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Abstract

The global effort to decarbonise, decentralise and digitise electricity grids in response to climate
change and evolving electricity markets with active consumers (prosumers) is gaining traction in
countries around the world. This effort introduces new challenges to electricity grid operation.
For instance, the introduction of variable renewable energy generation like wind and solar
energy to replace conventional power generation like oil, gas, and coal increases the uncertainty
in power systems operation. Additionally, the dynamics introduced by these renewable energy
sources that are interfaced through converters are much faster than those in conventional system
with thermal power plants.

This thesis investigates new operating tools for the system operator that are data-driven to help
manage the increased operational uncertainty in this transition. The presented work aims to an-
swer some open questions regarding the implementation of these machine learning approaches in
real-time operation, primarily related to the quality of training data to train accurate machine-
learned models for predicting dynamic behaviour, and the use of these machine-learned models
in the control room for real-time operation.

To answer the first question, this thesis presents a novel sampling approach for generating
’rare’ operating conditions that are physically feasible but have not been experienced by power
systems before. In so doing, the aim is to move away from historical observations that are often
limited in describing the full range of operating conditions. Then, the thesis presents a novel
approach based on Wasserstein distance and entropy to efficiently combine both historical
and ’rare’ operating conditions to create an enriched database capable of training a high-
performance classifier. To answer the second question, this thesis presents a scalable and
rigorous workflow to trade-off multiple objective criteria when choosing decision tree models for
real-time operation by system operators. Then, showcases a practical implementation for using
a machine-learned model to optimise power system operation cost using topological control
actions. Future research directions are underscored by the crucial role of machine learning in
securing low inertia systems, and this thesis identifies research gaps covering physics-informed
learning, machine learning-based network planning for secure operation, and robust training
datasets are outlined.
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The tenets of every discipline are ten: the definition, the content, and then the fruit; its

merit, interdisciplinarity, and its pioneer; its name, its sources, the legal ruling; the issues

discussed, while some have sufficed with a little bit of it; the one who knows the field

completely becomes honoured.

—Shaykh Muhammad Al-Yaqoubi

1.1 Motivation

The increasing concern for climate and environmental sustainability has led to the evolution

of power systems by replacing traditional fossil fuel-based energy sources with renewable

energy technologies. This coordinated shift towards renewable energy is a crucial step in

decarbonising the power sector, which follows the adoption of the internationally binding

climate treaty at the UN Climate Change conference in Paris in 2015. This treaty aimed

7
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at limiting the global temperature increase to 1.5◦C above pre-industrial levels, and 196

countries have agreed to this goal. The transition to net-zero carbon emissions has ac-

celerated the adoption of renewable technologies, such as wind, solar, and battery energy

storage systems. It has also paved the way for the electrification of the transport and heat-

ing sectors. Most of the power sector decarbonisation is currently taking place in highly

polluted countries, such as Europe and America, where conventional power systems are

dominated by large synchronous generators operating on fossil fuels. At the same time, the

replacement of gas boilers and combustion engines with electric heat pumps and electric

vehicles, respectively, in the heating and transport sectors, offers a unique opportunity

to deeply decarbonise the entire economy. The integration of renewable energy sources,

and the electrification of heating and transport sectors, present new operational challenges

and opportunities for power systems. The shift towards renewable energy sources and the

electrification of heating and transport has revolutionised the energy mix, requiring power

systems to adapt and evolve to meet the demands of a low-carbon future.

Conventional power systems transport electrical energy in one direction, from mega sources

(generators) to large sinks (loads). The power system architecture is typically centralised,

with the generated power flowing through an interconnected network of lines and cables,

also known as the transmission system. The transmitted power is at high voltage levels

and is ultimately made available to the end user at low voltage levels through the distri-

bution system. To maintain the equilibrium of the power system, the aggregate generator

output must always equal the total load demand. In legacy power systems, this equilib-

rium was easily maintained by regulating the amount of fuel burned to match demand, as

the generated power came from synchronous machines and consist of prime movers that

automatically and in real-time adjust the generator output to match the demand. Conse-

quently, the power system can, on most occasions, accommodate the uncertainty in energy

demand via increasing or reducing the generator output, as the case may be. The system

operator sits at the centre of this architecture and plays a critical role in maintaining this

equilibrium by reliably operating the power system infrastructure and ensuring that gener-

ated electricity is available to the end users. However, achieving net-zero carbon emissions
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targets presents significant challenges to maintaining this equilibrium as the power system

architecture and infrastructure undergo crucial changes. Crucially, the introduction of

large amounts of renewable energy sources in the generation mix is accompanied by power

electronics devices that make real-time organic control of the generator output difficult.

Two key challenges arise in this context.

The first challenge in maintaining power systems’ equilibrium concerns handling uncer-

tainties arising from new faults encountered during operations [6]. The substitution of

synchronous machines with power electronics-interfaced generation at high voltage levels

and the integration of renewable energy sources in the form of distributed energy resources

(DERs) in medium and low voltage levels introduce uncertainty in energy availability tied

to weather conditions. The dependence on weather makes controlling energy generation to

match demand more difficult, as both demand and generation become highly unpredictable.

Furthermore, seasonal variations in demand contrast with renewable energy outputs. For

instance, in winter the energy demand is high, but solar irradiance is low, while the op-

posite is the case in summer. During normal operation, the system operator’s objective

is to maintain system variables close to their desired values and ensure the system can

survive disturbances. By maintaining variables close to their desired values, the system

operator ensures that the equipment is not overloaded, and the physical constraints are

satisfied around the clock. The system operator must ensure that the system can survive

small or large disturbances. For small disturbances such as variations in demand levels, the

system constantly adjusts the generation output through automatic controllers. For large

disturbances, such as equipment failure or line overloads, the system operator may trigger

preventive or corrective actions to restore normal operations. Large disturbances are of ma-

jor concern to system operators as they can lead to power blackouts. Conventional power

system design follows a redundancy principle, where large safety margins on underutilised

assets and preventive control actions are incorporated to ensure reliable system operation.

This design ensures that an asset failure does not disrupt operations, as most assets are

operating at below capacity. However, this approach is highly inefficient and expensive,

and for future power systems, it is unscalable as operational uncertainty increases. To
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overcome these challenges, a scalable and efficient approach would utilise existing assets

close to their capacity with smaller safety margins and deployment of ’smart’ corrective

control to reliably operate the system [7]. Investigating new operating tools that allow the

efficient utilisation of existing assets is the focus of this thesis.

The second challenge is the evolution of power flows in power systems from unidirectional

to bidirectional (from low and medium voltage levels to high voltage levels), as prosumers

may wish to trade their electricity as a form of flexibility. The rise of the prosumer fol-

lows legislative and economic incentives that facilitate the proliferation of DERs, such as

battery energy storage systems and embedded solar generation. In such an architecture,

power generation is no longer centralised but decentralised, and the demand side allows for

some flexibility as local generation can offset some demand. There, an opportunity exists

where DERs can provide additional value, such as providing flexibility services to mitigate

the uncertainty from renewable sources, eliminating network congestion and safeguarding

against cyber-attacks [8]. Local energy markets may serve as a coordinating mechanism for

end-users to trade excess energy locally and as aggregated flexibility services to the grid,

thereby minimising their electricity costs and maximising their revenues. Future energy

systems can have local users that can organise themselves into ’smart’ microgrids, enabling

them to become fully energy independent by relying solely on local generation and storage,

thereby operating off-grid. Additional DERs will result from electrifying the transport and

heating sectors, where electric vehicles and electric heat pumps can act as energy storage

devices that can offer flexibility services. Albeit, the electrification of transport and heat

can increase the peak electricity demand levels, which traditionally would require upgrad-

ing infrastructure, as mentioned in the first challenge. The bi-directional flow of energy as

a result of DERs and the increase of peak demand represent a challenge requiring ’smarter’

controls to efficiently utilise available assets [8, 9].

The integration of renewable energy sources at high voltage levels and local DERs with

bi-directional power flows at low and medium voltage levels necessitates implementing

an extensive information and communication technology (ICT) infrastructure to provide

emerging control tools with necessary real-time data. For instance, controlling local DERs
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in both centralised and decentralised systems would require a communication infrastruc-

ture to instantly transmit optimal set-points to the local DERs. Albeit, a decentralised

system would require less infrastructure and provide safeguards against cyber-attacks at

the expense of sub-optimal operation, in comparison to a centralised system. The vision of

digitalisation in power systems and the adoption of ’smart’ control to replace traditional

approaches to power system security analysis and control requires instrumentation at var-

ious voltage levels across power systems to collect large quantities of real-time data from

phasor measurement units (PMUs), coupled with advances in wireless communication and

cloud computing [10]. The digitalisation of power systems can act as a major catalyst for

efficiently utilising existing assets thereby ushering in a ’smart’ grid era. Such a ’smart’ grid

is characterised by an increased penetration of renewable energy sources, where the system

architecture is decentralised and allows for bi-directional power flows from DERs, with the

proliferation of local energy markets. This transformation of the generation, transmission,

distribution, consumption and trading of electricity can enhance power system reliability,

flexibility, and efficiency [11]. Furthermore, advancements in artificial intelligence for se-

quential decision-making [12] can support the autonomous operation of power systems and

system planning [13], while game theory [14, 13] supports the development of more agile

energy markets [15]. From the transmission system perspective, this digitalisation vision

encompasses the integration of three functional ’smart’ blocks: control centres, transmis-

sion networks and substations, integrated through a common digital platform that relies on

the ICT infrastructure [16]. The implementation of a central digital platform for integrat-

ing these blocks can facilitate more secure and reliable grid operations using real-time data

from PMUs [17]. Albeit, there are data privacy and security considerations when handling

these massive datasets. Recent advancements in distributed ledgers used in blockchain

technologies can support privacy-centred and secure data distribution [18, 19]. The de-

velopment of such digital platforms in tandem with novel control tools and strategies is

essential to fully exploit the benefits of this digitalisation paradigm [19].

Following this digitalisation paradigm, the objective of this thesis is to investigate novel ap-

proaches for operating and controlling power systems such that existing assets are utilised
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more effectively as opposed to the worst-case guarantee principle. Specifically, the focus is

on the secure operation of power systems, as these novel approaches can quickly evaluate

the system response to a fault and adjust pre-fault and post-fault operating set-points of

controllable assets. These new tools will improve the situational awareness of the system

operator to maintain adequate security levels without relying on traditional approaches

such as asset redundancy to prevent worst-case scenarios of power blackouts [6]. The use

of preventive and corrective control actions to lower safety margins on equipment can help

manage insecurity in power systems operations. Security assessments measure a power

system’s vulnerabilities to faults and equipment failure. The system operator carries out

contingency studies ahead of the operation horizon to evaluate the response of the sys-

tem to probable faults. In the past, the system operator utilised numerical integration

methods to simulate the system’s response to a fault. These simulations provided insight

into the post-fault security status according to specified criteria. Once the dynamic se-

curity assessment (DSA) was completed, operators determined the optimal cost-effective

preventive control actions to activate to ensure adequate security levels [20]. The expan-

sion of modern power systems coupled with the integration of renewable energy sources

introduces a high degree of uncertainty to power system operations that challenges the

conventional approach to DSA. The conventional approaches of simulating the system’s

response to faults and assessing post-fault dynamic security using standard criteria become

intractable in near or real-time settings due to the exponentially increasing number of pos-

sible operating conditions (OCs) and probable contingencies. For instance, simulating a

single contingency on the French transmission system takes 56 s [21], and assessing tens

of thousands of OCs and thousands of contingencies would be required. Therefore, the

computational complexity of these detailed time-domain dynamic simulations becomes a

significant bottleneck for real-time DSA.

In recent years, the digitalisation of power systems has been proposed as a potential solu-

tion to the computational bottleneck of DSA [1]. This approach involves processing and

analysing historical data to infer patterns to speed up the assessment and control frame-

work, thus making them tractable in real-time operation. Machine learning (ML) has
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shown promise in efficiently inferring underlying patterns from complex data and provid-

ing instantaneous solutions. This technique has been previously investigated to address

the challenges surrounding power system DSA and control [22]. However, there are several

barriers to the adoption of ML methods in the power systems and broader energy sector.

These barriers include the need to develop trust among system operators, concerns regard-

ing data privacy and security, data quality issues, generalisation concerns, data ownership,

and regulatory challenges. In contrast, the use of ML in other domains, such as finance

[23] and language models [24], has quickly become commonplace.

1.2 Machine learning approach to DSA

The machine learning approach to DSA was proposed in the 1980s [25] to enable a faster

assessment of power system security [22]. Since then, ML techniques have garnered con-

siderable interest as a scalable approach for managing uncertainty and improving the re-

liability of the power system, particularly for transmission system operators [1]. In this

new approach, the system operator prepares a classifier offline with data samples that

mimic expected OCs a few days before the operation horizon. These data samples can

include features such as voltages, power flows, power injections and phase angles. The

aim is to train this classifier to accurately predict the security status of, current or future

OCs, whether secure or insecure [1]. The offline training phase is designed to minimise

residual uncertainties due to different network configurations or anticipated contingencies

between when the classifier is trained and when it is used. These methods are promis-

ing for predicting various power system stability phenomena ranging from small to large

disturbances, such as short-term [26] and dynamic [27] voltage stability [28], and tran-

sient stability [29][30]. Several classification models have been explored, including support

vector machines (SVMs) [31, 32], random forest (RF) [33], k-nearest neighbours [34], and

artificial neural networks (ANNs) [35], for transient stability analysis. In power systems

security assessment, the choice of model is an important consideration. For instance, while

ANN models offer higher accuracy, system operators prefer decision trees (DTs) and DT



14 Chapter 1. Introduction

ensembles [33, 36, 37, 38] as a balance between accuracy, computational complexity, and

interpretability [39, 21, 38]. For ML-based DSA, there is a preference for so-called ’white

box’ models as they offer high interpretability. Interpretability in ML-based DSA is crucial

since it enables system operators to comprehend the decision-making process of a classifier

with a minimal examination, thereby maintaining their involvement in the control loop.

Although ML-based approaches to DSA have generated some traction in recent years and

show significant promise for real-time operations [21], there are existing challenges that

hinder their adoption for online DSA. The applicability of ML-based models for day-to-

day operations faces several challenges that need to be addressed. This section outlines

three primary challenges: (i) improving the quality of training data, (ii) trading off multiple

objectives in the training and selection of the ML-based model, and (iii) managing risks

when applying ML-based models in real-time operation.

Firstly, the quality of training data has a significant impact on the accuracy of ML-based

models for DSA. Therefore, to improve the prediction performance of ML-based models

for DSA, the training data must be of high quality. Typically, historical data is an initial

data source for training ML models. However, historical data which characterises normal

power systems operation is highly imbalanced with a distribution that is skewed towards

the secure class [28, 40]. In addition to the class imbalance, the imbalance in the cost of

wrong predictions needs to be considered, as missed alarms can lead to power blackouts

and must be avoided while false alarms may only require re-dispatching generation assets.

The training data should also take into account the sensitivity to parameters that can

affect system security, such as fault clearance time, as they are assumed to be fixed when

obtaining the security label of an OC.

Secondly, the system operator must balance multiple and often contrasting objectives in

the training and selection process of the ML model. For instance, while high predictive

accuracy is a prerequisite for these models, interpretability and efficient use of data are

also important. In security assessments, interpretability is crucial for understanding the

decision-making mechanism of a classifier, which is essential for building trust and adapting
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to changing assumptions such as topological reconfiguration or data distribution. Addi-

tionally, minimising the amount of data required to achieve high accuracy is important

due to limited computational resources. The selection of appropriate performance metrics

is essential, and the objective function should be designed to take into account various

operational objectives such as power system stability, operational efficiency, and economic

costs.

Thirdly, the system operator must develop a mechanism to manage and balance risks

when applying an ML-based model in real-time operations. As previously mentioned, the

impacts of wrong predictions differ and thus carry different penalties. A wrong prediction

can either be a missed alarm (predicted secure while the system is insecure) or a false alarm

(predicted insecure while the system is secure). Missed alarms can lead to system collapse

and are generally way more ’costly’ than false alarms, as false alarms require deploying

unnecessary resources at worst. In real-time operation, managing the residual risk of these

classifiers is crucial as they can act as ’black boxes’ for prediction or control. Approaches

exist to quantify worst-case guarantees of these models, verify near real-time, or adopt

a probabilistic outlook. It is necessary to develop models that can deal with a range of

uncertainties, including unforeseen events and data quality issues. Additionally, there is

a need to establish a framework for monitoring the performance of ML-based models to

identify and mitigate any unexpected outcomes.

1.3 The challenge of generating high quality training

data

The quality of training data is an important factor that affects the prediction performance

of ML models, which relies on several criteria such as coverage, variability, and balance

[41]. However, as mentioned earlier, using historical data for training ML-based DSA

models has limitations. One significant limitation is that historical observations mostly

correspond to secure OCs, while a good training database must also include insecure ones
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[1]. Additionally, extreme operating scenarios are seldom present in historical observations,

and hence synthetic OCs are generated using sampling approaches. To generate synthetic

samples, an OC is first sampled and then evaluated using time-domain simulations for the

contingency considered.

The generation of synthetic data for ML-based DSA is crucial for accurate predictions.

Three sampling approaches have been proposed in the literature to optimise data quality:

historical sampling, generic sampling and importance sampling. Each sampling approach

aims to optimise a specific property of quality datasets, respectively, historical relevance,

coverage, and discriminative relevance [42, 1]. The first approach, historic sampling, uses

historical records [43] and fits a probability distribution, such as vine-copulas [21, 40],

to capture dependencies between variables such as loads and wind power outputs, or to

identify ’relevant’ buses for sparse PMU measurements [44, 45]. Subsequently, Monte-

Carlo (MC) sampling can generate synthetic OCs [46, 47]. Historic sampling is suitable to

sample OCs following the same distribution. However, future OCs can be different from

historical OCs, and sampling from distributions is unsuitable for creating extreme OCs

typically found at the tails of distributions. The second approach, importance sampling,

aims to maximise the information content of the final training dataset [39, 37, 48, 49,

50]. The classifier quantifies the ’importance’ of possible OCs generated [51, 52], and

security assessment is carried out only on OCs with low confidence. The third approach,

generic sampling, generates OCs uniformly distributed in the feasible space to explore all

possible OCs. However, generating large amounts of OCs is computationally expensive,

and many OCs add little knowledge to the final dataset. Several techniques have been

proposed to overcome this challenge, including the use of Latin hypercube sampling (LHS)

[53], sampling within the feasible neighbourhood of OCs [54], and outer approximation

to convexify the original non-convex feasible space [55]. Infeasibility certificates based on

separating hyperplanes [56] can be used to discard infeasible portions of the input space.

[57] proposed generating representative OCs that span the AC OPF feasible space by

uniformly sampling loads from a convex input space and using infeasibility certificates to

reduce the search space. However, each of these approaches has limitations. The historical
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and importance sampling approaches may neglect some feasible OCs, while generic sampling

faces the challenge of sampling in high dimensions. Therefore, an efficient generic sampling

approach that scales to larger systems and can generate extreme synthetic OCs beyond

historical records is essential for accurate ML-based DSA in power systems with high

shares of intermittent renewables. This thesis identifies two existing gaps in the generation

of quality training data for ML-based DSA.

The first gap concerns the assumption in most state-of-the-art works that generator outputs

are scheduled based on optimal power flow (OPF) solutions that minimise generation costs

[21, 39, 57, 37, 48, 45, 58, 50]. However, since faults can occur at non-optimal set points,

it is necessary to develop methods that explore likely operating conditions (OCs) beyond

the OPF solution [51]. While some methods in the literature, such as Latin hypercube

sampling (LHS) [51, 52, 53, 55, 56], explore the entire feasible space using generic sampling

approaches, current methods attempt to discard sections of the search space through rapid

rejection sampling [52, 57, 55, 56, 52]. There is an opportunity for iterative methods that

optimally explore the feasible space to address this research gap.

The second research gap pertains to the need for methods that balance different properties

of quality datasets, as state-of-the-art approaches focus on maximising a specific property.

Approaches that prioritise maximising coverage of the feasible space [55, 56, 57, 59] neglect

variable dependency structures and therefore sacrifice historical relevance. Conversely, ap-

proaches that prioritise historical relevance, for instance, copulas [42, 21], autoencoders,

and conditional variational autoencoders [44], fail to generate feasible but ’rare’ OCs, thus

sacrificing coverage. Additionally, approaches that focus on historical relevance do not

generalise well to previously unobserved OCs. Finally, approaches that prioritise discrimi-

native relevance neglect variable dependency structures that represent typical power system

OCs and do not generalise to feasible but ’rare’ OCs. Hence, there exists a research gap

in developing methods that effectively balance these contrasting properties.
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1.4 The challenge of model selection

Another challenge regarding adopting ML-based models includes the selection procedure

of these models to build trust by the SO. One facet of such a selection process involves

trading off multiple objectives of accuracy, interpretability and ’cost’ sensitivity. The

selection strategy must consider the primary objective of the system operator to ensure

secure operations where the training data may be imbalanced while also being modular

and scalable. Several performance metrics have been proposed in the literature to compare

model performance in a class imbalance context. The limitations of using test accuracy,

which is fast, scalable, and has traditionally been used as the performance evaluation

metric, have been previously discussed [60][61][62]. Other fast and scalable metrics [63]

include precision and recall score (for example [29]), AUC (for example, [64][65]) F-Measure,

G-Mean (for example, [62][28][30]), brier score, still fail to generalise performance of a

classifier over a range of sample distribution. One popular alternative metric is the F1-

score. However, it equally weights precision and recall and does not consider the different

costs of the various inaccuracies [66]. That gap was filled using advanced metrics and

graphical tools firstly by receiver operating characteristic (ROC) curves (ushered into the

machine learning community by [61], and later extended the idea of convex hulls in [67]) and

subsequently by precision-recall curves [68]. The state-of-the-art graphical tool is the cost

curve [69], and it allows for comparing classifiers over a range of class or cost distributions

and provides confidence intervals for a classifier’s performance. Still, there is a gap in a

scalable workflow to compare many classifiers for usage in real-time operation.

