propose another combination method－the back-off 

lattice.  The back-off lattice constructs the distribution from more highly specified 

conditioning events to less specified ones.  Palmer et al. (2005) modified this back-off 

lattice and applied it to PropBank corpus, as shown in Figure 3.2. 

 

 

 

 

 

 

 

 

 

Figure 3.2.  The back-off lattice for the Palmer et al., (2005) system. 

 

  

P(r | hw, pt, predicate) P(r | pt, path, predicate) P(r | pt, pos, voice, predicate) 

 

 

 

P(r | hw, predicate)   P(r | pt, predicate)    

 

 

 

    P(r | predicate)          

 

                 

                

 

P(r | hw)           P(r | pt, pos, voice) 
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The lattice represents just one way of choosing subsets of features for Palmer et al’s, 

(2005) system.  As Gildea and Jurafsky (2002) mentioned, with a set of N conditioning 

variables, there are 2
N
 possible subsets, and 22

N

 possible sets of subsets, giving a doubly 

exponential number of possible combinations.  Instead of applying all possible subsets 

of features to probability estimation, based on the research of Gildea and Jurafsky 

(2002), Palmer et al., (2005) use the back-off lattice shown in Figure 3.2, which contains 

selected subsets of features, such as P(r | hw, pt, predicate) and so on. 

 

The back-off lattice is used to select a subset of the available distributions to combine.  

The less specified distributions are used only when no data are present for any more 

highly specified distribution.  For example, P(r | pt, predicate) is used when any more 

highly specified probabilities are zero, which are P(r | hw, pt, predicate), P(r | pt, path, 

predicate), and P(r | pt, pos, voice, predicate).    

 

Combining Method  Correct 

Equal linear interpolation  

Geometric mean  

Back-off, linear interpolation 

Back-off, geometric mean  

79.5 % 

79.6 % 

80.4 % 

79.6 % 

Table 3.1.  Results on development set with 8167 observations, from Gildea and 

Jurafsky (2002). 

 

Thus, the distributions selected are arranged in priority and the most specified 

distributions for which data is available are used.  The selected probabilities can then 

be combined with either linear interpolation or the geometric mean, with results shown 

in Table 3.1.  The combination of the back-off method and linear interpolation achieves 

the highest percentage of correct predication. 
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The system assigns arguments semantic roles in new data by looking for the 

highest-probability assignment of roles ri to all constituents or semantic arguments i in 

the sentence, given the set of features fi = {pti, pathi, posi, voicei, hwi} for each 

constituent in the parse tree.  The probability of the optimal role assignment r* is 

formulated in (F 3.1) as follows.  

(F 3.1)  r* = argmax r1 .. n P(r1…n | f1,..n, predicate)       

where P(r1…n | f1,..n, predicate) represents the probability of an overall assignment of 

roles ri (or r1…n ) to each of the n constituents or semantic arguments of a sentence, given 

the predicate, predicate and the various features fi (or f1,..n ) of each of the constituents.   

 

Gildea and Jurafsky (2002) apply Bayes’ rule to this probability as follows:  

 

    r* = argmax r1 .. n P(r1…n | predicate)  

 

 

Then Gildea and Jurafsky (2002) make the assumption that the features of the various 

constituents of a sentence are independent given the predicate and each constituent’s 

role and discard the term P(f1…n | predicate), which is constant with respect to r: 

 

 

 

 

Gildea and Jurafsky (2002) estimate the prior over constituent assignments as the 

probability of the constituent groups, represented with the set operator {}: 

 

 

 

 

Gildea and Jurafsky (2002) apply Bayes’ rule again, 

 
P(f1…n | r1…n, predicate) 

P(f1…n | predicate) 

r* = argmax r1 .. n P(r1…n | predicate)ΠP(fi | ri, predicate) 

           
 i
 

r* = argmax r1 .. n P({r1…n} | predicate)ΠP(fi | ri, predicate) 

             
 i
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Finally, Gildea and Jurafsky (2002) discard the feature prior P(fi | predicate) as being 

constant over the argmax expression: 

 

 

 

 

P(ri | fi, predicate) is the probability of a constituent’s role given the above features for 

the constituent and the predicate.  Palmer et al. (2005, p.96) mention “because of the 

sparseness of the data, it is not possible to estimate this probability from the counts in 

the training data.  Instead, probabilities are estimated from various subsets of the 

features and interpolated as a linear combination of the resulting distributions.  The 

interpolation is performed over the most specified distributions for which data are 

available, which can be thought of as choosing the topmost distributions available from 

a “back-off lattice” as shown in Figure 3.2.  More details are described in Gildea and 

Jurafsky (2002) and Palmer et al. (2005). 

 

The probabilities P(ri | fi, predicate) are combined with the probability P({r1…n} | 

predicate) for a set of roles appearing in a sentence given a predicate, using the 

following formula by Palmer et al. (2005): 

 

 

 

Palmer et al. (2005, p.96) state “this approach allows interaction among the role 

assignments for individual constituents while making certain independence assumptions 

necessary for efficient probability estimation.”  

P(r1…n | f1…n, predicate)     P({r1…n}| predicate)Π 
             

 i
 

  ~ ~ 

 
P(ri | fi, predicate) 

P(ri | predicate) 

r* = argmax r1 .. n P({r1…n} | predicate)Π 

          
 i
 

 

 
P(ri | fi, predicate) P(fi | predicate) 

P(ri | predicate) 

r* = argmax r1 .. n P({r1…n} | predicate)Π 

          
 i
 

 

 
P(ri | fi, predicate) 

P(ri | predicate) 
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Figure 3.3 shows an example of a parse tree with propositions expressed as a chart.  

There is only one predicate, “take” with five arguments labelled with “A1”, 

“AM-MOD”, “A2”, “AM-TMP”, and “AM-ADV” respectively.  These five arguments 

are “the economy’s temperature” for “A1”, “will” for “AM-MOD”, “from several 

vantage points” for “A2”, “this week” for “AM-TMP” and “with readings on trade, 

output, housing and inflation” for “AM-ADV”.  The other words, like “be” in the 

sentence are not assigned any semantic roles.   

   

The      (S1 (S (NP (NP*  -    (A1*       

economy       *           -         *       

's              *)          -     *       

temperature     *)         -         *)      

will             (VP*          -         (AM-MOD*)     

be              (VP*          -           *       

taken            (VP*          take        (V*)      

from            (PP*          -           (A2*       

several           (NP*          -            *       

vantage          *           -            *       

points            *))         -            *)      

this              (NP*          -            (AM-TMP*      

week           *)          -           *)      

,                *           -            *       

with            (PP*          -           (AM-ADV*      

readings         (NP(NP*)        -           *       

on              (PP*          -          *       

trade            (NP*          -          *       

,                *           -            *       

output           *           -            *       

,               *           -            *       

housing          *           -           *       

and             *           -           *       

inflation          *)))))))     -           *)      

.               *))         -           *       

 

 

Figure 3.3.  An example of a parse tree with propositions. 
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For argument classification with known arguments, the system is given the exact 

arguments without any label on each argument to classify the semantic role for each 

semantic argument.  The system calculates the probability distribution from training 

data according to the formula (F 3.1), and sets up a selection table as shown in Table 3.2.  

The final results for the arguments are “A1”, “AM-MOD” “A2”, “AM-TMP” and 

“AM-MNR”.  There are five arguments, of which four are correctly labelled and one 

wrongly. 

 

 ARG1 ARG2 ARG3 ARG4 ARG5 

Highest Prob A1 AM-MOD A2 AM-TMP AM-MNR 

 

Table 3.2.  An example of a selection table for argument classification with the highest 

probability (Highest Prob).  

 

3.3.2  Argument identification 

Section 3.3.1 describes how to label a semantic argument with a semantic role.  The 

problem of argument identification is how to find these semantic arguments from a parse 

tree.   

 

As with role labelling, to identify an argument from a parse tree, features are extracted 

from the sentence and its parse.  These features are used to calculate probability tables 

for each node in the parse tree of a sentence.  Each node in a parse tree is a Potential 

Argument, denoted as pa.  In this case, each pa can be assigned NULL, or non-NULL 

by a binary indicator of whether a given constituent or Potential-Argument in the parse 

tree is or is not an argument to the specific predicate.  Following Gildea and Jurafsky 

(2002), Palmer et al., (2005) calculated the three probability distributions learned from 

the training data : P(pa | path), P(pa | path, predicate), and P(pa | hw, predicate), where 

pa indicates an event where the parse constituent in question is an argument to the 

specific predicate, path is the path through the parse tree between the target predicate 
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and the parse constituent, and hw is the head word of the parse constituent.  An 

example is shown in the previous Section 3.3.1.   

  

This research uses the same probability distribution from Gildea and Jurafsky (2002) 

with the back-off and linear interpolation method (in Table 3.1) for argument 

identification specifically:  

 

(F 3.2) P (pa| path, hw, predicate)=  

λ1*P(pa | path) + λ2*P(pa | path, predicate) +λ3*P(pa | hw, predicate) 

where Σiλi = 1 and λi =λi+1, λi = 1/3. 

 

 

This method can identify only those arguments that have a corresponding constituent in 

the automatically generated parse tree. 

 

According to Gildea and Jurafsky (2002), more highly specified probability distributions 

such as P(pa | path, predicate) (denoted by P(fe | path, t) in Figure 3.4) perform 

relatively poorly compared to less ones, such as P(pa | path) (denoted by P(fe | path) in 

Figure 3.4), because of sparseness of the training data.  There are only about 30 

sentences available for each predicate (Gildea and Jurafsky, 2002).  There is a 

threshold to this probability estimation for selecting potential arguments as valid ones.  

This threshold (set as 0.5 in their system) is used for a balance between precision and 

coverage.  Figure 3.4 shows the Precision and Recall plot from Gildea and Jurafsky 

(2002) for identifying frame elements or semantic arguments in which Recall is 

calculated over only frame elements with matching parse constituents. 
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Figure 3.4.  Illustration of Precision/Recall plot for various methods of identifying 

frame elements reproduced from Gildea and Jurafsky (2002).  

 

 

Figure 3.5.  Graphic illustration of the example in Figure 3.3.  
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Figure 3.5 illustrates the graphic presentation for the same example in Figure 3.3.  

There are 34 individual potential arguments (or nodes): 15 phrases and 19 words out of 

25 tokens.  The punctuations, auxiliary words (like “be” in the fifth line) and the 

predicate are excluded.  Each node can be a possible argument for the predicate, 

“take”.   

 

Table 3.3, including nodes, phrase type of headword, and selection type, shows an 

example of identification selection table for Figure 3.3.  For example, the first line in 

Table 3.3 includes six nodes, N0, N1, N2, N3, N4 and N5, which correspond to the 

phrases, “S1”, “S”, “NP”, “NP”, “VP”, and “NP” in Figure 3.5.   

 

The system calculates the probability distribution learned from training data according 

to (F 3.2), and creates a selection table such as Table 3.3.  The system calculates the 

probability distribution for each node in the parse tree, and checks if the probability of 

each node is bigger than a user-specified threshold.  If not, an “N” letter is denoted in 

the third line of the node (like the “N0” node with “S1” phrase type).  Before the 

probability calculation, a prior check is applied to see if the corresponding argument 

includes the predicate (indicated in the table by the letter P in the case of N4, N5, and 

N6).  Once the probability of a node exceeds the threshold, a further check is applied if 

this valid Potential Argument is included in a larger-span valid node (indicated in the 

table by the letter O).  For example, N18 (“temperature”) is included in N2 (“the 

economy‘s temperature”) and N24 (“this”) and N25 (“week”) are included in N9 ( “this 

week”). 

 

The reason for this check is that the CoNLL 2005 shared task does not allow overlapped 

or embedded arguments.  If there exists unavoidable overlapping between overlapping 

(or covering) and overlapped (or covered) arguments such as “take it off”, the covering 

argument, “take .. off”, is split into two parts.  One (“take”) is before and the other 

(“off”) is after the covered argument (“it”).  A continuation label (defined in Section 

2.3.2) is assigned to the latter argument based on the former semantic role.  For 
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example, the overlapping argument “take .. off” covering an overlapped argument, ”it” 

is split two arguments, ”take” and “off”.  The second split argument is assigned the 

“C-V” due to the first one labelled with “V”.  Then, semantic roles for this sentence 

with three arguments are “V” for “take”, “A1” for “it” and “C-V” for “off”. 

 

After argument identification, the system outputs the five valid arguments(indicated in 

Table 3.3 by the letter Y), which are “N2”, “N7”, “N9”, “N10”, and “N19” in Table 3.3 

or Figure 3.5 for further argument classification. 

 

Nodes N0 N1 N2 N3 N4 N5 

Phrase or head S1 S NP NP VP VP 

Prob > Threshold N N Y N P P 

       
Nodes N6 N7 N8 N9 N10 N11 

Phrase or head VP PP NP NP PP NP 

Prob > Threshold P Y N Y Y N 

       
Nodes N12 N13 N14 N15 N16 N17 

Phrase or head NP PP NP the economy ‘s 

Prob > Threshold N N N N N N 

       
Nodes N18 N19 N20 N21 N22 N23 

Phrase or head temperature will from several vantage points 

Prob > Threshold O Y O N N N 

       
Nodes N24 N25 N26 N27 N28 N29 

Phrase or head this week with reading on trade 

Prob > Threshold O O O N N N 

       
Nodes N30 N31 N32 N33   

Phrase or head output housing and inflation   

Prob > Threshold N N N N   

Table 3.3.  An example of a selection table for argument identification.      
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3.3.3  Argument identification and classification 

Gildea and Jurafsky (2002) merged argument identification and classification into one 

classifier.  To integrate argument identification and argument classification for each 

constituent in a parse tree, Gildea and Jurafsky (2002) extended the formulation 
 

 

 

 

to include argument identification decisions: 

 

 

 

where pai is a binary variable indicating that a constituent is an argument and P(pai | fi) 

is calculated using the formula (F 3.2) in Section 3.3.2.   

 

When pai is true, role probabilities are calculated as before; when pai is false, ri assumes 

an empty role, or NULL, with probability one and is not included in the selection list 

represented by {r1…n}.  

 

Table 3.4 shows the results of simultaneous argument identification and argument 

classification for the same example from Figure 3.3.  All possible arguments are 

labelled, including the embedded ones with a gray background.  N18 is labelled as A1, 

N20 as A2, N24 as A1, N25 as TMP, and N26 as MNR.  After the probability 

calculation and classification, the system selects those arguments that are not covered by 

any other arguments, and outputs the labels for each argument, which are A1 for N2, A2 

for N7, AM-TMP (TMP) for N9, AM-MNR (MNR) for N10, and AM-MOD (MOD) for 

N19.  This procedure may spend time on some invalid arguments like N18 embedded 

in valid arguments like N2.   

    argmax r1 .. n P({r1…n}| predicate)Π 

where fi={pti, pathi, posi, voicei, hwi}, and ri is each semantic role. 

 

 
 
P(ri | fi , predicate) 

P(ri | predicate) 
  i

 

    argmax r1 .. n P({r1…n}| predicate)Π 

              

 

 
 
P(ri | fi , pai , predicate) P(pai | fi) 

P(ri | predicate) 
  i
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Nodes N0 N1 N2 N3 N4 N5 

Phrase or head S1 S NP NP VP VP 

Prob > Threshold N N Y N P P 

Semantic role   A1    

       
Nodes N6 N7 N8 N9 N10 N11 

Phrase or head VP PP NP NP PP NP 

Prob > Threshold P Y N Y Y N 

Semantic role  A2  TMP MNR  

       
Nodes N12 N13 N14 N15 N16 N17 

Phrase or head NP PP NP the economy ‘s 

Prob > Threshold N N N N N N 

Semantic role       

       
       

Nodes N18 N19 N20 N21 N22 N23 

Phrase or head temperature will from several vantage points 

Prob > Threshold O Y O N N N 

Semantic role A1 MOD A2    

       
Nodes N24 N25 N26 N27 N28 N29 

Phrase or head this week with reading on trade 

Prob > Threshold O O O N N N 

Semantic role A1 TMP MNR    

       
Nodes N30 N31 N32 N33   

Phrase or head output housing and inflation   

Prob > Threshold N N N N   

Semantic role       

Table 3.4.  An example of a selection table for argument identification and argument 

classification 
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3.3.4 Computational complexity  

The computational complexity for calculating every possible combination of features is 

doubly exponential (Gildea and Jurafsky, 2002).  Thus Gildea and Jurafsky (2002) used 

the back-off lattice from Figure 3.2 to represent some expected interaction between 

features.  The linear interpolation method simply averages the probabilities given by 

each of the distributions.  It is hard to calculate time complexity of using the back-off 

lattice because computation varies with different datasets, but the measured execution 

times exhibit a logarithmic behaviour as discussed in detail in Section 3.6.4 for the 

development data set WSJ 24. 

 

 

3.4  Improvements 

Palmer et al. (2005) reported the performance of their system on a preliminary release of 

the PropBank data.  The preliminary data set used contained annotations for 72,109 

propositions or predicate-argument structures including 190,815 individual arguments 

from 2,462 types of lexical predicates.  In order to provide results comparable with the 

existing literature, Palmer et al. (2005) used the annotations from WSJ section 23 of the 

Treebank as the test set, and all other WSJ sections were included in the training set.  

They report the performance obtained by their system on WSJ 23 is 62.74 using the F1 

measurement, which indicates there is some room to improve compared to F1: 76.46 by 

Surdeanu and Turmo (2005).  Therefore, this subsection describes additional features 

and heuristics for pre-processing and post-processing that improve overall performance 

when applied to the system of Palmer et al., (2005). 

 

The modified system implemented in this thesis uses additional features and heuristics 

to boost F1 about 8 points on WSJ 23.  The additional steps are itemized in Table 3.5.  

Additional features are used when determining argument roles.  Instead of only using 

the preposition in a prepositional phrase (PP) as a headword (like “in the office”), we 
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add as an additional feature for a PP the headword of the NP following the preposition 

(like “in the office”).  For example, the role of “you” after the preposition “to” in the 

sentence, ”come to you” and the role of “school” in the sentence, ”come to school” can 

be identified as A2 and AM-LOC when adding the head word of the child NP in a PP in 

the role classification stage.  If adding extra preposition feature results in zero 

frequency due to data sparseness, we can use the back-off lattice later to avoid this 

problem.   

 

Moreover, instead of using a discrete position feature (before or after the predicate), we 

use a distance feature (i.e. the relative displacement from the predicate), which offers 

more precise location in an argument structure.  Note that this feature has been widely 

used in existing different systems for the CoNLL 2005 shared task.   

 

Additional features help to improve the performance of a system but they consume more 

computational resources.  Another way to improve performance without sacrificing 

computational efficiency is to add heuristics when classifying arguments instead of 

adding features in the whole system.  Thus we propose an Actor heuristic to reduce 

erroneous assignments when classifying arguments.  This actor heuristic is 

implemented to filter out incorrect assignments for Agent or A0 by checking if a 

labelled argument with Agent or A0 is a subject when the predicate is in active voice, or 

checking if this labelled argument has a preposition (like “by”) prior to the argument 

when the predicate is in passive voice.   

 

There are also simple cases for labelling such as AM-MOD and AM-NEG for which 

heuristics can be used.  A single-word argument with a Modal POS tag can 

immediately be assigned an “AM-MOD” tag.  In the same manner, a single-word 

argument of “not” or “n’t” can directly be assigned an “AM-NEG” tag without any 

probability estimation.  These simple rule-based pre-assignments also appear in other 

existing systems (e.g. Che et al. 2005). 
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Additional features 

Preposition – This feature is the preposition of a PP.   

Distance – The relative displacement from the predicate (negative if the 

constituent is to the left, positive if it is to the right of the predicate).  

 

Heuristics 

Actor constraint – “A0” or “Agent” is assigned to an argument only if the 

argument is a subject before the predicate and the predicate is in active 

voice, or a preposition (such as “by”, “with”, and so on) appears prior to the 

argument after the predicate when the predicate is in passive voice. 

 

Pre-Processing  

Modal – “AM-MOD” tags are directly assigned to arguments with POS of 

“MOD”, such as “will”, “should”, “going to” and so on.  

Negation – “AM-NEG” tags are directly assigned to one-word arguments 

with “not” or “n’t”. 

Discourse – “AM-DIS” tags are directly assigned to one-word arguments 

with POS of “CC”.  

 

Post-Processing  

Duplication – if there are duplicate core roles in the same argument lists 

(for example, “A0 V A1 A1”), the system will keep the roles that are the 

closest to the predicate as (“A0 V A1 X”) (Sang et al. 2005).   

Table 3.5.  Additional features and heuristics applied to the system of Palmer et al. 

(2005) 
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Post-processing is used to avoid duplicate core roles such as [A0 V A1 A1].  A simple 

way to implement this is to delete duplicate core roles that are far from the predicate as 

proposed by (Sang et al. 2005)
1
.  This method can potentially reduce the coverage in 

role classification, but Section 3.6.3 shows that this method provides better performance 

in overall. 

 

 

3.5  Data and evaluation 

In order to compare the modified version of Palmer et al ‘s system (2005) with other 

techniques, we use the datasets and evaluation measures from the CoNLL 2005 shared 

task.  Section 3.5.1 describes the data and Section 3.5.2 defines the evaluation 

measurements used in the CoNLL 2005 shared task. 
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Figure 3.6.  An example of an annotate sentence.   

                                                 
1 Sang et al. (2005) do not offer any justification for this post-processing. 
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3.5.1  Data 

The data consist of sections of the Wall Street Journal (WSJ) from the Penn TreeBank 

(Marcus et al. 1993), with information on predicate-argument structures extracted from 

the PropBank corpus (Palmer et al. 2005).  The experiment followed the standard 

partition used in syntactic parsing:  WSJ sections 02-21 for training, WSJ 24 for 

development, which is a test data for developing systems, and WSJ 23 for testing.  In 

addition, the test set used in the CoNLL2005 shared task includes three sections of the 

Brown corpus (namely, ck01-03).  The predicate argument annotations of the latter test 

material are very valuable as they allow evaluating learning systems on a portion of data 

that comes from a different source than the training data.   

 

Section 2.5 has described the data format and listed an example from the CoNLL 2005 

shared task.  Figure 3.6 shows another example of a fully-annotated sentence.  A brief 

explanation for each column is as follows.  The input consists of words (in the first 

column); POS tags (second); base chunks (third); clauses (forth); full syntactic tree (fifth) 

and named entities (sixth).  The seventh column marks target verbs (predicates).  

Their propositions (i.e. resulting role assignments) are found in the remaining two 

columns, with one column for each predicate.  According to the PropBank Frames for 

“attract”, A0 annotates the attractor, and A1 the item attracted; for “intersperse”, A0 is 

the arranger, and A1 the entity interspersed.     