1.5 The challenge of managing risks of model usage

The challenge of managing risks when applying ML-based models in real-time operation

can be underscored from a practical viewpoint. The control strategies proposed by these

ML-based models may be ineffectual or infeasible to implement. For instance, grid topolog-
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ical reconfiguration has been proposed as a cheap control mechanism to mitigate against

voltage excursions, and line overloads [70], improve system security [71], and can even

reduce operational costs and line losses [72]. Topological reconfiguration through trans-

mission switching has previously been considered as an NP-hard mixed-integer problem

that minimises the operational costs while meeting security requirements [73, 74, 75]. As

the problem becomes multidimensional with the expansion of power systems, solving this

linear and non-linear combinatorial problem tractably is an open challenge for solvers.

Heuristics aiming to reduce the computational requirements are promising [76]. Even more

promising is the use of ML-based models to instantaneously propose transmission switch-

ing solutions, and there, the SO needs to verify the feasibility of the proposed solutions as

a way to manage the risks of using these ML-based models.

1.6 Objectives

The digitalisation of power systems has opened new avenues for using ML-based models to

predict the uncertainty of power system operations and assessing the impact of dynamic

phenomena on electricity grids in real-time. These models hold promise in proposing

preventive and corrective control actions that can mitigate power blackouts. However,

questions remain regarding the quality of training data which affects the the models’ train-

ing procedures and quality of predictions. Furthermore, questions persist concerning the

practical implementation of these models in real-time operations, including model selection

and model usage. As such, this thesis aims to address these outstanding issues and provide

answers to the following questions:

• How can a representative database be generated for training machine-learned models to

accurately predict dynamic behaviour?

• How can machine-learned models be utilised for real-time operation, including model

selection and modal usage in the control room?

The contributions of this thesis is to answer these questions with novel methods and prac-
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tical examples in the following.

1.7 Contributions

The first contribution addresses the first question of generating a representative database.

Consequently, this thesis develops a novel method that sequentially generates physically

feasible but ’rare’ OCs that have not been previously observed in power systems operations.

The developed method aims to move beyond the limitations of historical observations to

explore the full range of possible OCs, by efficiently analysing previously generated OCs

within the feasible space of power systems operations. Further, this thesis develops an

approach to efficiently combine the three properties of quality datasets, viz coverage, dis-

criminative relevance, and historical relevance, trading-off historically relevant with feasi-

ble but ’rare’ OCs using the Wasserstein distance, and considering discriminative relevance

using entropy-informed sampling to create an enriched database capable of training a high-

performing classifier.

The second contribution addresses the second question of using machine-learned models

in the control room for real-time operation. This thesis proposes a scalable workflow to

trade-off between multiple objective criteria of accuracy, interpretability and cost sensitivity

using graphical methods when selecting machine-learned models for real-time operation by

system operators. Additionally, this thesis showcases a practical implementation for using

a machine-learned model to optimise the cost of power system operations using topological

control actions. The proposed heuristic is more robust to deviations in the training data

and provides significant computational savings with similar accuracy performance as state-

of-the-art heuristics for transmission switching.
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1.8 Structure of thesis

Chapter 2 provides an overview of power system stability and security assessment, as well

as ML-based approaches to DSA. The first contribution of this thesis is presented in Chap-

ter 3, which introduces a novel generic sampling method that generates representative and

feasible OCs. In Chapter 4, a novel approach to generating quality datasets capable of

training high-performing classifiers is presented, which trades off three properties of the

quality datasets. Chapter 5 presents the second contribution of this thesis, a scalable work-

flow to select machine-learned models in real-time while considering multiple objectives.

Further, as part of the second contribution, Chapter 6 provides a practical implementation

for ML-based approaches in real-time operation, proposing topological reconfiguration to

optimise dispatch costs. Finally, Chapter 7 concludes this thesis by summarising the thesis

achievements, underscoring the role of ML in securing low inertia systems, and providing

an outlook for future research.



Chapter 2

Background

“The two most important days in your life are the day you are born and the day

you find out why.”

—- Mark Twain

2.1 Introduction

The electric power system is an indispensable infrastructure that sustains modern life in

the 21st century. It is responsible for transporting electricity across a network of lines and

cables to power homes, industries, and critical sectors, such as transportation and health,

thereby supporting economic activities. The effective operation of power systems requires

the continuous balancing of power demand with generated energy. Hence, conventional

power systems are powered by generators with prime movers that can accelerate or de-

celerate to match the variation of power demand. The system operator (SO) sits at the

epicentre of this infrastructure, ensuring rigorous standards related to power quality are

satisfied and overall reliability, including maintaining a constant frequency and operating

within acceptable voltage levels.

22
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Figure 2.1: Power system operating states and control. The system responds to disturbances ( )
with control actions ( ), while satisfying the equality (E) and inequality (I) constraints. Figure
gotten from [1].

The reliability of the power system measures the preparedness and ability of the system to

maintain electricity supply without disruption despite foreseen or unforeseen disturbances

[1]. From a practical perspective, power system reliability covers adequacy and security.

Adequacy is the ability to maintain electricity supply in the event of equipment failure,

for instance, generator or transmission line tripping. Security measures the elasticity of

the power system to survive sudden disturbances without failing as it transition between

different operational states.

On a conceptual level, there are five operational states of the power system, each with its
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associated control objective to ensure reliable operation of the power system [2]. These

operational states are presented in Figure 2.1. The normal state is the default operation

state where all system variables are within acceptable operational limits. The control

objective is to maintain system variables close to their desired values and be able to survive

sudden disturbances. The system triggers the alert state if the security level drops beyond

a specified threshold or if unfavourable weather increases the likelihood of disturbances on

the system. In the alert state, while the system operates within acceptable limits and all

constraints are met, the system strength has dwindled such that equipment overload from

a contingency event is highly likely, leading to an emergency state. The control objective is

preventative action such as generation re-dispatch to restore the system to the normal state.

The system remains in the alert state if such restorative efforts fail to the system to the

normal state. In the event of a disturbance of sufficient severity while the system is in the

alert state, the system triggers the emergency state, where equipment overloads beyond the

short-term emergency ratings. The control objective is active emergency corrective actions

such as excitation control or generation tripping to return the system to the alert state.

Otherwise, the system reaches a critical state and becomes in extremis, leading to cascading

outages and potentially causing partial blackouts. Load shedding and controlled islanding

can be used to contain the spread of the blackout from crippling the entire system. After

a partial or full blackout, the SO restores the system with synchronised load pick-ups and

re-connection of generators and aims to transition the system operation to the alert state

or normal state [2].

This chapter presents some background on power system stability and security. Subse-

quently, this chapter discusses security assessment, with a focus on machine learning-based

approaches to power system security assessment.
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Figure 2.2: Classification of power system stability [2].

2.2 Power system stability

Power system stability is an inherent characteristic of a power system that enables it to re-

sponse to small or large disturbances [77]. It is the ability of a power system to maintain an

equilibrium state under normal operating conditions and to recover to an acceptable state of

equilibrium after being subjected to a physical disturbance. Fig. 2.2 shows a classification of

power system stability of conventional power systems. The stability of conventional power

systems with large synchronous generators is primarily focused on ensuring synchronism

between all generators, where the dynamics of the generator rotor angle provide insight into

the stability of the system. Power systems are highly non-linear high-dimensional multi-

variate systems whose dynamic performance is determined by a range of factors, including

the wide array of devices with different response rates and inherent characteristics, system

topology, initial operating condition and the type of disturbance. These systems use their

spinning reserve to continuously modify generator output to match small load variations.

For large disturbances, such as loss of generation or three-phase faults, the system response

is influenced by the equipment, as the protective devices for individual equipment may re-

spond to variations in system variables and influence system performance. For instance, a

fault on a critical component is followed by protective relays isolating the faulted item to
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protect the power system. This isolation can cause variations in bus voltages and machine

rotor speed. Voltage variations can in turn trigger voltage regulators on the transmission

lines and generators. The generator speed variations can actuate prime mover governors.

Further, variations in voltage and frequency can trigger different behaviours on individual

protective equipment, which ultimately affects system performance. Albeit, only a handful

of equipment has a substantial impact on system stability.

There are various forms of instability the power system may experience depending on the

physical nature of the phenomena that cause the instability, the size of the disturbance and

the underlying equipment. The following sections explore some of these stability categories

relating to voltage and rotor angles.

2.2.1 Voltage stability

Voltage stability refers to a power system’s capacity to maintain steady and acceptable

voltages at all system buses under normal operating conditions and after being subjected

to a disturbance [77]. When a disturbance such as an increase in load demand or change

in system conditions leads to a progressively worsening and uncontrollable drop in voltage,

the system enters a state of voltage instability. The primary cause of voltage instability

is the power system’s failure to provide the necessary reactive power to meet demand. In

the short term, voltage stability is related to the response of voltage controllers such as

automatic voltage regulators on generators or power electronic converters in flexible AC

transmission systems. Voltage instability is usually contained within a limited region of

the power system. However, its effects can have a far-reaching impact. A simple criterion

for voltage stability is inferred from the V-Q sensitivity, such that the system is unstable if

the V-Q relationship is negative for at least one bus of the system. Otherwise, the system

is stable. Voltage instability can also occur as a result of generator rotor angles going out

of step. Hence, voltage instability often coexists with rotor angle instability, and one may

lead to the other.



2.2. Power system stability 27

2.2.2 Rotor angle stability

Rotor angle stability refers to the ability of a power system’s synchronous machines to

continue operating in sync [77]. The maintenance of synchronism is crucial as the electric

power output of synchronous machines varies with respect to their rotor movements. A

typical synchronous machine has two fundamental parts, the field, which is mounted on

the rotor, and the armature, found on the stator. The field winding is energised by a

direct current source. When the rotor rotates due to a prime mover such as a turbine, the

rotating magnetic field from the field winding induces alternating voltages in the stator’s

three-phase armature windings. The frequency of the induced voltages and the resulting

currents that flow when a load is connected are dependent on the rotor’s speed.

To maintain synchronism when multiple synchronous machines are linked, the stator volt-

ages and currents of all the machines must share the same frequency, and the mechanical

speed of each rotor must be synchronised with this frequency. Hence, all rotors of the

interconnected synchronous machines must be in sync. When the power system is operat-

ing under normal conditions, a three-phase current flows in the stator armature windings,

inducing a magnetic field whose frequency is in sync with the rotor speed. The inter-

action between the rotor and stator fields results in an electromagnetic torque. For a

synchronous generator, this electromagnetic torque opposes the rotor movement, and a

mechanical torque must be consistently applied through the prime mover to sustain the

rotor movement. Thus, the mechanical torque from the prime mover changes the position

of the rotor relative to the revolving stator magnetic field and controls the electrical power

output of the generator. The amount of electrical power generated depends on the angular

separation between the rotor field and the revolving stator field rotating at the same speed.

The converse is true for a synchronous motor, where the electromagnetic torque induces

rotation, and the mechanical loads retards rotation.

The amount of power transmitted from a generator to a motor (infinite bus or load) is

dependent on the angular separation between the rotors of the two machines, characteristic
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by a nonlinear sinusoidal relationship.

P = VgVm

XT
sin δ (2.1)

where P is the transmitted power, δ is the angular separation between the two machines,

XT = Xg +Xm +Xl is the sum of generator, motor, and transmission line reactance, and

Vg, Vm are the generator and motor voltages, respectively. The power transfer P increases

linearly with an increase in angle until the maximum transfer limit at 90◦, after which the

power transfer decreases with an increase in angle. When multiple machines are present,

the exchange of power is similarly influenced by their relative angular positions. However,

the limiting values of power transfers are a more complex mechanism of generation and

load distribution [2].

In a system with multiple machines, a steady-state operating condition is when the bal-

ance between the input mechanical torque and output electrical torque of each machine

is maintained with their speeds remaining constant. Such a system operates in equilib-

rium. This equilibrium is disturbed when a perturbation results in the acceleration or

deceleration of the rotors of the machines. If one generator rotates faster than another,

the relative position of its rotor compared to that of the slower machine will change. This

angular separation results in load transfer from the slower to the faster machine, which

narrows the speed difference and, in turn, the angular separation. However, when the

angular separation exceeds a certain threshold, the power transfer decreases as the angular

separation increases, leading to instability. The stability of the power system is determined

by the balance of forces that are either restoring or increasing the angular separation of

the rotors. The loss of synchronism can occur either between one machine and the rest

of the system or between groups of machines. In the former, the discrepancy between

the stator field, which is in sync with the system frequency, and the rotor field results in

significant variations in the machine’s power output, which triggers the protection system

to disconnect the unstable machine or out of step protection. In the latter, synchronism

can be maintained between the different machine groups.
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Figure 2.3: A synchronous generator showing the prime mover, governor and voltage excitation system.
The internal state variables are denoted by red color. [3].

Rotor angle stability can broadly be categorised into small-signal and transient stability

[2]. Small-signal stability is the ability of a power system to survive small disturbances usu-

ally due to a slight load of generation variations without losing synchronism. The analysis

of small-signal stability involves linearization of the system equations as the disturbances

are considered to be sufficiently small. The system response to these small disturbances

depends on the initial operating condition, the system strength and the generator exci-

tation mechanism. Instability arises due to either a lack of synchronisation or damping

torque, which results in an increase in the rotor angle and amplitude of rotor oscillation,

respectively.

The dynamics of a traditional two-pole synchronous generator can be described by the

swing equation, given as follows:

Mgω̇r = ∆pe −Dg(ωr − ω0) (2.2)

where Mg and Dg represent the inertia and damping constants, respectively, and ∆pe

denotes the difference between the mechanical and electrical power at the output of the

generator [3]. Fig. 2.3 presents the block diagram and control structure of the considered

synchronous generator connected to the grid. The model also shows a voltage excitation

system consisting an automatic voltage regulator (AVR) and a power system stabiliser



30 Chapter 2. Background

Figure 2.4: Rotor angle trajectory for different transient faults [2]. Increase in rotor angles in cases 1
& 2 show loss of synchronism and transient instability. Case 3 is transient stable.

(PSS), a prime mover and a governor.

Transient stability is discussed in the following.

2.2.3 Rotor angle stability

Transient stability is a type of rotor angle stability which refers to the ability of a power

system to survive sudden large disturbances while maintaining synchronism [2]. The re-

sponse of the system to such disturbances involves significant movements in the generator

rotor angles and is shaped by the non-linear power-angle relationship. The stability of the

system is dependent on the initial operating conditions and the intensity of the disturbance,

often leading to a change in the post-disturbance steady-state operation compared to the

pre-disturbance state. The system design considers a list of probable disruptions (contin-

gencies) such that the operation is not disrupted when they occur. These contingencies are

typically phase-to-ground, phase-to-phase-to-ground or three-phase short-circuits on the

transmission lines or transformers, which trigger fault breakers to isolate the faulted item.

An illustration of transient stability is presented in Fig. 2.4, which shows the behaviour of
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Figure 2.5: Different post fault trajectories from an operating condition (OC) (a), to an unstable OC
(b), a static and dynamically secure OC (c), a static secure but dynamically insecure OC (d) [4].

the rotor angle of a synchronous machine under unstable and stable conditions. In case 3,

the system is transient stable, as the rotor peaks, then decreases and swings with smaller

amplitudes until it reaches a steady state. In both cases 1 and 2, the system is unstable.

The rotor angle increases until it slides into instability, losing synchronism. Such a case

(case 1) is termed first swing instability and can be mitigated with sufficient synchronising

torque. In case 2, the system is stable during the first few swings but transitions into

instability due to increasing oscillations in subsequent swings. Such a case of instability

usually manifests when the system is also small-signal unstable. Hence, transient stability

needs to be analysed for periods between 3 and 5 seconds for small power systems and up

to 10 seconds for larger systems.

Transient stability differs from steady-state stability (small-signal stability) in that the

former analyses if the system can reach a new steady-state condition after a contingency,

while the latter only examines the existence of the new steady-state condition, not whether

the system can reach it. The existence of a steady-state condition refers to maintaining

energy balance without violating any physical network constraints. Fig. 2.5 illustrates

this difference between transient and steady-state stability, where the axes show power

injections at two buses of a power system that describe the subspace of feasible operational

states. The full physical feasible space is a multi-dimensional hyperspace described by

the voltages, active and reactive power generations, active and reactive loads and phase
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Figure 2.6: Extended power system stability definition covering resonance and converter driven insta-
bility. [5].

angles at each bus. The red, yellow and green areas show unstable, stable and secure

regions, respectively. The initial operating condition (a) is at a steady-steady equilibrium

and in the secure region. The trajectory evolution of the system from this initial operating

condition, (a), following a contingency has three possibilities, shown as (b), (c) and (d).

(b) is an unstable operation, as both the transient and steady-state conditions are not

satisfied. (c) is both transient and steady-state stable, while (d) is steady-state stable but

transient unstable at the trajectory does not settle to the post-fault equilibrium.

2.2.4 Extended stability definition

The increasing penetration of converter-interfaced generators (CIGs) into bulk power sys-

tems requires new considerations regarding the classification and definition of power system

stability phenomena [5]. Compared to synchronous generators, CIGs exhibit different dy-

namic behaviour, resulting in the emergence of two new stability classes that must be

considered: converter-driven stability and resonance stability (Fig. 2.6). Resonance in-

stability arises from the resonance between series compensation and the mechanical or

electrical characteristics of the generator, while converter-driven instabilities result from

the cross-couplings of CIG control loops with both the electromechanical dynamics of ma-

chines and the electromagnetic transients of the network. Despite these new phenomena,
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the traditional definition of power system security still applies if a fault affecting only the

CIG does not lead to cascading instability in the main system. The conventional defi-

nition refers to the ability of a power system to withstand sudden disturbances without

major service interruptions in real time. However, the integration of power electronics

devices scales down the timescale of interest to electromagnetic transients, necessitating

the consideration of the two new stability classes mentioned above. Regarding the exist-

ing stability classes, namely rotor angle, voltage, and frequency stability, the presence of

CIGs does not affect their definitions. However, the fast control of CIG converters during

and after faults can significantly influence the transient rotor stability. The integration of

CIGs with fast-acting load components may also introduce new potential causes of voltage

instability. Finally, CIGs are typically associated with renewable sources and cannot pro-

vide fast primary frequency response, which is crucial in low-inertia systems requiring fast

controllers to prevent frequency drops and maintain system stability. Despite the lack of

inertial response, the fast response provided by CIGs during faults can contribute to the

stability of the system.

Fig. 2.7 presents the common control architecture for power converters, which is a two-level

voltage source converter (VSC) where an outer system-level control provides a reference

for the converter’s terminal voltage that is subsequently tracked by a cascaded device-level

controller. The block structure consists of the power converter model, system-level control,

and device-level control. The power converter model consists of a DC-link capacitor, a

lossless switching block, which transforms the DC voltage vdc into a three-phase AC voltage

vsw, and an output RLC filter (rf , lf , cf ). rt and lt are the transformer’s per-unit resistance

and inductance, vt is the voltage at the connection terminal, and ωr is the normalised

reference for the angular velocity of the dq-frame. From a system-level control perspective,

the dynamic behaviour of the power converter is described by a dynamic controller. A

three-phase power converter model can be operated in grid-forming and grid-following

operation modes [3]. The two operation modes are shown in Fig. 2.8.

The detailed description of the dynamical model of CIGs, including a filter, transformer,

AC-side controller and Phase-Locked Loop (PLL), can be found in [3].



34 Chapter 2. Background

Figure 2.7: A two-level VSC (top); block structure of the power converter model and its control scheme
(bottom). [3].

Figure 2.8: System-level control of grid-following operation mode (top) and grid-forming operation
mode (bottom) [3].
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2.2.5 Power system reliability

Stability is an inherent characteristic of a power system. Power system reliability, on the

other hand, refers to the degree of assurance in delivering a constant supply of electricity

to the end-users (adequacy) and surviving to withstand sudden and unforeseen disruptions

or disconnections of some of its components (security) [1]. Adequacy focuses on the sizing

of the system to handle the unpredictable and fluctuating demand from end-users, while

also considering the occasional unavailability of system components. Adequacy planning

considers a long time horizon that can range from several months to several years, and it is

measured by metrics such as the loss of load probability or the expected energy not supplied.

According to the North American Electricity Reliability Council, security is defined as

’the ability of the bulk power electric system to withstand sudden disturbances such as

electric short circuits or unanticipated loss of system components’ [78]. Power system

security focuses on the functioning of the system as it transitions between operational

states when an unforeseen external disruption acts on the system. These disturbances

commonly referred to as contingencies, cause large changes in operating conditions and are

more often followed by relay operations to protect the system from abnormal conditions.

The relay operations can result in the disconnection of the load, transmission line, generator

or transformer. Power system security has stricter restrictions than stability (green and

yellow regions in Fig. 2.5), as security requires that the system remains stable during the

transient response and that all operating constraints are satisfied before and after a fault

occurs. The security level of a power system is tied to a defined list of probable contingencies

and is dependent on the limits set by the system operator to establish security standards.

For instance, the green region in Fig. 2.5 contains the operating conditions that are secure

against a list of contingencies. The yellow region contains operating conditions that are

steady-state stable but insecure. The red region contains operating conditions that are

both insecure and steady-state unstable. As stability is inherent to a power system, the

demarcation between stable and unstable regions is immutable. However, the separation

between secure and stable regions can change relative to the defined security level. The

list of probable contingencies varies from one control area to another, which can include
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N-1 security and more complex contingencies that include cascading faults. N-1 security

is typically standard practice, which secures the system against loss of a single component

such as transformers, transmission lines or generators, whereN is the total number of a

component type.

Power system security can be categorised into static and dynamic security [1]. Static

security refers to the system meeting all physical constraints in the steady state after a

contingency. However, it does not address whether the system can make the transition

from pre-fault to post-fault. Dynamic security is focused on whether the system can make

that transition. Static security can be used as a first criterion to determine a system’s

response to a contingency, after which a more detailed dynamic simulation assesses the full

dynamics of the contingency.

2.2.6 Security assessment

Security assessment is a prerogative of system operators to reliably operate power systems.

It enhances the situational awareness by determining the security level of present and future

operating conditions for a list of probable contingencies. The security criteria for normal

operation consists of the following [78]:

• Transmission line flows within normal ratings pre and post fault.

• Bus voltage within 5% (this can change between system operators) of nominal values pre

and post fault

• Transient flows do not exceed transient limits (e.g. equipment ratings, system constraints

from offline simulations in addition to safety margins.

These criteria entail investigating whether the system can withstand the transient response

and reach a steady-state post-fault condition where all assets stay within their operating

limits. Thus security assessment represents a mathematical analysis of the system response

after a fault and the new equilibrium position. Security assessment has two components,
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static and dynamic security assessment. Static security assesses whether the system arrives

at a steady-state equilibrium (within 60 minutes) after a contingency [1]. The primary

physical aspect of concern is whether the system components do not exceed their capacities,

such as conductor current limits or electric insulation capabilities. In static analysis, the

focus is on whether the system operating condition (OC) fulfills all physical limits in the

post-fault state (OC c and d in Fig. 2.5). In practice, static security assessment involves

solving a Power Flow problem to determine the post-contingency state for each component

for a list of probable contingencies. Otherwise, a security-constrained Optimal Power

Flow, for instance, [79], is solved to determine the minimum generation cost solution to

guarantee N-1 security subject to satisfying all network constraints such as power balance

at each node (Kirchhoff’s laws), line flow limits and generator physical limits. However, the

system may be steady-steady secure while the transient response of the system is insecure,

as illustrated by OC c and d of Fig. 2.5.

Dynamic security assessment (DSA), which analyses the transients, is discussed in the

following.

2.2.7 Dynamic security assessment

DSA measures the ability of a power system to successfully transition from a pre-fault

operating state to a stable post-fault operating state for a list of probable contingencies.

The formal definition by the Institute of Electrical and Electronics Engineers, Power En-

gineering Society’s working group on DSA is, ’an evaluation of the ability of a certain

power system to withstand a defined set of contingencies and to survive the transition to

an acceptable steady-state condition’ [77]. Dynamic security analysis focuses on whether

the system survives the transition from the pre-disturbance to the post-disturbance con-

dition (OC c in Fig. 2.5). The system’s dynamic response is dependent on the initial OC,

and hence, simulating many OCs for a wide range of contingencies can be computation-

ally challenging, as the power system is highly nonlinear and these assessments require

numerical analysis including detailed time-domain simulations [80, 81]. Numerical analy-
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sis via time-domain simulations is challenging in real-time operations as the simulations

require significant computational capacity [82], as each possible disturbance needs consid-

eration as event-type perturbations, and many possible OCs need assessing, requiring a

separate time-domain simulation. These simulations output the post-fault security status

of the system, as secure or insecure, after the simulated fault. The computational burden

is proportional to the size of the power system, the number of OCs and the number of

contingencies. As dynamic security analysis is more difficult than static analysis, conse-

quently, in practice, system operators often rely on static security assessments for a short

list of severe faults and place large safety margins on their operating equipment to ensure

a secure dynamic response of the system [83, 84]. These conservative actions underutilise

the power system assets and can lead to economic loss, leading to inefficiently investing in

asset redundancy to secure the system against future uncertainties and demand growth. A

more efficient strategy would be to consider dynamic security as well as more contingencies

to improve situational awareness such that the system operator can operate the grid closer

to operational limits. Considering dynamic security enhances situational awareness and

enables the closer operation to operating limits, thereby reducing the need for new invest-

ments. To assess dynamic security, all dynamic phenomena, such as rotor angle, voltage,

and frequency stability, must be individually studied [81].

The challenge of DSA lies in the need to consider a large number of possible contingency

scenarios, as a high number of considered contingencies correlate with a higher level of

security. However, the contingency list goes beyond just single faults. Multiple assets failing

simultaneously and cascading failures that are less likely but have severe consequences need

to be analysed. Accordingly, there are different methods at the disposal of the system

operator to decide which contingencies to analyse. These method are broadly categorised

under deterministic, probabilistic, heuristic, and data-driven methods [85].

Deterministic methods can be simulation-based, such as numerical integration or direct /

Lyapunov methods. Numerical integration methods solve first-order differential equations

that describe the dynamics of the system to obtain the solution of systems stability after

a fault. However, such methods require significant computation power and thus occur
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in the offline settings. Lyapunov methods, otherwise known as transient energy function

methods, introduce stability criteria to replace the time-consuming numerical integration.

The post-fault stability of the system is calculated by comparing the Lyapunov function

at the instant to the critical Lyapunov value. However, estimating the Lyapunov function

that accurately represents the internal characteristics of a power system is not trivial,

and the method is limited to only inferring the stability of operating conditions within the

estimated stability region. An example of a deterministic method currently used by system

operators to ensure secure operation for each fault is the N-1 criterion. However, the pitfall

with deterministic security assessment is that it may not account for those contingencies

that have a low probability of occurring but carry a high level of risk. Additionally,

the risk and impact of a contingency can change over time due to factors such as asset

degradation, weather changes, and changes in the system’s network topology. Despite this,

most operators continue to use a deterministic approach, which means they accept the

potential impact of those contingencies not included on the list. However, probabilistic

security assessment methods can be used to address the challenge of the vast number of

contingency scenarios considering impact probabilities and risk.

Probabilistic security assessment evaluates the security of the system by taking into account

the risk associated with each contingency, based on both their likelihood and impact.

The contingencies with the highest impact are given priority in this evaluation. However,

estimating the risk, which is time-varying, is a challenging task. For instance, the impact

may be evaluated based on the violation of operational limits, while the probabilities are

estimated based on actual weather forecasts. However, the actual impact is the cost of

expected energy not supplied to the end-user for a given loss of load probability. Estimating

these costs is more difficult than calculating the violation of operational limits. Although

the probabilistic approach has been extensively researched for static security assessment,

it is still not common practice for DSA. As the dynamics become more important in future

power systems, new methods are required to study the dynamical phenomena.

Expert heuristics is another approach to determining the stability of the system, where a

knowledge base is accumulated from the extensive expertise of system operators to synthe-
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sise a set of inferred rules for system operation. Even though these heuristics can be useful

for normal power systems operations, the limitation of this approach is that the limits of

the system can not be known, and therefore the system assets are not fully utilised to

efficiently operate the grid.

This thesis focuses specifically on transient stability, and not all aspects of system dynamics

are extensively examined or checked against. However, the developed methods in this thesis

can still be used to investigate broader aspects of system dynamics

The limitations of the above approaches can be addressed with the data-driven methods.

Data-driven methods, such as a machine learning-based approach to DSA, are discussed

in the following.

2.2.8 Machine learning-based approach to dynamic security as-

sessment

There is a need to scalably assess the dynamic security of power systems to efficiently

utilise grid assessment. However, the common practice amongst system operators is to

use static security assessments with large safety margins. Current software for dynamic

security assessment is unscalable as they have high computational demands from solving

numerical integration [81, 86], making online dynamic security assessment with conven-

tional methods such as Forward Euler or Runge-Kutta methods impractical [87]. Machine

learning approaches have gained some traction in the last couple of years and may pro-

vide a scalable alternative to improve the situational awareness of the system operator to

reliably operate the grid [1].

The machine learning-based approach to DSA is to predict the outcome of the stability

analysis [22], and consists of two stages, offline and online. In the offline stage, the goal

is to curate a database of many possible operating conditions with the corresponding in-

formation on whether the condition is secure or not for one or multiple contingencies.

This database is used to train a model as a binary classifier for use in the online stage.
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The online stage represents near to real-time operational setting, where the learned model

takes the current operating condition as an input and outputs a prediction of the security

level of the system. Although the model may sometimes be inaccurate, the main benefit

is that operating conditions that were not part of the database can be taken as inputs,

and most importantly, no computational time (for simulations) is needed in real-time op-

erations. Whereas the DSA for large systems via simulation can take several seconds, for

instance, 56 s for a single contingency and operating condition on French system [42], a

machine learning model does it using considerably less time & 0.1 s. As the prediction is

instantaneously available, it allows the system operator (SO) to consider a large number

of possible operating conditions and disturbances in real time and has the potential to in-

crease the situational awareness. As an illustrative example, Fig. 2.9 depicts a simple case

of the machine learning-based approach to DSA. All the circles (without colour consider-

ation) represent pre-fault operating conditions, which form initial conditions to simulate

the system’s dynamic response to a specified contingency. Each operating condition is

then classified into one of two classes, secure (black) or insecure (red), based on the system

response to the simulated fault. A classifier then aims to learn the security boundary of

the system (green line) from these pre-fault operating conditions and their security labels.

Then, in a real-time setting, the classifier can instantaneously predict the security labels

of new operating conditions (in blue circles). In this case, the classifier in Fig. 2.9 can

predict the security labels of operating conditions labelled (A) with more confidence than

operating conditions (X).

In light of this development, machine-learned models including decision trees (DTs)[88][28],

support vector machines (SVMs)[89], and more recently deep learning models[90] have

shown promise to assess dynamic stability problems ranging from voltage stability[28][91],

transient stability[88][90] and frequency stability [92][93]. Recent works [94, 95, 96, 97]

show real promise for real-time probabilistic DSA including considering topological changes

[98, 99]. There, using ML, estimating the dynamic security boundary [100] particularly

works well for future low inertia grids [101] and may become possible through the increasing

availability of a large amount of phasor measurement units (PMUs) data and monitoring
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Figure 2.9: A visual illustration of the machine learning-based approach to DSA. In the offline stage,
the model learn the security boundary ( ) from the training database containing secure ( )
and insecure ( ) operating conditions. In the online stage, the classifier predicts the security labels
of new operating conditions ( A ) ( X ) with varying degrees of confidence.

tools in control centers[102].

2.2.9 Machine learning-based DSA Workflow and contributions

Machine learning-based security assessment X → Y takes as an input the power system

operating conditions X for a given network topology ΨTOP and outputs security labels

Y for a set of probable contingencies ΩJ . The power system topology ΨTOP,a,b ∈ {0, 1}

represents the interconnection of lines connecting all assets in the network, where a,b ∈ ΩN

are buses and a )= b. The security labels Yj
i ∈ {0, 1} ∀j ∈ ΩJ represent secure and

insecure operating conditions, respectively, where i is the index of operating condition

Xi. Typically, the input variables are the static pre-fault set-point of all generators and

loads. These input variables define the operating condition Xi and are bounded by the

power system’s physical limits, such as generator limits, line limits, and complex network
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Figure 2.10: Machine learning workflow for dynamic security assessment. The orange coloured areas
are investigated in this thesis

constraints.

For a more concrete representation, Fig. 2.10 presents the machine learning-based DSA

workflow showcasing the following four major steps: data generation, data pre-processing

(feature selection), training the machine learning model, and evaluating the trained model.

The contributions of this thesis are in the first and fourth steps.

In the first step, the training database can be extrapolated from historical observations

that may be biased toward secure operating conditions [21] or can be generically created

in a balancing way as done in [55, 59]). An operating condition is described by the phase

angles, voltage magnitudes, active and reactive power injections at every bus and power

flows on the transmission lines. This first step is crucial as the prediction performance

of machine learning models is generally a reflection of the quality (coverage, variability,

and balance) of the data used in training [41]. In Machine learning-based DSA, the choice

of training data differs from other machine learning applications were historical observa-

tions is sufficient. Often, the majority of historical observations which characterises normal

power system operation are secure, however, an effective training database needs to con-

sider both, secure and insecure conditions [1]. Moreover, historical operating conditions
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rarely involve extreme operating scenarios. Hence, sampling approaches are used to syn-

thetically generate operating conditions. Subsequently, the pre-fault operating conditions

(for instance load scenarios) are assessed with the stability analysis for a single or set of

disturbances, and a post-fault metric for stability/security is adopted (e.g., as in [86]). The

set of contingencies that need to be taken into account is determined by the operator and

typically includes the most significant equipment failures, such as major transmission lines

or large generators. As previously mentioned, the system’s response to each contingency

corresponds to binary labels, with 1 representing an insecure response to a contingency

and 0 representing an secure response. For instance, operating conditions (A) and (X) in

Fig. 2.9 can be synthetically generated and verified to fulfill the non-convex AC model of the

optimal power flow. Subsequently the system response to various contingencies is recorded.

The combination of pre-fault operating conditions and the post-fault metric makes up the

training database. Generating synthetic operating conditions that cover a large section of

the feasible space is a first pre-step that ensures that a more accurate model is trained. As

discussed in the introduction, the state-of-the-art approaches that move beyond historical

observations to generate synthetic operating conditions fall under one of three approaches:

historical sampling, generic sampling and importance sampling, each typically focusing on

maximising a specific property of what constitutes quality datasets, respectively, historical

relevance, coverage and discriminative relevance [42, 1]. Historical relevance shows how

much the generated operating conditions represent historical power systems operations

through variable dependency structure. Coverage measures how much of the power system

feasible region the generated operating conditions span. Discriminative relevance depicts

how much new information the generated operating conditions add to training a model.

However, there are pending unaddressed challenges to curating quality datasets for secu-

rity assessment. Consequently, this thesis investigates methods to generate representative

and quality datasets. Additionally, this thesis investigates trade-offs between historically

relevant operating conditions with ’rare’ but feasible operating conditions.

In the second step, the data is pre-processed [99] for the concurrent training of the model.

The database is analysed to select or extract relevant features for reducing the number
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of dimensions [103] and representing the information in a lower dimension [40]. This pre-

processing, for example, the Synthetic Minority Oversampling Technique (SMOTE) [104],

can also balance the database as often more secure than insecure data is available. This

step is not the focus of the thesis and we adopt the approaches in the literature in our

studies.

In the third step, the machine learning model is trained. Decision trees (DTs) are often

used because of their high interpretability, which is crucial for such a critical task as

security assessment, where operators require a manual inspection to understand and rely

on these machine learning models. Typically one DT model is trained per disturbance as

the stability/security is different for each disturbance [22, 42]. This step is not the focus

of the thesis and we adopt the approaches in the literature in our studies.

In the fourth step, the models are evaluated, selected, and eventually updated. The selec-

tion and evaluation of the model involve finding the model with the highest performance

out of a large set of trained models. Typically, the performance is measured by testing

how the model performs on data that is not part of the training. For instance, a test-

ing set is used to compute the testing error (the ratio of inaccurate predictions). The

case of a binary classifier, for an operating condition i described by input features such

as active and reactive power injections Xi, the prediction f(Xi) = {0, 1} can either assess

the system security as secure f(Xi) = 0 or insecure f(Xi) = 1. Whereas the true label

for each operating condition for a contingency j is denoted as Yj
i = {0, 1}, respectively

for secure and insecure labels. Therefore, there are two types of accurate and inaccurate

predictions. The accurate predictions can be true positives (TP) or true negatives (TN),

which denote accurately predicting secure and insecure labels, respectively. On the other

hand, there are two types of incorrect predictions - false positives (FP), where an inse-

cure operating condition is wrongly predicted as secure, and false negatives (FN), where

a secure condition is wrongly predicted as insecure. These two errors are more commonly

referred to missed (FP) and false alarms (FN). Table 2.1 presents the different accuraries

and inaccuracies and their associated costs. Using this notation, the error on the test-

ing set is calculated as the ratio of the incorrect predictions over all the predicted values
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FP+FN
TP+FP+TN+FN . However, in the context of DSA the testing error may be inadequate to

quantify the performance of the model as class and cost imbalances are present [105]. The

class imbalance results from having more historically secure than insecure OCs, while the

cost imbalance results from the skewed cost disparity, where missed alarms are much more

”costly” than false alarms. This thesis investigates scalable approaches to evaluate and

select tree-based models considering multiple objectives of the system operator for the task

of DSA.

Yj
i = 0 Yj

i = 1

f(Xi) = 0 TP , CTP FP , CFP

f(Xi) = 1 FN , CFN TN , CTN

Table 2.1: Confusion and Cost Matrix

Other performance measures like the F1 score [66]

F1 =
TP

TP + 0.5× (FP + FN)
(2.3)

allows for a harmonic balance of the precision and recall for different errors [106] as used

in [29], or the G-mean score that computes the geometric mean as used in [28]. Also,

graphical approaches can be used to select models, such as the precision-recall (PR) curve

[107] or receiver operating characteristic (ROC) curve [108] as applied to DSA in [31, 109].

However, selecting a model based on a single criterion may be sub-optimal. In DSA,

there is need to trade-off the following three metrics: accuracy, interpretability and cost

sensitivity. Firstly, predicting errors for the different classes can have various impacts. A

missed alarm is much more severe than a false alarm (CFP + CFN). Missing an alarm

can result in power blackouts and load shedding that have high expected costs, however, a

false alarm may require only preventive and corrective control measures (e.g., generation

re-dispatch) to be taken that are significantly cheaper. Secondly, it is crucial to consider

the interpretability (and complexity) of the selected model. Models that are high in their

complexity are not interpretable for operators [1] and this renders them unsuitable for

the application to DSA. Operators responsible for the critical task of security assessments
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may prefer interpretable models in their decision-support tools such that manual inspection

remains possible and errors can be identified [42]. Recent work on SHAP explanations [110]

are promising to improve the interpretability of complex models. Thirdly, it is also crucial

to consider frequent changes in the system. Frequent changes in system parameters may

require to change the selection of models. For instance, the weather changes frequently, and

with that, the likelihood of contingencies [111, 112]. If the probability is high, an operator

may select more conservative models than at times with low likelihood. In practice, 1000s

of models may be used in real-time [42] and a fast, adaptable selection process is needed.

This thesis also studies a real-time application of machine learning models for power system

control, specifically real-time topological reconfiguration. There, machine learning can

improve the solution times to propose feasible topology ΨTOP much faster than Fisher’s

[73] canonical NP-hard mixed integer problem to transmission switching.

This chapter provided an overview of power system stability and security assessment, and

introduced ML-based approaches to DSA in power systems. ML-based approaches can

predict the security level of the system based on current OCs and address the challenges of

scalablity and real-time operability of traditional time domain simulations or the practice

of using static security assessments with large safety margins. The chapter also discussed

the steps involved in the ML-based DSA workflow, including data generation, data pre-

processing, model training, and model performance evaluation. The next chapter discusses

the first contribution of this thesis on data generation.



Chapter 3

Generation of Diverse Datasets

“Not all those who wander are lost.”

—- J.R.R. Tolkien, The Fellowship of the Ring

Machine learning (ML) for real-time security assessment requires a diverse training database

to be accurate for scenarios beyond historical records. Generating diverse operating con-

ditions is highly relevant for the uncertain future of emerging power systems that are

completely different to historical power systems. In response, for the first time, this work

proposes a novel split-based sequential sampling approach based on optimisation that gen-

erates more diverse operation scenarios for training ML models than state-of-the-art ap-

proaches. This work also proposes a volume-based coverage metric, the convex hull volume

(V), to quantify the quality of samplers based on the coverage of generated data. This

metric accounts for the distribution of samples across multidimensional space to measure

coverage within the physical network limits. Studies on IEEE test cases with 6, 68 and 118

buses demonstrate the efficiency of the approach. Samples generated using the proposed

split-based sampling cover 37.5% more volume than random sampling in the IEEE 68-bus

system. The proposed V metric can assess the quality of generated samples (standard

deviation of 0.74) better than a distance-based coverage metric which outputs the same

value (standard deviation of < 0.001) for very different data distributions in the IEEE

48
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68-bus system. As this thesis demonstrates, the proposed split-based sampling is relevant

as a pre-step for training ML models for critical tasks such as security assessment.

3.1 Introduction

As discussed in Chapters 1 & 2, the integration of renewable energy introduces uncertainty

in power systems operations, challenging reliability management. Conventional approaches

with large safety margins are inefficient. The availability of real-time operation data, for

instance, from PMUs [113] allows for carrying out state estimation [114] and the subsequent

dynamic security analysis (DSA) of the system. ML is particularly promising as it allows for

predictions in real-time with little computational time [1]. A functioning ML-based DSA

tool has the potential to increase situational awareness, support reliability management,

improve uncertainty handling, and efficiently integrate more renewable energy. However,

as these ML-based approaches to DSA are data-driven these approaches can only be as

good as their training database. Using only historical observations as training data is

insufficient [51, 43]. Therefore, the generation (sampling) of data is highly relevant for the

success of all aforementioned approaches [52].

3.1.1 Sampling approaches

The prediction performance of ML models is generally a reflection of the quality (coverage,

variability, and balance) of the data used in training [41]. The choice of training databases

in DSA application differs from other ML applications that use (recorded) observations.