 

PropBank-1.0 was used in the CoNLL2005 Shared Task.  Most verbs were annotated 

as predicates, but not all of them.  For example, most of the occurrences of the verb “to 

have” and “to be” were not annotated.  The description of the CoNLL 2005 shared task 

did not explain why these verbs are not included.  The input data was annotated by 

pre-processing systems.  The annotations are part-of-speech (POS) tags, chunks, 

clauses, full syntactic trees, and named entities.  The following state-of-the-art systems 

werer used for pre-processing: UPC processors, consisting of a POS tagger (Gimenez 

and Marques, 2003) and a base chunker and clause recognizer (Carreras and Marquez, 

2003), full parses from the Collins (1999) parser (with model 2), full parses from the 
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Charniak parser (2000), and named entity recognition (Chieu and Ng, 2003).  Table 3.6 

shows the number of sentences, tokens, annotated propositions, distinct verbs, and 

arguments in the three data sets.  As Table 3.6 shows, there are 39,832 sentences in the 

training data with 3101 different verbs, 90,750 predicate-argument structures 

(propositions), 239,858 individual arguments, and 950,028 words (tokens). 
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  Train.  Development  Test WSJ  Test Brown  

Sentences 39,832  1,346  2,416  426  

Tokens 950,028  32,853  56,684  7,159  

Propositions 90,750  3,248  5,267  804  

Verbs 3,101  860  982  351  

Arguments 239,858  8,346  14,077  2,177  

A0 61,440  2,081  3,563  566  

A1 84,917  2,994  4,927  676  

A2 19,926  673  1,110  147  

A3 3,389  114  173  12  

A4 2,703  65  102  15  

A5 68  2  5  0  

AA 14  1  0  0  

AM 7  0  0  0  

AM-ADV 8,210  279  506  143  

AM-CAU 1,208  45  73  8  

AM-DIR 1,144  36  85  53  

AM-DIS 4,890  202  320  22  

AM-EXT 628  28  32  5  

AM-LOC 5,907  194  363  85  

AM-MNR 6,358  242  344  110  

AM-MOD 9,181  317  551  91  

AM-NEG 3,225  104  230  50  

AM-PNC 2,289  81  115  17  

AM-PRD 66  3  5  1  

AM-REC 14  0  2  0  

AM-TMP 16,346  601  1,087  112  

R-A0 4,112  146  224  25  

R-A1 2,349  83  156  21  

R-A2 291  5  16  0  

R-A3 28  0  1  0  

R-A4 7  0  1  0  

R-AA 2  0  0  0  

R-AM-ADV 5  0  2  0  

R-AM-CAU 41  3  4  2  

R-AM-DIR 1  0  0  0  

R-AM-EXT 4  1  1  0  

R-AM-LOC 214  9  21  4  

R-AM-MNR 143  6  6  2  

R-AM-PNC 12  0  0  0  

R-AM-TMP 719  31  52  10  

 

Table 3.6.  Statistics for the data sets of the CoNLL 2005 Shared Task. 
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The semantic roles covered by PropBank are as followings: 

 

� Numbered arguments (core roles): Arguments defining verb-specific roles 

including A0, A1, A2, A3, A4, A5, AA 

� Adjuncts (adjunctive roles): General arguments that any verb may take optionally 

including AM-ADV, AM-CAU, AM-DIR, AM-EXT, AM-LOC, AM-MNR, 

AM-MOD, AM-NEG, AM-PNC, AM-PRD, AM-REC, AM-STR, AM-TMP, AM; 

 

Section 2.3.2 covers these semantic roles in detail. 

 

3.5.2  Evaluation 

Evaluation in the CoNLL 2005 shared task is performed on a collection of unseen test 

sentences with all syntactic information and target predicates as input annotation. For 

example, the first seven columns in Figure 3.6 are provided as input information 

(including word, POS, chunks, clauses, full trees, name entities and target predicates).  

A system must then create columns 8 and 9 for evaluation.  A system is evaluated with 

respect to precision, recall and Fβ=1 (or F1) measure.  Precision (p) is the proportion of 

arguments classified by a system that are correct.  Recall(r) is the proportion of correct 

arguments that are predicted by a system.  Finally, the Fβ=1 measure computes the 

harmonic mean of precision and recall, and is the final measure to compare the 

performance of systems.  It is given by:  

          

         from 

 

For example, assume a proposition is [A0 V A1 TMP] and the system’s output is [A0 V 

A2 X]. (X denotes an unlabelled argument.)  There are two classified arguments 

(excluding the predicate), and one has the correct label, which is A0.  The precision 

(the proportion of classified arguments that are correct) is 1/2 (or 50%).  There are 

three arguments in the proposition (excluding the predicate) and only one is labelled 

(1+β)*p*r 

(p*β + r) 

Fβ = 
2*p*r 

(p + r) 

F1 = 
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correctly.  The recall, (the proportion of correct arguments that are predicted by a 

system) is 1/3 (or 33.33%).  Therefore, F1, the harmonic mean of precision and recall, 

is 0.4.  For an argument to be correctly recognized, the words spanning the argument as 

well as its semantic role have to be correct.   

 

An official script written in Perl, srl-eval.pl, that can be used to evaluate the 

performance of a system is obtained from the CoNLL 2005 shared task web site.  This 

script evaluates the result from a system and outputs a table of precision, recall, and F1 

for each semantic role.  It also outputs an overall performance.  More details can be 

found at the website of the CoNLL 2005 shared task
2
.     

 

 

3.6  Empirical Results 

The following three aspects of SRL can be tested: argument classification, argument 

identification and argument identification and classification.  This section uses Palmer 

et al., (2005) as a baseline system and Sections 3.6.1 and 3.6.2 show experimental 

results for the baseline system and its variants.  Section 3.6.3 outlines feature 

performance and analysis, and Sections 3.6.4 and 3.6.5 illustrate other results obtained 

from different sizes of training data including performance in terms of execution time.  

Sections 3.6.6 and 3.6.7 show the results of argument identification and classification on 

WSJ 24, which contain additional results including the impact of auto parses and gold 

(hand-corrected) parses.  Sections 3.6.8 and 3.6.9 show overall performance on WSJ 

23 and part of the Brown corpus from the CoNLL 2005 shared task.  A comparison 

with other systems is shown in Section 3.6.10.   

 

Argument Classification 

As explained in Section 3.3.1, the goal of this task is to classify known arguments for 

each predicate.  We use the proposition sets of the CoNLL2005 Shared Task and 

extract all arguments of each predicate as input to test the performance of a system.  A 

                                                 
2 http://www.lsi.upc.edu/~srlconll/  
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re-implementation of the system of Palmer et al. (2005) described in Section 3.3, with 

basic features, phrase type, path, head word, voice, and position is used as the baseline.  

The additional features and heuristics explained in Section 3.4 are also evaluated.  The 

systems are given the exact semantic arguments for each predicate, and the task for each 

system is to find suitable semantic labels for each given argument but without 

identifying the arguments for each predicate.   

 

This research uses the same probability estimation but modifies the probability 

estimation with additional features, distance and preposition as follows: 

 

P ( r | hw, pt, pp, path, pos, dis, voice, predicate) =  

λ1*P(r | pp, predicate) +λ2*P(r | pt ,pp, predicate) + 

λ3*P(r | pt, pp, path, predicate) +λ4*P(r | pt, pp, pos, dis, voice) + 

λ5*P(r | pt, pp, pos, dis, voice, predicate) +λ6*P(r | hw, pp) + 

λ7*P(r | hw, pp, predicate) +λ8*P(r | hw, pt ,pp, predicate) 

where Σiλi = 1 and λi =λi+1. 

 

It uses the modified back-off lattice shown in Figure 3.7.  There are two modifications.  

One is adding the “distance” feature, which is used in conjunction with the “position” 

feature, and the other is adding the preposition feature (denoted as “pp”) to each 

probability distribution.   

 

Since there is more than one semantic role, the task of argument classification is a 

multi-class classification problem.  Sections 3.6.1 to 3.6.6 contain detailed results for 

this multi-class classification problem. 

 

Argument Identification 

As mentioned in Section 3.3.2, the goal of this task is to identify arguments for each 

predicate from a sentence using syntactic information.  This means that systems for this 

task are only concerned with finding correct semantic argument from a parse tree.  
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P(r | hw, pt, pp, predicate) P(r | pt, path, pp, predicate)  P(r | pt, pos, dis, voice, pp, predicate) 

 

 

 

P(r | hw, pp, predicate)   P(r | pt, pp, predicate)    

 

 

 

    P(r | pp, predicate)         Highly Specified 

 

                 

                 More General 

 

P(r | hw, pp)          P(r | pt, pos, dis, voice, pp) 

 

 

They do not need to take into account the kind of semantic labels for each argument.  

The classifiers for this task implement binary classification rather than multi-class 

classification.   

 

For this research, the argument recognition of Gildea and Jurafsky (2002) was 

implemented with three features: path, head word, and predicate.  All nodes in a parse 

tree can be considered as a Potential Argument, (“pa”), excluding punctuation and 

auxiliary words in the sentence.  Section 3.3.3 has details and examples for this task.   

 

Argument Identification and Classification 

As mentioned in Section 3.3.3, this is the combination of the above two tasks, where the 

system first identifies probable constituents or phrases that represent semantic 

arguments of a predicate, and then assigns the most likely semantic labels.  Features 

used in the three different tasks are listed in Table 3.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7.  The modified back-off lattice from the Palmer et al. (2005) used for 

argument classification proposed in this thesis. 
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 Task Features 

Argument identification Path, Head word, Predicate 

Argument classification Head word, Phrase type, Path, Voice, Distance, 

Predicate, Preposition 

Identification and classification Head word, Phrase type, Path, Voice, Distance, 

Predicate, Preposition 

 

Table 3.7.  Featured used in different tasks. 

 

3.6.1  Performance of the Palmer et al.’s system (2005)  

There are 39,832 sentences in the training data with 3101 different verbs, 90,750 

predicate-argument structures (propositions), 239,858 individual arguments, and 

950,028 words (tokens).  Table 3.8 shows the results of the baseline system on the task 

of argument classification.  The overall performance is 79.43 in F1 measurement and 

the performance scores for each role are also listed in Table 3.8.   

 

Generally, the performance for core roles such as A0, A1 and so on, is better than for 

adjunctive roles such as AM-ADV, AM-CAU and so on.  This suggests that it is harder 

to classify adjuncts than core roles.  This is likely because there are more training 

examples found for core roles than for adjuncts.  Another factor is that there is low 

performance on simple labels such as “AM-MOD” and “AM-NEG”.  Since the 

assignments for modals and negations are actually simple cases, the results show that the 

statistical approach makes errors in labelling these simple arguments by probability 

estimation.  Systems such as the one used by Che et al. (2005) in the CoNLL 2005 

shared task include corresponding simple heuristic rules in the classification stage.  

The system proposed in this thesis also applies rule-based pre-processing, shown in 

Section 3.6.2, for labelling modal, negation and discourse tags. 
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 WSJ24 Precision  Recall  Fβ=1  

Overall 79.23% 79.64% 79.43 

A0 86.60%  91.30%  88.89  

A1 82.89%  90.78%  86.66  

A2 72.35%  76.97%  74.59  

A3 70.45%  54.39%  61.39  

A4 56.63%  72.31%  63.51  

A5 100.00%  50.00%  66.67  

AA 0.00%  0.00%  0.00  

AM-ADV 42.55%  28.67%  34.26  

AM-CAU 20.00%  11.11%  14.29  

AM-DIR 76.92%  55.56%  64.52  

AM-DIS 77.40%  67.82%  72.30  

AM-EXT 55.00%  39.29%  45.83 

AM-LOC 51.28%  30.93%  38.59  

AM-MNR 62.84%  38.43%  47.69  

AM-MOD 84.32%  98.42%  90.83  

AM-NEG 86.11%  59.62%  70.45  

AM-PNC 65.45%  44.44%  52.94  

AM-PRD 0.00%  0.00%  0.00  

AM-TMP 64.96%  59.23%  61.97  

R-A0 83.64%  94.52%  88.75  

R-A1 84.38%  65.06%  73.47  

R-A2 57.14%  80.00%  66.67  

R-AM-CAU 0.00%  0.00%  0.00  

R-AM-EXT 0.00%  0.00%  0.00  

R-AM-LOC 75.00%  66.67%  70.59  

R-AM-MNR 50.00%  16.67%  25.00  

R-AM-TMP 74.29%  83.87%  78.79  

Table 3.8.  Results of argument classification by the baseline system (Palmer et al. 

2005) for known arguments on WSJ 24. 

 

3.6.2  Performance of Improvements 

Table 3.9 shows the results of the improvements proposed in this thesis, including 

additional features and heuristics, on the task of argument classification.   Compared 

to the baseline system by Palmer et al. (2005) in Table 3.8, the result shows an 

improvement of 6.16 in F1.  These improvements are gained using the new features and 

constraints explained in 3.4.1.  The results are computed for auto (Charniak’s) parses 

with known arguments, which means the system is given the correct arguments for each 
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predicate in a tree.  In other words, the performance of argument identification is 100%, 

and the testing task is only focusing on the accuracy of reclassifying these given 

arguments with the hand-corrected parses.  Most of the results for the different roles 

increase except for four reference roles, “R-A0”, ”R-A2”, “R-AM-MNR”, and 

“R-AM-TMP”.  This suggests that adding additional features does not guarantee an 

increase in performance for all semantic roles. 

 

 

WSJ24 Precision  Recall  Fβ=1   

Overall 85.53% 85.65% 85.59  

     to Baseline 

A0 92.47%  91.49%  91.98  + 3.09 

A1 87.48%  92.92%  90.12  + 3.46 

A2 83.90%  80.53%  82.18  + 7.59 

A3 80.73%  77.19%  78.92  +17.53 

A4 84.13%  81.54%  82.81  +19.30 

A5 100.00%  50.00%  66.67   

AA 0.00%  0.00%  0.00   

AM-ADV 67.21%  58.78%  62.16  +27.90 

AM-CAU 83.87%  57.78%  68.42  +54.13 

AM-DIR 71.88%  63.89%  67.65  + 3.13 

AM-DIS 81.67%  72.77%  76.96  + 4.66 

AM-EXT 70.59%  42.86%  53.33 + 7.50 

AM-LOC 62.22%  72.16%  66.83  +28.24 

AM-MNR 64.10%  51.65%  57.21  + 9.52 

AM-MOD 100.00%  99.68%  99.84  + 9.01 

AM-NEG 96.26%  99.04%  97.63  +27.18 

AM-PNC 70.67%  65.43%  67.95  +15.01 

AM-PRD 100.00%  66.67%  80.00  +80.00 

AM-TMP 74.32%  72.71%  73.51  +11.54 

R-A0 84.91%  92.47%  88.52  - 0.23 

R-A1 84.06%  69.88%  76.32  + 2.85 

R-A2 42.86%  60.00%  50.00  -16.67 

R-AM-CAU 0.00%  0.00%  0.00   

R-AM-EXT 0.00%  0.00%  0.00   

R-AM-LOC 100.00%  77.78%  87.50  +16.91 

R-AM-MNR 50.00%  16.67%  25.00   

R-AM-TMP 65.00%  83.87%  73.24  -5.55 

 

Table 3.9.  Results of argument classification by the improved system for known 

arguments on WSJ 24. 
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3.6.3  Feature / Rule Performance & Analysis 

Table 3.10 shows the effect on the argument classification task of adding different 

features individually to the system proposed by Palmer et al. (2005) again using known 

arguments.  The preposition feature gives the most improvement over the baseline 

system and both the distance feature and the post-processing step have the second 

highest impact.  The post-processing step, which mainly handles duplicate core roles as 

described in Section 3.4.1, shows its contribution to performance by an F1:0.60 increase 

in Table 3.10.  Rule-based pre-assignment for modal, negation, and discourse tags 

reveals improvement in performance especially on the modal tags.  This 

pre-assignment also constrains the role classifier not to assign “AM-MOD” to any 

argument.  This helps to increase the precision in the “AM-MOD” tags from 92.15% to 

100.00%.  Finally, the Actor heuristic exerts a small (0.36) contribution to the overall 

performance of the modified system.  

 

After the addition of all the new features, performance from removing individual 

features is investigated.  A degradation in performance is observed; evaluated by 

leaving out one feature or heuristic at a time.   

 

 

Feature / Rule  F1 Contribution 

Baseline 79.43  

+ Actor heuristic 79.79 +0.36 

+ Preposition 82.91 +3.48 

+ Distance  80.03 +0.60 

+ pre-assignment 80.00 +0.57 

+ post-process 80.03 +0.60 

 

Table 3.10.  Effect of each feature and heuristic on the argument classification task 

when added to the baseline system. 
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Feature F1 Contribution 

All 85.59  

- path 84.70 - 0.81 

- position 85.59  

- distance 85.14 - 0.45 

- preposition 81.34 - 4.25 

- phrase type 85.25 - 0.34 

- head word 81.90 - 3.69 

- voice 85.11 - 0.48 

   

- Actor heuristic 85.34 - 0.25 

- Pre-processing 84.95 - 0.64 

- Post-processing 85.53 - 0.06 

 

Table 3.11.  Performance of feature combinations for the task of argument 

classification on WSJ 24.    

 

Table 3.11 shows the effect that each feature has on the argument classification task 

when it is deducted individually from the baseline system on WSJ 24.  Removing the 

preposition feature for PP degrades the classification performance most.  Instead of 

taking the preposition of a PP as the head word (as done in Palmer et al. 2005), we keep 

this preposition as a separate feature and add the head word of the NP after the PP to the 

role classification (as explained in Section 3.2), which helps to boost the overall 

performance.  For example, the argument “in the school” with the preposition “in” and 

the head word “school” is easily labelled as a locative role.  Apparently adding the 

preposition feature of a PP and using the head word in the NP after this PP as an 

additional feature is a good combination for the task of argument classification. 

 

Removing the “head word” feature led to the second greatest decrease in performance.  
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It is because the head word plays a valuable role when recognizing adjunctive roles such 

as a temporal role with head words like week, yesterday, and so on.  The position 

feature does not affect the overall performance when removed from the feature set, 

which implies that this feature can be skipped and is subsumed by the distance feature.  

Thus, the probability, P(r | pt, pos, dis, voice, pp, predicate) can be changed to P(r | pt, 

dis, voice, pp, predicate) without influencing the system’s performance.   The 

following formula is the probability distribution used in the rest of experiments with the 

modified statistical role classifier. 

 

(F 3.3) P ( r | hw, pt, path, dis, voice, predicate) =  

λ1*P(r | predicate) +λ2*P(r | pt, predicate) + 

λ3*P(r | pt, path, predicate) +λ4*P(r | pt, dis, voice) + 

λ5*P(r | pt, dis, voice, predicate) +λ6*P(r | hw) + 

λ7*P(r | hw, predicate) +λ8*P(r | hw, pt, predicate) 

where Σiλi = 1 and λi =λi+1, and “r” denotes semantic roles (such A0, A1, 

AM-TMP, and so on). 

 

3.6.4  Learning Curves  

What is the effect on performance when using different amounts of training data?  

Table 3.12 shows the performance for different sizes of training data again, with known 

arguments, meaning that systems are given the correct arguments to classify.  DnK  in 

Table 3.12 denotes the first n k (i.e. n-thousand) sentences from the training data sets, 

WSJ 02 to 21, for example, D10k denotes the first 10k sentence from the training 

datasets.  Using the whole training data (WSJ 02-21), the overall performance 

increases by about 9 in F1 measurement when compared to using D1k only.  

Upper_bound is the proportion of arguments which are found in the system’s probability 

distribution before selecting the maximum label.    For example, an argument with its 

probability distribution can be as follows: “A1”:0.65, “A2”: 0.20, “AM-ADV”:0.15, and 

others:0.00.  Assume the correct label is “A2”, but the system chooses “A1” due to the 
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strategy of highest probability.  In this case, the argument is counted as a wrong role 

when computing the F1 measurement but as a correct role when computing 

Upper_bound.      

 

Sentences Precision Recall F1 Upper_bound T (sec/s) 

D1k 77.17 75.71 76.44 92.19% 0.259 

D5k 81.63 81.19 81.41 96.01% 0.478 

D10k 82.78 82.55 82.67 97.15% 0.564 

D20k 84.36 84.22 84.29 97.60% 0.652 

D30k 85.11 85.05 85.08 97.98% 0.712 

D40k 85.53 85.65 85.59 98.14% 0.785 

 

Table 3.12.  Performance results for the development dataset (WSJ 24) using different 

sizes of training data.   

 

Upper_bound shows how much coverage (or recall) a system can achieve when 

selecting the right label among all possible roles in the probability table.  In Table 3.12, 

the “Upper_bound” for D1k is 92.19%, which means 92.19% of the correct roles can be 

found during probability estimation.  But the “Recall” is only 75.71.  This means only 

about 82% of the cases are right using this system.   

 

Additionally, Table 3.12 illustrates the average processing time (T) in seconds per 

sentence during the testing process.  As training data increases, the average time for 

each sentence also increases.  The average processing time with D40k is 0.785 second 

per sentence.     

Although the system is given semantic arguments before classification, there are some 

unlabelled arguments and wrong continuation roles such as “C-A0”, which causes 

Recall to be different from Precision.  For example, if the correct label set is [A0 V 
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C-A0], the evaluated set is [A0 V A1].  It seems there is one correct label “A0” 

(excluding the predicate labelled as “V”) but this A0 must be joined with the 

continuation label “C-A0” as one label according to the evaluation script used in the 

CoNLL 2005 shared task.  Therefore, the number of correct labels is zero  

 

Table 3.12 also shows that the improvement in performance is not proportional to the 

size of training data.  Figure 3.8 show a learning curve characterised by the logarithmic 

formula: y = 2.4578Ln(x) + 59.87, where ‘y’ denotes F1 measurement, and ‘x’ the size 

of training data.  The six actual data points from Table 3.12 are also shown.  
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Figure 3.8.  Learning curve for different sizes of training data. 

 

3.6.5  Execution time for Classification  

Time complexity is used for measuring how classification time varies as the size of the 

input increases.  Figure 3.9 shows that the classification time exhibits logarithmic 

characteristics (y = 0.1606Ln(x) - 0.9324 , where ‘y’ denotes classification time in 

seconds per sentence, and ‘x’ denotes the size of training data), implying that the 

computational complexity for the modified statistical role classifier (M_SRC) (based on 

the Palmer et al. 2005) is logarithmic, such that TM_SRC = O( m * log n ) where m is the 
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number of features and n denotes the size of the training data. 

 

The shape of the curve is a result of the back-off lattice described in Section 3.3.1, for 

which Figure 3.7 shows two types of searching: highly specified and more general.  In 

Figure 3.7 the highly specified search means probability distributions are just based on 

training data containing a specific predicate without searching all training data.  This 

specified calculation includes computation of P(r | hw, pt, pp, predicate), P(r | pt, path, 

pp, predicate), P(r | pt, pos, dis, voice, pp, predicate), P(r | hw, pp, predicate), P(r | pt, 

pp, predicate), and P(r | pp, predicate).  These probability distributions include the 

predicate feature in their feature sets.  The more general search (used for probability 

distributions without the predicate feature) is applied for P(r | hw, pp) and P(r | pt, pos, 

dis, voice, pp). 
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Figure 3.9.  Classification time relative to the size of the training data. 

 

When highly specified searching finishes the calculation (or finds a solution for role 

classification), there is no further calculation required for general searching, and this 

results in logarithmic complexity.  This logarithmic complexity provides practical and 
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acceptable execution time as the training set size increases.    

 

Results of execution time in Table 3.12 are based on machines with P4 3.0G CPU, 1G 

RAM, and Linux platforms.   

 

3.6.6  Argument Identification on WSJ 24 

Here we use the proposition sets of the CoNLL2005 shared task and extract all 

arguments of each predicate as input to test the argument identification accuracy of the 

systems.  We re-implement the statistical argument recognizer (based on Palmer et al., 

2005) described in Section 3.3.2.  Table 3.13 lists results for argument identification 

with gold (hand-corrected) parses based on different sizes of training data.  Although 

the Recall increases as the training data increases, the Precision decreases.  The F1 

measurement for all training data does not appear much improved compared to the one 

based on one section of training data D1.  This reveals that the increasing size of 

training data does not create a significant improvement for argument identification.  

 

Training Precision Recall F1 T (sec/s) 

D1 91.98 86.35 89.08 0.358 

D4 91.57 88.38 89.95 1.603 

D20 90.59 89.31 89.95 5.643 

 

Table 3.13.  Argument identification with gold parses before role classification. 

 

Table 3.14 shows results for argument identification based on auto parses.  The overall 

results compared to those with gold parses in Table 3.13 drop by about 12 points in F1 

measurement.  This shows that there is a real need for a state-of-the-art parser to 

achieve good performance in argument identification.  The data in Table 3.14 also 

demonstrate that the size of training data does not significantly influence the 

performance of argument identification.  But the execution time of argument 

identification increases significantly when training data increases.  The effect appears 
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to be linear.  Meanwhile, the execution time for argument identification is about seven 

times that of role classification.  Consequently Chapter 4 will introduce a faster 

approach for argument identification.   