Using recorded, historical data for DSA has limitations as highlighted in Chapter 2. A

good training database needs to consider both secure and insecure conditions [1] while the

majority of historical observations are often secure. Also, historical OCs rarely involve

extreme operating scenarios. Hence, sampling approaches are used to generate synthetic

OCs. When generating synthetic samples, firstly, an OC is sampled, then it is assessed

with a time-domain simulation for the considered contingency.



50 Chapter 3. Generation of Diverse Datasets

The generation of data for ML-based DSA is highly relevant which is why many contri-

butions were made along three types of approaches: the first type of approach, historic

sampling uses historical records [43], fits a probability distribution to it (e.g., vine-copulas

in [21][40] to capture the dependencies between loads and wind power outputs), then gen-

erates OCs using Monte-Carlo (MC) type samplings [46][47]. This type of approach is

suitable to sample OCs following the same distribution as historical observations. Another

variant of historic sampling determines the ’relevant’ buses to obtain sparse PMU mea-

surements. By selecting subsets of these ’relevant’ buses for sampling, the issue of high

dimensionality can be mitigated as only a smaller (’relevant’) dimension of variables need

to be sampled as shown in [44, 45]. However, future OCs may be different than historical

OCs, and sampling from distributions is unsuitable for creating extreme OCs typically

found at the tails of distributions. The second type of approach, importance sampling is

where the sequence of sampling and classifier training iteratively repeats to maximise high

information content [39, 37, 48, 49, 50]. In each iteration, the sampling (e.g., with MC-

sampler) generates possible OCs. Then, the classifier quantifies the importance of these

OCs based on the predicting confidence. Subsequently, the security assessment is used only

on samples with low confidence. For instance, Yan [51] uses entropy as a metric to gener-

ate ’relevant’ samples closer to the decision boundary. [52] uses ’directed walk’ methods

to samples around the decision boundary. The third type of approach, generic sampling,

generates points uniformly distributed in the feasible space to explore all possible OCs.

However, large systems require large amounts of generated data, and most data adds little

knowledge to the database. For instance, Jafar [53] uses the Latin hypercube sampling

(LHS) approach to uniformly sample the entire search space, and researchers in [54] sam-

ple within the feasible neighbourhood of OCs, while researchers in [55] proposed an outer

approximation to convexify the original non-convex feasible space, then sample from the

convex region to generate samples close to the security boundary. Venzke [56] uses infea-

sibility certificates based on separating hyperplanes to discard large portions of the input

space as infeasible. More recently, the authors in [57] developed a framework to generate

representative samples that span the AC OPF feasible space by uniformly sampling loads
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from a convex input space and using infeasibility certificates to reduce the search space.

The drawback of the first and second type of sampling approaches is that they neglect some

feasible OCs. The first approach is biased towards historical observations, and the second

towards the importance of learning the security boundary. Hence, sampling extreme OCs

with those approaches is rare. However, studying extreme OCs beyond historical records

and probabilistic approaches that approximate historical distributions is crucial as these

can be dangerous for system operations. The challenge of the third type of approach is

that sampling in high-dimensions is not trivial. Therefore, a current research gap and need

is an efficient generic sampling approach that scales to larger systems and can generate

extreme synthetic OCs as the introduction of intermittent renewables into the energy mix

means that the power system will experience new OCs that were historically not covered

and cannot be generated by statistical methods.

Other fields faced with similar sampling challenges from large solution spaces have proposed

novel approaches. In particular, bio-engineering employs random sampling RS techniques

to investigate constraint-based metabolic reactions that have a large solution space. A

popular sampling technique often employed is the family of ”hit-and-run”(HR) samplers

(ACHR([115]), CHRR([116])) that randomly choose directions to traverse a model’s solu-

tion space based on warm start positions. This approach relies on the convexity of the

solution space and requires relaxation of non-convex models as found in the II-ACHR sam-

pler [117]. A new approach called GAPSPLIT was introduced to sample models directly

[118]. The sampler generates points by jumping to unexplored regions of the space in

contrast with the random walk approach employed by HR samplers. GAPSPLIT is a com-

petitive alternative to HR samplers that scales relative to the size of the model and can

sample directly from non-convex models. Samples generated with GAPSPLIT also have bet-

ter coverage than ACHR and CHRR on unbounded model variables. The approach was

used in [119] to sample a highly constrained solution space. The ACHR and CHRR are

not tested as they require convex models or convex approximations.

The state-of-the-art methods in the literature focusing on generating data for a training

database of ML-based DSA is presented in Table 3.1. The proposed approach is fundamen-
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Table 3.1: Summary of relevant state-of-the-art works on database generation for ML-based DSA

Reference Type Sampling of initial OCs Advantages Shortcomings

[57] Generic
sampling

Solving OPF to minimise
generation cost

Uses convex relaxations and hyperplanes
to discard large sections of the input space.

Explores load space via MC sampling

Only considers generator outputs obtained
from solving OPF to represent conventional
operation, which is a small subset of the

feasible space.

[56] Generic
sampling LHS or uniform sampling.

Systematically covers the search space with
uniform sampling while discarding large

hyperplanes of infeasible regions

Fitting a multivariate distribution around
secure OCs only generates OCs of similar
distribution and not other possibilities.

[55] Generic
sampling LHS

Systematically covers the search space
with uniform sampling while discarding

hyperspheres of infeasible regions

Discarding hyperspheres of many
initialisation points in high-dimensions

is not computationally trivial

[37] Importance
sampling

Solving OPF to minimise
generation cost

Sampling close to the decision
boundary is computationally efficient

Biassing the sampling towards the
security boundary ignores rare OCs.

Only considers OPF solutions

[21] Historical
sampling

Solving OPF to minimise
generation cost

High density sampling of OCs
from historical records.

Neglects unseen or rare OCs
that are critical to be analysed.

[52]
Generic +
Importance
sampling

Grid search,
uniform sampling
in each dimension

or LHS

Focuses on sampling close to the decision
boundary using enhancement methods such
as directed walks, the prediction model as a
pre-selection tool for relevant samples and
performance guarantee of entire regions.

Relies on resampling techniques to bias
sampling to narrow regions of the space. Using
performance guarantees significantly reduces the
search space and can affect model performance.

[120] Generic
sampling

Sequentially generated to
explore the feasible space

Sequentially explores the feasible space to
maximise distance from generated samples.

Performance on larger systems
(bus ≥ 68) is not tested.

[48] Importance
sampling

Solving OPF to minimise
generation cost

Computes quadratic approximation of the
security boundary and use importance

sampling to generate OCs
Dataset represents only a small
portion of the feasible space.

[39] Importance
sampling

Solving OPF to minimise
generation cost

Identifies the decision boundary and
fits a polynomial function so as to
sample OCs close to the boundary

Dataset represents only a small
portion of the feasible space

[51] Importance
sampling LHS

Uses a transient stability index to
sample in a high-information region

formulated as an optimisation problem.

Focuses only on generating
datasets for identifying the
transient stability boundary.

[44] Historical
sampling

Solving OPF to minimise
generation cost

Dimensionality reduction using neural
networks reduces the search space

thereby improving computational time.
Part of the search space is ignored.

Rare OCs are not considered.

[53] Importance
sampling LHS

Considers rare cases by fitting a
generalised pareto distribution

to the tail-region.

Dataset represents only a small
portion of the feasible space as only

OPF solutions are considered.

[45] Historical
sampling

Solving OPF to minimise
generation cost

Exploits GANs to mitigate against
missing PMU data when implementing

ML-based DSA.

Dataset represents only a small
portion of the feasible space as only

OPF solutions are considered. Method
cannot generate arbitrarily new OCs.

[49] Importance
sampling

Solving OPF to minimise
generation cost

Interpolating between secure and
insecure cases to sample new OCs

ensures the creation of relevant samples
Dataset represents only a small
portion of the feasible space

[58] Historical
sampling

Solving OPF to minimise
generation cost

Adopts a feature selection strategy
to optimise PMU data collection
for fast and robust prediction.

Dataset represents only a small
portion of the feasible space as only

OPF solutions are considered. Method
cannot generate arbitrarily new OCs.

[43] Historical
sampling Historical records.

Use of a cycleGAN model to refine
simulated data such that it mimics
actual transients from historical data
and improve synthetic data quality.

Dataset represents only a small
portion of the feasible space as only
historical records are considered.

[50] Importance
sampling

Solving OPF to minimise
generation cost

Improves computation time needed to
build a transient stability assessment
database using a semi-supervised

ensemble learning approach.

Dataset represents only a small
portion of the feasible space

Proposed
approach

Generic
sampling

Sequentially generated to
explore the physical feasible space

Sequentially explores the feasible
space to maximise distance from
previously generated samples.

Method does not currently consider
class imbalance in the formulation
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tally novel to other peer-reviewed works we have investigated. Specifically, the proposed

approach is novel in the way the initial OCs are being sampled. The proposed approach

conceptually outperforms other state-of-the-methods in it’s practicality to sequentially gen-

erate all (feasible) OCs. Typically, most state-of-the-art works consider generator outputs

to be scheduled to represent conventional systems operations, often as a result of solving the

optimal power flow problem that minimises generation cost [21][39][57][37][48][45][58][50].

However, as it is likely that the initial OC where a fault occurs is different from the optimal

set-points, it is necessary to develop methods that explore these likely OCs [51]. Thus,

a first point of comparison to generate pre-fault OCs is with methods that consider the

OPF to generate initial OCs. The other approaches in the literature explore the entire

feasible space in a generic way via random sampling, often using the LHS to generate

initial OCs [53][55][56][52][51]. As a consequence, a second and more pivotal comparison

is with those methods that aim to uniformly cover the search space using techniques like

the LHS. As highlighted in Table 3.1, additionally, a major shortcoming of historical and

some importance sampling approaches is that the resulting database of OCs represents

only a small portion of the feasible space. Consequently generic sampling allows the ex-

ploration of the full physical feasible space. While existing generic sampling approaches

currently in the literature attempt to discard sections of the search space via rapid rejection

sampling [57][55][56][52], the proposed method differs fundamentally from state-of-the-art

approaches by optimally exploring the feasible space in an iterative fashion. This explo-

ration is done by varying the objective function and active constraints while respecting all

the physical feasible constraints. The novelty of this work stems from presenting for the

first time a generic sampling method that categorically explores the feasible space in an op-

timal manner. Finally, the proposed approach is versatile and could be further developed

towards the combination with other database generation approaches like importance sam-

pling and together with historical records. In parallel to this work, the generic sampling

approach [120] investigates multiple objective functions to explore the feasible space.



54 Chapter 3. Generation of Diverse Datasets

3.1.2 Measuring quality of sampling

The quality of a training database is a measure of coverage of the feasible space and data

usefulness, representing the pre- and post- fault data, respectively, in ML DSA application.

For the coverage, typically, a set of points is said to uniformly cover a region when the

points satisfy the following characteristics: (1) placed equidistant relative to one another

(2) cover the entire region/volume of interest (3) distributed equally along all directions

[121]. Point-to-point coverage measures focus on the first characteristic and aim to quantify

how well the points are placed relative to one another. Examples of such metrics include

the coverage metric (COV) used in [118], the coefficient of variation (λ) and mesh ratio (γ).

Volumetric coverage measures, however, combine the first characteristic with one or both

of the other two. Examples of volumetric measures based on Voronoi tessellation include

point norm distribution (h), point distribution ratio (µ), regularity metric (χ), etc. [121].

In high dimensional space, proximity measures (point-to-point coverage measures) used

in two or three-dimensional space do not carry the same intuitive descriptive information

quality [122]. The intuition of Euclidean distance falls apart, and a skin-effect-like tendency

is observed such that the volume is concentrated around the skin of a high dimensional

hyper-sphere instead of the centre [123]. Due to this concentration effect, the relative

contrast between far and near points diminishes as the dimensionality increases, making it

difficult to discriminate between far and near points [124]. Therefore, a current research

gap and need is a metric that can quantify the quality of a training database for generic

sampling approaches that have the objective to generate diverse OCs in the physical feasible

space for power system DSA application.

For data usefulness, typically the issue of imbalanced datasets in the post-fault label is in

focus. In DSA application, the distribution of secure/insecure OCs represents an important

consideration for training ML models. There, the state-of-the-art methods in the literature

use a preprocessing step such as synthetic minority oversampling (SMOTE) [64] and adap-

tive synthetic sampling (ADASYN) [125] to achieve this balance, usually to supplement

with insecure OCs. The second way to address this imbalance is by combining historical
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records with OCs generated using a generic sampling approach. In power system security

assessment, accurately predicting insecure OCs is more important than predicting secure

ones [95], and as historical OCs are disproportionately biased with more secure OCs, it

motivates the creation of synthetic datasets.

This work focuses on the first quality measure of coverage and aims to generate pre-fault

data so that the datasets can have diverse OCs. The motivation of this work is to fully

concentrate on the issue of variability in the pre-fault database.

3.1.3 Contributions

This work proposes a novel split-based generic sampling approach, GAPSPLIT∗. This novel

split-based approach is a modification of the GAPSPLIT approach [118]. The novel split-

based sampling approach aims to systematically generate diverse pre-fault operating condi-

tions. The proposed approach covers previously unexplored OCs that are physical feasible

but have not occurred in the past. With the proposed approach, high-quality databases (of

pre-fault OCs) can be generated for training ML models used in real-time DSA. The pro-

posed algorithm’s crucial advantage over other statistical, distribution-based approaches

that require fitting to a pre-existing database is the ability to consider the full physical

search space defined by the AC PF and requires no historical data to work. In this chapter,

the contribution is threefold: first, for the first time, this work investigates the GAPSPLIT

approach for power system application. Second, this work modifies the GAPSPLIT approach

to make it suitable for power system application. Third, this work investigates metrics to

assess the quality of a generic sampling approach.

In the first contribution, the GAPSPLIT approach uses mathematical optimisation for sam-

pling [118]. In this proposed work, sampling feasible OCs considers all power system

constraints, such as power flow equations, line flow constraints, and node balances from

the Alternating Current (AC) model. Then, an optimisation is solved sequentially for

each new sample. Each sequence considers previously generated samples and determines
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the maximal gap in the entire feasible region, then uses optimisation to add physical con-

straints at the maximal gap, which is the sampling target. The approach considers primary

and secondary targets, where the primary target is a hard-constraint on the maximal gap

in the optimisation, and the secondary targets are in the objective function to minimise

the Euclidean distance to the target.

In the second contribution, the proposed modification from GAPSPLIT to the proposed

GAPSPLIT∗ approach has two pivotal advancements: to avoid converging to infeasible sam-

ples that do not satisfy the power flow equations and to efficiently analyse previously

generated data to boost scalability to larger systems. The first advancement to avoid in-

feasibility is achieved by one of two proposed approaches: (i) relaxing the hard constraint

on the primary target and activating only the constraints on secondary targets and (ii) stor-

ing infeasible samples and considering them as closed gaps to prevent the sampling from

diverging. The second advancement to support scalability to larger systems is achieved by

improving the sorting of sets containing the OCs.

In the third contribution, this work proposes a new volumetric coverage assessment metric,

the convex hull volume (V) to assess the quality of a generic sampling approach. The convex

hull is the union of all simplices with vertices in a set, i.e., the smallest convex polygon

that surrounds a set of points. The V of this envelope serves as a metric to represent the

coverage of points. In the case studies studies, the benefits of V as a better coverage metric

to distance-based coverage metrics is shown.

The rest of the chapter is structured as follows: Section 3.2 discusses the regular split-based

sampling GAPSPLIT and the proposed modified split-based approach GAPSPLIT∗. Section 3.3

introduces performance measuring metrics, including coverage using the proposed V metric.

Section 3.4 outlines case studies to compare the performance of the proposed modified

sampling approach, the proposed performance metric and the computational performance.

Tests are carried out on the IEEE 6-bus, the IEEE 68-bus, and the IEEE 118-bus systems.

Section 3.5 concludes the chapter.
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3.2 Split-based sampling

The proposed split-based approach follows the idea of generic sampling that aims to uni-

formly cover the full physical feasible space with all possible OCs.

Algorithm 1 GAPSPLIT algorithm
1: Define samples-set ΩG= {} with each sample Xu ∈ R|ΩN |

2: Define range rn = XUB
n −XLB

n ∀ n ∈ ΩN

3: Define normalisation parameter wn = 1
r2n
∀ n ∈ ΩN

4: while true do
5: Sort ΩG ∀ n ∈ ΩN

6: Compute ∆X(u)
n = (X

(u+1)
n −X

(u)
n )

rn
∀ n ∈ ΩN

7: Search ∀ n ∈ ΩN ∆X(max)
n = max{∆X(k)

n | ∀ k = 1, 2, ..., (|ΩG|+ 1)}
8: Select ñ s.t ∆X(max)

ñ = max{∆X(max)
n | ∀ n ∈ ΩN}

9: Compute Tn = X
(d+1)
n −X

(d)
n

2 +X(d)
n ∀ n ∈ ΩN

10: Select ΩQ∗
= {q | q = f(v), f : [N ] ,→ ΩQ, N ≤ |ΩQ|}

11: Solve
min
X∗

∑

n∈ΩQ∗

wn(X
∗
n − Tn)

2

g(X∗) ≤ 0

(1− ζ)Tñ ≤ X∗
ñ ≤ (1 + ζ)Tñ

12: Update ΩG ←− X∗

13: Recalculate ∆X(max)
n ∀ n ∈ ΩN

14: if |ΩG| ≤ SG then return ΩG

15: end if
16: end while

3.2.1 Regular split-based approach

This section describes the GAPSPLIT sampling algorithm [118] that formulates the sampling

as an optimisation problem with physical model-based constraints. Algorithm (1) illustrates

this sampling strategy that comprises an initialisation step, an iteration step that performs

analysis and optimisation, and criteria to stop the iterating algorithm.

The algorithm initialises with an empty set of samples |ΩG| = 0. The symbol | · | denotes

the cardinality of a set. The subsequently generated samples ΩG have a sample vector

Xu ∈ R|ΩN | that describes the OC of the power system in |ΩN | dimensions and satisfies
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the constraints of the physical model. ΩN is a finite set of variables defining an operating

condition, including active and reactive power set points, bus voltages and angles, and line

flows. The lower and upper bounds of the n-th variable are denoted as XLB
n and XUB

n ,

respectively, and the ranges are rn = XUB
n −XLB

n .

In each iteration of GAPSPLIT, the algorithm generates a single optimised sample X∗,

starting with an analysis of previous samples ΩG. The analysis begins with sorting the

samples ΩG for each variable n ∈ ΩN resulting in |ΩN | ordered sets of the same samples

ΩG. GAPSPLIT sorts these sets according to the values in variable n

ΩGo
n = {X(u)

n | ∀ u = 1, 2, ..., |ΩG|, X(u+1)
n ≥ X(u)

n } (3.1)

where X(u)
n corresponds to the u-th largest sample in the n-th variable. Subsequently, the

algorithm computes the gaps of the samples next to each other

∆X(u)
n =

(X(u+1)
n −X(u)

n )

rn
(3.2)

rn is a normalising parameter. The algorithm then identifies the maximal gap in each n-th

variable

∆X(max)
n = max{∆X(k)

n | ∀ k = 1, 2, ..., (|ΩG|)}, (3.3)

where the algorithm denotes the two samples next to the maximal gap ∆X(max)
n = X(d+1)

n −

X(d)
n with (d+ 1) and (d). The maximal gap among all variables is

∆X(max)
ñ = max{∆X(max)

n | ∀ n = 1, 2, ..., |ΩN |}, (3.4)

where ñ denotes the variable with the maximal gap called the primary variable. All other

variables are called secondary variables ΩQ = ΩN\ñ. Subsequently, the algorithm computes

targets for all primary and secondary variables at the centre of their respective maximal
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gaps

Tn =
X(d+1)

n −X(n)
n

2
+X(d)

n ; (3.5)

these are accordingly called primary and secondary targets, e.g., the primary target is Tñ.

Subsequently, the algorithm considers a subset of secondary variables ΩQ∗ ⊂ ΩQ as not all

secondary variables are further needed. There are multiple user-specific ways to select the

subset of secondary variables ΩQ∗ . One way is to consider a random selection

ΩQ∗
= {q | q = f(v), f : [N ] ,→ ΩQ, |f | = N,N ≤ |ΩQ|} (3.6)

of a subset of N elements from ΩQ, where N is fixed and defined by the user (e.g., N =

0.05 |ΩQ|). Then, the algorithm uses random selection f : [N ] ,→ ΩQ in each iteration.

Other ways to select the secondary variables are in [118], including to select |ΩQ∗ | =

0 as empty. In the remainder of the text, referring to secondary variables and targets

corresponds to the subset of secondary variables ΩQ∗ .

After the above analysis, the GAPSPLIT algorithm generates a single, new sample with the

mathematical optimisation

minimise
X∗

∑

n∈ΩQ∗

wn(X
∗
n − Tn)

2

subject to g(X∗) ≤ 0

(1− ζ)Tñ ≤ X∗
ñ ≤ (1 + ζ)Tñ,

(3.7)

where the optimisation considers a constraint on the value X∗
ñ of the primary variable ñ at

the primary target Tñ with a relaxation to avoid numerical issues which can lead to non-

convergence. The relaxation is considered with a tolerance parameter ζ on the primary

target Tñ (e.g., of ζ = 0.001). This optimisation minimises the mean squared error from

the generated sample X∗ to the targets of the selected secondary variables ΩQ∗ ⊂ ΩQ.
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Figure 3.1: (a) GAPSPLIT generates new samples by attempting to split maximal gaps. (b) GAPSPLIT
converges to an infeasible sample when the primary target ( ) is located in the infeasible region.
Max gap is found in X2

Input space Feasible space Infeasible region

wn = 1
r2n

is a normalisation parameter that re-weighs all variables equally. g(X) ≤ 0 are

the constraints that define the feasible space including power system constraints such as

power flow equations, nodal balance equations, generator active and reactive limits, and bus

voltage and phase angle limits. This optimisation aims to consider the physical constraints

of the power system and to split the gaps between the previously generated samples (that

is why the algorithm is called GAPSPLIT). The optimisation in (3.7) returns a new sample,

the optimised OC X∗. This sample X∗ is added to the set of samples ΩG ← X∗, and the

next iteration is started.