 

Training Precision Recall F1 T (sec/s) 

D1 79.74 75.10 77.35 0.361 

D4 79.68 76.65 78.14 1.589 

D20 78.84 77.58 78.21 5.582 

 

Table 3.14.  Argument identification with auto parses (Charniak’s) before role 

classification. 

 

3.6.7  Gold parses vs. Auto parses 

Table 3.15 shows the performance on argument identification and classification 

investigated in this chapter, using the PropBank corpus with gold-parses or 

“hand-corrected” parses, (i.e. the parses from the hand-corrected Penn TreeBank), and 

Table 3.16 shows the results for auto parses (Charniak’s).  Results for argument 

identification (ID), and the combination of argument identification and classification are 

indicated by “ID”, and “ID + Classification” respectively.   

 

Task with gold parses P R F T 

ID  90.59 89.31 89.95 5.643 

ID + Classification 78.14 76.46 77.29 6.342 

 

Table 3.15.  Performance for unknown arguments with gold-standard parses on WSJ 

24. 
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Task with auto parses P R F T 

ID  78.84 77.58 78.21 5.582 

ID+Classification 69.70 68.03 68.86 6.382 

 

Table 3.16.  Performance for unknown arguments with auto (Charniak’s) parses on 

WSJ 24. 

 

Looking at these two tables (3.17 and 3.18), performance for auto parses in Precision (P), 

Recall (R) and F1 measurement (F) decreases when compared to the results for gold 

parses.  Compared to using gold parses, the overall performance measurement drops by 

about 10 points in F1 when using auto parses.  The average execution time with the 20 

training datasets is similar for gold parses and auto parses, being about 6.3 seconds per 

sentence. 

 

3.6.8  Overall Performance on WSJ 23  

This subsection concerns the overall performance on WSJ 23, which can provide results 

for comparison with related research.  Table 3.17 shows the performance of the F1 

measurement of semantic role classification for known arguments (when constituents 

that are semantic arguments are given) using gold-standard parses.  The overall 

performance improves more than 6.0 in F1.  The contribution for each feature is similar 

to Table 3.11 shown in Section 3.6.3. 

 

System on WSJ 23 F1 

Palmer et al., (2005) 80.47 

Improvements 86.55 

 

Table 3.17.  Performance of Semantic Role Labelling for known arguments with gold 

parses. 
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Table 3.18 shows the results for argument identification and classification with 

Charniak’s parses on WSJ 23.  The system is not given any arguments and tries to 

recognize all possible arguments and label them with semantic roles.  Table 3.18 shows 

that the overall performance for argument identification (ID) is F1: 79.94 which is about 

1.7 better than the one on WSJ 24.  The overall performance on WSJ 23 increases 

F1:2.18 compared to WSJ 24.   

 

Task on WSJ 23 P R F 

ID  80.10 79.78 79.94 

ID+Classification 71.18 70.90 71.04 

 

Table 3.18.  Performance for unknown arguments with auto parses (Charniak’s) on 

WSJ 23. 

 

Table 3.19 shows the results on WSJ 23 by Palmer et al. (2005) and the improved 

system based on Palmer et al. (2005). 

 

System P R F 

Palmer et al. (2005) 68.60 57.80 62.74 

Palmer et al. (2005) – with Charniak’s parses 68.04 65.89 66.95 

The improved system  71.18 70.90 71.04 

Table 3.19.  Performance for different systems on WSJ 23. 

 

We re-implement the system of Palmer et al. (2005) using the test data with Charniak’s 

parses from the CoNLL 2005 shared task.  Compared to Palmer et al. (2005) with 

Collins’ parses, the modified version has an F1: 4.21 increase.  This modified system 

further improves about F1:4.1 than the re-implemented system by additional features 
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(preposition and distance) and Actor constraint, Pre-processing and Post-processing 

described in Section 3.4. 

 

Table 3.20 shows details of performance of this system including performance of 

precision, recall, and F1 measurement in each semantic role and overall.  Generally, 

performance for core roles is better than that for adjunctive roles.  The reason for better 

performance in core roles is that there are more training examples for core roles than 

adjuncts for each predicate.  
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WSJ24 Precision  Recall  Fββββ=1  

Overall 71.18% 70.90% 71.04 

A0 91.75%  84.28%  87.86  

A1 65.60%  72.94%  69.08  

A2 66.22%  61.98%  64.03  

A3 66.22%  56.65%  61.06  

A4 62.16%  67.65%  64.79  

A5 100.00%  40.00%  57.14  

AM-ADV 49.17%  41.11%  44.78  

AM-CAU 62.07%  49.32%  54.96  

AM-DIR 46.91%  44.71%  45.78  

AM-DIS 34.36%  38.44%  36.28  

AM-EXT 71.43%  46.88%  56.60 

AM-LOC 55.29%  50.41%  52.74  

AM-MNR 50.32%  45.64%  47.87  

AM-MOD 98.67%  94.56%  96.57  

AM-NEG 95.18%  94.35%  94.76  

AM-PNC 38.94%  38.26%  38.60  

AM-PRD 50.00%  20.00%  28.57  

AM-REC 0.00%  0.00%  0.00  

AM-TMP 63.38%  58.60%  60.90  

R-A0 73.28%  85.71%  79.01  

R-A1 66.90%  60.90%  63.76  

R-A2 60.00%  37.50%  46.15  

R-AM-CAU 33.33%  25.00%  28.57  

R-AM-EXT 0.00%  0.00%  0.00  

R-AM-LOC 66.67%  47.62%  55.56  

R-AM-MNR 25.00%  33.33%  28.57  

R-AM-TMP 59.70%  76.92%  67.23  

 

Table 3.20.  Results on WSJ23 for argument identification and classification. 

 

3.6.9  Overall Performance on the Brown corpus  

This section details the overall performance on part of the Brown corpus, which can 

provide results to compare with related research.  Table 3.21 shows that on the task “ID 

+ Classification”, there is an approximately F1:11 degradation compared to that of WSJ 

23 in Table 3.18.  Section 2.5.5 describes the reason for this decrease as being due to 

processing propagating errors in Natural Language Processing applications when 

moving to different domains. 
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Task on Brown corpus P R F 

ID  77.20 74.18 75.66 

ID+Classification 61.62 59.21 60.39 

 

Table 3.21.  Performance for unknown arguments with auto (Charniak’s) parses on 

part of Brown corpus. 

 

Table 3.22 shows the comparison of this modified system with the re-implemented one 

from Palmer et al. (2005) using the CoNLL test data with the Charniak’s parses.  There 

is a gain of about 4 points in F1 by additional features and heuristics than the 

re-implemented system when moving from the WSJ domain to the Brown corpus 

domain. 

 

System P R F 

Palmer et al. (2005) – re-implemented 59.14 53.93 56.42 

The improved system - 61.62 59.21 60.39 

 

Table 3.22.  Performance for different systems on the Brown Corpus. 

 

3.6.10  Comparison with Different Systems 

Table 3.22 shows the results on WSJ 23 for the task of argument classification only 

using different classifiers, Support Vector Machines (SVM), Decision Tree, and Gildea 

and Palmer’s system (G & P) with the basic features reported in Pradhan (2004).  The 

system investigated in this chapter can obtain 80.47 in F1.  With the extra two features 

(distance and preposition) and the proposed heuristics, this system can reach 86.55 in F1, 

which is 1.45 behind the SVM.  Although this statistical approach does not perform as 

well as the SVM, it is competitive.  More improvements will be described in Chapter 4 

for argument identification and in Chapter 5 for argument classification. 



91 

 

System Accuracy (F1) 

SVM 88 

Decision Tree 79 

G & P 77 

 

Table 3.23.  Comparison with different systems using the same features reported by 

Pradhan, (2004). 

 

 

3.7  Summary and Remarks 

A statistical approach to Semantic Role Labelling (SRL) was introduced by Gildea and 

Jurafsky (2002).  Since then, many new approaches have been proposed.  SRL is 

divided into two sub-problems, argument identification and argument classification.  

Features for argument identification used in this system are head word, path, and 

predicate.  Three extra features, phrase type, voice and preposition, are used for role 

classification.  Statistical classifiers (like the one proposed by Palmers et al., 2005) 

make good use of these features extracted from parses and produce 80.47 in F1 

measurement on WSJ 23 with known arguments.  This research adds some 

improvements including additional features, an actor heuristic, pre-assignment for 

modal, discourse, and negation tags, and post-processing mainly for duplicate roles.  

These improvements help to increase the performance of the baseline approach from 

Palmer et al. (2005) by about 6.0 in F1 measurement.  Data used in these experiments 

are from the CoNLL 2005 shared task including a formal evaluation script, srl-eval, 

available from the CoNLL’s website.    

 

When looking at the contribution of the proposed features, it can be seen that the 

preposition feature influences the overall performance significantly when it is removed 

from the system.  The head word is the second most influential feature, but gives less 

coverage, as also mentioned in Gildea and Jurafsky (2002).  The size of training data 
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has a big impact on role labelling but far less so on argument identification.  One factor 

in this is probably that argument identification is a binary classification but role 

classification is a multi-class problem.  There are enough training data for argument 

identification but sparseness of data stands out when moving to multi-classification.  

Of note here is that adjunctive roles reveal more shortage of training data than core roles.  

Execution time is also considered in this research.  Illustration of learning curves when 

using different sizes of training data graphically reveals the logarithmic computational 

complexity for the back-off lattice.  Experimentally, execution time for argument 

identification is about seven times slower than that for role classification.     

 

Gold (hand-corrected) parses provide a 12 point (F1 measurement) improvement in 

system performance compared to auto parses (Charniak’s), revealing accumulating 

errors in natural language processing applications.  The final result using the modified 

statistical system on WSJ 23 for standard comparison in SRL is 71.04 in F1 

measurement, evaluated by the Perl script from the CoNLL 2005 shared task.  This is 

an improvement of about 9 points compared to the baseline system proposed by Palmer 

et al., (2005).  When moving from the WSJ domain to a different domain such as the 

Brown corpus, system performance drops by about 3 points for argument identification 

and 10 points for the combination of argument identification and argument classification.  

Pradhan et al. (2004) also shows the degradation in a different domain.   

 

Although the modified system improves on the performance of Palmer et al. (2005), 

there is still room for improvement, as can be seen by comparing the performance of this 

system (F1:71.04) to that of Surdeanu and Turmo (2005) (F1:76.46) using Charniak’s 

parses.  This insufficiency in performance provides room and motivation for more 

research in SRL as far as the problem of argument identification and argument 

classification is concerned. 

 

Chapter 4 will introduce a new pre-processing algorithm, called Predicate-Argument 

Recognition Algorithm (PARA), for argument identification to reduce computational 

time without sacrificing system’s performance.  Chapter 5 will introduce a new 
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methodology called Pattern-Matching (PM) for Multi-Argument Classification (MAC) 

which estimates all arguments of a predicate rather than individual arguments.  The 

combination of PARA and PM together with the modified role classifier described in 

this chapter not only outperforms systems that use the same syntactic information in the 

CoNLL 2005 shared task but also provides a competitive performance compared to the 

best one. 
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Chapter 4 

Predicate-Argument Recognition 

 

We feel that our results show that statistical parsers, although 

computationally expensive, do a good job of providing relevant information 

for semantic interpretation.  Not only the constituent structure but also head 

word information, produced as a side product, are important features.  

Parsers, however, still have a long way to go.  Our results using 

hand-annotated parse trees show that improvements in parsing should 

translate directly into better semantic interpretations. 

Gildea and Palmer (2002), The Necessity of Parsing for Predicate Argument 

Recognition. (page 246)  

 

 

Machine learning methods are more or less universal in existing algorithms for 

performing argument identification or Predicate-Argument Recognition as the first stage 

in Semantic Role Labeling.  This chapter demonstrates how a heuristic algorithm for 

Predicate-Argument Recognition (PARA) offers competitive performance compared to 

ML-based methods by naively assuming a direct mapping from parse trees to unlabelled 

semantic argument assignments.  The parse trees are obtained from commonly-used, 

state-of-the-art parsers such as those developed by Charniak or Collins.  When tested 

on the WSJ 23 sample from the CoNLL 2005 Shared Task, this training-free algorithm 

achieves an F1 measure of 82.60 for argument identification in the CoNLL 2005 Shared 

Task when using the same syntactic information.  Moreover, the execution time for 

each sentence is 0.002 seconds, which is much faster than Machine Learning approaches.  

This chapter further proposes other improvements for existing argument recognizers, 

and demonstrates how such improvements help to boost overall performance for an 

existing role classifier (Palmer et al., 2005).  As PARA can achieve promising results 
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on this problem, it may prove useful for other NLP tasks such as Information Retrieval, 

Question Answering, Machine Translation, and so on.   

 

Section 4.1 outlines the background of the problem of argument identification.  Section 

4.2 describes related work on semantic argument identification, and Section 4.3 details 

the algorithm for Predicate-Argument Recognition.  The data, evaluation software, and 

results are presented in Sections 4.4 and 4.5.  Section 4.6 provides some conclusions, 

remarks and a summary for this chapter.  

 

 

4.1  Introduction  

The CoNLL 2005 Shared Task attracted extensive attention and the results given in the 

proceedings list a wide range of different ML approaches to the problem of Semantic 

Role Labeling (SRL).  Most of those systems separated SRL into two parts: semantic 

argument identification, followed by role classification for the bounded arguments.  

That is, given the parse tree for a sentence, all arguments of predicates or verbs in a 

sentence must be identified and subsequently annotated with their respective semantic 

roles.  Thus, the first task is simply to find the arguments of the predicate.  This is the 

so-called semantic argument identification or Predicate-Argument Recognition problem.  

For example, the sentence “The dog bites a tennis ball” can be segmented into three 

basic syntactic constituents: a noun phrase (the dog), a verb (bites), and another noun 

phrase (a tennis ball).  Once isolated, these arguments are subsequently labeled with 

appropriate semantic roles, such as “Agent”, “Verb”, and “Patient” respectively. 

 

Predicate-Argument Recognition is important for Semantic Role Labeling (Baldewein et 

al., 2004).  It is part of the problem of Semantic Role Labeling, in that automatic and 

exact recognition of all arguments for all predicates in a sentence can help to increase 

the performance of a Semantic Role Labeling classifier.  Many researchers tackled 

Predicate-Argument Recognition using Machine Learning approaches.  ML techniques 

that have been applied are the SNoW learning architecture (Punyakanok et al., 2004), 
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Support Vector Machines (Moschitti et al., 2004; Park et al., 2004; Pradhan et al., 2004; 

Pradhan et al., 2003), Perceptron Learning (Carreras et al., 2004), EM-Based Clustering 

(Baldewein et al., 2004), Transformation-based Learning (Higgins, 2004), and 

Memory-Based Learning (Kouchnir, 2004).  Their common characteristic is to retrieve 

features such as phrase type, path, voice, and so on, from a sentence in a chunking-based 

or tree-based format, then find arguments from all possible argument candidates for a 

specific predicate via Machine Learning.  The systems are given predicates and their 

locations in the sentences as part of the input.  By tracing the syntactic parses and 

extracting related features, they proceed to recognize all possible arguments related to 

the given predicates.  For example, for the predicate “play” shown in Figure 4.1, a 

system can check each node or constituent in the parse tree and then recognize a valid 

NP argument, “he”, and a valid PP argument, “with a dog”.  The two valid arguments 

are a NP “He” and a PP “with a dog”.  The rest nodes, which are S, the “IN” 

preposition and the NP “a dog”, are not valid arguments according to PropBank as it is 

described in Chapter 2.  

 

On the other hand, if the systems were not given all predicates, the additional task would 

be to find all possible predicates before any further steps for argument identification can 

be performed.  In the CoNLL 2005 shared task, all predicates are given as input, but in 

a real case, targets or predicates are not always given.  

 

In the last paragraph of Gildea and Palmer (2002), the authors mention the necessity of 

parsing for Predicate-Argument Recognition, which was implicitly revealed in the 

CoNLL 2004 shared task (Baldewein et al., 2004).  This chapter provides evidence for 

the hypothesis, stated in Chapter 1, that there exists a direct mapping from syntactic 

structure to unlabelled semantic structure or semantic arguments in tree-based parses.  

This is implemented via a Tree-based Predicate-Argument Recognition algorithm 

(PARA).  The algorithm, PARA, can convert syntactic parses to semantic arguments 

directly without training, which is different to conventional ML approaches to this 

problem. 
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Figure 4.1.  Illustration of an argument recognizer that checks all possible arguments 

when processing the predicate “play”. 

 

 

4.2  Related Work  

As described in Chapter 1, Semantic Role labeling is to find all arguments for all 

predicates in a sentence, which is done by argument recognizers, and forward these 

identified arguments to an argument classifier for role classification according to 

semantic roles such as AGENT, THEME, TIME, etc.; more commonly and abstractly 

referred to as A0, A1, AM-TMP and so on.  Existing ML classifiers from the CoNLL 

2005 Shared Task demonstrated many possible solutions.   

 

4.2.1 A Conventional Argument Recognizer 

Conventional argument recognizers, such as the one developed by Gildea and Palmer 

(2002), take all nodes in a parse tree, including each word in a sentence, as potential 

arguments.  Whether a potential argument is classified as a valid semantic argument 

depends on a probability estimation such as that given by Maximum Likelihood 

Estimation (Gildea and Palmer, 2002) or similar.  Such a recognizer is a binary 

classifier, utilizing the distribution observed in the training data to learn how to predict 
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future novel semantic arguments.  Information from a parse tree is forwarded as 

features to the argument recognizer to help formulate a model to make correct 

predictions.  The most-frequently used features for semantic arguments are the Path, 

Headword, and Predicate itself, as summarized in Table 4.1.   

 

A statistical argument recognizer from Palmer et al. (2005) utilizes the estimation 

formula (F 3.2), from Section 3.3.2 specifically:  

 

 P (pa| path, hw, predicate)=  

λ1*P(pa | path) + λ2*P(pa | path, predicate) +λ3*P(pa | hw, path) 

where Σiλi = 1. 

 

 

Predicate (pr) – The given predicate lemma (an uninflected, untensed verb). 

Path (path) – The syntactic path through the parse tree from the constituent to the 

predicate being classified  

Head Word (hw) – The syntactic head of the phrase.  (The head is normally simply 

the last noun of the rightmost subordinate noun phrase). 

 

Table 4.1.  Features used in semantic argument identification. 

 

This statistical argument recognizer was implemented for the research presented in this 

thesis as a means to compare a conventional ML recognizer with the heuristic 

direct-mapping algorithm proposed here.  Details of this statistical argument recognizer 

are described in Chapter 3. 

 

4.2.2  Pruning Strategy 

Traditional argument recognizers have to spend time on each phrase and word to find 

possible semantic arguments.  For example, consider the following sentence with its 

graphic tree parse shown in Figure 4.2: 
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Figure 4.2.  An example of parse tree.   

 

(Ex. 4.1) “Everyone was cheered by the increasing car sales including minivans.” 

 

There are three predicates: “cheer”, “increase”, and “include” with 9 phrases (N 0 to N8) 

and 11 leaves (N9 to N19).  Traditional argument recognizers need to check these 20 

constituents for each predicate to identify semantic arguments.   

 

In order to reduce computational time, Xue and Palmer (2004) describe a pruning 

strategy by filtering out constituents that are clearly not semantic arguments to the 

predicate.  Then they classify the candidates derived from the pruning strategy as either 

semantic arguments or non-arguments.  Finally they run a role classifier to label the 

constituents that are identified as arguments with semantic roles (Xue and Palmer, 

2004). 
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Figure 4.3.  The example of the Pruning Strategy reproduced from Xue and Palmer 

(2004). 

 

The pruning algorithm consists of two steps.  Step 1 is to designate the predicate as the 

current node and collect the sisters or constituents at the same level as the predicate.  If 

a sister is a PP, also collect its immediate children.  The second step is to reset the 

current node to its parent and repeat Step 1 until the process reaches the top level node 

(Xue and Palmer, 2004).  Figure 4.3 shows an example from Xue and Palmer, (2004).  

By this pruning algorithm, argument recognizers can focus on the possible argument 

candidates , which are a circled PP, a circled NP, S with the “Extra1” label, and CC.  

There are still two extra arguments included denoted as Extra 1 and Extra 2.  Such 

extra arguments can be avoided by confining the searching area under the nearest S 

clause denoted as Boundary area. 

 

Going back to Example 4.1, there are three predicates, “cheer”, “increase”, and 

“include” with 9 phrases (N 0 to N8) and 11 words (N9 to N19).  Using the pruning 

strategy, the possible arguments for “cheer” are N4, N12, N5, N10, N1, N19 when 

tracing the algorithm upward to the top level node “N0”, for “increase”, N13, N15, N16, 

Extra1 

Top level Node 

Extra2 
Boundary Area 
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N7, N17, N8, N12, N11, N10, N1, N19, and for “include”, N8, N6, N12, N11, N10, N1, 

N19.  The numbers of possible arguments for each predicate are 6, 11, and 7, compared 

to 20 for each predicate with no pruning.  Using the pruning strategy can save about 

60% of the computation for this sentence.    

 

This pruning strategy has been widely used in some systems in CoNLL2005 like 

Punyakanok et al., (2005); Tsai et al., (2005); Yi, et al., (2005); and Cohn et al., (2005) 

in order to reduce training and testing time for SRL systems.  For example, results in 

Tsai et al. (2005) show this pruning strategy helps systems to eliminate large portion 

about 61% of the training data, while it does not sacrifice system’s performance.  Tsai 

et al. (2005) claim their systems with the pruning strategy achieve 93% of the correct 

arguments in training sets. 

 

 

 

 

 

 

Figure 4.4.  Graphic illustration of (Ex. 4.2). 
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4.2.3  Motivation 

The pruning strategy of Xue and Palmer (2004) helps to cut down invalid nodes without 

sacrificing coverage but there are two ways to improve this strategy.  One is, if we 

define the search area as under the closest S clause instead of the top level node, the 

invalid nodes will be reduced more, like two arguments (Extra1 and Extra 2) in Figure 

4.3.  By cursory observation, most of all valid arguments are under the closest S clause 

except some cases like no subjects inside the closest S clause or a SBAR parent of the 

closest S.  Methods for this problem are described in Section 4.3.  The other point we 

find is a special case, an argument with several individual words for a predicate in NP. 

 

The following sentence (Ex. 4.2) with its graphic tree parse shown in Figure 4.4 

illustrates the first point.   

 

(Ex. 4.2) “John, who kicked Mary this morning, was scolded by his mother at home.” 

 

In the pruning strategy by Xue and Palmer (2004), the top level node for the predicate 

“kick” in (Ex. 4.2) is the S clause at the root in Figure 4.4.  This pruning strategy 

includes another invalid constituent, VP under the top S clause.   

 

The other case is for the predicate “increase” in Figure 4.2.  According to the CoNLL 

2005 shared task, the valid arguments for the predicate “increase” in Figure 4.2 are 

“increase” and “car sales”.  Excluding the predicate itself, the constituent “car sales” is 

the only valid argument, which is not included by this pruning strategy either.  Instead 

of combining two words “car sales” as one valid argument, the pruning strategy collects 

two separate arguments because “car” and “sales” are sisters of the predicate.  We will 

develop a rule-based algorithm that can be applied to solve the two problems identified 

above.  They are arguments outside the top level node, and arguments of a predicate in 

a NP with more than one leaf. 

 

Another concern for this pruning strategy is that it searches the same top level node for 

all predicates.  Such a general method can be further decomposed to different 



104 

categories to reduce computation time.  For example, in Figure 4.2, the closest phrases 

to the predicates “cheer”, “increase”, and “include” are VP, NP, and PP respectively.  

For the predicate “cheer” under VP, all valid or correct arguments appear under the S 

clause.  For the predicate “increase” under NP, there are no other valid arguments 

appearing outside this NP.  For the predicate “include” under PP, there exists a valid 

argument NP appearing outside this PP.  The modified pruning strategy is thus as 

follows.  The top level node for a predicate under VP is the closest S clause which is 

the same with the original pruning strategy.  The top level node for a predicate under 

NP is the NP itself.  The top level node for all other phrases except VP and NP phrases 

is the phrase itself.    

 

The following section introduces a direct mapping algorithm that maps from syntactic 

parses to semantic arguments.  This algorithm is called Predicate-Argument 

Recognition Algorithm (PARA).  It is based on three different types of boundary areas, 

employs a pruning strategy and heuristic rules to search valid arguments outside 

boundary areas and performs post-processing to correct punctuation errors generated by 

parsers.    

 

 

4.3  Methodology of PARA 

This section presents the Tree-based Predicate-Argument Recognition Algorithm 

(PARA) that is designed to achieve the following goals: 

 

• find all predicates (if not given); 

• find all arguments of the given or identified predicates; 

• label each argument with information such as phrase type, voice (active or 

passive) and so on; and 

• arrange output in a flat format as established for the shared tasks of CoNLL2004 

and CoNLL2005. 
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PARA is composed of four steps for an input sentence with parses; i) create a predicate 

list; ii) find all arguments for each predicate; iii) if needed, label each argument with 

basic features; and iv) output arguments.  This procedure is illustrated in Figure 4.5 

below.   

 

Procedure PARA 

 Input a sentence in tree-based format (tree)  

 Create predicate list by adding given predicates if given or 

Add all words with verbal POS format, such as VBZ,VNG, and so on, to the predicate list.  

 For each identified or given predicate, predicate,  

  Create argument list // Argument_list[predicate]= Create_arg_list(predicate, tree) 

  Add information for arguments // Info_labeling(Argument_lists, predicate_list) 

 Output Argument_lists 

 

Figure 4.5.  Predicate-Argument Recognition algorithm. 
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Create_arg_list(predicate, tree)  

If the closest phrase type including the predicate == VP  

- find the boundary area ( the closest S clause) 

- find if SBAR as the parent of the closed S clause 

- find if WHNP in siblings within the boundary area, //what, which, that, who,… 

- if found then add WHNP to argument list 

- if the first word of the WHNP is not “what” then find the closest NP 

from ancestors, add the NP to the argument list and mark this WHNP as 

a reference of NP. 

- else // there is no WHNP in siblings 

- find the closest NP from ancestors, and add the NP to the argument list. 

- add to argument list all validated upper-most arguments without including predicates in 

the child VP phrase of the S clause.  // the same with the pruning algorithm 

- Further check if there is no NP before the predicate, then find the closest NP from 

Ancestors. 

If the closest phrase type including the predicate == NP 

- find the boundary area (the NP clause) 

- find RB(POS) before predicate and add to argument list. 

- Add this predicate to argument list. 

- Add the rest of word group after the predicate and before the end of the NP clause as a 

whole argument to argument list. 

- If there is no argument after the predicate, then add to argument list the constituent 

after the NP predicate.   

Otherwise (PP and others) 

- find the boundary area ( the phrase itself) 

- find the closet NP from ancestors if the lemma of the predicate is “include”, and add 

this NP to argument list. 

- Add this predicate to argument list. 

- Add the children of this predicate to argument list or add one closest NP outside the 

boundary area to argument list if there is no child for this predicate. 

 

Figure 4.6.  Algorithm of Create_arg_list for PARA. 
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The main part of PARA is the function used to identify all arguments or constituents in a 

parse.  There are three cases in the function of “Create_arg_list” outlined in Figure 4.6, 

which are explained in the following sections, 4.3.1, 4.3.2, and 4.3.3. 

 

4.3.1  Three categories and their Boundary areas 

There are several types of phrases that can include predicates: Verb Phrases (VP), Noun 

Phrases (NP), Preposition Phrases (PP), Adverb Phrases (ADVP), Adjective Phrases 

(ADJP), and others such as INTJ.  Empirically, this research has found the boundary 

area for a predicate in NP to be the NP itself.  The boundary area for a predicate in PP 

can also be itself like a predicate in NP.  But for the predicate, “include”, there is an 

additional NP argument from its ancestors as the closest NP.  The boundary areas for 

the rest of the phrases, ADJP, ADVP, and others, can be categorized into VP, NP or PP 

by tracing upward to their first ancestor labeled VP, NP or PP.  Therefore, these six 

phrase types can be further classified empirically into just three different categories, VP, 

NP, and PP.  The boundary area for a predicate in the VP category is the nearest level of 

clause, which is the closest S clause from ancestors for predicates in VP.  The boundary 

area for NP is NP itself and the boundary area for a predicate in PP and others is the 

phrase itself.   

    

These boundary areas cover most of the valid arguments of predicates.  According to 

the pruning strategy, valid arguments can be identified by the upper-most arguments 

without including the predicate.  However, there are valid arguments outside these 

boundary areas and these are described in Section 4.3.2, and 4.3.3.    

 

4.3.2  Predicates in VP  

Argument identification for a predicate under a VP can be implemented by searching 

children of the closest S clause, children of the closest VP, and constituents within the 

uppermost VP containing the predicate.  Figure 4.7 illustrates a simple case for a 

predicate in the VP category.  The valid arguments in this tree for the predicate “play” 
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are the nodes labeled NP and PP and the modal “would”.  Note that valid arguments do 

not include any argument with just punctuation marks, and not any arguments that 

overlap each other.  In Figure 4.7, a valid argument of type NP before the predicate is a 

sibling of the “uppermost” VP ancestor (denoted as “V1”) or one of the children of S.  

Another valid argument of type PP after the predicate is one of the children of the 

closest VP ancestor (denoted as “V2”).  This PP does not include the predicate.  Under 

the top level S, there is another valid one-word argument (the modal “would”). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7.  Illustration of a fully parsed tree for the VP category.  

 

(Ex. 4.2) from Section 4.2.3 shows another more complicated example for predicates 

under the VP category.  In Ex 4.2, there are two predicates “kick” and “scold”.  The 

arguments associated with the predicate “kick” are “John”, “who”, “Mary” and “this 

morning”.  These arguments are the subject, reference of subject, object, and time 

modifier (Gildea and Jurafsky, 2002) respectively.  Their semantic roles by the 

definition of PropBank (Palmer et al., 2005) are A0, R-A0, A1, and AM-TMP, 

respectively. All arguments associated with the predicate “scold” are “John, who kicked 

V1 

V2 
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Mary this morning,”, “by his mother”, and “at home”, which are passive subject, passive 

object, and location modifier respectively.  The semantic roles by the definition of 

PropBank are A1, A0, and AM-LOC respectively.  The fully parsed tree for this 

sentence is shown in Figure 4.8. 

 

Figure 4.8 shows all valid semantic arguments in circles.  Traces for the search for 

valid arguments and the predicates’ boundary areas are shown in rectangles.  The 

boundary area for the predicate “kick” is the node “ID 6”.  There is a node “SBAR” 

“ID 3” as its parent.  Under “ID 3”, there is one “WHNP” child (“ID 4”), which is the 

word “who”.  The algorithm then marks the “ID 4” constituent as a reference to the 

“NP” labeled “ID 2”.  This NP with “ID 2” is the closed NP that does not include the 

predicate.  This NP with “ID 2” is a subject of the predicate “kick” because there are 

no other NP arguments prior to the predicate.  The “WHNP” phrase is the reference of 

that subject.  Once the argument search prior to the predicate is done, there are two 

NPs with “ID 8” and “ID 9” as arguments under the “VP” with “ID 7”.  These two NP 

arguments are the children of the closest VP ancestor under the boundary area.  In this 

case, the uppermost VP ancestor is the same as the closest one, and no other valid 

argument is found between the uppermost VP and the predicate.  Thus four semantic 

arguments apart from the predicate have been found in this argument search under the 

boundary area of S with “ID 0”. 

 

The same approach is applied to the predicate “scold”.  The boundary area for the 

predicate “scold” is the “S” node with “ID 0”.  There is one “NP” child with “ID 1” for 

the whole constituent, “John, who kicked Mary this morning,” as an argument for the 

predicate “scold”.  There are two PPs, whose IDs are 12 and 13, under the closest VP 

ancestor containing the predicate “scold”.  There are two arguments.  The uppermost 

VP ancestor is denoted as “ID 10”.  There is one auxiliary word, ”was”, between the 

uppermost VP ancestor and the predicate.  This auxiliary word is excluded from 

semantic arguments in the CoNLL 2005 shared task
1
.  Consequently, there are three 

arguments exclusive to the predicate that have been found in this argument search under 

                                                 
1 The CoNLL 2005 shared task does not offer any explanations. 
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the boundary area of “S” with “ID 0”.   

 

Besides finding semantic arguments related to predicates, the algorithm can also identify 

the real entity or actor, who performs the action, in order to increase the precision for 

role classification.  This is done according to the Actor heuristic described in Section 

3.4.  Formally, a grammatical subject is an actor if the action is performed in an active 

voice.  But it would be different if a predicate is in a passive voice.  Therefore, in 

Figure 4.6 the first NP prior to the passive predicate, “scolded” can be considered as a 

subject but not an actor.  And the PP with “by” after the predicate can be identified as 

an actor according to the Actor heuristic. 

 

 

 

 

 
 

Figure 4.8.  Illustration of steps for PARA with 15 sub phrases and 16 words. 
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4.3.3 Predicates in NP and PP 

Different to the VP category, the boundary area for a predicate in the NP and PP 

categories is the phrase itself.  There are some cases where valid arguments are outside 

the boundary areas such as in the case of the predicate “include” in the PP category.  

(Ex. 4.1) illustrates both categories.  Figure 4.9 shows how PARA works for the two 

predicates in the Noun Phrase and Prepositional Phrase categories respectively from (Ex. 

4.1).  There are totally 9 sub phrases and 11 words including the punctuation.  The 

boundary areas for the predicates “increase” and “include” are under the NP with “ID 6”, 

and the PP with “ID 7” respectively.  Only the POS, which is RB, is valid for the 

argument search before the predicate in a NP.  The rest of the words after the predicate 

are considered as one argument, which consists of the words “car” and “sales”.  There 

is only one argument for “increase” excluding the predicate itself, which is “car sales”. 

 

 
 

Figure 4.9.  Illustration of diagrams for PARA on Example 1 with 9 sub phrases and 11 

words. 
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4.3.4  Post-processing 

PARA can identify all semantic arguments of predicates based on parses, but can not 

detect and correct any errors made by parsers.  In order to increase performance, one 

can perform the following post-processing step for rectifying parse errors: 

 

� skip one word arguments containing only punctuation, and 

� skip quotation marks at both ends of an argument.  

 

The first rule reduces errors of an argument recognizer to include arguments containing 

only punctuation.  The second is used to correct errors by parsers that include quotation 

marks for constituents in different ways.   

 

4.3.5  Output format of PARA 

The main task for the direct mapping algorithm is to find the structure of predicates and 

semantic arguments, and leave role classification to other role classifiers.   Therefore, 

the output format of PARA is defined as the following format, called [GPDV] format, 

for the procedure in Figure 4.5. 

 

G: Grammatical function with Actor label–5 denotes a 

subject or an actor, 3 an object and 2, others; 

P: Phrase type of the argument – 00 denotes ADJP, 01 

ADVP, 02 NP, 03 PP, 04 S, 05 SBAR, 06 SBARQ, 07 

SINV, 08 SQ, 09 VP, 10 WHADVP, 11 WHNP, 12 

WHPP, and 13 Others 

D: Distance of the argument from the predicate – a relative 

displacement from the predicate with either a “+” note if 

the argument is before the predicate or a “-“ note if it is 

after the predicate.   

V: Voice of the predicate, 0: active 1: passive 
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The algorithm can also offer notes of references as described in Section 2.3.2 for 

arguments with “WH” phrase type denoted as “RX”, in which “X” denotes the 

information on the closest NP prior to this “WH” phrase.   

 

Figures 4.10, and 4.11 show the output for (Ex. 4.1) and (Ex. 4.2).  In both figures, the 

first two columns contain the words and predicates in a sentence.  The other columns 

are for the arguments of the predicates in column 2.  The rest of columns specify the 

predicates’ arguments and their roles respectively in the [GPDV] format.  For example, 

(302-11*) in the first line of Figure 4.10 represents the start and end of the first 

argument for the predicate “cheer” with [3 02 -1 1] label.  It means this argument is an 

object (3) and a NP (02), and has a displacement prior to the predicate (-1) in the passive 

(1) voice of the predicate. 
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Figure 4.10.  Output of PARA for (Ex. 4.1). 
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Figure 4.11.  Output of PARA for (Ex. 4.2). 

  

Summarily, the same point of this algorithm and the pruning strategy is to find 

arguments based on the upper-most phrases; and the main differences are as follows: 

1) Different definition of boundary areas for different predicate categories 

PARA categorizes three types, which are VP, NP and PP & others; 

2) Arguments outside boundary areas  

In order to add arguments outside boundary areas, PARA adds a simple checking 

algorithm, which is to browse upwards for more arguments if a predicate under the 

VP category does not include a NP before the predicate or this boundary area of the 

predicate has a SBAR parent.   

3) Post-processing 

PARA includes heuristics of post-processing to enhance system performance by 

skipping punctuation or quotation marks. 
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Figure 4.12.  Illustration of system architecture.    

  

4.3.6  System Architecture 

The system presented in this section is designed to test consistency of performance in 

SRL when semantic arguments recognized by PARA are forwarded to a role classifier.  

Figure 4.12 illustrates the system architecture including Input, PARA, Role Classifier, 

and Output. 

 

Input 

The input format is the same as the one used for the CoNLL 2005 shared task, with all 

syntactic information as shown in Figure 4.13.  The first column contains words or 

tokens for a sentence.  The second column is the Name Entity information, which 

indicates whether the corresponding phrase is a person (PER), organization (ORG), and 

so on, as defined by the shared task.  The third column has POS tags for each word, 

and partial syntactic annotations are listed in the fourth and fifth columns, composed of 

phrase chunks and clause brackets.  A full syntactic parse, given by a Charniak or 

Collins parser, is in the sixth column.  In the shared task, targets or predicates are also 

given as input, which are shown in the seventh column.  For the testing stage, these 

seven columns offer sufficient information for an argument recognizer and role classifier 

to assign roles.  The remaining columns, provided as input, vary according to the 

Input Output 1 Role Classifier 

Output 2 

Argument Recognizer 
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number of predicates.  In this example, Columns 8 and 9 contain the arguments and 

roles for the predicates “face” and “explore” respectively.  Each argument is annotated 

with the Start-End format described in Section 2.5. 

 

Argument recognizer 

PARA is used as the argument recognizer to identify predicates and their arguments, and 

forwards all of those to role classifiers.  Details of PARA have been explained in 

Section 4.3. 

 

WORDS        NE  POS   PARTIAL_SYNT      FULL_SYNT    TARGETS      PROPS 

                   

The        *   DT    (NP*    (S*     (S(NP*       -     (A0*    (A0* 

$           *   $         *   *       (ADJP(QP*       -        *       *  

1.4          *   CD       *    *           *               -        *       *  

billion       *   CD       *    *           *))              -        *       *  

robot        *   NN       *   *           *               -        *       *  

spacecraft    *   NN       *)  *           *)              -        *)      *)     

faces        *   VBZ   (VP*)  *           (VP*              face   (V*)      *        

a            *   DT    (NP*   *           (NP*              -     (A1*       *        

six-year      *   JJ        *    *           *               -        *       *        

journey      *   NN       *)   *           *               -        *       *        

to           *   TO    (VP*   (S*         (S(VP*           -        *       *        

explore      *   VB       *)   *           (VP*              explore   *     (V*) 

Jupiter   (ORG*)  NNP   (NP*)   *         (NP(NP*)         -       *     (A1*        

and         *   CC       *   *           *               -        *       *        

its          *   PRP$  (NP*   *           (NP*             -        *       *        

16          *   CD       *   *          *               -        *       *        

known       *   JJ        *    *           *               -        *       *        

moons       *   NNS     *)   *)          *)))))))         -        *)      *)     

.            *   .         *    *)          *)              -        *       *     

 

Figure 4.13.  Input in flat format for the system. 
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Role classifier 

In order to test the direct mapping algorithm, a modified version of the system described 

by Palmer et al. (2005) is implemented, which uses the basic features predicate, head 

word, phrase type, voice, and distance; plus an additional preposition feature and the 

actor heuristic introduced in Chapter 3.  Pre-assignment and post-processing for 

duplicate roles as described in Section 3.4 are also included.  The probability 

estimation (F 3.3) described in Section 3.3.1 is formulated as follows: 

 

 

 

P ( r | hw, pt, path, dis, voice, predicate) =  

λ1*P(r | predicate) +λ2*P(r | pt, predicate) + 

λ3*P(r | pt, path, predicate) +λ4*P(r | pt, dis, voice) + 

λ5*P(r | pt, dis, voice, predicate) +λ6*P(r | hw) + 

λ7*P(r | hw, predicate) +λ8*P(r | hw, pt, predicate) 

where Σiλi = 1 and λi =λi+1, and “r” denotes semantic roles (such A0, A1, 

AM-TMP, and so on). 

 

This ML classification approach is based on the “backoff” lattice.  The lattice 

employed here is shown in Figure 4.14 according to (F 3.3).  Less-specific distributions, 

going down the lattice, are used only when no data is found for any more-specific 

distribution (i.e. when the probability is zero at higher levels in the lattice).  For 

example, P(r | pt, pp, pr) will be used only when any top-level distribution yields 

probabilities of zero, where the top-level estimates include P(r | hw, pt, pp, pr), P(r | pt, 

pa, pp, pr) and P(r | pt, di, vo, pp, pr).  The unused probability is set to be zero so that 

the distribution sums to one.   

 

More detail can be found in Chapter 3.   
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Figure 4.14.  Illustration of the modified “Backoff” lattice. 
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Figure 4.15.  An output example for the evaluation of role classification in the CoNLL 

2005 shared task. 

 

P(r | hw, pt, pp, pr)  P(r | pt, pa, pp, pr)   P(r | pt, di, vo, pp, pr) 

 

 

 
 

 

P(r | hw, pp, pr)      P(r | pt, pp, pr) 

 

 

 

 

P(r | hw, pp)           P(r | pp, pr)       P(r | pt, di, vo, pp) 
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Outputs 

There are two kinds of outputs: one (Output1) for role classification and the other 

(Output2) for argument identification.  In order to have a fair comparison with existing 

ML approaches, this research uses the same output format as the CoNLL 2005 shared 

task for Output1.  Output1 for evaluation only contains a column with all the predicates, 

and one column for each predicate.  Each tag after the predicate column is in the 

STARTS*ENDS, format, which represents phrases that start and end at the corresponding 

words.  When systems are evaluated for argument identification and role classification, 

the output format is the same as the standard format used in the shared task.  For 

example, Figure 4.15 is the output for evaluation of role classification for the example in 

Figure 4.13. 

 

Since the evaluation script offered in the shared tasks does not directly allow the 

calculation of performance for argument identification, Output2 for argument 

identification is different from Output1 for argument classification.  All labels of 

arguments offered by the shared task are replaced with the A0 labels excluding the 

predicates, and the output data of systems is modified to replace all arguments with the 

A0 label, excluding the predicate arguments.  Figure 4.16 is an output example of 

argument identification for the example in Figure 4.13.  This prevents incorrect 

evaluation by the conll script due to the continual labels.  For example, the number of 

correct arguments in the semantic list [A1 V A2] to the proposition [A1 V C-A1] is zero 

since the conll script counts word spans of A1 and C-A1 as a whole argument instead of 

two arguments. 
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Figure 4.16.  An output example for the evaluation of argument identification in the 

CoNLL 2005 shared task. 

 

 

4.4  Data, Evaluation, and Parsers  

The results in this thesis are based on the CoNLL 2005 dataset released in March 2005
2
, 

which includes Wall Street Journal sections annotated with Charniak’s (Charniak, 2000) 

and Collins’ (Collins, 1999) parse trees. Wall Street Journal sections are part of the 

PropBank corpus
3

.  The whole WSJ 02-21 is used as training data for role 

classification.  This training data contains annotations for 90,750 predicate-argument 

structures or propositions with 239,858 individual arguments, and has 39,832 sentences 

with 950,028 words or tokens, and 3,101 lexical predicates (types).  The WSJ23 test 

data contains 982 different predicates with 14,077 arguments and the Brown data has 

351 predicates with 2,177 arguments.  Table 4.2 summarizes these datasets, including 

training sets WSJ 02 to 21, the development set WSJ 24, the main test set WSJ 23, and 

the Brown corpus test set as another English domain.   

                                                 
2 http://www.lsi.upc.edu/~srlconll/soft.html 
3 http://www.cis.upenn.edu/~treebank 
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 Train.  Development  Test WSJ  Test Brown  

Sentences 39,832  1,346  2,416  426  

Tokens 950,028  32,853  56,684  7,159  

Propositions 90,750  3,248  5,267  804  

Verbs 3,101  860  982  351  

Arguments 239,858  8,346  14,077  2,177  

 

Table 4.2.  Summarization of data sets used in this research. 

 

Evaluation is performed on a collection of test sentences with all input information like 

POS, parses described in Section 3.5 and target verbs or predicates given as input 

annotation.  An official script, srl-eval.pl available from the CoNLL 2005 Shared Task 

website
4
, evaluates a system with respect to precision, recall and Fβ=1 (i.e. the F1 

measure) of the predicated arguments.  This evaluation measurement has been 

described in Section 3.5.2.  It is based on the formula: F1 =2*p*r / (p+r), and is widely 

used in Natural Language Processing.   

 

 

4.5  Experiments and Results 

This section shows the results for argument identification.  Section 4.5.1 shows the 

performance of PARA with and without given predicates.  The differences between 

gold-standard or hand-corrected parses and auto parses are discussed in Section 4.5.2.  

The analysis of PARA in Section 4.5.3 shows the performance in three predicate 

categories and inside and outside boundary areas.  Standard figures for comparison on 

WSJ 23 are in Section 4.5.4.  Comparisons with conventional argument recognizers are 

in Section 4.5.5.  The contribution of improvements for different recognizers is shown 

in Section 4.5.6.  Results for the Brown corpus are compared in Section 4.5.7.  The 

effect of punctuation is shown in Section 4.5.8.  Section 4.5.9 discusses the runtime of 

PARA when compared to conventional argument recognizers.  The joint model of 

                                                 
4 http://www.lsi.upc.edu/~srlconll/soft.html 
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PARA with the ML approach increases improvements shown in Section 4.5.10, and the 

results of argument identification and role classification are tabled in Section 4.5.11. 

 

4.5.1  Given vs. Identified  

In the CoNLL 2005 shared task, all predicates are given to systems.  Tables 4.3 and 4.4 

show the effect on PARA if predicates must be identified before any other tasks are 

performed.  In Table 4.3, based on hand-corrected parse trees, results are the same with 

given predicates (PARA-G) and without predicates (PARA-N) on WSJ 24.  It is not 

surprising for this result because all predicates in the hand-corrected parses are correctly 

labeled with verbal POS tags such as VBN, VBZ, and so on.   

 

There is an approximately 2-point drop (80.89 vs. 78.77) of overall performance in F1 

caused by errors in Charniak’s parses, which means some predicates are not tagged as a 

verbal POS tag.   

 

Note that the post-processing discussed in Section 4.3.4 is only used when the input 

parse trees are not hand-corrected. 

 

 Precision Recall F1 

PARA-N 91.54 92.42 91.98 

PARA-G 91.54 92.42 91.98 

 

Table 4.3.  Results for PARA with hand-corrected parses on WSJ Section 24. 