The algorithm terminates when a user-specified criterion is met, for example, when a

specified number of samples SG have been generated. Then, a new sample is only generated

if |ΩG| ≤ SG, otherwise the sampling algorithm stops.

3.2.2 Issues with GAPSPLIT

Two issues arise when using the above split-based approach for sampling power system

OCs. The first issue is the low coverage of the physical feasible space and the second issue

is the computational inefficiency when generating a large number of samples.

The first issue of low coverage is the result of GAPSPLIT converging to infeasible regions.

GAPSPLIT may converge to such infeasible regions when the search space (feasible space) is
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Figure 3.2: (a) GAPSPLIT∗ uses only secondary targets ( ) to minimise the shortest distance to
the feasible region. (b) GAPSPLIT∗ with only secondary targets ( ) generates samples around the
boundary of the feasible space ( ) when Tn is located in infeasible regions. (c) GAPSPLIT∗ re-directs
sampling to other regions of the physical space by memorising infeasible targets ( )

non-convex and disconnected as in power systems. The feasible space in power systems is

the set of OCs that satisfy all operational equality and inequality constraints in g(X) ≤ 0

[126]. When the GAPSPLIT algorithm locates the primary target Tñ in an infeasible region,

the algorithm results in an infeasible optimisation (3.7) and returns an infeasible sample

X∗ as the constraint g(X) ≤ 0 when limXñ→Tñ g(X) > 0 is not met. This issue is illustrated

in Fig. 3.1. In Fig. 3.1a, the primary target Tñ of the 4th candidate sample is in the feasible

space, and GAPSPLIT successfully generates a corresponding sample. However, when trying

to generate the following 5th candidate sample in Fig. 3.1b, the primary target Tñ is in

the infeasible region where limXñ→Tñ g(X) > 0. Hence, GAPSPLIT is unable to generate

the 5th candidate sample as limXñ→Tñ g(X) > 0. As a result, the maximal gap ∆X(max)
ñ

from Eq. (3.4) does not change in subsequent iterations as all the gaps ∆X(u)
n between

previously generated samples remain unchanged, and consequently, GAPSPLIT converges to

that infeasible sample (5th candidate sample in Fig. 3.1b). The second issue is the compu-

tational bottleneck of sequential sampling approaches in high-dimensional settings. This
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Table 3.2: Computational analysis of the GAPSPLIT algorithm where |ΩN | is a constant and |ΩG|
corresponds to the number of iterations. The sorting step is the computational bottleneck of the
algorithm.

Steps Computation time
Sort ΩGo

n ∀ n in Eq.(3.1) O(|ΩN ||ΩG| log |ΩG|)
Compute ∆X(u)

n in Eq.(3.2) O(|ΩN ||ΩG|)
Compute ∆X(max)

n in Eq.(3.3) O(|ΩN ||ΩG|)
Compute X(max)

ñ in Eq.(3.4) O(|ΩN |)

bottleneck is particularly critical in power systems that have a large number of variables

|ΩN | and require a large number of samples |ΩG|. The computational bottleneck of some

sequential sampling approaches, such as GAPSPLIT, is that they often need to analyse a

large number of previously generated samples ΩG in each iteration. Table 3.2 analyses

the computational requirements in each iteration for the GAPSPLIT algorithm in Big-O()

notation to demonstrate this issue. In each iteration, the sorting of samples ΩG, computing

of gaps ∆X(u)
n and maximal gaps ∆X(max)

n steps have complexities of O(|ΩN ||ΩG| log |ΩG|),

O(|ΩN ||ΩG|) and O(|ΩN ||ΩG|) respectively. The key bottleneck is the sorting step which

grows O(|ΩN ||ΩG| log |ΩG|) as the size of |ΩG|→ a, where a+ 1 is a large number.

3.2.3 Proposed split-based approach: GAPSPLIT∗

The proposed GAPSPLIT∗ approach improves the GAPSPLIT approach with two modifications

to address each of the above issues as follows.

Exclusive sampling of secondary variables and introducing the set of infeasible

samples

The first proposed modification of GAPSPLIT∗ approach is twofold (i) sampling exclusively

with secondary variables ΩQ∗ and (ii) considering infeasible samples in the subsequent

progressions of GAPSPLIT∗ algorithm. This modification addresses the first issue of low

coverage when the feasible space is non-convex and disconnected as in power systems.
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The modification (i) of sampling exclusively with secondary variables ΩQ∗ is to discard the

hard constraint on the primary variable ñ in optimisation (3.7). Therefore, the optimisation

simplifies to

minimise
X∗

∑

n∈ΩQ∗

wn(X
∗
n − Tn)

2

subject to g(X∗) ≤ 0,

(3.8)

where the objective is to minimise the mean squared error of X∗ to secondary targets

Tn, ∀ p ∈ ΩQ∗ of the secondary variables. The effect is illustrated in Fig. 3.2a where

a target is located in the infeasible region where limXn→Tn g(X) > 0. When comparing

Fig. 3.1b (GAPSPLIT) with Fig. 3.2a (GAPSPLIT∗), GAPSPLIT would converge to an infeasible

sample when the primary target Tñ is located in the infeasible region. However, GAPSPLIT∗

addresses this issue by removing the hard constraint on ñ and minimising the distance to

the optimised feasible OC, marked with a red circle in Fig. 3.2a. This minimisation of

distances generates samples around the boundary of the feasible space and close to each

other as illustrated in Fig. 3.2b. This accumulation does not support effectively covering

the full feasible space.

The modification (ii) addresses the issue of accumulating infeasible samples presented in

Fig. 3.2b. This modification (ii) re-directs the sampling to other regions of the feasible space

by considering previously encountered infeasible samples. The algorithm of GAPSPLIT∗ with

modification (ii) is similar to that described in Sec.3.2.1 with the crucial difference being

the iteration step when the solution to the optimisation (3.7) is infeasible. Here, GAPSPLIT∗

stores (memorises) the targets that led to the infeasible solutions, and subsequently uses

them to avoid sampling at these infeasible targets again. Fig. 3.2c presents a visual illus-

tration of this approach. The set ΩG′ is the set of infeasible samples and ΩG′′
= ΩG′ ∪ ΩG

is the set of all feasible ΩG and infeasible ΩG′ samples. Fig. 3.3 shows the algorithmic

flowchart of this key difference in GAPSPLIT∗ modification (ii). If the optimisation is infea-

sible limXñ→Tñ g(X) > 0, then GAPSPLIT∗ assigns the value of this infeasible primary target

Tñ to the primary variable, and the minimal values XLB
n to all other secondary variables
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ΩG ← X∗
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Figure 3.3: The iteration step of the proposed modification (ii) of GAPSPLIT∗ that introduces the set
of infeasible samples ΩG′

ΩQ of the infeasible sample
X∗

ñ = Tñ

X∗
n = XLB

n ∀ n ∈ ΩQ.
(3.9)

Using the lower bound XLB
n is arbitrary. As the aim is to preserve the gaps in the other

variables, using the upper boundXUB
n would have the same effect. Subsequently, GAPSPLIT∗

adds this infeasible sample X∗ to the set of infeasible samples ΩG′ ← X∗. This step

implicitly stores the information that the primary target Tñ is in the infeasible region and

allows GAPSPLIT∗ to disregard the corresponding gap ∆X(max)
ñ between X(d)

ñ and X(d−1)
ñ in

subsequent iterations, and therefore avoids converging to that infeasible sample. Finally,

GAPSPLIT∗ computes the next maximal gaps

∆X(max)
n = max{∆X(k)

n | ∀ k = 1, 2, ..., |ΩG′′ |} (3.10)

by using feasible and infeasible samples ΩG′′ , and continues with Eq. (3.4) and subsequent

steps in Sec. 3.2.1.
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Efficient sorting

The second proposed modification of GAPSPLIT∗ approach is the efficient sorting of gaps to

identify the largest gap in each iteration. This modification addresses the second issue of

scalability of the GAPSPLIT approach in high-dimensional settings as in the power system.

The algorithm starts with an initialisation step, followed by iterations that terminate when

a stopping criterion is satisfied.

Initially, GAPSPLIT∗ assigns a set ΩF to maintain an ordered set of all gaps across all

variables which has the cardinality |ΩF | = |ΩN |× |ΩG|. This ordered set contains all gaps

∆X(u)
n from Eq. (3.2) for all variables n. The set is

ΩF = {∆X(k) | ∀ k = 1, 2, ..., |ΩN |× |ΩG|, ∆X(k) ≥ ∆X(k−1)}, (3.11)

where ∆X(k) is the kth largest gap across all variables and all samples. The notation of the

gap ∆X(k) drops the index for the sample u and for the variable n for simplicity reasons.

The sample index u and the variable index n can be retrieved with the two mappings

U(k) and P(k), respectively. The overall largest gap is the last element of the ordered set

∆X(|ΩF |) which avoids using the max operators in Eqs. (3.3)–(3.4).

In each iteration, GAPSPLIT∗ locates the primary target Tñ at the centre of this overall

largest gap ∆X(|ΩF |). GAPSPLIT∗ obtains d = U(|ΩF |), ñ = P(|ΩF |), and the primary

target

Tñ =
X(d+1)

ñ −X(d)
ñ

2
+X(d)

ñ , (3.12)

where the samples X(d+1)
ñ and X(d)

ñ form the gap ∆X(|ΩF |). Subsequently, GAPSPLIT∗ selects

the secondary variables, for instance with Eq. (3.6), and then solves optimisation (3.7)

to obtain the optimised OC, the new sample X∗. Subsequently, GAPSPLIT∗ copies this
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generated sample X∗ in total |ΩN | times and inserts one copy each into the sets

ΩGo
n ← X∗ ∀ n ∈ ΩN (3.13)

using the bisection method, which can only be used as the sets ΩGo
n are ordered. The

position of the insertions in the corresponding sets is the map I(n) such that X(I(n)−1)
n ≤

X∗
n ≤ X(I(n)+1)

n . Note that this bisection insertion step is the key advancement as it replaces

the sorting step required in each iteration of GAPSPLIT. The reader may recall that the

sorting step is the key bottleneck of GAPSPLIT as per analysis in Table 3.2. However, the

bisection method requires only a computational time of O(|ΩN | log |ΩG|) in the worst case.

Hence, this efficient bisection step with O(|ΩN | log |ΩG|) replaces the inefficient sorting step

with O(|ΩN ||ΩG| log |ΩG|). Following the insertion, GAPSPLIT∗ generates 2|ΩN | new gaps

at
∆X(a)

n = X(I(n)+1)
n −X∗

n

∆X(b)
n = X∗

n −X(I(n)−1)
n .

(3.14)

Subsequently, GAPSPLIT∗ inserts these 2|ΩN | new gaps in ΩF ← ∆X(a)
n , ΩF ← ∆X(b)

n ∀ p ∈

ΩN by using the bisection method, as well. GAPSPLIT∗ limits the cardinality of the set

|ΩF | ≤ ρ to avoid memory issues when the size of |ΩG| → a, where a + 1 is a large

number. In response to this threshold, if |ΩF | > ρ, then GAPSPLIT∗ drops the smallest

2|ΩN | gaps in each iteration

ΩF \∆X(k) | ∀ k = 1, 2, ..., 2|ΩN |, (3.15)

such that |ΩF | ≤ ρ is satisfied at all times. GAPSPLIT∗ terminates when sufficient samples

are created |ΩG| ≥ S.
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3.3 Measuring performance of samplers

Generic sampling focuses on covering the feasible space with the generated samples ΩG. A

performance metric of such samplers should quantify the coverage of feasible space, which

also is a metric for the quality of samples in ΩG. Such a metric for coverage can also serve

as a criterion to stop sampling when the feasible space is sufficiently sampled. However,

this criterion is not implemented for the case studies in this thesis.

The COV metric measures the performance of the GAPSPLIT sampler in [118]

COV = 1– 1

|ΩN |

|ΩN |∑

n=1

∆X(max)
n

rn
(3.16)

representing the average relative maximal gap ∆X(max)
n in |ΩN | dimensions. To illustrate

this metric, the COV metric has a minimal value COV = 0 when all samples ΩG are stacked

on top of each other, and a maximal value COV = 1 when an infinite number of samples ΩG

are uniformly distributed. For example, COV = 0.75 indicates that the relative maximum

gap is 25% on average over all variables ΩN .

The drawback of analysing sample distributions using the COV metric is that the analysis

focuses on the marginal (univariate) and not the multivariate distribution. Hence, using

COV as a performance metric to assess samplers in high-dimensional settings may result

in a poor characterisation of multivariate sample distributions, which is important when

using an optimisation procedure to generate the samples (as we will demonstrate in the

case study). The example in Fig. 3.4 illustrates this drawback of using COV to measure

coverage. The samples in the two figures, Fig. 3.4a and Fig. 3.4b, are clearly differently

distributed but have the same marginal distributions in both dimensions. However, as the

COV metric only assesses the marginal univariate distribution (in this example, projecting

the points to one dimension), it calculates the same COV values for the two figures, thereby

ignoring the difference in the two bivariate distributions. Hence, the COV metric is an

unsuitable measure of the coverage of samples. Generally in the literature, point-to-point

coverage measures fail to quantify how well samples are distributed relative to one another
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Figure 3.4: The samples (blue circles) in (a) and (b) have the same COV but different V values. The
proposed convex hull metric (dotted black line) is suitable for measuring multivariate coverage.

in high dimensional settings and do not account for the distribution of samples in a region

[123][122].

Conversely, assessing the volume occupied by the samples seems to be a suitable approach

to measure the performance of multivariate sample distributions. The proposed V met-

ric based on computing an approximation of the convex hull volume can overcome the

drawback of the COV metric. The convex hull of a set of samples ΩG

CH =

{
ξ1X(1) + · · ·+ ξrX(r)

∣∣∣∣∣

n∑

u=1

ξu = 1, X(u) ∈ ΩG, ξu ≥ 0

}
(3.17)

is the smallest convex set that contains all other samples defined in some |ΩN |-dimensional

space, where X(1), X(2), · · · , X(r) are independent samples in some Euclidean space R|ΩN |,

and ξu are real numbers. The samples X(1), X(2), · · · , X(r) are the vertices of the convex

hull as they enclose all other samples. The index r represents the number of samples

that form the vertices of the convex hull, where r ≤ |ΩG|. In this work uses the Qhull

algorithm [127] to compute the V metric that measures the convex hull volume occupied

by the generated samples ΩG.

Subsequently, the volume of the convex hull with vertices X(1), X(2), · · · , X(r) is

V = | 1
r!
det

(
X(2) −X(1) X(3) −X(1) · · · X(r) −X(1)

)
| (3.18)



3.3. Measuring performance of samplers 69

which further resolves to

| 1
r!
det




X(1) X(2) · · · X(r)

1 1 · · · 1



 | (3.19)

This formula is the simplified version of the convex hull volume. However, computing the

V in higher dimensions (|ΩN | > 6) is intractable, as it is a P-hard problem. This work

circumvents this issue by randomly selecting a subset of the input variables Ω̂ ⊂ ΩN ; |Ω̂| ≤ 6

to compute the volume. This random selection allows us to approximate the V in higher

dimensions, as we will show in the case study section. This limitation of scalability to

higher dimensions mean that certain regions of the feasible space that are ”relevant” may be

ignored when computing the volume. The notation V|ΩN |=|Ω̂| denotes the |Ω̂|−dimensional

convex hull volume for a set of samples. The reader may refer to the text in [128] and [129]

for further information on convex hulls and their associated volumes.

Finally, we consider other state-of-art coverage metrics in [121]. Specifically, the coefficient

of variation between all samples Xu, Xuj ∈ 0|ΩN | is λ = (|ΩG|
∑|ΩG|

u=1 γ2
u

(
∑|ΩG|

u=1 γu)2
)1/2, where γ =

min
u '=uj

|Xu −Xuj |. The smaller the value of λ, the more uniform the distribution of samples

and λ = 0 signifies a perfect uniform mesh. We also consider the point norm distribution,

h = max
i=1,2...,|ΩG|

hu, where hu = max
y∈Vu

|Xu − y|, where hu is the maximum distance between a

sample-point Xu and the points that enclose the cell of its Voronoi tessellation Vu. Here

also, the smaller the value of h, the more uniform is the distribution. The scalability of λ

as the number of samples |ΩG|→ a increase, where a+ 1 is a large number is challenging

as it requires O(|ΩG|2) computations. The scalability of the h coverage measure in high

dimensional settings is similar to that of the proposed V metric, which can ignore ”relevant”

regions of the feasible space. λ and h are included in the case study comparison of this

chapter for the sake of completeness.
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3.4 Case study

In this section, firstly, this work investigates the suitability of the proposed GAPSPLIT∗

approach to generate representative power systems OCs in comparison to random sam-

pling (RS) and minimised generation cost minimum generation cost (MGC) approaches.

Secondly, this work investigates the performance of the proposed GAPSPLIT∗ approach

to address the low coverage issue of GAPSPLIT when generating OCs for power systems.

Thirdly, this work shows the suitability of the proposed V metric to measure coverage of

samples generated by the proposed GAPSPLIT∗ approach. Fourthly and finally, this work

discusses the scalability of the proposed V metric to higher dimensions and the computa-

tional time of the proposed GAPSPLIT∗ approach on the IEEE 118-bus system.

3.4.1 Test System and assumption

The case studies consider the IEEE 6-bus [130] and IEEE 68-bus [131] test systems. Subse-

quently, using the IEEE 118-bus system [132], a case study presents a scalability study that

considers a DC approximation of the power flow. The networks studied in this chapter do

not have any renewable generation connected. To generate the load profiles, the active loads

were sampled from a multivariate Gaussian distribution (via Monte Carlo sampling) and

assume the correlation between loads to follow Pearson’s correlation with a correlation co-

efficient of 0.75. The distribution was then converted to a marginal Kumaraswamy(1.6,2.8)

distribution using inverse transformation. The reactive loads at the buses scale linearly

with active loads by a factor of 0.15 (KV AR
KW ≈ 0.15). To create the generator profiles, X∗

n

∀ n ∈ ΩN , different sampling approaches, including the proposed split-based sampling,

MGC, and RS approaches attempt to solve an optimisation problem that balances gen-

erator output with randomly generated loads. The proposed split-based sampling follows

the sampling procedure described in Sect. 3.2.3, whereas the MGC approach solves the

optimal power flow of the AC-model. Finally, the RS approach involves sampling gen-

erator profiles using the LHS procedure and accepting either the LHS generated profile
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X∗
n, or a perturbation X∗

n + δXn , where δXn ∀ n ∈ ΩN are slack variables in the optimi-

sation. The AC models of the networks are used to ensure feasible OCs representing the

steady-state operation of the system under AC assumptions. |ΩG| = 1, 000 initial OCs

were selected for each sampling approach. This number of OCs is arbitrary and was cho-

sen to study the dynamic security profiles of the initial OCs, where other stopping criteria

such as coverage of the feasible space will in practice determine the size of |ΩG|. Then,

for each pre-fault OC, their corresponding post-fault security labels were simulated with

time-domain dynamic simulations. For the simulations, the initial conditions included the

pre-fault variables for active and reactive power generations, and active and reactive power

loads. The dynamic simulation considered a three-phase fault on line 31−38 for the IEEE-

68 bus system with a clearance time of 0.5 s. Subsequently, the simulations were analysed

and the post-fault transient security label was computed. The label of an OC was either

secure Ym
j = 0, ∀ j ∈ ΩJ when all phase angle differences between any two generators

were less than 180◦ within the 10 s simulation time after the fault, otherwise, the OC was

insecure Ym
j = 1, ∀ j ∈ ΩJ . To see the generation of database in the context of the final

use case, ML models were trained using the generated data. There, the pre-fault OCs and

post-fault security labels were used as training databases for quantifying the performance

of the trained ML models on testing data. Different ML models, including feed-forward

Artificial Neural Network (ANN), Support Vector Machine (SVM), boosting algorithms

(Xgboost and Adaboost), and Decision Trees (DTs), were trained as example ML models.

The model hyperparameters were not tuned as only the relative performance of the models

on different datasets is of concern. The ANNs had three hidden layers with 60, 30, and 10

neurons, respectively, and were trained with a stochastic gradient descent optimiser using

the package PyTorch 1.10.0 [133]. The SVM training used a linear kernel, and the boosting

algorithms had 50 estimators using the package scikit-learn 0.18.1 [134]. DTs were trained

with the CART algorithm [135] from the package scikit-learn 0.18.1 [134] in Python 3.5.2.

The default training settings were selected except using gini impurity instead of entropy to

measure the quality of the splits. The data-set was split into training/testing sets in ratio

of 75% / 25%. 5-fold cross-validation was applied to address under-/overfitting. Subse-
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Figure 3.5: (a) The V of samples generated using the proposed modification (i) ( ), the proposed
modification (ii) ( ), and RS ( ).

quently, the Platt method was used to calibrate the score-output S of the classifier [136].

The ML models were evaluated with metrics as the testing accuracy = Tp+Tn
Tp+Tn+Fp+Fn , pre-

cision = Tp
Tp+Fp , specificity = Tn

Tn+Fp , and F1-score = 2∗precision∗specificity
precision+specificity , where Tp and Tn

are correctly classified positive and negative OCs, and Fp and Fn are incorrectly classified

negative and positive OCs. Additionally, the fraction of insecure OCs Π1
ΩG = |ΩG

1 |
|ΩG| was

computed, |ΩG
1 | is the number of OCs in ΩG with label 1.