 

 Precision Recall F1 

PARA-N 81.14 76.53 78.77 

PARA-G 80.76 81.01 80.89 

 

Table 4.4.  Results for PARA with auto parses on WSJ Section 24. 
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4.5.2  Gold parses vs. Auto parses 

Degradation of performance appears not only in Table 4.4, from given to identified, but 

also in the comparison of hand-corrected parses to auto parses.  There is a gap of more 

than 11 points (in F1) between results obtained with hand-corrected parses and auto 

parses with given predicates on WSJ 21 and 24 as shown in Table 4.5.  The overall 

performance of hand-corrected parses on WSJ 21 is about 4.5 (93.44 vs. 89.88) over the 

Charniak’s parses.  But the overall performance of hand-corrected parses on WSJ 24 

improves by about 11 points (91.98 vs. 80.89) on the Charniak’s parses.  Meanwhile, 

the big drop (89.58 to 80.89) on WSJ 24 shows the Charniak’s parser performs variously 

on different data sets. 

 

 

Parses WSJ Precision Recall F1 

Hand-corrected 21 93.07 93.80 93.44 

 24 91.54 92.42 91.98 

Charniak 21 89.02 90.14 89.58 

 24 80.76 81.01 80.89 

 

Table 4.5.  Results for PARA on WSJ Section 21, 24 with hand-corrected parses and 

Charniak’s parses. 

 

4.5.3  Analysis of Results 

As mentioned in Section 4.3, there are three main categories of phrases, which are VP, 

NP, and Others.  Tables 4.6 and 4.7 show the frequency of the three types of categories 

and their performance for hand-corrected parses and Charniak’s parses respectively 

when excluding the other phrases.  The majority of the predicates, the category with 

the biggest recall, in both Tables 4.6 and 4.7 are in the VP category, and dominate the 

overall performance.  Precision in the VP category drops by about 11 points for 

Charniak’s parses compared to the hand-corrected ones.  It is mainly due to errors in 

assigning prepositional phrases after predicates, as shown in Figure 4.17.   
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The difference between hand-corrected parses and Charniak’s parses in Figure 4.17 is 

whether the prepositional phrase “with us” is under the ADVP “here” or not.  The 

hand-corrected parse includes it but Charniak’s parse does not.  This difference or error 

causes wrong assignments in the argument identification.  There are 5 semantic 

arguments in the hand-corrected parse excluding the predicate, but 6 in Charniak’s parse.  

This kind of error is beyond the scope of PARA, and might be solved by ML based 

recognizer in the future. 

 

 

 

WSJ 24 % P R F1 

Overall  91.54 92.42 91.98 

VP 93.72 91.56 89.81 90.68 

NP 5.51 90.43 2.24 4.36 

Others 0.77 93.94 0.37 0.73 

 

Table 4.6.  Results for different phrase types on WSJ 24 – hand-corrected parses by 

PARA. 

 

 

WSJ 24 % P R F1 

Overall  80.76 81.01 80.89 

VP 92.49 80.62 78.28 79.43 

NP 6.37 86.40 2.33 4.54 

PP & others 1.14 79.07 0.40 0.80 

 

Table 4.7.  Results for different phrase types on WSJ 24 – Charniak parses by PARA. 
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we  PRP  (S1(S(NP*)  -  (A0*)      

may  MD  (VP*   -   (AM-MOD*)     

not     RB  *    -  (AM-NEG*)     

see     VB  (VP*   see  (V*)      

them    PRP  (S(NP*)   -  (A1*)      

here    RB  (ADVP*  -  (AM-LOC*      

with    IN  (PP*   -  *       

us      PRP  (NP*))))))))  -  *)      

 

we  PRP  (S1(S(NP*)  -  (502-30*)      

may  MD  (VP*   -   (209-20*)      

not     RB  *    -  (209-10*)      

see     VB  (VP*   see  (V*)      

them    PRP  (S(NP*)   -  (302+10*)      

here    RB  (ADVP*)  -  (200+20*)      

with    IN  (PP*   -  (203+30*      

us      PRP  (NP*)))))))  -  *)      

 

Figure 4.17.  An example hand-corrected parse and Charniak’s parse. 

 

Tables 4.8 and 4.9 show the results on hand-corrected and auto parses respectively for 

inside and outside boundary areas, i.e. their performance inside (if arguments are located 

in the boundary area) and outside (if not in the boundary area).  Most arguments appear 

inside the boundary area.  In total, about 90 percent of the arguments are inside, and 10 

percent outside.  Precision and Recall inside the boundary area are better than outside 

the boundary area for both parses.  This suggests that it is more difficult to trace 

arguments outside the boundary area, such as WH-phrases and their related constituents.  

For example, in Figure 4.8, two arguments outside the S clause (denoted as “ID: 2” for 

the predicate, “kick”) are the NP with “John”, and the WHNP with “who”. 

 

Boundary Area % P R F1 

Overall  91.54 92.42 91.98 

Inside 90.06 94.20 81.72 87.48 

Outside 9.94 75.78 10.70 18.74 

 

Table 4.8.  Results inside and outside boundary areas on WSJ 24 – hand-corrected 

parses by PARA. 
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Boundary Area % P R F1 

Overall   80.76 81.01 80.89 

Inside 90.11 82.52 71.13 76.40 

Outside 9.89 70.05 9.88 17.31 

 

Table 4.9.  Results inside and outside boundary areas on WSJ 24 – Charniak’s parses 

by PARA. 

 

 

WSJ 23 % P R F1 

Overall  82.90 82.30 82.60 

VP 96.47 82.92 81.10 82.01 

NP 2.33 83.97 0.77 1.52 

PP &Others 1.20 76.54 0.43 0.86 

     

Inside 90.08 84.39 72.53 78.01 

Outside 9.92 73.26 9.77 17.24 

 

Table 4.10.  Allocation of predicates in PARA based on Charniak’s parses on WSJ 23. 

 

4.5.4  Results for WSJ 23 

Table 4.10 shows the percentage of different boundary categories and performance 

based on Charniak’ parses on WSJ 23.  Compared to the results in Table 4.7, allocation 

of the three phrase categories, VP, NP, and Others are different.  The precision of the 

main phrase category, VP, increases about 2%, but that of NP decreases about 4%.  

This reveals that the results by PARA based on Charniak’s parses vary because of 

parser’s different performance in different datasets.  Generally speaking, the 

performance of argument identification on WSJ 23 is about 2 points (in F1) better than 

on WSJ 24. 
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System Corr. Excess Missed Precision Recall F1 Synt 

PARA 11794 2433 2537 82.90 82.30 82.60 cha 

Moschitti 11652 2322 2679 83.38 81.31 82.33 cha 

Che 11138 1710 3193 86.69 77.72 81.96 cha 

Tjongkimsang 11009 1943 3322 85.00 76.82 80.70 cha 

Yi 11196 2231 3135 83.38 78.12 80.67 cha 

Surdeanu 10931 1943 3400 84.91 76.28 80.36 cha 

 

Table 4.11.  Comparison with other existing systems using only Charniak’s parses. 

 

4.5.5  Comparison with Other Systems 

Table 4.11 shows the performance of PARA and some existing systems using the same 

syntactic information (Charniak’s parses) from the CoNLL 2005 shared task as input.  

The best ML performance for argument identification, achieved by Moschitti et al., 

(2005) was 82.33 in F1 measurement.  PARA (82.60) outperforms this by 0.27 point.  

Although this is not much, it shows that even with a state-of-the-art Machine Learning 

approach, the result for argument identification is inferior to the one obtained by the 

direct mapping algorithm, PARA.   

 

PARA not only exhibits the top performance in F1, but also identifies the most correct 

(Corr.) and the fewest missed (Missed) arguments, as shown in the second and fourth 

column in Table 4.11.  PARA also achieves the best performance in Recall (in column 

6).  Although PARA finds more correct arguments, it also gets more excessive (Excess) 

or wrong arguments, which results in poor Precision for PARA compared to other 

systems.  It is because PARA uses general rules to recognizer arguments without any 

ML validation.  Such ML validation can help to increase precision but reduce recall as 

discussed in Section 4.5.10. 

 

Besides the Charniak’s parses, other syntactic information used in the CoNLL 2005 

shared task include Collin’s parses (col), partial parses (upc) with chunks and clauses, 

and n-best parsings generated by re-trained parsers such as “6-cha” denoting the six top 
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parses generated by Charniak’s parser after re-training.  Table 4.12 lists the top systems 

with multi-syntactic information in the shared task.  By comparison, the best system, 

Punyakanok et al. (2005), using rich syntactic information outperforms PARA using 

singular Charniak’s parse by 1.68 points.  It will be the future work to include different 

parses in PARA. 

 

System Corr. Excess Missed Precision Recall F1 Synt 

Punyakanok 11668 1612 2663 87.86 81.42 84.52 6-cha,col 

Marquez 11752 1869 2579 86.28 82.00 84.09 cha, upc 

Haghighi 11886 2092 2445 85.03 82.94 83.97 5-cha 

Pradhan2 11358 1458 2973 88.62 79.25 83.68 cha, col, chunk 

 

Table 4.12.  Comparison with other existing systems using rich syntactic information. 

 

4.5.6  Contribution of Post-processing   

The post-processing method discussed in Section 4.3.5 increases system performance.  

Table 4.13 shows improvements in some systems with Charniak’s parses after applying 

the post-processing rules of skipping one-word punctuation arguments, and quotations at 

the end of arguments.  The system by Moschitti et al. (2005) gains another 0.27 points 

in F1 measurement, but that by Surdeanu et al. (2005) does not exhibit any change in 

performance.  This means some systems in the CoNLL 2005 shared task have already 

taken the punctuation issue into consideration. 

 

System Precision Recall F1 Improved 

Moschitti 83.63 81.54 82.57 0.24 

Che 86.76 77.78 82.03 0.07 

Tjongkimsang 85.15 76.95 80.84 0.14 

Yi 83.39 78.13 80.68 0.01 

Surdeanu 84.91 76.28 80.36 0.00 

 

Table 4.13.  Comparison with other existing systems using only Charniak’s parses. 
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4.5.7  Other Domain – the Brown Corpus 

The CoNLL2005 shared task is not limited to the WSJ data, but also uses the Brown 

corpus for testing in another domain (i.e. other than WSJ).  The results shown in Table 

4.14 indicate a drop in F1 of about 3 points for argument identification in the Brown 

Corpus domain in comparison to performance on WSJ 23.  As is the case for WSJ 23, 

most predicates in the Brown Corpus are in the VP category, which influences the 

overall performance.  The precision on predicates within PP increases significantly to 

100 when PARA only includes PP in the Brown corpus.  Meanwhile, we test 

Moschitti’s performance on the Brown Corpus and find it drops 3.75 points compared to 

the one on WSJ 23 (from 82.33 to 78.58); thus PARA appears to perform comparably to 

Moschitti’s ML method. 

 

 

Brown 32 % P R F1 

Overall  80.60 78.51 79.54 

VP 94.90 80.57 77.06 78.77 

NP 3.98 80.56 1.32 2.59 

PP only 1.12 100.00 0.13 0.27 

     

Inside 91.85 80.89 70.01 75.06 

Outside 8.15 78.24 8.50 15.33 

 

Table 4.14.  Results by PARA on some data in Brown Corpus with Charniak’s parses. 

 

4.5.8  Punctuation Effect 

There are some incorrect arguments caused by punctuation, such as quotations (`) in an 

argument span.  The evaluation script used in the shared task considers an argument 

valid if it exhibits the correct word span including punctuation.  In order to check how 

much impact the punctuation has, an variant of the evaluation script, my_eval(), was 
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developed for measuring performance without punctuation.  This evaluation program 

evaluates a system by ignoring whether or not labels are correct because there is no need 

to verify labels at the stage of argument identification.  Table 4.15 shows the results 

obtained by my_eval() on the same data with Charniak’s parse trees.  The results 

obtained by srl-eval.pl are almost the same as the results for “with-punctuation” (W/T 

Punc) datasets in this table.  By skipping the punctuation, the performance in F1 (W/O 

Punc) increases from about 0.44 (on Sec 23) to 0.90 (on Brown) compared to those with 

punctuation.  It shows how punctuation influences Charniak’s parses within 1 %.     

 

 

 

 

 

 

 

 

 

 

Table 4.15.  Results with and without punctuation in PARA evaluated by my_eval() for 

WSJ Section 23, and 24, and Brown corpus with Charniak’s parser. 

 

4.5.9  Execution time in different sizes of Dataset 

Table 4.16 includes test data sets (column 1), numbers of sentences for each data set 

(column 2), F1 performance (column 5), total execution time in minutes for each data set 

(column 6) and average execution time in seconds for each sentence (column 7).  This 

table shows the execution time by PARA on WSJ 20, 21, 23, 15 to 18, and all of 02 to 

21 combined with Charniak’s parses.  The average time to process each sentence is 

0.002 second.  It is worth noting that the F1 performance for WSJ 02-21 is 88.40, but 

only 80.70 for WSJ23.  Performance drops severely from the first 20 WSJ sections to 

WSJ 23, which means the performance of Charniak’s parser varies in different WSJ 

sections.   

 

  P R F1 

W/T Punc. Sec 24 80.76 81.01 80.88 

 Sec 23 82.89 82.29 82.59 

 Brown 80.57 78.48 79.51 

     
W/O Punc. Sec 24 81.33 81.61 81.47 

 Sec 23 83.29 82.76 83.03 

 Brown 81.50 79.34 80.41 
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Test No of sen P R F1 T1(min) T2(sec/sen) 

Sec 20 2012 89.32 90.69 90.00 0.080 0.002 

Sec 21 1671 89.02 90.14 89.58 0.063 0.002 

Sec 23 2416 82.90 82.30 82.60 0.087 0.002 

Sec 15-18 8936 89.75 90.40 90.07 0.349 0.002 

Sec 02-21 39832 89.35 90.17 89.76 1.485 0.002 

 

Table 4.16.  Execution time on different datasets for PARA. 

 

Test Palmer Palmer-Pruning PARA 

Sec 23 4.913 0.987 0.002 

Brown 5.561 1.157 0.002 

 

Table 4.17.  Execution time (sec / sen) using different approaches on WSJ 23 and 

Brown Corpus.  

 

PARA not only achieves the best performance as shown in Table 4.11, but also runs 

much faster in execution time compared to the statistical argument recognizer in Table 

4.17.  To take the statistical approach based on Palmer et al., (2005) as an example, the 

execution time for argument identification is about five seconds per sentence without the 

pruning strategy (Palmer), and about one second with the pruning strategy 

(Palmer-Pruning).  PARA needs only 0.002 seconds per sentence, which is much faster 

than traditional argument recognizers.  Performance in terms of execution time will be 

critical for real-time NLP applications in the future as data sizes increase.  From the 

results obtained in this research, the training-free algorithm PARA can serve as a good 

solution for the Predicate-Argument Recognition problem.  All the above figures were 

obtained using computers with a Linux operating system, a P4 3.0GHz CPU, and 1G 

RAM. 

 

4.5.10 Joint model of PARA+ML 

An interesting question is whether performance can be improved by joining PARA with 

a ML approach.  In Tables 4.8 and 4.9, the precision outside the boundary area is much 
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less than that inside.  In order to increase the precision for arguments outside boundary 

areas, this research combines PARA with an argument recognizer based on the one 

presented by Palmer et al. (2005) to validate each argument from PARA that is outside 

boundary areas.  This is done by checking whether or not the outside argument is found 

by the statistical argument recognizer.  Tables 4.18, 4.19, and 4.20 illustrate the results 

obtained with the stand-alone ML recognizer (Palmer-M), PARA, and the joint model 

(Joint) on WSJ 24, WSJ 23, and the partial Brown corpus respectively for argument 

identification.     

 

On WSJ 24 P R F 

Palmer-M 79.38 77.63 78.49 

PARA 80.76 81.01 80.89 

Joint 81.51 80.15 80.82 

 

Table 4.18.  Results for argument identification with the joint model of PARA and ML 

on WSJ 24. 

 

On WSJ 23 P R F 

Palmer-M 81.30 80.62 80.96 

PARA 82.90 82.30 82.60 

Joint 83.60 81.84 82.71 

 

Table 4.19.  Results for argument identification with the joint model of PARA and ML 

on WSJ 23. 

 

On Brown P R F 

Palmer-M 79.25 76.19 77.69 

PARA 80.60 78.51 79.54 

Joint 80.88 77.83 79.32 

 

Table 4.20.  Results for argument identification with the joint model of PARA and ML 

on Brown Corpus. 
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Precision obtained by the joint model increases on the three test data sets, but recall 

decreases.  The overall performance in F1 measurement increases slightly on WSJ 23, 

but not on WSJ 24 and the Brown corpus.  The reason is that the joint model may be 

too simple to gain enough additional Precision on WSJ 24 and the Brown corpus to 

compensate for the loss of Recall.  More sophisticate ML joint model will be the future 

work. 

 

4.5.11  Performance with Argument Classification 

Table 4.21 shows the latest results obtained using the statistical approach to argument 

identification and role classification proposed by Palmer et al. (2005).  The training 

datasets are WSJ 02 to WSJ 21, and WSJ 23 is the test data.  Palmer et al. (2005) used 

Collins parses, hand-corrected parses, and hand-corrected parses with traces. 

 

Palmer et al. (2005, p.97) states:  

… the gold-standard parses of the Penn Treebank include several types of 

information not typically produced by statistical parsers or included in 

their evaluation.  One of these annotations is called “trace”.  Traces are 

used to indicate cases of wh-extraction, and antecedents of relative 

clauses.  Traces are intended to provide hints as to the semantics of 

individual clauses.   

 

Table 4.21 shows the traces do contribute significantly to performance, but they are not 

included as input in the CoNLL shared task.   

 

On WSJ 23 P R F 

Automatic parses 68.6 57.8 62.7 

Gold-standard parses 74.3 66.4 70.1 

Gold-standard parses with traces 80.6 71.6 75.8 

 

Table 4.21.  Latest results by Palmer et al. (2005) for the performance for unknown 

arguments with gold-standard parses on WSJ 23. 
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As was done in the implementation of the joint model consisting of PARA and the 

statistical argument recognizer in Section 4.5.9, this research also applies the concept of 

a joint model to the role classifier based on the one by Palmer et al. (2005) to test how 

much improvement is gained by this joint model.  Tables 4.22, 4.23, and 4.24 show the 

results on WSJ 24, WSJ 23, and the partial Brown corpus.  These results are obtained 

by different argument recognizers on the task of argument identification and role 

classification.  All syntactic information offered by the shared task consists of 

Charniak’s parses.  There are results for both the performance for argument 

identification and role classification.  Label accuracy (Lacc), the ratio of the F1 in the 

role classification to the F1 in the argument identification, is also shown.  The overall 

performance on argument identification after role classification differs from results of 

the one before classification in Tables 4.18, 4.19, and 4.20.  It is due to the 

post-processing for skipping duplicate roles, and errors in continual labels evaluated by 

the shared task’s script.  As for the same example in Section 4.3.6, the number of 

correct arguments in the semantic list [A1 V A2] to the proposition [A1 V C-A1] is zero 

since the conll script counts word spans of A1 and C-A1 as a whole argument instead of 

two arguments.  

 

 

 

 Argument identification  Role classification 

System P R F Lacc P R F 

PML+ Palmer-M 78.95 76.99 77.96 88.34 69.75 68.02 68.87 

PML + PARA 80.38 80.69 80.53 88.70 71.29 71.57 71.43 

PML + Joint 81.22 79.67 80.44 88.55 71.93 70.55 71.23 

 

Table 4.22.  More performance results obtained by different argument recognizers on 

WSJ 24. 
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In Tables 4.22, 4.23, and 4.24, the joint model does not outperform PARA in F1 

measurement for argument identification and role classification.  This indicates that 

PARA can offer suitable semantic arguments for the statistical role classifier to obtain 

better overall performance on the WSJ and the Brown corpus domain.  The robustness 

of PARA shown in these tables therefore demonstrates the feasibility of a direct mapping 

from syntactic parses to unlabelled semantic arguments through a heuristic algorithm 

that fully relies on parse trees. 

 

 Argument identification  Role classification 

System P R F Lacc P R F 

PML+ Palmer-M 80.17 79.81 79.99 88.87 71.24 70.92 71.08 

PML + PARA 81.85 81.91 81.88 89.75 73.46 73.51 73.49 

PML + Joint 82.62 81.27 81.94 89.35 73.83 72.62 73.22 

 

Table 4.23.  More performance results obtained by different argument recognizers on 

WSJ 23. 

 

 Argument identification  Role classification 

System P R F Lacc P R F 

PML+ Palmer-M 78.91 75.79 77.32 79.70 62.89 60.40 61.62 

PML + PARA 80.17 78.00 79.07 80.68 64.93 62.93 63.80 

PML + Joint 80.58 77.22 78.86 79.89 64.38 61.69 63.01 

 

Table 4.24.  More performance results obtained by different argument recognizers on 

the Brown Corpus. 

 

 



136 

4.6  Summary and Remarks 

Semantic argument identification, a sub-problem of Semantic Role Labeling (SRL), is 

the task of finding all arguments or constituents corresponding to predicates in a 

sentence.  Traditional argument recognizers identify all arguments based on features 

extracted from syntactic information such as head word, path, phrase type and so on.  

Gildea and Palmer (2002) claim the necessity of parsing for predicate-argument 

recognition or semantic argument identification.  This research further demonstrates 

the possibility of generating direct mapping from syntactic parses to unlabelled semantic 

arguments.   

 

The proposed Predicate-Argument Recognition Algorithm (PARA) achieves the goal of 

a direct mapping from syntactic parses to unlabelled semantic arguments without any 

need for training by utilizing the output from a state-of-art parser like Charniak (2000).  

In gold-standard (hand-corrected) parses, the performance of argument identification 

with PARA without given predicates is the same as that with given predicates; but a 2 

point drop occurs when using the auto (Charniak) parses.  The overall performance 

difference between gold-standard parses and auto (Charniak’s) parses is between 3 and 

11 points in F1 measurement, shown in Table 4.5.  Results for argument identification 

in Sections 2 to 21 of the WSJ corpus are generally stable, but performance drops 

significantly on WSJ 23 and WSJ 24.   

 

The major category containing predicates is VP, containing more than 90% of the 

predicates, and it dominates the overall performance of argument identification.  

Similarly, the frequency of arguments inside boundary areas influences the overall 

results as well.  Precision inside boundary areas is better than outside boundary areas.  

This suggests recognition outside boundary areas needs more attention.   

 

There is an approximate 0.5-point increase in F1 measurement when evaluating PARA 

disregarding punctuation.  The execution time for PARA when performing argument 

identification is constant, at about 0.002 seconds per sentence on a P4 3.0 CPU, 1.0G 
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RAM, Linux-based machine.  This algorithm is thus much faster than traditional 

argument recognizers, even when they employ a pruning strategy.  The algorithm 

presented here also outperforms existing ML approaches when the same syntactic 

information is used as was through the CoNLL 2005 shared task.  Moreover, the output 

of the heuristic algorithm also helps to boost the performance of statistical role 

classifiers when used in a joint model   The joint model consisting of PARA and the 

statistical argument recognizer from Palmer et al. (2005) improves the performance of 

argument identification, but it does not seem to help the combined task of argument 

identification and role classification.   

 

PARA is a fast and accurate algorithm, which can be used as a stand-alone pre-processor 

for the problem of Predicate-Argument Recognition or jointly with other ML 

recognizers to increase the overall performance.   

 

This chapter has demonstrated that the solution to argument identification by PARA is 

better than the performance exhibited by existing systems with single syntactic 

information in the CoNLL 2005 shared task.  Based on the performance obtained by 

PARA, the following chapter will introduce a new technique for multi-argument 

classification.  This technique not only boosts the performance of the existing singular 

argument classifier (Palmer et al. 2005) described in Chapter 3, but also outperforms 

existing systems in the shared task with single syntactic information for the problem of 

Semantic Role Labeling.   
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Chapter 5 

Multi-Argument Classification 

 

This chapter describes a Multi-Argument Classification (MAC) approach to Semantic 

Role Labeling via a Pattern Base (PB).  The goal is to exploit dependencies between 

semantic roles by simultaneously classifying all arguments as a pattern.  Argument 

identification, as a pre-processing stage, is carried out using the Predicate-Argument 

Recognition Algorithm (PARA) from Chapter 4.  Results using standard evaluation 

metrics show that multi-argument classification outperforms all existing systems that 

use a single parse tree for the CoNLL 2005 shared task.  This chapter also describes 

ways to significantly increase the speed of multi-argument classification, making it 

suitable for any real-time language processing task that requires semantic role labeling 

 

Section 5.1 outlines the results of existing approaches to SRL for the CoNLL 2005 

shared task.  The concept of MAC is explained in Section 5.2.  Section 5.3 shows the 

system architecture and related work, and experimental results are shown in Sections 5.4.  

Section 5.5 summarizes this chapter. 

 

 

5.1  Introduction 

Approaches for Semantic Role Labeling (SRL) are described in detail in the proceedings 

of CoNLL 2004 and CoNLL 2005 shared tasks.  Many have addressed SRL using 

Machine Learning (ML) approaches; as with the SNoW learning architecture 

(Punyakanok et al., 2004, 2005), Support Vector Machines (Moschitti et al., 2004, 2005; 

Park et al., 2004, 2005; Pradhan et al., 2003, 2004, 2005), the Perceptron Learning 

Algorithm (Carreras et al., 2004), EM-Based Clustering (Baldewein et al., 2004), 



 

 

140 

Transformation-based learning (Higgins, 2004), and Memory-Based Learning 

(Kouchnir, 2004), and so on.   

 

 

System P R F1 Features Syn parses 

Punyakanok 82.28 76.78 79.44 18 7 

Pradhan (*) 82.95 74.75 78.63 44 3 

Haghighi 79.54 77.39 78.45 27 5 

Marquez 79.55 76.45 77.97 22 2 

Surdeanu 80.32 72.95 76.46 31 1 

Tsai 82.77 70.90 76.38 25 1 

Che 80.48 72.79 76.44 24 1 

Moschitti 76.55 75.24 75.89 14 1 

Tjongkimsang 79.03 72.03 75.37 30 1 

Yi 77.51 72.97 75.17 14 1 

Ozgencil 74.66 74.21 74.44 11 1 

Johansson 75.46 73.18 74.30 14 1 

Cohn 75.81 70.58 73.10 20 1 

Park 74.69 70.78 72.68 25 1 

Mitsumori 74.15 68.25 71.08 10 1 

Venkatapathy 73.76 65.52 69.40 7 1 

Ponzetto 75.05 64.81 69.56 14 1 

Sutton 68.57 64.99 66.73 20 1 

Palmer 68.60 57.80 62.74 6 1 

 

Table 5.1.  A list of results for systems on WSJ 23. 

 

Table 5.1 summarizes the results of systems in the CoNLL 2005 shared task.  The best 

system, by Punyakanok et al. (2005), achieves 79.44 in F1 measurement using seven 

different syntactic parses (Syn info) (like Collins’ and Charniak’s parses).  Pradhan et al. 



 

 

141 

(2005) use 44 features and gets the best precision (P) among the systems
1
.  Haghighi et 

al. (2005) achieve the highest recall (R).   The four top systems use more than one 

parse in order to achieve the optimum parsings before classification.  Surdeanu et al. 

(2005) with 31 features achieve the best performance among systems that just use a 

single parse tree.  

 

The general trend is to try to increase performance by adding more features.  Instead of 

this philosophy, this thesis applies the concept of Multi-Argument Classification to 

reach the goal of better performance without additional features and without additional 

parsings.  MAC is based on utilizing the relationship between roles in a semantic 

structure.  

 

The CoNLL shared task in 2005 attracted wide attention in the SRL community.  In the 

same year, Palmer et al. (2005) reported their system results on the same test data.  All 

of these systems utilize Singular Argument Classification (SAC), which means 

classifiers label one argument at a time.  One problem of singular argument 

classification is that such systems may produce duplicate roles.  For example, a 

possible output list of such a role classifier is [A1 V A2 A2 TMP], in which there are 

two arguments assigned with the same semantic role, “A2”.  According to PropBank, 

one of the duplicate core roles is incorrect.  It can be hard to determine which one must 

be changed.  If there is a pattern with role list [A1 V A4 A2] found in the training data, 

this problem can be avoided by applying the whole pattern to the system with a 

multi-argument classifier.  The relationship in the predicate-argument structure exhibits 

semantic role dependency, manifest in the sequential order and juxtaposition of 

different core roles (like A0, or A1) in the predicate-argument list.  Generally speaking, 

there is only one core role in each predicate structure
2
.  This can serve as useful 

information for role classification. 

 

Existing systems use post-processing to solve the problem of duplicate roles in a 

sentence fixing errors after initial classification.  There are different heuristics 

                                                 
1
 (*) in Table 5.1 means a system’s result was updated after the conference. 

2
 There are rare situations with more than one core role. 
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proposed, such as those developed by Surdeanu and Turmo (2005), Che et al. (2005), 

Sang et al. (2005), Ponzetto and Strube (2005), and Ozgencil and McCracken (2005).  

For example, Ponzetto and Strube (2005) use a simple technique for avoiding duplicate 

A0 or A1 role labels within the same proposition, based on argument position and 

predicate voice.  In the case of duplicate A0 labels, if the verb is in the active form, the 

second assignment (after the predicate) is replaced with A1, otherwise the first one is 

replaced.  In the same way, in case of duplicate A1 labels, if the predicate is in the 

active form, the first A1 assignment is replaced with A0, otherwise the second one is 

replaced
3
.  

 

Distinct from a post-processing approach, this research proposes a technique called 

Multi-Argument Classification (MAC) as an argument classifier eliminating the problem 

of duplicate roles and leveraging semantic role dependencies.  This classifier improves 

the performance of the system mentioned in Chapter 3.  The pre-processor, 

Predicate-Argument Recognition Algorithm (PARA), is used for argument 

identification.   

 

 

5.2 Multi-Argument Classification  

This section describes a new technique, Pattern-Matching (PM), as the core operation to 

Multi-Argument Classification (MAC).  Unlike Singular-Argument Classification 

(SAC), where a classifier focuses on labeling each instance one by one, 

Pattern-Matching labels a set of arguments simultaneously.   

 

 

5.2.1 Classification Model 

Chapter 3 describes how Gildea and Jurafsky (2002) calculate the probability of the 

optimal role assignment r* for each sentence as follows. 

 

                                                 
3
 Ponzetto and Strube (2005) do not explain what if replacing A0 (or A1) creates duplicates of A0 (or A1). 
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  r* = argmax r1 .. n P(r1…n | f1,..n, predicate)       

 

where P(r1…n | f1,..n, predicate) represents the probability of an overall assignment of 

roles ri to each of the n constituents or semantic arguments of a sentence, given the 

predicate, predicate and the various features fi of each of the constituents.   

 

They make the assumption that the features of the various constituents, the given 

predicate and each constituent’s role are independent, then induce the final formula as 

follows. 

 

 

 

 

P(ri | fi, predicate) is the probability of a constituent’s role given the above features for 

the constituent and the predicate.  More detail is given in Chapter 3. 

 

This is a typical ML approach for maximizing the probability of the optimal role 

assignment to assign roles for each sentence without utilizing role dependency learned 

from the training data.  In Multi-Argument Classification, we apply the role 

dependency relationship learned from the training data to the optimal probability as 

follows. 

 

(F 5.1)  r* = argmax  P({r1…n}| f1,..n, predicate)       

    {r1…n} 

 

where {r1…n} is a sequential role list learned from the training data, P({r1…n} | f1,..n, 

predicate) represents the probability of an overall assignment of the role list {r1…n} to 

each of the n constituents or semantic arguments of a sentence, given the predicate, 

predicate and the various features fi of each of the constituents.   

 

We apply Bayes’ rule to this probability as follows:  

r* = argmax r1 .. n P({r1…n} | predicate)Π 

          
 i
 

 

 
P(ri | fi, predicate) 

P(ri | predicate) 
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     r* = argmax  P({r1…n} | predicate)  

      {r1…n} 

     

Then we make the assumption that the features of the various constituents of a sentence 

are independent, given the predicate and each constituent’s role when the role list is 

applied and discard the term P(f1…n | predicate), which is constant with respect to r: 

 

 

 

 

 

where {ri} is the i-the role in the role list of {r1…n}. 

 

We apply Bayes’ rule again, 

 

 

 

 

 

Finally, we discard the feature prior P(fi | predicate) as being constant over the argmax 

expression: 

 

 

 

 

P({ri}| fi, predicate) is the probability of a constituent’s role obtained from a role list 

{r1…n} learned from the training data given the above features for the constituent and the 

predicate.   

 

The role list {r1…n} denotes there are n arguments in a test sentence, though the number 

 
P(f1…n | { r1…n}, predicate) 

P(f1…n | predicate) 

r* = argmax P({r1…n}| predicate)ΠP(fi |{ri}, predicate) 

      {r1…n}      
  i

 

r* = argmax  P({r1…n} | predicate) Π 

 {r1…n}     
    i

 

 

 
P({ri}| fi, predicate) P(fi | predicate) 

P({ri}| predicate) 

r* = argmax  P({r1…n} | predicate) Π 

 {r1…n}     
    i

 

 

 
P({ri}| fi, predicate) 

P({ri}| predicate) 
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of arguments in any training sentence may vary.  Therefore, we need to add a mapping 

function to convert the role list {r1…m} of a training sentence to the role list {r1…n} of a 

test sentence as follows: 

 

M: {r1…m}j � {r1…n}  

 

where {r1…m } is the role list with m arguments of a training sentence j and {r1…n} is the 

role list with n arguments of the query sentence.  The basic principle of this mapping 

function is to map m arguments of a training sentence to n arguments of the query. 

 

Finally, by replacing {r1…n} with M{r1…m}j and {ri} with {rki} in the previous formula, 

we can obtain the probability formula.  

 

 

 

 

where M{r1…m} j is the role list generated by the mapping function M from the j-th 

training sentences with m arguments of the training data to the role list {r1…n} for the 

test sentence with n arguments, and {rki} denotes the k-th role of {r1…m} j ( 1<= k <= m) 

corresponding to the i-th argument of {r1…n}.   

 

In summary, each argument in the query is mapped to a corresponding argument in a 

knowledge pattern.  The mapping function is described in the following section.  

 

5.2.2 Mapping Algorithm 

There are four considerations essential to the function that maps a knowledge pattern 

learned from the training data to a new query sentence: i) where to start matching two 

patterns; ii) how to deal with different numbers of arguments between the knowledge 

and query patterns; iii) how to compute similarity between an argument in a knowledge 

pattern and an argument in a query pattern and iv) how to measure the quality of the 

matching. 

(F 5.2)   r* = argmax  P(M{r1…m}j | predicate) Π 

 M{r1…m}j     
     i

 

 

 
P({rki} | fi, predicate) 

P({rki} | predicate) 
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i) Where to start 

The first consideration is simply solved by looking for the most common instance in a 

knowledge pattern and a query one, given the predicate.  In this discussion, an instance 

is an argument in a predicate-argument structure. 

 

ii) Mapping of different arguments 

Empirically there is very low coverage (about 0.46) to match query sentences with 

training sentences that have the same number of arguments.   Instead of only matching 

two patterns with the same number of arguments, this thesis proposes an alternative way 

to increase the coverage.  The principle is based on semantic role dependency, in which 

core roles (like A0 or A1) are more essential than adjuncts (like AM-TMP, or 

AM-LOC).  We need to estimate similarity between an argument (or instance) in a 

knowledge pattern and an argument in the query.  If two instances (one in the 

knowledge pattern and the other in the query) are considered highly similar (Case 1), we 

can try to match the next instances in both patterns.  If two instances are not similar, 

there are two kinds of situations.  One is to match the current instance in the 

knowledge pattern with the next instance in the query (Case 2).  The other is to match 

the next instance in the knowledge pattern with the current instance in the query (Case 

3).  The other two final circumstances are unmatched instances in the query (Case 4), 

and unmatched instances in the knowledge pattern (Case 5). 

 

These five cases are more formally described as follows: 

 

Case 1: if there exist a query instance i and a corresponding knowledge instance j, and 

both instances are similar (or their similarity is no less than a threshold), try to match the 

next instance in the knowledge pattern with the next instance in the query.  This is the 

case when two instances are considered as highly similar then try to match the next 

instances in the query and knowledge patterns. 
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     (Case 1) 

 

 

 

 

 

Case 2: if there exist a query instance i and a corresponding knowledge instance j, both 

instances are not similar (or their similarity is below a threshold) and the role of the 

knowledge instance j appears to be one of the core roles (i.e. A0 to A5 and AA) (as 

opposed to a non-core or adjunctive role), try to match the current instance in this 

knowledge pattern with the next instance in the query.  The reason to keep the current 

knowledge instance is to try to increase the coverage.  It is rare to have two patterns 

exactly the same due to data sparseness.   For example, a query sentence “They will 

come” and a training sentence, “They come” is not matched due to different number of 

argument.  But they can be considered as highly similar if the second argument “will” 

in the query sentence is skipped when matching two sentences.  Such a skipped 

argument like “will” in the query can be labeled in advance by the pre-process step 

described in Section 3.4. 

 

 

 

 

 

     (Case 2) 

 

 

 

i 

j 

Sim(i,j) >= Threshold 

Next i 

Next j 

i 

j (A0…) 

Sim(i,j) < Threshold 

Next i 
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Case 3: if there exist a query instance i and a corresponding knowledge instance j, both 

instances are not similar and the role of the instance j in the knowledge pattern appears 

to be a non-core label (like AM-MOD AM-NEG or AM-DIS), try to match the next 

instance in the knowledge pattern with the current instance in the query.  Such 

non-core roles are optional to a query pattern, which is to say that not all sentences have 

them.  This means they can be skipped.  This is the complement situation to Case 2 

where all non-core or adjunctive roles in the knowledge pattern can be skipped in order 

to increase coverage.  

 

 

 

 

     (Case 3) 

 

 

 

 

 

 

Case 4: if there does not exist an argument j in the knowledge pattern, keep a default 

probability to this query instance i to avoid zero frequency. 

 

 

 

 

 

     (Case 4) 

 

 

 

i 

j (AM-NEG…) 

Sim(i,j) < Threshold 

Next j 

i 

j ? 
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Case 5: skip all extra corresponding knowledge arguments shown as the following 

figure. 

 

 

 

     (Case 5) 

 

 

 

 

 

After mapping, all patterns from the pattern base are mapped to role lists with the same 

number of arguments in the query.  It remains now to measure the similarity of each 

argument in the query role list with each corresponding argument in the role list of each 

pattern in the knowledge base. 

 

 

iii) Similarity Function 

The calculation of similarity between an instance in the knowledge pattern and its 

corresponding instance in the query is based on the feature space.  The distance 

between two points or instances in the feature space is estimated by Euclidean distance, 

which is shown in (F 5.3) 

 

Distance metric (Euclidean distance): 

(F 5.3)  D(xi, xj) = √√√√Σ(ar(xi))-ar(xj))
2
           

  

where r =1 to n (n is the numbers of different classifications)    

ar(x) means the r-th feature of an instance x.   

 

i 

j 
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If instances, xi and xj, are identical, then D(xi , xj )=0  

Otherwise, D(xi , xj ) represents the vector distance between xi and xj  

xi is an instance in the query and xj is an instance in the knowledge 

pattern. 

 

 

Therefore the similarity function is defined as  

 

  Sim(i, j) = (number of features - D(i, j) ) / (number of features)  

 

If all features are the same between two instances, D(i, j) is zero and Sim(i, j) is 1.0.  If 

there are different features between two instances (for example two features are not the 

same), the score of similarity by Sim(i, j) will be less than 1.0.  For example, if there 

are five features for calculation and two different, D(i, j) is two and Sim(i, j) is 0.6, 

which is ( 5 – 2) / 5. 

 

Threshold 

The threshold utilized in the first three cases is initially set to 1.0, which means all 

features in the knowledge instance must be the same with the ones of the query pattern.  

This threshold value was arrived at through trial and error.  Table 5.2 shows the results 

of label accuracy with two different thresholds on WSJ 24.   

 

Thresholds Lacc 

1.0  89.38 

>=0.856  82.31 

 

Table 5.2.  Results of different thresholds on WSJ 24 with known arguments 

 

It includes a full similarity (threshold=1.0) (all features in a query and a knowledge must 

be the same), and a threshold allowing one feature different between both instances 

(threshold >= 6/7 or 0.856).  The “1.0” threshold offers much better performance 
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compared to the one by (threshold>=0.856).  It suggests that all basic features are 

essential to PM to achieve better performance. 

 

iv) What is the quality estimation 

The fourth issue mentioned early in this section is to find the quality of a match between 

a pattern in a training sentence and a query pattern in the query sentence by a statistical 

method as follows:   

 

 

 

 

 

where Qj denotes the quality estimation for the j-th training sentence.   

 

This formula is effectively (F 5.2) except that argument maximization is not used.  

After all quality probabilities for patterns in the training data are calculated, the system 

can select a pattern with the highest quality probability in the training sentences.  In 

order to avoid zero probabilities, the default probability for each argument in the test 

sentence is set 0.00001. 

 

Figure 5.1 shows the algorithm of the mapping function.  It is the function that 

measures the quality of the match between the query and a training pattern.

(F 5.4)       Qj = P(M{r1…m}j | predicate) Π 

             
                         i

 

 

 
P({rki} | fi, predicate) 

P({rki} | predicate) 
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Quality (K,T, R) 

{ Pattern K, T; // a knowledge pattern K and the query pattern T 

 Instance i, j; // index i for the query pattern, and j for the knowledge pattern  

 Role List R=””; // a role list mapped from K to T  

 

 i = verb(T);  j = verb(K); // locate index to the predicates 

 before_verb_done=0;  

 i = next(i); j = next(j); // if before_verb_done then i = i--else i = i++; 

 Quality = 1.0; 

 

 While exist i and j  

 {  Probij = Prob(rj | fi) if Sim(i , j) >= Threshold  

        else Probij = default; // default = 0.00001  

    if Probij > default // Case 1 

     Quality*=Probij; 

     Addrole(R, rj); 

     i = next(i); j=next(j); 

    else if (core_role(rj)) // Case 2: 

     Quality*=Probij; // Sim(i , j) < Threshold 

     Addrole(R, “X”); // “X” denotes an unlabeled role 

     i = next(i); 

    else // Case 3: 

     j = next(j);  

     

    if ( ! before_verb_done && !i && !j ) 

    { i = verb(T);  j = verb(K); // locate index to the predicates 

     before_verb_done=1;  

     i = next(i); j = next(j); // i = i++; j=j++; 

    } 

 } 

 while (number_of_uncompared_pattern(i)) 

 {  Quality*= default; // Case 4: 

    Addrole(R, “X”); // “X” denotes an unlabeled role 

} 

 // There is no action for Case 5: 

 

 return Quality & R; 

} 

 

Figure 5.1.  The Matching Algorithm (MA). 



 

 

153 

 

In the matching algorithm in Figure 5.1, there are two patterns, K denoting the 

knowledge pattern and T the query.  The matching algorithm returns a role list R, and 

the quality of matching between K and T.  Firstly, MA starts from both predicates in 

the knowledge and query patterns then tries to match arguments before and after the 

predicates.  A flag before_verb_done is used for checking if the instances prior to the 

predicates have been matched or not.  After the initialization, MA moves the current 

query instance i to the next one that is the instance before the predicate in the query and 

the current knowledge instance j to the instance prior to the predicate in the knowledge 

pattern.  After setting the initial return value Quality to be 1.0, MA tries to match two 

instances i and j.  If the similarity of i and j is no less than the threshold (set as 1.0), 

MA calculates the probability of Prob(rj | fi) for the role rj in the knowledge instance j 

with the features set in the query instance i.   

 

The probability Prob(rj | fi) is the short form of Prob (r | pr, vo, pt, di, hw, pa, pp), which 

is calculated using the formula in (F 5.5): 

 

 

          # (r, pr, vo, pt, di, hw, pa, pp) 

(F 5.5)  Prob (r | pr, vo, pt, di, hw, pa, pp) = 
                                             

 

   # (pr, vo, pt, di, hw, pa, pp) 

 

Hence r denotes rj and fi = { pr, vo, pt, di, hw, pa, pp } for the feature set, predicate pr, 

voice vo, phrase type pt, distance di, headword hw, path pa and preposition pp. 

 

After calculating Prob(rj | fi) for the query instance i and the knowledge instance j, MA 

checks if the probability is greater than the default.  If it is greater, which means the 

query instance i and the knowledge instance j are similar (Case 1), MA multiplies 

Quality with Prob(rj | fi) according to (F 5.4), adds rj to the role list R and moves the 

both current instances in the query and the knowledge pattern to the next ones.  
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If there is no similarity between the query instance i and the knowledge instance j and 

the label in the knowledge instance j is a core role (like A0, or A1) (Case 2), MA 

multiplies Quality with a default value (which is 0.00001) to show that the query 

instance i has no corresponding label for it, adds an unlabeled role (denoted as “X” here) 

to the return role list R and moves the current query instance to the next one.  MA 

keeps the current knowledge instance because it has a core-role label, which is essential 

to the knowledge pattern.   

 

If there is no similarity between the query instance i and the knowledge instance j and 

the label in the knowledge instance j is a non-core role (like AM-TMP) (Case 3), MA 

just moves the current knowledge instance to the next one for further matching with the 

current query instance. 

 

After matching instances before the predicates, the before_verb_done flag is set true to 

indicate argument matching prior to the predicates is done.  MA thus carries on 

matching instances after the predicates.  .  

 

Finally, MA adds an unlabeled role to the return role list R and multiplies a default value 

to the return value Quality for each unmatched instance in the query according to Case 4 

to avoid zero frequency.   

 

5.2.3 An Example of Mapping Algorithm  

Example (5.1) is a partial sentence found in the training data for the predicate “resign” 

and (Ex. 5.2) is a test sentence with the predicate “resign”.   

 

(Ex. 5.1) “… [A0 David A. Entrekin], [R-A0 who] [V resigned] [AM-TMP Monday].” 

(Ex. 5.2) “… [Arg1 Entrekin] [V resigned] [Arg2 in 1988].” 

 

In the training example or knowledge pattern, (Ex. 5.1), there are three arguments apart 

from the predicate, “resign”.  The first argument, “David A. Entrekin” is labeled with 

“A0”, the second, “who” with “R-A0” and the third, “Monday” with “AM-TMP”.  In 
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the test example or query pattern, (Ex. 5.2), there are two arguments “Entrekin” denoted 

as Arg1, and “in 1988” Arg2.  Arg1 and Arg2 are temporary labels, which must be 

replaced with proper semantic roles after classification.  Instead of matching both 

patterns from the first arguments, the Mapping algorithm (MA) checks the similarity of 

these two patterns beginning from the predicates in both patterns.  Then MA matches 

each argument before and after the predicates in the query pattern to the corresponding 

argument in the knowledge pattern.  

 

According to the mapping algorithm (MA) in Figure 5.1, MA locates both initial 

indexes on the predicate instances, then moves the knowledge index to the instance of 

“who” (denoted as KI2) and the query index to the instance of “Entrekin” (denoted as 

QI1).  MA calculates the similarity of the two instance, and finds Sim(KI2, QI1) is 0.0 

because both headwords are different.  Then MA moves the knowledge index to the 

instance of “David A. Entrekin” (denoted as KI1 ) according to Case 3 because the role 

(R-A0) of KI2 is not a core role.  When comparing KI1 and QI1, MA finds Sim(KI1, QI1) 

=1.0 if just considering the headword and phrase type features as a feature space, then 

according to Case 1 MA multiplies the Quality function with the probability Prob(A0 | 

Entrekin, NP) , which is assumed as 1.0 in this example.  There are no unmatched 

instances in the query and knowledge patterns prior to the predicates, so MA sets the 

before_verb_done flag true and moves the knowledge index to the instance of 

“Monday” (denoted as KI3) and the query index to the instance of “in 1988” (denoted as 

QI2). MA finds the Sim(KI3, QI2) is 0.0 again due to different headwords then multiplies 

the quality function with the default value (0.00001).   Finally, MA returns the value 

of the quality function, Prob(A0 | Entrekin, NP)* default , which is 1.0*0.00001 in this 

example.   