The non-linear optimisation problems were implemented using the package Pyomo 5.6.8

[137] in Python 3.7.4 and solved using IPOPT 3.13.2 [138]. All studies except the scal-

ability section were carried out on a Dell XPS 139360 running an Intel(R) Core(TM)

i5-8250U processor with 8 GB installed RAM. The scalability study was carried out on a

Windows Server 2008 R2 Enterprise running an Intel(R) processor with 96 GB installed

RAM. The dynamic simulations are implemented in Julia 1.6.4 with the packages Pow-

erSystems.jl [139], PowerSimulationsDynamics.jl [140]. The simulations were solved with

the IDA package from Sundials solvers [141]. All dynamic simulations were performed on

a standard machine with six cores and 16GB RAM.
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3.4.2 Effective sampling with GAPSPLIT∗

In this study, this work contrasts the performance of the candidate approaches (the pro-

posed GAPSPLIT∗, MGC, and RS) in generating representative power systems OCs, which

results appear in Fig. 3.5. Concretely, the figure depicts the 3D-V covered by 5000 OCs

generated with the candidate approaches in the IEEE 6- and 68-bus systems. The V val-

ues in the figure are normalised with the minimum value for each test system such that

V̂ = V
min(V) . In the proposed GAPSPLIT∗ approach, this work considers |ΩQ∗ | = 0.3|ΩN |

secondary variables.

As evidenced by Fig. 3.5, the proposed GAPSPLIT∗ cover a higher 3D-V than the RS ap-

proach, as much as 40% and 55% more in the IEEE 6- and 68-bus systems, respectively. In

contrast, as evidenced by Table 3.3, the proposed GAPSPLIT∗ approach cover a significantly

higher 3D-V than theMGC approach, in the order of 15× and more than 1011×magnitude,

respectively, in the IEEE 6- and 68-bus systems. Admittedly, the poor performance of the

MGC approach is a reflection of its objective function in solving the optimisation problem.

Thus, the samples generated by the MGC approach will only cover a small volume even

as the approach generates more OCs, as a result of choosing the same cheap generator

combinations to minimise cost.

For a more exhaustive evaluation, this work investigates the performance of the proposed

GAPSPLIT∗ and RS approaches considering 10′000 random variable selections {Ω̂ ⊂ ΩN},

where |Ω̂| = 3. The results are summarised in Table 3.3, which shows the V|ΩN |=3 of the

candidate approaches. Overall, the proposed GAPSPLIT∗ approach cover 10% and 37.5%

more volume than the RS approach in the IEEE 6- and 68-bus systems, respectively.

These results imply that the proposed GAPSPLIT∗ is suitable for generating a wide range of

OCs, which is necessary to enrich the database, especially as the integration of intermittent

renewable energy sources becomes the norm.



74 Chapter 3. Generation of Diverse Datasets

Table 3.3: V of 5000 samples computed for 10′000 random variable subsets {Ω̂ ⊂ ΩN}, where |Ω̂| = 3
for different sampling approaches

Approach V
IEEE 6 bus IEEE 68 bus

GAPSPLIT∗ (0.77± 0.60) (407± 474)
MGC (0.05± 0.24) < 10−11(< 10−11)
RS (0.70± 0.55) (296± 250)

3.4.3 Addressing GAPSPLIT issues

In this study, this work investigates the performance of the first proposed modification

of the GAPSPLIT∗ approach (Sect.3.2.3) to address the low coverage issue of GAPSPLIT

(Algorithm (1)). This work contrasts the proposed modification (ii) that introduces the

set of infeasible samples ΩG′ , the proposed modification (i) that utilises only secondary

variables ΩQ∗ , and regular GAPSPLIT.

To preface this comparison, regular GAPSPLIT can generate on average three and six unique

OCs in the IEEE 6-bus and IEEE 68-bus systems, respectively, before converging to an

infeasible region. Subsequently, the maximal gap ∆X(max)
ñ (Eq.(3.4)) remains the same,

and the algorithm is unable to generate any more feasible OCs. The comparison with

the proposed modification (ii) is demonstrated by the results in Fig. 3.6. Concretely, the

figure shows the share of infeasible OCs β = |ΩG′ |
|ΩG′′ | in the IEEE 6- and 68-bus systems as

the candidate sampling approaches generate many OCs |ΩG|→ a, where a+ 1 is a large

number. As evidenced by Fig. 3.6, the proposed modification (ii) has a higher value of β in

earlier iterations for both systems that decrease as more OCs are generated. The value of

β decreases from 19.5% when |ΩG′′ | = 210 to 4.9% when |ΩG′′ | = 15593 in the IEEE 6-bus

system, and from 29.3% when |ΩG′′ | = 3622 to 21.3% when |ΩG′′ | = 9366 in the IEEE 68-

bus system. This downward trend of β indicates an improved performance of the proposed

modification (ii) as the algorithm generates more OCs. The proposed modification (ii)

works for both small and relatively large systems as β decreases when |ΩS| grows in both

systems. In contrast, the share of infeasible samples β increases in both systems for regular

GAPSPLIT. On the other hand, from this perspective of β, the proposed modification (i) has
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the best performance as it generates on average only one infeasible OC in both systems.

Modification (ii) also avoids converging to infeasible regions. Admittedly, the modification

(i) trivially avoids converging to infeasible regions as its optimisation discards the hard

constraint on the primary target. Additionally, its objective function aims to minimise the

distance to the candidate targets. However, in terms of generating OCs in a non-convex

and disconnected feasible space, as is the case in power systems, these results indicate

that the first proposed modification of GAPSPLIT∗ improves on the low coverage issue of

GAPSPLIT.

Furthermore, this work notes that modification (ii) is preferred to modification (i) in small

systems by the results in Fig. 3.7b and Fig. 3.7a. The figures show a scatter-plot of

OCs generated by the modifications (ii) and (i), respectively. As evidenced by the figures

in Fig. 3.7, the OCs generated with modification (ii) cover the entire feasible space and

not only the boundaries, and is thus the preferred approach. However, this preference of

modification (ii) over modification (i) is not entirely visible in larger systems. In larger

systems (e.g., IEEE 68-bus), there is a higher share of infeasible OCs β (e.g., β =5.1%

and 23.5%, respectively, in the IEEE 6- and 68-bus systems). This higher value of β

in the IEEE 68-bus system denotes an increase in the number of iterations required by

the algorithm before termination, and invariably, an increase in the computation time of

modification (ii). On that note of computation time, modification (i) is suitable for large

networks. However, the V comparison between the two approaches in Fig. 3.5b indicates

that coverage of OCs generated using the proposed modification (ii) is marginally better

than modification (i). In the rest of the manuscript, unless otherwise stated, this work

consider the proposed modification (ii) as GAPSPLIT∗.

It is also worth highlighting that GAPSPLIT∗ sampling with both primary and secondary

variables is preferred over GAPSPLIT∗ sampling with only primary variables, as demon-

strated by the distribution of samples in Figs. 3.8b-3.8a.
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Figure 3.6: The value of β = |ΩG′ |
|ΩG′′ | for the proposed modification (ii) ( ) reduces while regular

GAPSPLIT’s ( ) increases as more samples are generated in both (a) small and (b) larger systems.
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Figure 3.7: Modification (ii) better distributes samples across the feasible space than modification (i)
in small systems, respectively in (b) and (a).
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3.4.4 Measuring performance of samplers

This case study contrasts the proposed V metric with the COV metric to measure coverage

of the feasible space by generated OCs. As an illustrative example on the IEEE 68-

bus system, this work uses the two candidate metrics to compute coverage of different

multivariate distributions in Fig. 3.8a and Fig. 3.8b. Concretely, the figures depict a

scatter-plot of OCs generated using GAPSPLIT∗ sampling with only primary variables and

GAPSPLIT∗ sampling with both primary and secondary variables, respectively.

As evidenced by Fig. 3.8, the COV value is the same in both Fig. 3.8a and Fig. 3.8b, while

the V value is approximately 100% higher in Fig. 3.8b than in Fig. 3.8a. This result shows

that the COV does not distinguish between different multivariate distributions.

For a more exhaustive evaluation, this work considers four different sets of 5000 OCs that

are generated by varying the number of secondary variables |ΩQ∗| = {0, 1, 2, 3} in the

GAPSPLIT∗ algorithm. Subsequently, this work computes the COV and V of the different

sets considering 10′000 random variable selections {Ω̂ ⊂ ΩN}, where |Ω̂| = 3. The results

are in Fig. 3.9, which depicts a scatter-plot of the proposed V metric against the COV metric

for the same sets of OCs. Overall, the proposed V can distinguish the coverage of ’good’

from ’bad’ sample distributions while COV can not. Concretely, the proposed V has a wider

range of values (0.25, 2.50) and higher standard deviation of 0.74 than the COV metric with

values ranging between (0.9985, 0.9995) and standard deviation of < 0.001. Additionally,

other coverage metrics like λ and h range between (0.65, 1.02) and (9.89, 9.99), respectively,

with standard deviations of 0.18 and 0.03 for the same dataset. There, just as COV , h can

not distinguish ’good’ from ’bad’ sample distributions, while λ can distinguish. However,

as pointed out in Sec. 3.3, the metric λ is not suitable as it does not computationally scale

well to large number of samples. The V metric considers the multivariate distribution of

OCs to measure coverage, and that makes it a better metric to quantify the spread of OCs

across multidimensional space. Table 3.4 summarises the comparison between COV , λ, h

and the proposed V metrics for the different sets of sample distributions, showing that the

proposed V is more suitable to measure coverage by differentiating the distinct sets of OCs.
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Figure 3.8: (a) GAPSPLIT∗ with only primary targets (shown for P1( ) and Q3( )) generates samples
that are distributed along the axis of that variable and do not cover the entire feasible space. (b)
Proposed use of GAPSPLIT∗ uses primary and secondary targets to cover the entire feasible space

Table 3.4: The V, COV , h and λ values of four different sets of 5000 samples computed for 10′000
random variable selections {Ω̂ ⊂ ΩN}, where |Ω̂| = 3

|ΩQ∗| V COV h λ

0 (0.49± 0.36) 0.99(< 0.01) (9.84± 0.16) (0.75± 0.15)
1 (0.99± 0.78) 0.99(< 0.01) (9.75± 0.24) (0.60± 0.06)
2 (1.02± 0.72) 0.99(< 0.01) (9.90± 0.07) (0.46± 0.04)
3 (1.09± 0.86) 0.99(< 0.01) (9.83± 0.18) (0.49± 0.04)
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Figure 3.9: Samples that have similar COV values are differentiated with the proposed V
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Table 3.5: Computation time to generate 100’000 samples in IEEE 118-bus generator space

Approach Average time Total time
GAPSPLIT∗ (0.57± 0.20) s 16 h
GAPSPLIT (0.78± 0.24) s 21 h
MGC (0.60± 0.20) s 17 h
RS (0.64± 0.28) s 17 h

3.4.5 Computational Performance & Scalability

This case study tests the computational performance and scalability of the proposed split-

based sampling approach and the proposed coverage metric to larger systems. The per-

formance was tested for the number of OCs generated and the size of the power system

(number of dimensions of variables). In this study, GAPSPLIT was modified to store in-

feasible OCs for comparison (to prevent early convergence to an infeasible OC), while the

proposed GAPSPLIT∗ approach is modified as described in Sect.3.2.3. To study the scala-

bility of the V metric, on the IEEE 118-bus system, 100 random subsets of variables with

dimension sizes |ΩN | = {2 − 7} and sample size |ΩG| = 5000 are drawn and the V is

computed for each subset of variables. The choice of dimension sizes |ΩN | = {2 − 7} was

influenced by the upper-limit of computing the V metric in higher dimension |ΩN | > 6 and

computing the V metric of 100 samples was tractable for |ΩN | > 3. Fig. 3.10a shows that

the random selection of variables does not influence the V and the mean and median values

of the normalised V are suitable to approximate the V for dimension sizes |ΩN | = {2− 7}.

Fig. 3.10b shows the relationship between the V of random subsets for dimensions 3 and 7.

The correlation shows that the average value of V|ΩN |=3 is sufficient to approximate V|ΩN |=7

for the IEEE-118 bus test system, and therefore can extrapolate that computing a reduced

V is a good estimator for V in higher dimensions.

Table 3.5 shows the computational times to generate 100′000 OCs with different approaches

on the IEEE 118-bus system. GAPSPLIT takes 21 hours, in contrast to 17 hours by theMGC

and RS approaches. Albeit, the OCs generated using GAPSPLIT cover a 30% larger volume

than OCs generated using RS. This increase in total time for GAPSPLIT is as a result of

increased time to sort ΩG and find the maximal gap ∆X(max)
ñ as more OCs are generated.
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Figure 3.10: (a) The normalised V mean ( ) and median ( ) values of random subset selections
are similar across different dimensions (b) There is some correlation between the V of a random subset
and the V of the full dimension

Table 3.6: ANN trained for dynamic security on 1000 OCs from IEEE 68-bus system

Approach Π1 F1-score Accuracy Precision Specificity
GAPSPLIT∗ 93.3% 99.5% 98.4% 99.9% 99.9%

RS 84.4% 93.7% 91.2% 93.5% 90.0%

The moving average (with a sliding window of 1000) of the time it takes to sample an OC for

GAPSPLIT shows a linear increase over time, with a slope angle ∠∆t
∆s of 45◦. The proposed

second modification of the GAPSPLIT∗ approach from Sect.3.2.3 mitigates this increase in

time by regulating the size of the set of gaps and efficiently sorting newly generated OCs.

3.4.6 Dynamic Security and Machine learning

This case study tests the generated data when applied to the intended use case of ML-based

DSA on the IEEE 68-bus system. The dynamic security labels of OCs from GAPSPLIT∗

and RS were simulated, and different ML models including SVM, Adaboost, Xgboost, DT,

and ANN were trained. Π1 is the share of infeasible OCs in the dataset. The results in

Table 3.6 show that the generated data from GAPSPLIT∗ results in better performances when

training an ANN across the metrics of test accuracy, F1-score, precision, and specificity

by 7.2%, 5.8%, 6.4% and 9.9%, respectively. GAPSPLIT∗ generated more insecure OCs
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Table 3.7: DT trained for dynamic security on 1000 OCs from IEEE 68-bus system

Approach Π1 F1-score Accuracy Precision Specificity
GAPSPLIT∗ 93.3% 99.6% 99.2% 99.6% 99.6%

RS 84.4% 99.2% 98.8% 99.0% 99.5%

Table 3.8: F1-score for 5 different ML models trained on 1000 OCs from the IEEE 68-bus system.
Each type of model is trained 100 times.

Approach SVM Adaboost Xgboost DT ANN
GAPSPLIT∗ 99.0% 99.5% 99.2% 99.5% 98.8%

RS 96.0% 98.0% 98.6% 98.2% 91.9%

which can enhance the prediction accuracy of predicting insecure OCs. Maximising the

accuracy for insecure OCs and reducing false negatives is important as these type of errors

can lead to power blackouts which are significantly worse than false positives. For DTs

the values remained similar in GAPSPLIT∗ and RS as shown in Tab 3.7. For a more

exhaustive comparison, each of SVM, Adaboost, Xgboost, DT, and ANN models were

trained 100 times on data from GAPSPLIT∗ and RS. The results in Table 3.8 show that

the generated data results in marginally better performance across the two approaches for

SVM, Adaboost, Xgboost, and DT models. A 6.9% improvement is recorded for the ANN.

3.5 Conclusion

A systematic approach to creating representative databases is pivotal to the adoption of

ML methods for real-time (dynamic-) security assessment. This work proposes a novel

split-based sampling approach GAPSPLIT∗ to generate representative samples that system-

atically explore the feasible space of power systems. The key feature of the split-based

sampling is the ability to consider model-based constraints g(X) ≤ 0 when generating

a sample (OC) in the optimisation. When using this sampling approach for power sys-

tems, the physical constraints can be considered for the steady-state in the form of the AC

network power flow constraints, as used when optimising the generator dispatches in an

ACOPF model. The proposed split-based sampling aims for diverse data by jumping from
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one part of the solution space to another underrepresented part to cover a larger space

(distribution) with fewer OCs. In the IEEE 68-bus system, samples generated using the

proposed split-based sampling cover 37.5% more volume than with RS. The proposed

V is better suited than distance-based metrics to quantify the performance of a generic

sampler and differentiate good from bad sample distributions. The proposed split-based

approach takes 0.57 s on average to generate samples for the IEEE 118-bus system. Future

work will involve exploiting historical data in the sampling procedure to generate new OCs

that improve the information gain of the classifier. There, the proposed algorithm as a se-

quential process shall consider another variable that creates balanced datasets. The vision

is to use this proposed algorithm as a baseline then consider “active learning” that can use

discriminative information on the class distribution in the sequential sampling process.



Chapter 4

Trade-offs in Generating Balanced

Datasets

“There are no solutions, there are only trade-offs.”

—- Thomas Sowell

This chapter presents a novel, unified approach for generating high-quality datasets for

training machine-learned (ML) models for real-time security assessment in power systems.

The proposed approach balances the trade-off between historically relevant operating condi-

tions (OCs) and rare but feasible OCs. Unlike conventional methods that rely on historical

records or generic sampling, the proposed approach results in datasets that generalise well

beyond similar distributions. The proposed approach is validated through experiments

on the IEEE 118-bus system, where an ML model trained on data generated using the

proposed approach achieved 97% accuracy in predicting the security label of rare OCs,

outperforming baseline approaches by 41% and 20%. This work is crucial for deploying

reliable machine-learned models for real-time security assessment in power systems under-

going decarbonisation and integrating renewable energy sources.

83
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4.1 Introduction

In Chapter 3, this thesis argued for a renewed interest in data generation approaches

[21, 55, 56, 57, 59] to produce representative datasets, especially as low quality data leads

to training inaccurate models. Chapter 2 emphasized the complexity of the data generation

challenge primarily underscored by the three contrasts of historical relevance, coverage and

discriminative relevance [42, 1] that define quality datasets.

An example of these contrasts is between historical relevance and coverage. Approaches

maximising coverage (e.g. [55, 56, 57, 59]) aim to uniformly span all the possible feasi-

ble OCs (region A of Fig. 4.1) and do not consider the dependency structures between

variables thereby sacrificing historical relevance (region B of Fig. 4.1). While approaches

that consider dependency structures of variables via historical relevance (e.g. copula mod-

elling to capture complex non-gaussian marginal distributions and non-linear multivariate

dependencies [42, 21], autoencoders and conditional variational autoencoders [44]) do not

consider other feasible but rare OCs (region C of Fig. 4.1) thereby sacrificing coverage.

Another contrast is between historical relevance and discriminative relevance. Approaches

that focus on historical relevance (region B of Fig. 4.1) aim to mimic typical power sys-

tems operations and retain variable dependency structures but do not generalise to OCs

not in historical records. While approaches that focus on discriminative relevance (line D

of Fig. 4.1) aim to target security decision boundaries, so-called high information content

regions but do not consider dependency structures between variables that represent typical

power system OCs. A further contrast is between coverage and discriminative relevance.

Approaches that focus on maximising coverage may miss out on regions that span the

security boundary. While approaches that focus on discriminative relevance assume a

stationary security decision boundary and do not generalise to ”rare” OCs (region C of

Fig. 4.1).

The existing gap of all the aforementioned state-of-the-art approaches for generating syn-

thetic datasets for power system security assessment is the lack of a unified approach
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Figure 4.1: Quality datasets balance historical relevance ( ), coverage ( ), and discriminative
relevance ( ) so that ML-models can be trained for accurately predicting secure ( ) and insecure
( ) OCs.

to efficiently combine all three contrasts of quality datasets. The Wasserstein distance

[142] addresses this gap and leverages advances in optimal transport research [143] to

deal with the comparison of distributions. This ability to compare distributions allows

trading-off historical relavance and coverage of generated OCs thereby preserving relevant

dependency structures while generating rare OCs. The Wasserstein distance [142] can be

thought of in 1-dimension as the earth mover’s distance and calculates how much work

it takes to transport the mass of one distribution to another. Besides its intuitiveness,

the Wasserstein distance can make meaningful comparisons between distributions with

non-overlapping support such as the popular Kullback-Leibler divergence [144], and by

xtension the Jensen-Shannon divergence. Other metrics include the total variation and

Cramér distances [145], which are generally considered as computationally efficient mea-

sures of distance, particularly for low-dimensional data. However, the Wasserstein distance

is preferred for distributions with complex structure and high dimensionality [146]. While

computing the Wasserstein distance [142] in high dimensions is non-trivial, the Sliced-

Wasserstein distance [147] exploits the closed-form of projected one-dimensional distances

and has acceptable statistical and asymptotic properties.
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4.1.1 Contributions

The contribution of this chapter is the combination of the three properties of historical

relevance, coverage, and discriminative relevance that were individually considered to gen-

erate quality datasets in previous research. For the first time, this chapter proposes a novel

unified approach that considers all three properties that define quality datasets to gener-

ate information-rich and historically relevant datasets while considering rare OCs to train

reliable models for power system security. The proposed approach leverages advances in

optimal transport research and introduces the Wasserstein distance as a metric. The pro-

posed metric allows to efficiently combine historically relevant OCs modelled with copulas

and rare OCs modelled using state-of-the-art split-based generic sampling. Additionally,

the proposed approach uses entropy to redirect sampling to other regions of the feasible

space.