 

Figure 5.2 illustrates the final alignment of these two patterns according to MA.  Each 

instance or argument box contains some features such as head word, phrase type and so 

on. 
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Figure 5.2.  A related alignment of pattern boxes with the predicate for (Ex. 5.1) and 

(Ex. 5.2). 

 

 

5.2.4 Unlabeled Arguments  

MA is designed for matching two patterns with different arguments.  It helps to 

increase the overall coverage from 0.46 (if only marching patterns with the same 

number of arguments) to 0.78.  This is still not good enough compared to statistical 

singular-argument classifiers (like PML in Chapter 3).   The reason for this low 

coverage is sparseness of data.  For example, the return role list R for the query 

sentence in Ex. 5.2 is [A0 V X] matched with the training sentence with the role list [A0, 

R-A0, V, AM-TMP].  Apparently, there exists an unlabeled argument “in 1988”, which 

can be further assigned with “AM-TMP” by other approaches like existing 

singular-argument classifiers.   

 

We propose a simple argument labeller as follows to fill unlabeled arguments. 

 

       argmax  P(r | f, predicate) 
         r 
 

where P(r | f, predicate) represents the probability of an assignment of role r (except any 

core role appears in the labelled role list to avoid core role duplication) to each of the 

unlabeled arguments of a sentence after MA, given the predicate, predicate and the 

features f (including headword, distance, voice, preposition, phrase type and path) of the 

argument.  P(r | f, predicate) is calculated using the formula in (F 5.5).   

 

KI1 [A0] 

Entrekin 

NP 

KI2 [R-A0] 

who 

WHNP 

V 

resign 

VP 

KI3 [AM-TMP] 

Monday 

NP 

 V 

resign 

VP 

QI2 [Arg2] 

1988 

PP 

QI1 [Arg1] 

Entrekin 

NP 
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By handling unmatched arguments with this simple argument labeller, the recall reaches 

from 0.78 to 0.86. 

 

5.2.5 Complete PM Model  

The complete model for Pattern-Matching (PM) is thus a combination of MAC and SAC.  

PM tries to find all suitable patterns from the training data using the mapping algorithm 

described in Section 5.2.2, selects the best one from the pattern base according to the 

quality probabilities from the mapping algorithm using MAC, and classifies any 

unlabelled arguments in the best pattern with SAC like a simple argument labeller in 

Section 5.2.4.   

 

The goal of selection is to find the knowledge patterns with the highest Quality, 

calculated by MA described in Section 5.2.2.  The procedure for PM is shown in Figure 

5.3. 

 

 

Procedure of Pattern-Matching with SAC 

For all knowledge patterns 

      apply Mapping Algorithm for the query and knowledge patterns  

Select the best knowledge pattern according to their quality probabilities  

Use SAC to classify the unlabelled arguments 

 

Figure 5.3.  Procedure of the basic PM model and SAC. 
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5.3  System Architecture  

There are two stages to the system proposed here, the building stage, which is 

comparable to training in a stochastic system or data preparation, and the testing stage.  

The building stage is only for storing all feature representations of the training instances 

in memory and no calculations are necessary.  

 

The testing stage shown in Figure 5.4 classifies new instances by matching their feature 

representation to all instances in memory in order to find the most similar instances.   

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4.  Illustration of System Architecture for the testing stage. 

 

Input 
Argument  

Recognizers 

Pattern 

Base 

Output Role Classifiers 
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Predicate  

Voice 

 

Phrase Type 

 

Distance  

 

 

 

Head Word  

Path  

 

Preposition  

 

– The given predicate lemma. 

– Whether the predicate is realized as an active or passive 

construction.   

– The syntactic category (NP, PP, S, etc.) of the phrase 

corresponding to the semantic argument. 

– The relative displacement from the predicate, measured in 

intervening constituents (negative if the constituent is to the 

left of or prior to, positive if it is to the right of or after, the 

predicate). 

– The syntactic head of the phrase.   

– The syntactic path through the parse tree, from the parse 

constituent to the predicate being classified. 

– The preposition of an argument in a PP such as during, at, 

with, and so on. 

 

Table 5.3.  A list of features used in Pattern-Matching. 

 

 

 
 

Figure 5.4.  An example of a parse tree. 
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Pattern Base 

Bosch et al. (2004) introduces a singular instance (SI) knowledge base.  Each singular 

instance (SI) is stored in the following format SI = (r, f1, f2,…, fn).  “r” denotes the 

semantic role such as A0, A1, AM-TMP, and so on; and f1, f2,…, fn denote different 

features, such as Predicate, Voice, Phrase type, Distance and so on.   These features,  

Predicate (pr), Voice (vo), Phrase Type (pt), Path (pa), Distance (di), Head Word (hw), 

and Prepostition in a PP (pp), are introduced in Chapter 2 and summarized in Table 5.3.  

Here is an example instance for the first argument of the predicate “came” in Figure 5.4, 

with basic features:  

 

(A0, play, active, NP, –1, he, NP↑S↓VP↓VBD, NULL) 

 

The format maps each argument to an eight-dimensional vector space, which includes 

semantic role, predicate, voice, phrase type, distance, head word, path, and preposition.  

A NULL note is added if there is no preposition.   

 

This research keeps the sequential order of predicates and their arguments as a pattern.  

Each pattern stores a set of instances with a set of features.  The format of each pattern 

is P = {SI1, SI2, …, SIm}, where each instance SIi = (r, f1, f2,…, fn), i =1 to m.  This 

format is called multiple-instance format.  It is different from that of Bosch et al. (2004) 

which assumes unordered bags with a single label used in instance-based learning,. 

 

All training data is stored in the multi-instance format.  The following is an example of 

the multi-instance knowledge base for Figure 5.4. 

 

Pattern = {  (A0, play, active, NP, –1, he, NP↑S↓VP↓VBD, NULL),  

(V, play, active, VP, 0, play, VBD, NULL),  

(A1, play, active, PP, +1, dog, PP↑VP↓VBD, with)   } 

 

The headword of a PP is the NP after a preposition such as “with” in Figure 5.6. 
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Argument Recognizers 

In the proposed system, the Predicate-Argument Recognition Algorithm (PARA) 

described in Chapter 4 is used as an argument recognizer to identify predicates and 

arguments related to predicates.  It forwards the predicates and their arguments to the 

next stage, which is for role classifiers.  Details of PARA have been explained in 

Section 4.3. 

 

Argument Classifiers 

Argument classification in the complete model includes two role classifiers, a 

multi-argument classifier, Pattern-Matching (PM) described in detail in Sections 5.2, 

and a singular argument classifier, called PML modified from Palmer et al. (2005) 

described in Chapter 3.    

 

Simple Role Labeling Algorithm (SLA) 

The following simple algorithm, called simple role labeling algorithm (SLA), is used as 

a baseline for subsequent experiments.  

 

1) Find the closest NP before the predicate; if the voice is active, then label this NP as 

A0, otherwise as A1. 

2) Find the closest NP after a predicate; if the voice is active, then label this NP as A1. 

3) Between a labeled role prior to the predicate, if there is an argument with WHNP, 

then label this argument as a reference of the labeled role, such as R-A0 in an active 

form or R-A1 in a passive form. 

4) Label each MD argument as AM-MOD. 

5) Label each negative argument, such as not, n’t, and so on, as AM-NEG. 

 

This algorithm is modified from the baseline used in the CoNLL shared tasks proposed 

by Erik Tjong Kim Sang (Carreras and Palmer, 2005, p.161).  The difference is this 

modified algorithm does not tag target verbs and successive particles as a predicate “V” 

and does not label an argument after a predicate in passive voice as A0.   
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5.4  Experiments and Results 

Data used in this chapter is the dataset released on March 2005 from CoNLL-2005
4
, 

which includes Wall Street Journal sections with Charniak’s (2000) and Collins’ (1999) 

parse-trees.  Charniak’s parse tree is accepted as input to the system due to its better 

performance in WSJ (Carreras and Marquez, 2005).  Evaluation is carried out using 

precision, recall and F1 measure of the predicated arguments.  For consistency, the 

performance of systems is tested using the official evaluation script from CoNLL 2005, 

srl-eval.pl.   

 

This section shows experimental results on one part of the Brown corpus and Wall 

Street Journal (WSJ) Sections 21, 23, and 24 using different training data sets (WSJ 21, 

WSJ 15 to 18, and WSJ 02 to 21).  It includes results for different approaches for role 

classification with known arguments in Section 5.4.1.  Another singular-argument 

classifier, the Kth-Nearest Neighbour algorithm is described in Section 5.4.2 to offer 

another comparison to PM.   Contribution of features for PM and learning curves 

using different sizes of training data are shown in Sections 5.4.3, 5.4.4.  Section 5.4.5 

shows test results on WSJ 24, WSJ 23 and the Brown corpus with PM and PARA.  

Execution times for different training data sets and speed improvement are described in 

Section 5.4.6.   Section 5.4.7 shows a comparison with other systems. 

 

5.4.1  Results for WSJ 24 with known arguments 

Table 5.4 shows the results for several approaches, when used with known arguments 

(i.e. the systems are given the correct arguments for role classification).  All training 

data (WSJ02-21) with Charniak’s parses are included.  The modified baseline or simple 

role labeling algorithm (SLA) described in Section 5.4.4 only reaches 71.97% in 

precision and 64.67% in recall.  It suggests that about 72% of assignments for A0 and 

A1 can be simply finished without any ML approaches and such assignments cover 

about 65% of classification task.   

 

                                                 
4
 http://www.lsi.upc.edu/~srlconll/soft.html 
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Approach P R F1 

SLA(Baseline) 71.97 64.67 68.12 

PML 85.53 85.65 85.59 

PM without PML 87.67 85.85 86.75 

PM 88.89 87.65 88.27 

 

Table 5.4.  Results obtained by different algorithms on WSJ Section 24 with known 

arguments. 

 

The modified version of the classifier from Palmer et al. (2005) (PML) provides 85.59 in 

F1 and the performance of the basic model (PM without PML) estimation is F1: 1.16 

improved compared to PML itself.  The complete model (PM), combined with MAC 

and SAC, achieves the best results on Precision (88.89), Recall (87.65), and F1 

measurement (88.27) and offers the best solution on all test datasets compared to results 

in Chapter 3.  It suggests PM, utilizing role dependencies existing in semantic roles, 

helps to increase F1 by 3.0 over PML. 

 

 

 

(System 1,System 2) (PM, PML) 

(C,C) 81.74% 

(C,W) 6.32% 

(W,C) 4.97% 

(W,W) 6.97% 

 

Table 5.5.  Analysis obtained by different algorithms on WSJ Section 24 with known 

arguments. 
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Table 5.5 shows an analysis between PM and PML.  The second row (C,C) shows 

where both systems have correct labelling, which is 81.74% of assignments.  The third 

row (C,W) shows 6.32% of assignments for the case when the first system, PM, labels 

correctly but the second, PML, wrongly.  There is 4.97% of assignments where PML 

offers better classification than PM shown in the fourth row (W,C).  It is 6.97% of 

assignments in the fifth row where both classifiers fail to offer correct classification. 

 

This table suggests the best improvement (4.97%) of labelling by merging PM with 

PML and another 6.97% improvement for more precise labelling using other ML 

approaches or adding more features in the systems.  Both of these topics are of interest 

for future research.   

 

5.4.2  KNN 

In order to compare the multi-argument classifier and singular-argument classifiers, this 

research also includes another instance-based learning method, the kth-nearest 

neighbour algorithm, which uses the same distance metric, Euclidean distance in (F 5.3) 

for comparison of a multi-argument classifier and a singular-argument classifier.   

 

In machine learning, the Kth Nearest Neighbor (KNN) algorithm is a method for 

classifying queried instance or objects based on the closest training data in the feature 

space.  This algorithm is a type of instance-based learning.  The Kth Nearest 

Neighbor (KNN) algorithm is suitable for instances mapped to points/classifications in 

n-feature dimensions.  This research implements this algorithm to show another 

method for instance-base learning.  

 

Generally, the three principal components for KNN are i) the instance base, which stores 

all instance or training data in the memory or knowledge base; ii) the distance matrix, 

which is used to store the distance between a query instance and all instances in the 

memory; and iii) the classification function to make the final decision.   

 

The KNN algorithm starts with a point or a query, q, in the feature space, and assigns the 
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class, x, that is the most frequent class label among the k nearest training samples.  

Usually the distance between two points or instances in the feature space is estimated by 

Euclidean distance, which is calculated using (F 5.3) 

 

The training phase of the algorithm consists only of storing the feature vectors and class 

labels of the training data into a memory or knowledge base.  In the test or 

classification phase, the same features as before are computed for the test sample (whose 

class is not known).  Distances from the new vector to all stored vectors are computed 

and k closest samples are selected.  The new point is predicted to belong to the most 

numerous class within the set.  The classification function is defined in (F 5.6). 

 

Classification function 

Given a query/test instance xq to be classified, let x1,.. xk denote the k instances from the 

training instances that are nearest to xq.  The Classification Function is 

 

(F 5.6)  F^(xq)  argmaxΣδ(v,f(xi))   

       

where i =1 to k,  v =1 to m (the number of different roles);  

f(xi) denotes the role assigned to xi ; 

δ(a,b)=1 if a=b, orδ(a,b)=0, otherwise;  

v denotes a semantic role for each instance of training data 

 

Instance base 

All the training data is stored in the following format, similar to the one used by Bosch 

et al. (2004): “Role, Predicate, Voice, Phrase type, Distance, Head Word, Path”.  Here 

is an example instance for the second argument of a predicate “take” in the training data.  

 

(A0, take, active, NP, –1, classics, NP↑S↓VP↓VBD) 

 

This format maps each argument to six feature dimensions plus one classification. 
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Figure 5.5.  An example of KNN. 

 

 

The basic algorithm is easy to implement for comparison of a singular-argument 

classifier and a multi-argument classifier based on the same distance metric.  

 

Figure 5.5 depicts KNN in action.  If there is a query Xq and five nearest training 

instances, X1 with a semantic label A0, X2 with A1, X3 with A1, X4 with A0, and X5 

with A0.  Assume the distances for each training instance to the query are 1, 2, 2, 3, 3 

respectively.  It is calculated according to how many different features of each training 

instance compared to the query.  For example, the number of different features between 

X4 and Xq is 3.  If we select the nearest neighbour (k=1), which is X1, the role for the 

query is assigned with A0.  If we select the three nearest neighbours (k=3), the majority 

of votes is A1 for the query.  If we select the five nearest neighbours (k=5), the label for 

the query is A0 again. 

 

Table 5.6 shows the results using KNN with different values of k.  The basic 

Kth-Nearest Neighbour (KNN) algorithm with k=3 appears to be the best KNN 

approach, which achieves 81.13 in F1, but its performance is F1: 5.62 beyond that of PM 

Xq 

? 

X5 

A0 

X4 

A0 

X2 

A1 

X1 

A0 

X3 

A1 
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without PML.  The comparison suggests that the role dependency by PM helps to 

improve performance of the most.  Other SAC algorithms could be tried, but it is 

sufficient to see that PM is at least not the worst.   

 

 

Approach P R F1 

KNN (k=1) 81.15 80.63 80.69 

KNN (k=3) 81.24 81.02 81.13 

KNN (k=5) 81.01 80.83 80.95 

KNN (k=7) 80.59 80.45 80.52 

KNN (k=9) 79.96 79.77 79.87 

KNN (k=11) 79.43 79.28 79.35 

 

Table 5.6.  Results obtained by KNN algorithms on WSJ Section 24 with known 

arguments. 

 

5.4.3  Contribution of Features for PM 

Table 5.7 shows the result using all features (ALL), and the contribution of each feature 

in Precision (P), Recall (R), and F1 measurements. 

 

  P R F1 

ALL  88.89 87.65 88.27 

- Voice  88.52 87.02 87.77 

- Head Word  85.52 83.93 84.72 

- Phrase Type  85.21 83.03 84.11 

- Preposition  84.77 83.03 83.89 

- Distance  88.81 87.56 88.18 

- Path  87.12 85.89 86.50 

 

Table 5.7.  Contribution of each feature on WSJ 24, with known arguments. 
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In contrast to the three main features Head word, Preposition, and Distance in Table 3.11 

mentioned in Section 3.6.3, Phrase Type, Preposition, and Head word are the three 

features whose removal decreases the performance of the complete system by a large 

amount.  The distance feature plays a key role in overall performance of PML but is the 

least influential in PM because of the usage of multi-argument classification.  When 

using PM, the related distance is implicitly included when matching two patterns.  The 

path feature is the fourth most influential factor on performance for role classification, 

and the voice feature has the least detrimental effect, along with the distance feature, on 

the performance of this system.  Both features (path and voice) have the same 

influence in PM and PML. 

 

5.4.4  Learning Curve 

Table 5.8 shows the results for different sizes of training data.  DnK in Table 5.8 

denotes the first n k (i.e. n-thousand) sentences from the training data sets, WSJ 02 to 21.  

It indicates more training data can provide better performance for known arguments of 

WSJ 24.  This happens not only in F1 but also Precision (P), Recall (R), and Label 

accuracy (Lacc). 

 

 

Training sets  P R F1 Lacc 

D1k  80.52 77.33 78.89 81.76 

D5k  84.40 82.36 83.37 85.43 

D10k  85.99 84.36 85.17 86.95 

D20k  87.61 86.20 86.90 88.56 

D30k  88.53 87.19 87.85 89.45 

D40k  88.88 87.66 88.27 89.83 

 

Table 5.8.  Results for different training datasets on WSJ 24, with known arguments. 
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Figure 5.6.  The learning curve for F1 obtained with different sizes of training data on 

WSJ 24 for role classification. 

 

The increase of performance is not proportional to the size of training data.  The 

log-like curve for different sizes of training data is shown in Figure 5.6, and it is similar 

to curves for other systems presented in McCracken (2005).  This curve suggests the 

performance improvement decreases as training data increases.   

 

5.4.5  Results for Test datasets with Auto parses & PARA 

Table 5.9 shows performance (on WSJ 24, WSJ 23 and the Brown corpus) of the 

complete model (PM) using auto parses (Charniak’s parser) and PARA as the 

pre-processor to recognize all related arguments.  Compared to the results in Table 5.4, 

the performance on WSJ 24 drops by F1:13.87 (from 88.27 to 74.40).  The large drops 

in F1 are mainly caused by the combined errors from the auto parser, the pre-processor 

PARA and the role classifier PM.  This is well known as the propagating of error in 

Natural Language Processing.  Errors in the previous stages are carried forward to 

subsequent processing steps.  For example, the first degradation is from parsers.  

Carreras and Marquez (2005) claim the optimum achievable accuracy on these given 

parses from Charniak’s parser is 87.49 in F1 measurement on the WSJ 24 data before 

any SRL applications.   The second one is from PARA.  Table 4.7 (in Section 4.5.3) 

Sentences 

F1  
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shows the performance by PARA on WSJ 24 using Charniak’s parses is 80.89, which 

decreases another 6.6 before role classification.   PM decreases another 6.49 after role 

classification.  Carreras and Marquez (2005) conclude “beyond pipelines, what type of 

architectures and language learning methodology ensures a robust performance of 

processors”.     

   

 

 

Test dataset  P R F1 Lacc 

WSJ 24  75.88 72.98 74.40 92.50 

WSJ 23  78.04 75.20 76.60 93.34 

Brown  69.33 63.44 66.25 84.67 

 

Table 5.9.  Results for different training datasets on WSJ 24 with Charniak’s parses 

and PARA. 

 

Table 5.9 also shows the results on WSJ 23 are about F1:2.0 better than that by WSJ 24.  

This increase is because the performance by PARA on WSJ 23. It is about F1:2.0 better 

than WSJ 24 described in Section 4.5.4.  The results on WSJ 23 for each role are 

shown in Table 5.10.  Generally speaking, performance on core roles is better than on 

adjuncts, except for the modal, and negation tags.  This is because more training 

examples appear for core roles than for adjuncts.   

 

The results on the Brown corpus show the performance drops by more than 10 points in 

F1 compared to WSJ 23.  It is mainly caused by processing propagating errors as 

described early.  Table 5.9 also shows such errors affect results even more in the 

domain of the Brown corpus.  Another area for future work can be looking for ways to 

minimize the impact of different domains. 
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WSJ 23 Precision  Recall  Fββββ=1  

Overall 78.04%  75.20%  76.60  

A0 84.31%  85.18%  84.74  

A1 78.86%  76.98%  77.91  

A2 70.83%  61.26%  65.70  

A3 68.84%  54.91%  61.09  

A4 66.67%  62.75%  64.65  

A5 100.00%  60.00%  75.00  

AM-ADV 59.07%  55.34%  57.14  

AM-CAU 64.91%  50.68%  56.92  

AM-DIR 35.53%  31.76%  33.54  

AM-DIS 76.25%  76.25%  76.25  

AM-EXT 50.00%  37.50%  42.86  

AM-LOC 62.54%  51.52%  56.50  

AM-MNR 59.33%  51.74%  55.28  

AM-MOD 97.42%  95.83%  96.61  

AM-NEG 95.18%  94.35%  94.76  

AM-PNC 46.39%  39.13%  42.45  

AM-PRD 0.00%  0.00%  0.00  

AM-REC 0.00%  0.00%  0.00  

AM-TMP 73.58%  72.49%  73.03  

R-A0 85.84%  86.61%  86.22  

R-A1 80.28%  73.08%  76.51  

R-A2 80.00%  50.00%  61.54  

R-A3 0.00%  0.00%  0.00  

R-A4 0.00%  0.00%  0.00  

R-AM-ADV 0.00%  0.00%  0.00  

R-AM-CAU 0.00%  0.00%  0.00  

R-AM-EXT 0.00%  0.00%  0.00  

R-AM-LOC 73.68%  66.67%  70.00  

R-AM-MNR 25.00%  16.67%  20.00  

R-AM-TMP 62.69%  80.77%  70.59  

 

Table 5.10.  Details for each semantic role on WSJ 23, with Charniak’s parses and 

PARA.  

 

 

5.4.6  Time & Speed Improvement 

Up to now, we have shown the accuracy performance by different approaches.  This 

section discusses execution time and speed improvement for different approaches based 

on the same conditions.   
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Table 5.11 shows the execution time, in seconds per sentence, for Palmer et al. (2005), 

KNN, and PM (before speed improvement). 

 

Approach T (sec/sen) 

PML 0.8 

KNN (k=3) 1.5 

PM ( before speed improvement) 3.0 

 

Table 5.11.  Speed results for different approaches on WSJ 23 using Charniak’s parses 

and PARA.  

 

The execution speed of “PM before speed improvement” is the slowest one for the task 

of role classification.  In order to increase execution speed without sacrificing accuracy, 

we propose a controlling strategy using Maximum Suitable Pattern (MSP) number.  

MSP limits numbers of suitable patterns for a query pattern.   The formula is shows in 

F 5.7 as follows. 

 

 

 

 

 

 

 

where Suitable(j) denotes the number of suitable knowledge patterns found.   

 

The difference between the basic formula (F 5.2) and the improved one (F 5.7) is the 

constraint Suitable(j) <= MSP.  Once PM has found enough suitable patterns 

(Suitable(j) > MSP), PM stops matching knowledge patterns in the pattern base.  A 

knowledge pattern with at least one instance that has similarity probability greater than 

the threshold is defined as a suitable one.  For example, the role list [A0 V X] for the 

  Suitable(j) <= MSP     
    

 

(F 5.7)  r* =  argmax    P(M{r1…m}j | predicate) Π 

  M{r1…m}j    
        i 

   
 

 
           

 i
 

 
P({rki} | fi, predicate) 

P({rki} | predicate) 
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query sentence in (Ex. 5.2) described in Section 5.2.3 is considered as a suitable one, 

even there is an unassigned argument in the query.   