4.2 Single criterion-based sampling approaches

The three existing single criterion-based sampling approaches have strengths and limita-

tions for security assessments. Security assessment X → Y takes as an input the power

system OCs X and outputs security labels Y for a set of probable contingencies ΩJ . The

security labels Ym
j ∈ {0, 1} ∀j ∈ ΩJ represent secure and insecure OCs, respectively, where

m is the index of OC Xm. Typically, the input variables are the static pre-fault set-point

of all generators and loads. These input variables define the OC Xm and are bounded

by the power system’s physical limits, such as generator limits, line limits, and complex

network constraints.

The first two types of sampling approaches, historical and generic sampling, focus on gener-

ating representative pre-fault OCs X. Importance sampling approach focuses on generating

X aiming at the inverse Y → X by targeting information-rich regions α̂ ⊆ α, where α

denotes the feasible space containing all possible OCs X. Each approach subsequently

focuses on a specific property and has an associated metric to measure sampling quality.
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4.2.1 State-of-the-art historical sampling

Historical sampling focuses on the historical relevance property of sampling quality. His-

torical sampling approaches aim to generate similar OCs to observed historical data by

learning the underlying distribution and the dependency structures of historical data. The

set of historical observations is ΩH with the data Xm
n ∀ n ∈ ΩN , m ∈ ΩH , where ΩN is

the set of power systems variables (e.g. loads and injections). For simplicity, let us denote

Xn as a vector of all observations for the n-th variable, Xm as a data vector for the m-th

observation and p = |ΩN | as the cardinality of set ΩN . From a statistical perspective,

the historical data in ΩH are assumed to be drawn from an unknown true distribution,

represented by the continuous random variable X. A historical sampling approach starts

by approximating this true distribution’s random variable X by fitting a statistical model

X̂ to the observed data ΩH . Then, the approach applies Monte Carlo (MC) sampling. MC

sampling is widely used to randomly sample probability distributions to generate new data.

A challenge of historical sampling is the separation of marginal distributions from a multi-

variate distribution with non-linear dependencies, as power system OCs are typically load

and generator injection profiles with non-linear dependencies such as renewables. Previous

works [148, 42, 149] consider copula-based sampling models (CSM) in power systems, as

copulas can separate the dependency structure of marginal distributions from a multivari-

ate distribution. Another challenge is that OCs can be observed in disjoint clusters that

follow distinct statistical characteristics due to unique power system modes, e.g., consid-

ering different seasons or times of the day. Previous work in [21] partitions the observed

data ΩH into distinct clusters of similar characteristics profiles. This work approximates

X using a combination of copulas and clustering.

A d-dimensional copula, C : [0, 1]p :→ [0, 1] is a cumulative distribution function (CDF)

with uniform marginals that provides a suitable way to separate the marginal distribu-

tions of Xn from their dependency structure. The multivariate CDF, FX , with marginal
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distributions F1, · · · , Fp is then

FX(X1, · · · , Xp) = C

(
F1(X1), ..., Fp(Xp)

)
(4.1)

which represents Sklar’s theorem [150]. The copula, C is unique if all the marginal distribu-

tions F1, · · · , Fp are continuous. Without loss of generality to other variations of copulas, a

single d-dimensional Multivariate Gaussian (MG) copula can model the dependency struc-

ture parameterised by the correlation matrix Q as

CQ(u) := ΦQ

(
Φ−1(u1), · · · ,Φ−1(up)

)
(4.2)

where Φ(.) is the standard univariate normal CDF, ΦQ(.) is the joint CDF of a MG variable

with mean µ = 0, covariance matrix Σ = Q, with uniform marginals up = [0, 1], and u =

(u1, · · · , up). The correlation matrix can be transformed using the Cholesky decomposition

Q = ATA, where A is the lower triangular matrix of Q.

The sampling from a MG CSM follows Algorithm (2), where the set of OCs generated

with historical sampling ΩO = {} is initially empty. The algorithm then partitions the

observed data ΩH into one of L ∈ N pre-defined clusters. Then, for each independent

cluster l ≤ L, the algorithm generates a random MG variable Z ∼ MGp(0, Ip), where

Ip is the d-dimensional identity matrix. The algorithm then determines β = ATZ, and

computes U = (Φ(β1), · · · ,Φ(βp)), whose distribution represents the MG copula from Eq.

(4.2) s.t. Prob(U1 ≤ u1, · · · , Up ≤ up) = ΦQ(Φ−1(u1), · · · ,Φ−1(up)). Using the copula

property of invariance under monotonic transformations, a resulting random OC m with

data vector X̂m = (X̂m
1 , · · · , X̂m

p ) is obtained via the standard inverse transform method

along each dimension such that X̂m
n = F−1

n (Un). The CSM stops after SO ∈ N OCs are

generated and added to ΩO ←− m. |ΩO| is the cardinality of the set.

An advantage of historical sampling is that the set of generated OCs ΩO retains the depen-

dency structure of observed historical records ΩH . A limitation of historical sampling is

that X̂ can only generate OCs ΩO that are statistically similar to OCs in historical records
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Algorithm 2 Copula-based Historical Sampling
Require: ΩH , ΩO = {}, SO, l = 1, L ∈ N

1: Segment ΩH into L disjoint clusters
2: Compute Spearman correlation matrix Q
3: Compute the Cholesky decomposition Q = ATA
4: for l ≤ L do
5: while |ΩO| ≤ (4SO

L 5 × l) do
6: Compute Z = MGp(0, Ip)
7: Determine β = ATZ
8: Compute U = (Φ(β1), · · · ,Φ(βp))
9: Compute X̂m

n = F−1
n (Un) ∀ n ∈ N

10: ΩO ←− m
11: end while
12: l = l + 1
13: end for

ΩH .

4.2.2 State-of-the-art generic sampling approach

Generic sampling focuses on maximising coverage of a broad spectrum of varying and

physically feasible OCs. Generic sampling approaches in power systems typically involve

stratified sampling, such as the Latin Hypercube Sampling [55, 56, 57] and, recently, the

sequential split-based sampling [59].

The generic sampling model (GSM) aims to generate a set of OCs ΩG that are uniformly

distributed across the entire feasible space while ensuring that the physical constraints

that represent power systems equality g(Xm̃) = 0 and inequality h(Xm̃) ≤ 0 constraints

(e.g., nodal balance, line flow, voltage, phase angle, and generator limits) are met for each

generated OC m̃ ∈ ΩG [59]. This algorithm is the modification (ii) in Section 3.2.3 of

Chapter 3.

An advantage of generic sampling is that the set of generated feasible OCs ΩG covers a much

larger volume V of the feasible space as compared with the set of OCs ΩO generated by the

CSM in Sec. 4.2.1, VΩG + VΩO . VΩ is the volume covered by the OCs in Ω. This increase in

volume results from the exploration of new OCs that are not presented in historical records.
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A limitation of generic sampling is that the set of generated OCs ΩG is missing relevant

information like dependency structures between variables. As the correlation information

from the correlation matrix Q is not considered, many generated OCs may be irrelevant,

either as probable OCs or in enhancing the discriminative information for the mapping

X → Y .

4.2.3 State-of-the-art importance sampling approach

Importance sampling approaches focus on the discriminative relevance property of sampling

quality and aim to maximise the information content for the security assessment X → Y ,

as the goal of ML-based security analysis is the correct prediction of security labels for

OCs. These approaches assume the existence of an information-rich region (area around

line D of Fig. 4.1) α̂ ⊆ α as a subset of the feasible space α that can be explicitly specified

[55, 51] or obtained from initial OCs such that the entropy E of the set of OCs (e.g. ΩO)

is maximised [49, 37]

E =
b∑

i=1

−Πi
ΩO log2 Πi

ΩO (4.3)

b is the number of disparate labels, usually b = 2 for secure and insecure labels. Πi
ΩO = |ΩO

i |
|ΩO|

is the share of OCs that have label i, where |ΩO
i | is the number of OCs in ΩO with label i,

i.e. ΩO =
⋃b

i=1 Ω
O
i . The maximisation of entropy allows importance sampling approaches

to generate datasets according to the probability distribution of the security boundary

area.

An advantage of importance sampling approaches is the generation of balanced datasets

by sampling on both sides of the security decision boundary (see line D of Fig. 4.1) as the

result of interpolating between secure and insecure OCs [49]. Otherwise, approaches fit a

multivariate distribution of OCs within the secure feasible space to generate new OCs [56].

This crucial advantage ensures that the resulting database does not suffer from a class

imbalance that can affect ML models’ performance. A limitation of importance sampling
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is the exclusion of large regions of the feasible space to focus on a specific region of interest

α̂ ⊆ α in high-dimensional feasible spaces Rd, d + 1. Additionally, Importance sampling

does not consider the dependency structures of power system variables and can miss on

relevant information like different operating modes and seasonality.

Other importance sampling approaches included directed walk methods and game theoretic

approaches, that aim to sample around the decision boundary, for instance in small-signal

stability analysis [55, 52]. These methods involve approaching the boundary and collect-

ing samples in its vicinity. However, in this thesis, such directed walk approaches were

not considered due to their reliance on assuming a static decision boundary. Instead, the

focus was on utilising entropy information to infer the decision boundary directly from

the available data. The choice of maximizing entropy as the approach in this work was

motivated by its ability to capture the overall uncertainty and information content of the

data. By maximizing entropy, the aim is to find a decision boundary that maximizes the

information content, allowing for a more comprehensive exploration of the system’s behav-

ior. This approach provides a more general framework for decision boundary inference, as

it does not rely on specific assumptions about the underlying dynamics or require explicit

sampling near the boundary.

4.3 Proposed unified sampling approach

The proposed approach has two phases: a knowledge discovery phase of generating feasible

and diverse pre-fault OCs X and a dataset enrichment phase to generate pre-fault OCs

relevant for security assessment X → Y . In the knowledge discovery phase (phase A in

Fig. 4.2), the proposed approach trades off copula-based historically relevant OCs and

uniformly distributed OCs. This trade-off combines the two properties of maximising

coverage while retaining historical relevance. In the dataset enrichment phase, the proposed

approach identifies the most information-rich region of the feasible space to initialise new

pre-fault OCs using entropy.
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Figure 4.2: Proposed unified sampling considering all three properties of quality datasets. Phase A
combines generic and copula-based historical sampling to generate historically relevant and diverse
pre-fault OCs. Phase B directs generating labels to entropy-rich regions.

4.3.1 Knowledge discovery: trading off historical and rare OCs

The trade-off in the knowledge discovery phase between historical relevance and coverage of

OCs minimises the maximum distance between the distribution of the generated OCs and

a target probability distribution. Here, the target distribution is the historical distribution

which retains the variable dependency structures, for instance, between generation and

loads. The proposed Wasserstein distance helps to find a good trade-off by computing the

distance between two probability measures.

Definition: We define Pp(X) ∀ p ≥ 1 as the set of probability distributions Pp(X) = {η ∈

P(X) :
∫
X ||X||pdη(X) < +∞}. The p-th order Wasserstein distance Wp ∀ η, v ∈ Pp(X)

is

Wp(η, v) ≡ inf
γ∈Γ(η,v)

∫

Rd×Rd

||X − X̂||
p

dγ(X, X̂) (4.4)

where Γ(η, v) is the set of all joint probability distributions on γ defined on Rd × Rd with
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respective marginal distributions η and v. The Wasserstein distance has a closed form of

Wp =

(∫ 1

0

|F−1
η − F−1

v |pdγ(η, v)

)1/p

(4.5)

for one-dimensional measures, where Fη and Fv represent the respective cumulative dis-

Algorithm 3 Proposed Unified Sampling: phase A
Require: ΩA = {}, ΩO = {}, τ , ΩH , X̂

1: Execute Alg. (2) to generate set of OCs ΩO using X̂
2: ΩA ←− m̃ : g(Xm̃) = 0, h(Xm̃) ≤ 0 ∀ m̃ ∈ ΩO

3: while W2(ΩO,ΩA) ≤ τ do
4: Execute generic sampling modification (ii) of Section 3.2.3 to generate set of OCs ΩG

5: ΩA ←− ΩG

6: end while

tributions of η and v. Two sets of OCs are assumed, Ωh and Ω
h with data matrices X and

X, where the data Xm corresponds to m ∈ Ωh (and equivalently for Ωh). The Wasserstein

distance between the corresponding data X and X is

W2(Ω
H ,ΩH) = min

γ∈Γ(X,X)

|Ωh|∑

m=1

|Ωh|∑

m=1

γm,m D(Xm, X
m
), (4.6)

where γ is a joint distribution over the two matrices, Γ(X,X) is the set of all joint distri-

butions, and D(Xm, X
m
) is the Euclidean distance between the m-th row of X and the

m-th row of X. Here, the second-order Wasserstein distance is the sum of the distances be-

tween each pair of OCs multiplied by the amount of probability mass that must be moved

and effectively measures the ”distance” between the two matrices of OCs in terms of how

much ”work” must be done to transform one matrix of OCs into the other. An example in

Fig. 4.3 visualises the Wasserstein distance between two probability distributions, P (X)

and P (X). The larger the Wasserstein distance between any two probability distributions,

the more dissimilar they are. The proposed Wasserstein distance thus allows comparing

the probability distributions of synthetically generated OCs ΩA with historical data ΩH .

This comparison ensures that the distribution of synthetic OCs does not deviate beyond

a user-defined threshold distance τ ∈ N from the historical data distribution, ensuring the
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Figure 4.3: Wasserstein distance between two probability distributions P (X) and P (X) is analogous
to the amount of ’work’ to transform one distribution into another. ’Work’ is the distance moved
multiplied by the probability ’mass’ at that distance.

dependency between power loads and generators is preserved. This proposal thus allows

synthetic OCs to retain the two properties of historical relevance and coverage.

Algorithm (3) presents the proposed trade-off between coverage and historical relevance

using the proposed Wasserstein distance. The algorithm starts with an empty set of gener-

ated OCs ΩA = {}. Subsequently, a copula-based model X̂ generates historically relevant

OCs ΩO based on available historical data ΩH . Only the OCs m̃ ∈ ΩO that satisfy the

power system constraints g(Xm̃) = 0, h(Xm̃) ≤ 0 (e.g., nodal balance, line flow, voltage,

phase angle, and generator limits) are considered and serve as a baseline target distribu-

tion. The OCs that satisfy the power system constraints populate the set ΩA ←− ΩO. The

algorithm sorts the set ΩA in ascending order for each variable. Then, for a pre-defined

Wasserstein distance threshold τ ∈ N, inserts new ”rare” OCs using the CSM in Algorithm

(2) such that W2(ΩO,ΩA) ≤ τ , which substitutes the stopping criterion that considers SG

in generic sampling modification (ii) of Section 3.2.3.

4.3.2 Dataset enrichment and labelling: importance sampling in

the context of feasibility

The dataset enrichment and labelling phase of the proposed approach incorporates an

entropy-informed re-sampling of pre-fault OCs shown as phase B in Fig. 4.2. This phase
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Algorithm 4 Proposed Unified Sampling: phase B
Require: ΩA, ΩB = {}, SB, K

1: Segment ΩA into T disjoint clusters
2: Identify ΩA

t̂
: Et̂ = max(E1, · · · , Et)

3: Compute [ρ
n
, ρn], ∀ n ∈ ΩN for cluster ΩA

t̂
with Ek̂

4: ΩB ←− ΩA
t̂

5: while |ΩB| ≤ SB do
6: Execute generic sampling modification (ii) of Section 3.2.3 : ρ

n
≤ Xm̃

n ≤ ρn, ∀ n ∈ ΩN

7: ΩB ←− ΩG

8: end while

aims to improve the knowledge discovery phase by focusing on information-rich regions of

the feasible space.

Algorithm (4) presents phase B of the proposed unified sampling approach. After the initial

generation of |ΩA| pre-fault OCs ΩA using Algorithm (3), dynamic simulations X → Y are

performed to obtain the security labels

Ym
j = {0, 1}, ∀ m ∈ ΩA, ∀ j ∈ ΩJ (4.7)

for the set of probable contingencies ΩJ . Subsequently, for each contingency j ∈ ΩJ , the

algorithm segments the OCs in ΩA using K-means clustering into T ∈ N clusters. An

example in Fig. 4.4 illustrates this phase of the proposed approach on three clusters T = 3.

The set of OCs

ΩA =
⋃

∀t∈ΩC

ΩA
k (4.8)

is segregated into T distinct clusters where ΩA
t is the set of OCs in ΩA belonging to cluster

t and ΩC is the set of all clusters |ΩC | = T . In Fig. 4.4, the circles show the entailing

OCs ΩA
t belonging to each cluster t = 1, 2, 3. Each of these clusters t has an entropy Et

computed as in Eq. (4.3) substituting ΩO = ΩA
t . The cluster t̂ is the cluster that has the

highest entropy

Et̂ = max(Et| ∀ t ∈ ΩC) (4.9)

with OCs ΩA
t̂
. Subsequently, to improve the dataset generated from the knowledge discov-

ery phase ΩA, the algorithm focuses on data Xm
n ,m ∈ ΩA

t̂
and compute the bounds of the
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cluster with the maximum entropy ΩA
t̂
⊂ ΩA to form a hypercube.

ρ
n
= min(Xm

n | ∀ m ∈ ΩA
t̂ ) ∀ n ∈ ΩN (4.10)

ρn = max(Xm
n | ∀ m ∈ ΩA

t̂ ) ∀ n ∈ ΩN (4.11)

Using the bounds [ρ
n
, ρn], ∀ n ∈ ΩN as additional inequality constraints

ρ
n
≤ Xm̃

n ≤ ρn, ∀ n ∈ ΩN , (4.12)

in optimisation (3.7), the algorithm generates new pre-fault OCs using the generic sampling

modification (ii) of Section 3.2.3. The sampling stops after generating a user-defined SB

OCs. The final training dataset is then augmented by the pre-fault OCs ΩB and their

respective labels Ym
j = {0, 1},m ∈ ΩB, j ∈ ΩJ obtained using dynamic simulations for each

contingency. The sensitivity of the number of clusters |ΩC | to the target region ΩA
t̂
should

be considered in the analysis. It is important to find a balance between the granularity

of the target region ΩA
t̂
and the computational cost associated with a higher number of

clusters |ΩC |. Increasing the number of clusters allows for more precise bounds of the

target region, but it comes with the potential risk of missing out on other relevant regions

and incurring additional computational costs. On the other hand, using a lower number

of clusters expands the search space but may also include irrelevant regions. Therefore,

the choice of the number of clusters should be carefully evaluated to ensure a reasonable

trade-off between accuracy and computational efficiency.

4.4 Case Study

This section examines the effectiveness of the proposed unified sampling approach in gen-

erating historically relevant, representative, and balanced datasets for training ML models

for security assessment. The first study investigates the trade-off between historical rel-

evance and coverage. The second and third studies focus on the historical relevance and
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Figure 4.4: Proposed phase B computes the entropy of clusters with OCs that are secure ( ) and
insecure ( ). The cluster with the largest entropy initialises the bounds for resampling using the
generic sampling modification (ii) of Section 3.2.3.

Figure 4.5: Single line diagram of the IEEE 118 bus test system showing fault locations at buses 12,
15, 49 and 80.
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coverage metrics, respectively. The fourth and fifth studies analyse the results of security

assessments using ML models trained on different databases. The final study presents the

results of balancing the label distribution.

4.4.1 Test system and assumptions

The case studies use the IEEE 118-bus system [132], where the observed historical data

contain 14.250 measurements at 5min intervals for a period in 2012 provided by the French

Transmission SO, RTE. The original dataset spanned over 7, 000 load points and 200 wind

turbines and was projected relative to the upper limit in the snap-shot onto the IEEE 118-

bus test system [151]. The modified IEEE 118-bus system only considers historical wind

outputs without converter interfaced models for the dynamic studies. For generating pre-

fault OCs, a DC approximation (of the OPF) is sufficient to demonstrate the challenge and

proposed solution. Therefore, the studies use only active power loads to model and validate

the compared approaches. If required, reactive power loads can be similarly modelled.

The studies considered L = 10 disjoint clusters to capture different operation modes.

Subsequently, 5, 000 OCs were generated using all the approaches in contention. The

baselines are the historical model (HM), CSM, and GSM, against the proposed unified

sampling model (USM). The HM is data from historical records, the CSM, GSM and the

proposed USM (A) and USM (B) approaches are as described in Algorithms (2), generic

sampling modification (ii) of Section 3.2.3, (3), (4) respectively. The proposed USM (A)

and USM (B) were studied separately, denoting phases A and B. T = 10 clusters were used

when studying USM (B). The observed historical data were randomly split into training,

and testing sets in the ratio of 80:20, and the training set was used to build the CSM.

For the transient studies, a three-phase fault is simulated at bus 12, 15, 49 and 80 for all

OCs at time 0.5 s. The fault is cleared by opening the line between buses 12 and 14 after

0.2 s. The transient stability was analysed for 10 s. The post-fault OC was considered as

secure (Ym
j = 0) if the difference between any two generator phase angles is less than 180◦,

otherwise, the OC is considered insecure (Ym
j = 1). The results shown in this study are for
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Figure 4.6: The relationship between relative volume V̂ and Wasserstein distance threshold τ . V̂
increases with the number of generated OCs and plateaus around τ ≥ 10.

transient stability and can easily be extended to consider other security indices. Albeit, the

complexities of considering other dynamic phenomena are not trivial. Investigating various

aspects of system dynamics introduces additional complexities in terms of modeling, data

requirements, and computational resources. However, this is not the main focus of the

thesis.