 

 

 

MSP P R F1 T (sec/sentence) 

30000 89.68 89.20 89.44 2.949 
20000 89.68 89.20 89.44 2.947 
10000 89.68 89.20 89.44 2.943 
5000 89.68 89.20 89.44 2.916 
2000 89.68 89.20 89.44 2.433 
1000 89.67 89.17 89.42 2.433 
900 89.62 89.08 89.35 2.379 
800 89.64 89.10 89.37 2.293 
700 89.64 89.10 89.37 2.207 
600 89.63 89.09 89.36 2.076 
500 89.62 89.08 89.35 1.974 
400 89.62 89.07 89.35 1.835 
300 89.64 89.12 89.38 1.707 
200 89.67 89.18 89.42 1.500 
100 89.71 89.39 89.55 1.235 
90 89.71 89.39 89.55 1.196 
80 89.70 89.38 89.54 1.159 
70 89.72 89.39 89.56 1.125 
60 89.70 89.37 89.54 1.082 
50 89.73 89.39 89.56 1.035 
40 89.73 89.40 89.56 0.981 
30 89.74 89.39 89.57 0.921 
20 89.84 89.54 89.69 0.858 
10 89.78 89.34 89.56 0.788 
8 89.65 89.22 89.43 0.746 

6 89.64 89.16 89.40 0.698 

4 89.49 88.96 89.22 0.641 

2 89.13 88.58 88.86 0.609 

1 89.00 88.32 88.66 0.591 

 

Table 5.12.  Results for different MSP values obtained by the complete system on WSJ 

23, with known arguments. 
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Figure 5.7.  Results for MSP with values from 1 to 100. 

 

The question is “how much is enough for suitable patterns”.  Table 5.12 shows 

different results for various values of Maximum-Suitable Pattern (MSP) and suggests 

that no improvement after 100 matches.  Figure 5.7 shows the graphical curve with 

MSP values no greater than 100.  Note that all these differences in Table 5.12 appear 

completely insignificant but the execution time increases a lot as the MSP value does.  

The key point will be no need to search all training data.  What we need is just to find a 

MSP value by experiments.  After applying MSP=20 in PM, the execution time for PM 

with speed improvement is less than 0.9 seconds per sentence.  That is about 1.7 times 

faster than KNN.    

 

 

Execution time with different datasets 

The build-time of the pattern base on all training data (WSJ 02-21) is about 2.5 minutes.  

The training time ranges from about 10 hours to 60 hours depending on different 

systems shown in McCracken (2005).  Figure 5.8 shows a graphical illustration with 

different sizes for the average classification time, seconds per sentence.  The graph of 

execution for the system shows a log-like curve.   
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Figure 5.8.  Curve of execution time for the complete system on WSJ 24, with known 

arguments. 

 

 

 

System T (sec/sen) 

Palmer et al. (2005) 6.3 

PARA+PM 0.9 

 

Table 5.13.  Execution time for argument identification and classification by different 

systems. 

 

Table 5.13 shows the comparison of execution time for the system Palmer et al. (2005), 

and PARA+PM.  This table suggests that the combination of PARA and PM is an 

efficient approach to solving the problems of argument identification and classification.  

It results in an overall system that offers benefits in terms of accuracy and speed, 

making it more effective for real time applications of SRL.   

 

All execution time are calculated based on a P4 3.0 GHz CPU and 1G RAM Linux 

machine. 

Sentences 

Sec/Sentence 
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5.4.7 Comparison with other systems  

Table 5.14 shows results for different systems using the same syntactic parses as input.  

Surdeanu et al. (2005), Tsai et al. (2005), Che et al. (2005), Moschitti et al. (2005) and 

Sang et al. (2005) are systems only using Charniak’s parses listed in CoNLL 2005 

shared task.  The modified statistical classifier and PARA (PARA+Palmer-Modified) is 

the system described in Chapter 4.   

 

System P R F1 Features 

PARA+PM 78.04 75.20 76.60 7 

Surdeanu 80.32 72.95 76.46 31 

Tsai 82.77 70.90 76.38 25 

Che 80.48 72.79 76.44 24 

Moschitti 76.55 75.24 75.89 14 

Sang 79.03 72.03 75.37 30 

PARA+Palmer-Modified 71.18 70.90 73.49 7 

Palmer et al. (2005) 68.60 57.80 62.74 6 

 

Table 5.14.  Results for different systems on WSJ 23 listed in the CoNLL 2005 shared 

task. 

 

Even using fewer features, the combination of PARA and PM offers a faster and more 

accurate system for SRL compared to systems using the same input.  It also becomes 

one of the top-performing systems in the CoNLL 2005 shared task compared to systems 

using more features and parses.  It suggests that role dependencies between SRL help 

to yield accurate SRL.  
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5.5  Summary and Remarks 

This chapter has shown that basic syntactic information is useful for semantic role 

labeling (SRL).  The CoNLL 2005 shared task attracted a large amount of attention to 

SRL with different models.  These systems have introduced more than 40 kinds of 

features with different combinations of syntactic parses.  The best system achieved 

F1:79.44 on WSJ 23 with 7 syntactic parses and 18 features.  The best system using 

only Charniak’s syntactic parses provides F1:76.46 performance on WSJ 23 (Surdeanu 

et al. 2005).  All existing systems are based on Singular Argument Classification, 

which classifies an argument one by one without using other arguments.  This often 

results in a problem of duplicate roles.  Post-processing is used in systems to avoid 

wrong labels caused by duplicate assignment in a predicate-argument structure.   

 

There exists a role relationship such as [A0 V A1] in predicate-argument structures, 

which is called role dependency.  Such a relationship can be exploited by 

Multi-Argument Classification and Pattern-Matching to increase the performance of a 

typical statistical singular–argument classifier.  The technique of Pattern-Matching, 

based on a pattern base, is a memory-based learner.  In order to obtain a high precision, 

all basic features are essential to the system for matching a query pattern with a 

knowledge pattern from the pattern base.  

 

Finding suitable knowledge patterns from the pattern base or the controlling strategy is 

implemented with a Maximum Suitable Pattern (MSP) constraint, which helps to reduce 

execution time to a log-like curve when using different sizes of training data.  By this 

controller, the system is about 3.5 times faster than one without the controller. 

 

The system architecture includes two stages, building and testing.  In the building stage, 

only patterns extracted from the training examples are stored in the pattern base without 

any distribution calculation.  All learning calculation is left to the testing stage, which 

includes the Predicate-Argument Recognition Algorithm (PARA) as a pre-processor to 

recognize all arguments for all predicates, role classifiers of Pattern-Matching, and the 
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modified system (PML) from Palmer et al. (2005).  This complete system outperforms 

existing singular argument systems from the CoNLL 2005 shared task using the same 

parses. 

 

The results show that the preposition, phrase type and head word are the three features 

that influence the systems most.  There is an F1:13 difference when the system uses 

PARA and auto parses for the problems of argument identification and argument 

classification to recognize and label all arguments, compared to the results obtained 

given all arguments.  The overall performance on WSJ 23 is about F1:2.8 less than the 

best system (Punyakanok et al. 2005) in the CoNLL 2005 shared task.  But both results, 

those from WSJ 23 and those from the Brown corpus, reveal this system can offer 

competitive performance for SRL even with fewer features.   

 

This chapter has successfully demonstrated that the application of Multi-Argument 

Classification can not only increase the performance of an existing statistical system, 

such as Palmer et al. (2005), but also offer competitive performance compared to the 

best system in the CoNLL 2005 shared task and outperform systems with the same 

syntactic information.  Results suggest that the combination of PARA and PM is an 

efficient approach to solving the problems of argument identification and classification.  

It results in an overall system that offers benefits in terms of accuracy and speed to the 

practitioner.  
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Chapter 6 

Conclusions 

 

This thesis addressed the problem of Semantic Role Labeling (SRL).  Distinct from 

existing ML approaches that use Singular-Argument Classification for SRL, this thesis 

has described a combination of heuristic algorithms and Machine Learning (ML) 

techniques for Multi-Argument Classification that is faster and more accurate.  

Heuristic algorithms are rules constructed by humans, which offer some unlearned or 

general solutions to a problem.  These heuristic and training-free algorithms can also 

provide systems with the added benefit of greater processing speed.  Multi-Argument 

Classification is another technique that makes it possible to increase accuracy without 

using rich features.  This technique utilises role dependencies, which are relationships 

in the predicate-argument structure.  This kind of dependency or pattern structure can 

serve as useful information for argument classification. 

 

This thesis demonstrates improved accuracy of argument classification by constructing a 

model of Multi-Argument Classification and Singular-Argument Classification to 

associate unlabelled semantic structure with semantic roles.  Such unlabelled semantic 

structure can be identified via either a ML argument recogniser or a pre-processor to 

map syntactic structure to unlabelled semantic structure that is based on finding 

upper-most ancestor nodes in tree-based parses. 

 

ML techniques, adopted when the heuristic algorithms do not perform well in particular 

cases, serve to predict which phrases of a sentence form arguments for predicates and 

which labels should be assigned to arguments in a sentence.  The machine learning 

techniques studied in this thesis include:  

1) an improved statistical approach based on Singular-Argument Classification 
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(SAC), as a base system (BS); 

2) a new technique, Pattern-Matching (PM) for Multi-Argument Classification 

(MAC), which utilises role relationships in the semantic structures. 

 

The new technique (PM) is based on the discovery of relationships between roles in a 

predicate-argument list or pattern. 

 

The combination of heuristic algorithms with ML approaches (described in Chapters 4 

and 5) constructs a faster and more accurate system.  This combination offers 

competitive performance compared to the best system that uses rich syntactic information in the 

CoNLL 2005 shared task but outperforms systems with the same syntactic information. 

 

Section 6.1 describes contributions of this thesis.  Section 6.2 recapitulates all the 

techniques described in this research.  Avenues for future work are also discussed in 

Section 6.3. 

 

 

6.1  Contributions 

This thesis has developed a framework for the problem of Semantic Role Labeling (SRL) 

in which syntactic structure (i.e. parse trees) can be automatically converted to semantic 

structure based on the application of learning and inference strategies.  The proposed 

method offers benefits in term of accuracy and speed by using rule-based heuristic 

algorithms and machine learning approaches as the central mechanisms to solve the 

problem of SRL.  The overall strategy presented in this thesis deconstructs SRL into 

two parts: argument identification and argument classification.  

 

This thesis makes contributions in the form of new methodologies for:  

1) argument recognition, namely the Predicate-Argument Recognition Algorithm 

(PARA); and  

2) role classification, namely Pattern-Matching (PM) for Multi-Argument 

Classification; 
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Based on these algorithms the thesis makes several other contributions. 

 

Contribution to the problem of argument identification: 

� Empirical evidence that it is possible to design a deterministic algorithm for 

directly mapping syntactic parses to semantic arguments without any training. 

� Empirical evidence that this algorithm outperforms existing systems in the CoNLL 

2005 shared task using the same syntactic information.   

� Empirical evidence that the proposed heuristic approach reduces execution time 

when compared to ML approaches. 

� Evidence that this algorithm can be used as a pre-processor for argument 

identification to improve some existing ML role classifiers such as Priority 

Maximum Likelihood estimation. 

� Evidence that it is possible to apply this algorithm in another corpus domain 

without decreasing performance significantly. 

 

Contribution to the problem of argument classification: 

� Empirical evidence showing that Multi-Argument Classification in SRL helps to 

boost the performance of argument classification compared to the statistical role 

classifier proposed by Palmer et al. (2005).  

� Evidence that the proposed multi-argument technique with basic syntactic features, 

using the Predicate-Argument Recognition Algorithm (PARA) as a pre-processor, 

achieves better performance than existing systems that use rich syntactic features 

based on the same syntactic parses. 

 

In general, building a competitive system involves issues related to (1) the type of 

architecture and model used for recognizing and labeling arguments; (2) the algorithm 

used to train the learning functions of the architecture; (3) the type of features used for 

representing the data; and (4) practical techniques and heuristics to develop and tune a 

learning system for a real-world natural language problem. 
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In view of these four points, this thesis presents a system that has been shown by 

evaluation to be amongst the top performing systems for SRL, and thus can be 

considered as a state-of-the-art system.  For the problem of argument identification, it 

obtains results that make it the top-performing system among those that utilize the same 

syntactic information in the CoNLL 2005 shared task.  On the problem of argument 

classification with known arguments, the system is one of the top-performing systems 

based on basic features.  For the combination of argument identification and argument 

classification in the Semantic Role Labeling task, this system is also the best one in the 

CoNLL 2005 shared task when considering systems based on the same syntactic 

information. 

 

The evaluations detailed in Chapters 3, 4, and 5 show that the system achieves F1: 76.59 

and 66.25 on the WSJ23 and partial Brown corpus test datasets from the CoNLL-2005 

shared task.  These results are better than those obtained by other systems used in the 

CoNLL 2005 shared task (Carreras and Marquez, 2005), that use the same syntactic 

information.  The pre-processing algorithm, namely the Predicate-Argument 

Recognition Algorithm (PARA) (described in Chapter 4), is also better than the best 

argument recognition system (Moschitti et al., 2005) using the same syntactic 

information because it achieves F1: 82.60 on this task.  The execution time for the 

Multi-Argument Classification system is about 0.9 seconds, which is about 7 times 

faster than that of the re-implemented system from Palmer et al. (2005) (about 6.3 

sec/sentence in Section 3.6.7) on a P4 3.0 G and 1G Ram Linux machine. 

 

In summary, the results presented in this thesis show that the proposed system, 

combining rule-based heuristic algorithms and machine learning techniques, can 

successfully implement a direct mapping from syntactic parses to unlabelled semantic 

arguments and allows the application of Multi-Argument Classification via a pattern 

base in SRL.  These fulfill the claims made in the Thesis Statement (Section 1.2).  

The criteria of accuracy and speed are both met by the proposed system. 
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Figure 6.1.  Relationships between techniques and categories of techniques (with a 

gray background) described in the thesis. 
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6.2  Review of Techniques 

The fundamental techniques employed in this thesis and how they relate to Semantic 

Role Labeling (SRL) are illustrated in Figure 6.1.   

 

These techniques consisted of:  

� a modified statistical argument recognizer, (SAR), improving the performance of 

the existing statistical argument recognizer proposed by Palmer et al. (2005); 

� a training-free argument recognizer or Predicate-Argument Recognition Algorithm 

(PARA), which implements a direct mapping algorithm from syntactic parses to 

unlabelled semantic arguments based on tree parses;  

� a joint argument recognizer (JAR), which is the combination of PARA and SAR, 

and is used to compare the performance between the deterministic algorithm 

(PARA) and the Machine Learning (ML) approach (SAR);  

� a basic role labeller (RLA), a modified version of the one used in the shared task 

(Carreras and Marquez, 2005), which is a basic role labeller for the task of 

argument classification; 

� two singular role classifiers, the Kth-Nearest Neighbour algorithm (KNN) and an 

improved version of the statistical role classifier (PML) from Palmer et al. (2005), 

which are the ML approaches for argument classification used as fundamental 

classifiers for the system;  

� a multi-argument classifier, Pattern-matching (PM), which uses Multi-Argument 

Classification to utilize role dependencies to boost the overall performance for 

different role classifiers;  

� a Pattern base, which serves as a knowledge base with training information for the 

classifiers; and 

� the final system solution for the problem of Semantic Role Labelling, which 

includes PARA as a pre-processor for argument identification, and the 

multi-argument classifier, PM, for argument classification for the problem.  

 

Chapter 2 described the linguistic background for semantic role assignment, including 

domain-independent semantic role assignment, and domain-specific semantic role 



 

 

185 

assignment.  The CoNLL 2005 shared task, which belongs into the realm of 

domain-independent semantic role assignment, has attracted much attention and 

research efforts, in which new ML techniques, features, and combination of systems 

have been investigated and developed (Carreras and Marquez, 2005).  Palmer et al.’s 

(2005) system is based on the one proposed by Gildea and Jurafsky (2002) and 

implements a statistical approach using basic features for shallow Semantic Role 

Labeling based on PropBank annotations (similar to the task in the CoNLL 2005 shared 

task).  Chapter 2 explored the existing system proposed by Palmer et al. (2005), which 

is used as a baseline for the work presented in this thesis because of its simplicity. 

 

Chapter 3 introduces improvements to the existing statistical system (Palmer et al., 

2005).  The system consists of the modified statistical argument recogniser (SAR), the 

modified statistical role classifier (PML) and other improvements such as using 

additional features, heuristics, pre-processing and post-processing methods.  In 

addition, Chapter 3 also discussed the data and the evaluation script used to evaluate the 

system. 

 

In Chapter 3, it was found that, although this modified system exhibits better 

performance than that of Palmer et al. (2005), there is still room for improvement when 

comparing the performance of this system to that of the one proposed by Surdeanu and 

Turmo (2005).  Their system uses rich features and single syntactic information.  

Possible areas for improvement include, but are not limited to, better argument 

recognizers and different classification techniques.  The results of this comparison 

encourage further research on the problem of Predicate-Argument Recognition, leading 

to the method presented in Chapter 4, and the problem of argument classification via 

Multi-Argument Classification, as presented in Chapter 5. 

 

Chapter 4 focused on the problem of Predicate-Argument Recognition (or argument 

identification) and discussed a Predicate-Argument Recognition Algorithm (PARA).  

This algorithm (PARA) implements a direct mapping from syntactic parses to 

unlabelled semantic arguments without any need for training.  Utilizing the output 
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from a state-of-the-art parser like the one proposed by Charniak (2000), a number of the 

issues arising from complex parses (for example, whether a phrase is under or 

independent of the previous phrase) have been solved.  This makes it possible to 

employ an algorithm that maps directly between syntactic parses and unlabelled 

semantic arguments.   

 

In Chapter 5, a basic Role Labeling Algorithm (RLA), modified from the rule-based 

algorithm used in the CoNLL shared tasks, was proposed as a basic rule-based method 

for the task of Role Labeling.  There are two generic ML strategies in argument 

classification, namely Singular-Argument Classification (SAC) and Multi-Argument 

Classification (MAC).  All existing ML role classifiers in the CoNLL shared task 

implement SAC.   

 

In general, solutions for accuracy improvement add more features to a system but that in 

turn impacts on running time.  An alternative is to utilise role-dependencies without 

additional features by using a multi-argument classifier.  The main technique for MAC 

presented in this thesis is called Pattern-Matching (PM).  PM exploits characteristics 

present in the data due to inherent role dependency.  Compared to two role classifiers 

(KNN and PML), PM achieves better performance by leveraging the role dependencies 

when classifying, as shown in Chapter 5. 

 

In order to implement MAC, a Pattern base is built from training data.  Additionally, 

in order to avoid increasing execution time when testing the system, the controlling 

strategy used by PM employs constraints based on maximum suitable patterns.  This 

constraint reduces time complexity to a log-like curve and achieves better performance 

when using PM for unlabelled arguments.   

 

In summary, a training-free tree-based algorithm, Predicate-Argument Recognition 

Algorithm (PARA), provides better results for argument identification compared to 

existing argument recognizers and can serve as a pre-processor for a role labeling 

system.  The multi-argument classifier PM for argument classification presented in this 
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thesis improves on the singular-argument classifiers PML and KNN.  The best solution 

for converting syntactic structure to semantic structure uses the rule-based argument 

recognizer PARA in conjunction with PM.  This combination is the top performing 

system, outperforming other systems using the same syntactic information in the 

CoNLL 2005 shared task.  

 

 

6.3  Future work 

Traditional techniques have contributed significantly toward the solution of SRL 

(Carreras and Marquez, 2005).  These techniques label each argument one by one, a 

process that is called Singular-Argument Classification in this thesis.  The successful 

demonstration of a Multi-Argument Classification system in this thesis opens an 

alternative pathway for solving SRL problems in addition to the traditional use of 

singular-argument classification. 

 

The fundamental concepts and construction techniques for (a) the direct mapping from 

syntactic parses to unlabelled semantic arguments, and (b) Multi-Argument 

Classification, already achieve good performance when compared to existing techniques 

using the same syntactic information.  However, there remain avenues for future 

exploration and these are discussed below. 

 

SRL can be solved in two main steps: argument identification and argument 

classification.  In this research, the PARA method for argument identification utilises 

techniques from state-of-the-art parsers (like Charniak, 2000) and outperforms existing 

ML techniques based on the same syntactic information.  However, there are some 

potential areas for future research. 

 

� More syntactic information 

Although the system presented in this research outperforms existing systems based 

on the same syntactic information in the CoNLL 2005 shared task, the performance 



 

 

188 

obtained by this system does not reach that of the four top performing systems 

(Punyakanok et al., 2005; Haghighi et al., 2005; Marquez et al., 2005; Pradhan et 

al., 2005), which use various parses as rich syntactic information.  Thus further 

gains in performance might be achieved if this system was enabled to exploit rich 

syntactic information.   

 

This research proposes a preliminary structure based on basic features for 

demonstrating the possibility of Multi-Argument Classification in the problem of 

SRL.  There are about 40 features that have been introduced in different systems 

in the CoNLL 2005 shared task.  It would be worthwhile to utilize these additional 

features for Multi-Argument Classification by adding more features to the system 

such as the NE feature, which indicates if the target argument is, embeds, overlaps 

or is embedded in a named-entity along with its type (Punyakanok et al. 2005). 

 

� Better algorithm to join PARA with ML techniques   

Chapter 4 introduces a simple joint algorithm combining PARA and a traditional 

statistical argument recognizer (SRB). However, it does not seem to offer better 

arguments for the role classifiers in the overall performance of SRL.  A more 

sophisticated joining procedure or application of other argument recognizers may 

be able to improve on this.  

 

� Different language domains 

This research is confined to the English domain for argument identification and 

argument classification.  It would be interesting to apply PARA and 

Multi-Argument Classification to different languages (such as German, Chinese or 

Japanese) if possible.  

 

� Other resources 

The CoNLL 2005 shared task offered a useful official resource: PropBank Frames
1
, 

which are rolesets for English verbs.  The PropBank Frame dataset defines related 

                                                 
1
 http://www.lsi.upc.edu/~srlconll/resources/pb-frames.tar.gz  
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role descriptions or rolesets for each predicate or verb.  There are many other 

resources related to SRL such as the free Lexical Conceptual Structure (LCS
2
) 

knowledge database for semantic roles, the WordNet
3

 database, and the 

verb-structure database VerbNet
4
.  It would be worthwhile trying to add these 

resources to the system as additional features or knowledge bases. 

 

� Other Machine-Learning techniques:   

Similarity- or probability- based techniques play an important role in SRL.  There 

are different kinds of machine-learning based techniques.  This thesis has 

demonstrated the application of two basic methods, Kth-Nearest Neighbour (KNN) 

and Priority Maximum Likelihood estimation (PML).  Other probability-based 

methods such as Maximum Entropy (ME) might produce a better outcome when 

employed with Pattern-Matching.  

 

� Different corpora and language domains: 

The results of the joint system consisting of PM and PML do not show consistency 

in performance when moving from WSJ to the Brown domain.  This weakness, 

caused by propagating errors in Natural Language Processing applications and different 

domains, could be another research topic for researchers who are interested in SRL 

(like how to minimize the impact of different domains). 

 

 

It has been shown that the system proposed in this thesis outperforms existing systems 

based on the same syntactic information in the CoNLL 2005 shared task.  Distinct from 

traditional ML approaches to argument identification and existing singular role 

classifiers for argument classification, this thesis successfully demonstrates (a) an 

efficient approach to solving the problem of argument identification by using heuristic 

algorithms based on state-of–the-art tree parses, and (b) a method for solving the 

problem of argument classification with Multi-Argument Classification techniques.  

This results in an overall system that offers benefits in terms of accuracy and speed to 

                                                 
2
 http://www.umiacs.umd.edu/~bonnie/LCS_Database_Documentation.html 

3
 http://wordnet.princeton.edu/ 

4
 http://www.cis.upenn.edu/~mpalmer/project_pages/VerbNet.htm 
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the practitioner.  
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