For the security assessment, decision trees (DTs) were trained using the CART algorithm

[135]. The training settings were set to their default values, except for using gini impurity

to measure the quality of splits instead of entropy and limiting the maximum depth of the

trees to 5. The choice of tree depth and gini impurity hyperparameters could be optimised,

however, as all models are trained using the same settings, this does not affect the relative

performance of the models on different datasets. The data was split into a training set and a

testing set in a 75:25 ratio, with the feature variableX and the labels Y serving as the inputs

for training the classifier. To address underfitting or overfitting, 10-fold cross-validation was

applied and one DT was trained for each contingency ∀j ∈ ΩJ . The study considers the F1-

score = 2Tp
2Tp+Fp+Fn to measure the test accuracy of the DTs, where Tp, Fp, Fn are the true

positives, false positives and false negatives, respectively. The standard nonparametric two-

sample tests from the literature are used to measure historical relevance, the Kolmogorov-

Smirnov (K-S) test and the multivariate energy test. The K-S test investigates whether the

generated data from X̂ can reconstruct the marginal distributions of the true distribution,
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Figure 4.7: Boxplots showing mean ( ) and median ( ) values of 1, 000 randomly selected OCs
from different approaches corresponding to (a) the proposed Wp and (b) the normalised V.

while the energy tests show how much variable dependency is maintained in the generated

dataset. Finally, The convex hull volume V occupied by the generated dataset is used to

compare the coverage of OCs generated by the three models.

All optimisation problems were implemented using the package Pyomo 5.6.8 [137] in Python

3.7.4, and the DC approximation was solved using Gurobi 9.5.0 [152] while using IPOPT

3.13.2 [153] for the AC models of the networks. The DTs were trained with the scikit-

learn package version 0.18.1 [134]. The ODEs were solved to simulate the transients using

odeint in scipy. All studies were conducted on a standard Windows HP desktop running

an Intel(R) processor with 64 GB of RAM.

4.4.2 Trading-off historical relevance and coverage

This section studies the trade-off between historical relevance and coverage properties of

the proposed USM. This trade-off is achieved via the proposed Wasserstein distance Wp.

By adjusting the threshold τ of the acceptable Wasserstein distance Wp, the proposed USM

can generate new OCs that explore the feasible space.
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Figure 4.8: CDF of p-values corresponding to historical data ( ), CSM ( ), GSM ( ), and the
proposed USM (A) ( ) for (a) energy tests and (b) K-S tests.

The result in Fig. 4.6 shows the coverage metric, V̂ , and the threshold τ on the Wasserstein

metric, which measures similarity to historical data as new samples are generated. τ

plateaus around τ ≈ 10. As a result, subsequent case studies consider the USM approach

until τ ≤ 10. Fig. 4.7a shows many experiment variations, specifically, the distribution of

1, 000Wp tests between 250 randomly selected OCs from the observed historical dataset ΩH

and the baseline approaches, the proposed USM, CSM, and GSM. The closer the averages

are to 0, the closer the distributions are to the historical distribution. The proposed USM

is between CSM and GSM, balancing these two approaches by varying the threshold τ of

the acceptable Wasserstein distance Wp to the target distribution. This trade-off allows the

proposed USM to generate historically relevant datasets that sufficiently cover the feasible

space simultaneously.

4.4.3 Historical relevance

This case study investigates the historical relevance of the proposed USM (A) and the

baseline approaches (HM, CSM, and GSM) using standard statistical two-sample tests.

The study randomly generates 1, 000 sets of 0.5% of the generated data and compares
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them to a set of randomly generated 0.5% of observed historical test data. The distribution

of the p-values from the 1, 000 energy tests and 128, 000 K-S tests for each approach are

compared and presented in Figures 4.8a & 4.8b, respectively. For both tests, the null

hypothesis assumes data from any two disparate approaches in comparison come from the

same model and follow a similar distribution. Therefore, the p-values should be uniformly

distributed. As a baseline for comparison, the solid black line in Figures 4.8a & 4.8b

represents the CDF of the p-values that compare data randomly drawn from the observed

historical training dataset and the test data. The larger the maximum difference between

the CDFs of p-values, the more dissimilar the two datasets are.

The results show that the CSM approach outperforms GSM, as its p-values in the K-S

and energy tests come closest to the solid black line of HM. This result is consistent with

previous research as CSM can effectively model and capture marginal distributions and

dependency structure of variables in higher dimensions. GSM has all 0 p-values for all

tests and does not capture the marginal distribution as well, as evidenced by the K-S tests

in Fig. 4.8b. Notably, in Figures 4.8a & 4.8b, the proposed USM (A) preserves most of the

marginal distributions while maintaining a significant variable dependency information,

even though the CSM outperforms in that regard.

4.4.4 Coverage

This case study assesses the coverage of generated datasets from the proposed USM (A),

CSM and GSM. The results shown in Fig. 4.7b present the volume V covered by the gen-

erated OCs of the different approaches for 1.000 different realisations of variable selection,

Ω̂ ⊂ ΩN , with a cardinality of |Ω̂| = 3. The V values in the figure are normalised by the

minimum volume value computed using the historical data, ΩH , for the selected Ω̂ vari-

ables, such that V̂ = V
min(VΩH ) . Specifically, the figure shows that the datasets generated

by the proposed USM (A) and GSM have similar volume coverage, which on average is

significantly larger by as much as 4× more volume than that of CSM-generated datasets.

Notably, the proposed USM approach presents the best trade-off among the tested ap-
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Table 4.1: Results for contingency representing a three-phase fault at bus 12

Training data Testing data (F1-score) Π1

historical generic rare
HM 0.89± 0.02 0.60± 0.21 0.55± 0.30 0.14
CSM 0.84± 0.04 0.56± 0.20 0.41± 0.23 0.13
GSM 0.76± 0.05 0.99± 0.01 0.71± 0.09 0.15
USM (A) 0.88± 0.03 0.96± 0.01 0.98± 0.01 0.17

Table 4.2: Results for contingency representing a three-phase fault at bus 15

Training data Testing data (F1-score) Π1

historical generic rare
HM 0.88± 0.02 0.49± 0.20 0.44± 0.15 0.13
CSM 0.82± 0.02 0.71± 0.16 0.66± 0.17 0.14
GSM 0.75± 0.07 0.97± 0.02 0.69± 0.11 0.15
USM (A) 0.86± 0.02 0.96± 0.02 0.98± 0.01 0.18

proaches as it covers nearly the same volume as the GSM (90%), while also providing the

additional benefit of high historical relevance, as studied in Sect. 4.4.3.

4.4.5 Security assessment for out-of-distribution OCs

This study compares the performance of ML models trained on datasets from the base-

line approaches and tests the models on three types of OCs: historical, generic (for data

uniformly covering the feasible space) and rare (for data deviating from typical historical

distribution).

The results in Tables 4.1-4.4 show the average and standard deviation of F1-scores for

100 DT models, where the training and testing data come from the different baseline ap-

proaches. The ”rare” OCs in the testing set were randomly selected from data generated

using the proposed USM (A). The models trained on the proposed USM (A) data achieved

an average F1-score of at least 96% on these ”rare” OCs, outperforming models trained

on data from HM and CSM by 54% and 57%, respectively, in contingencies 15 and 12. In

contrast, models trained on data from HM and CSM had the worst performance on these

”rare” testing OCs as this training data does not consider such rare cases and is biased
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towards specific data from HM and CSM (e.g. does not generalise well to data from USM

(A) that are considered as ”rare”). GSM aims to cover the feasible space uniformly, and

the DTs trained on this data performs well in some contingencies (e.g., 49 and 80) but still

does underperform when using data from the proposed USM (A) for the DTs. These results

suggest that the proposed USM (A) can support the development of models that gener-

alise better to OCs from other distributions. For further comparisons, Table 4.1 presents

an example for contingency 12, where the DT models trained on datasets generated by

the proposed USM (A) achieved a high accuracy (F1-score of at least 86%), outperform-

ing models trained on data from CSM and GSM in predicting uniformly distributed and

historical OCs, respectively, by as much as 40% and 12%. A similar analysis can be made

for the other three contingencies in Tables 4.2-4.4.

The proposed USM (A) datasets resulted in DT models that are (nearly) as accurate as

DTs models with training and testing data from the same distribution. For example, the

USM (A) based DT models were within 2% accuracy of the HM and CSM-based DTs in

contingencies 12 and 15. Also, the F1-scores tested on historical HM data on contingencies

49 and 80 showed USM (A)-based DTs are as high as HM-based DTs (Table 4.4). In

comparison, models trained on GSM datasets have an accuracy within 13% when tested

on the same historical data. Additionally, models trained on USM (A) datasets were found

to have a maximum deviation of 4% accuracy from the best model performance in all

contingencies when tested on generic sampling data, where GSM had the best performance.

In contrast, models from HM or CSM can have an accuracy deviation of up to 48% in

all contingencies when tested on the same data. Importantly, these results show that the

proposed USM (A) performs with high accuracy across all tested datasets, showing a high

level of generalisability to data from other distributions within the test settings.

4.4.6 Security assessment for similar distribution OCs

This study examines the performance of ML models trained and tested on data from similar

distributions.
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Figure 4.9: Boxplots showing mean ( ) and median ( ) values for 100 models trained with different
datasets to predict the post-fault status of a three-phase fault near buses (a) 12 (b) 15 (c) 49 (d) 80.
Both training and testing data follow a similar distribution.
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Table 4.3: Results for contingency representing a three-phase fault at bus 49

Training data Testing data (F1-score) Π1

historical generic rare
HM 0.97± 0.01 0.65± 0.16 0.60± 0.14 0.47
CSM 0.97± 0.01 0.64± 0.15 0.66± 0.17 0.46
GSM 0.93± 0.03 0.95± 0.01 0.93± 0.05 0.30
USM (A) 0.98± 0.01 0.91± 0.01 0.99± 0.01 0.48

Table 4.4: Results for contingency representing a three-phase fault at bus 80

Training data Testing data (F1-score) Π1

historical generic rare
HM 0.92± 0.01 0.53± 0.21 0.46± 0.18 0.27
CSM 0.91± 0.01 0.58± 0.35 0.56± 0.25 0.27
GSM 0.83± 0.06 0.97± 0.01 0.80± 0.09 0.18
USM (A) 0.92± 0.01 0.94± 0.01 0.96± 0.02 0.29

The results in Fig. 4.9 show the distribution of F1-scores for 100 DT models trained using

different datasets to predict the post-fault status of the system following four separate

three-phase faults. The results show that all databases can provide input to train accurate

models for testing data from the same distribution, with an F1-score ≥ 88%. The results

indicate that for contingencies with a more balanced share of labels, such as the fault on bus

49 where the label distribution Π1
ΩA = 0.48, the proposed USM (A) outperforms the other

approaches (HM, CSM and GSM). However, for other contingencies, the model trained on

GSM datasets has better performance, as the OCs are more uniformly distributed. Notably,

the label distribution for GSM datasets for contingency 49 is ≈ 34% lower than the other

approaches (assuming an ideal distribution Π1 = 0.5) which explains the relatively poor

performance compared to the other models, albeit with an F1-score ≈ 95%.

4.4.7 Balancing the distribution

This section studies the performance of USM (B) as the share of labels Π1 could impact

the performance of models and is thus an important factor to consider when generating

training OCs (as also Sec. 4.4.5 showed). Therefore, this study focuses on contingencies

where the share of labels Π1 & 0.5, namely contingencies 12 and 14. USM (B) is limited
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Table 4.5: Performance of USM (A) and USM (B) approaches for contingencies representing a three-
phase fault at buses 12 and 15.

Approach Contingency 12 Contingency 15
F1-score Π1 F1-score Π1

USM (A) 0.92± 0.02 0.17 0.91± 0.02 0.18
USM (B) 0.94± 0.01 0.27 0.95± 0.01 0.26

to generate 20% of |ΩA|, e.g., SB = 0.2|ΩA|.

The results in Table 4.5 show the performance of 100 DT models trained with data from

the two approaches, USM (A) and USM (B). The results show that in contingency 12,

the share of labels improved from Π1
ΩA = 0.17 to Π1

ΩB = 0.27 to and the corresponding

F1-score from 0.92 to 0.94. Similarly in contingency 15, the share of labels improved from

Π1
ΩA = 0.18 to Π1

ΩB = 0.26. Also, this improved label share improved the F1-score from

0.91 to 0.95.

4.5 Conclusion

A crucial challenge is generating high-quality datasets for training machine-learned models

for real-time security assessment in power systems. Conventional approaches have failed to

generate datasets that generalise well beyond similar distributions, resulting in models that

are not always accurate. To overcome this challenge, a novel unified approach is proposed

for generating datasets that balance historical relevance, coverage, and discriminative rel-

evance. The proposed approach balances historically relevant operating conditions (OCs)

with rare but feasible OCs, leading to datasets representing a diverse set of possible OCs.

The dynamic simulations required in the phase B of the proposed USM approach increases

the computational implications for generating OCs. Since the data generation phase is

performed offline, this increase in computational time can be tolerated. However, imple-

menting ”smart” strategies to enhance the efficiency of the sampling procedure, including

using active learning to select OCs whose dynamic response would yield the most infor-

mation can help alleviate the increase in computational time. Experimental results on
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the IEEE 118-bus system demonstrate the effectiveness of the proposed approach. The

model trained on data generated using the proposed approach achieved an F1-score of

91% for different contingencies and 96% accuracy in predicting the security label of rare

OCs, outperforming baseline approaches. Future work can consider the difference in cost

distribution of wrong predictions to improve the sampling approach, where false alarms

must be avoided. This work is an important step towards developing new tools that enable

the adoption of machine learning for sensitive tasks such as security assessment in power

systems.



Chapter 5

Model Selection

“When you compare to choose from many options, it’s important to be clear about

what you want and what you’re willing to give up to get it.”

— Unknown

Power systems transport an increasing amount of electricity, and in the future, involve more

distributed renewables and dynamic interactions of the equipment. The system response

to disturbances must be secure and predictable to avoid power blackouts. The system

response can be simulated in the time domain. However, this dynamic security assessment

(DSA) is not computationally tractable in real-time. Particularly promising is to train

decision trees (DTs) from machine learning (ML) as interpretable classifiers to predict

whether the system-wide responses to disturbances are secure. In most research, selecting

the best DT model focuses on predictive accuracy. However, it is insufficient to focus

solely on predictive accuracy. Missed and false alarms have drastically different costs, and

as security assessment is a critical task, interpretability is crucial for operators. This work

considers the multiple objectives of interpretability, varying costs, and accuracies for DT

model selection. This work proposes a rigorous workflow to select the best classifier. In

addition, this work presents two graphical approaches for visual inspection to illustrate the

selection sensitivity to probability and impacts of disturbances. This work proposes cost

109
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Figure 5.1: Overall workflow for ML-based security assessment [1].

curves to inspect the selection, combining all three objectives for the first time. Case studies

on the IEEE 68 bus system and the French system show that the proposed approach allows

for better DT-selections, with an 80% increase in interpretability (in terms of reducing the

number of nodes in tree-based algorithms), 5% reduction in expected operating cost in

tree-based algorithms, while making almost zero accuracy compromises. The proposed

approach scales well with larger systems and can be used for models beyond DTs. Hence,

this work provides insights into criteria for model selection in a promising application for

methods from artificial intelligence (AI).

5.0.1 Selection of the machine learning model

Recall that the ML approach (Fig. 5.1) to security assessment is to predict the outcome

of the stability analysis [22]. This prediction can replace the analysis itself, and the key

benefit is that the prediction is instantaneously available. As this benefit is promising,

many variations of the ML approaches were proposed [1]. The most common approach is

to use a binary classifier as a model, which subsequently predicts whether an operating

condition is stable or unstable (in situations where the entire DSA outcome is used, then

secure/insecure).

The selection and evaluation of the DT model involve finding the model with the highest

performance out of a large set of trained models. Typically, the performance is measured

by testing how the model performs on data that is not part of the training. For instance, a
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testing set is used to compute the testing error (the ratio of inaccurate predictions). Other

performance measures like the F1 score [66] allow for a harmonic balance of the precision

and recall for different errors [106] as used in [29], or the G-mean score that computes the

geometric mean as used in [28]. Also, graphical approaches can be used to select models,

such as the precision-recall (PR) curve [107] or receiver operating characteristic (ROC)

curve [108] as applied to DSA in [31, 109]. However, selecting a model based on a single

criterion may be sub-optimal. In DSA, the following three need to be considered:

Firstly, predicting errors for the different classes can have various impacts. A missed alarm

is much more severe than a false alarm. Missing an alarm can result in power blackouts

and load shedding that have high expected costs, however, a false alarm may require only

preventive and corrective control measures (e.g., generation re-dispatch) to be taken that

are significantly cheaper. Considering the different impacts of errors is important when

training the model specifically if the training database is imbalanced in the classes [1].

This difference in the impact of errors renders several performance criteria unsuitable,

such as the test error. The ROC curve or F1 score may be more suitable. However, the

expected outage cost to the end-customer should be considered as the performance metric

in security assessments [154] and non of these scores allows for directly measuring the

performance in terms of expected costs. Computing the outage cost is difficult as it depends

on the disturbance and the load condition [155, 154]. However, estimates of the costs are

considered in cost-sensitive learning by adjusting the decision threshold when predicting

with the model [156, 157]. Cost-sensitive learning was applied to DSA in combination with

ensemble DTs [158], with deep learning [159] and with SMOTE as the imbalance challenge

addressed is similar [28].

Secondly, it is crucial to consider the interpretability (and complexity) of the selected

model. Models that are high in their complexity are tradionally not interpretable for op-

erators [1] and this renders them unsuitable for the application to DSA. Albeit, recent

advances including in SHAP values have shown interpretability methods for complex ML

models are promising [110]. Operators responsible for the critical task of security as-

sessments may prefer interpretable DT models in their decision-support tools such that
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manual inspection remains possible and errors can be identified [38, 42]. Therefore, the

interpretability of the models needs consideration when selecting models for DSA.

Thirdly, it is also crucial to consider frequent changes in the system. Frequent changes

in system parameters may require changes in the selection of models. For instance, the

weather changes frequently, and with that, the likelihood of contingencies [111, 112]. If

the probability is high, an operator may select more conservative DT models than at times

with low likelihood. In practice, 1000s of models may be used in real-time [42] and a fast,

adaptable selection process is needed.

5.0.2 Contributions

The contribution of this work is to propose a rigorous workflow that considers all three

aforementioned specific needs (accuracy, interpretability, and cost sensitivity) to select the

best classifier for the application of security assessment, and in addition two approaches

for graphical inspection to demonstrate the selection sensitivity to key parameters such

as probability and impact of disturbances. The cost-curves [69], which are based on ideas

from cost sensitive-learning [156] are introduced. This workflow allows for the first time,

selecting the best machine-learned DT model for DSA in response to frequent changes in

expected costs or likelihood of contingencies, as well as their uncertainty. The proposed

workflow is fast, simple, and effective in selecting the best models.

The proposed workflow is studied on the IEEE 68-bus system and further extended to

the French transmission system. The challenge of selecting models/classifiers based on

predictive accuracy is presented, resulting in sub-optimal selections. Subsequently, the

benefits of the proposed multi-objective selection procedure are demonstrated. Finally, the

cost-curve approach is showcased.

The remainder of the chapter is structured as follows. Sec. 5.1 presents the three different

objectives when selecting a model for DSA. Sec. 5.2 presents the proposed workflow and

the two graphical approaches that allow considering all three objectives together. Finally,
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Figure 5.2: The ROC curve for evaluating a classifier. Different combinations of TPR and FPR are
obtained by varying the decision threshold Z (shown with arrows). The perfect classifier would be in
the top left corner having TPR = 1 and FPR = 0.

Sec. 5.3 presents the case study and Sec. 5.4 concludes this work.

5.1 Objectives in selecting DT classifiers for DSA

In supervised ML, the procedure of learning and selecting a classifier starts with defining

the models and hyperparameters to study. After these are defined, the range of hyperpa-

rameters is typically explored with a cross-validation search procedure to address under-and

overfitting of the data. In the cross-validation search, typically many different combina-

tions of values for the hyperparameters are explored, and for each, a classifier is trained

using the gini index or entropy in DTs. The result of this exploration of combinations of

hyperparameter values is a set of classifiers (one per combination). Subsequently, one clas-

sifier of this set must be selected. For this selection, various metrics can be used. Typically,

the validation accuracy (an approximation of the testing accuracy) is chosen. As pointed

out earlier, choosing the performance of the testing accuracy may not represent the needs

for DSA to balance the different costs of inaccuracies, interpretability, and robustness.
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5.1.1 Minimising the effects of inaccuracies

One of the objectives of selecting classifiers is to minimise the effect of inaccurate pre-

dictions. Two types of inaccurate predictions exist: missed alarms (false positives) and

false alarms (false negatives), and these have different effects/costs. The symbols FP and

FN correspond to the absolute numbers of inaccurately predicted operating conditions,

of the types of false positives and false negatives, respectively. The specific effects (or

impacts, costs) of these inaccurate predictions are CFN for false-negative predictions and

CFP for false-positive predictions, where CFP >> CFN as missed alarms have higher im-

pacts than false alarms. For missed alarms, these involve the expected outage cost to the

end-consumer, and for false alarms, these are the expected costs for unnecessary preven-

tive/corrective control actions. Accurate predictions have zero costs, hence CTP = CTN = 0

for true negatives (TN) and true positives (TP), respectively. The cost ratio is

γ =
CFP

CFP + CFN
. (5.1)

Typically, the objective in binary classification is to minimise the test error FP+FN
FP+FN+TP+TN ,

however, firstly, the test error can not directly be modelled; hence in the training, an ap-

proximation for the test error is typically used (e.g., the training error, entropy). Secondly,

by minimising this objective, this imbalance in the cost/impact of the two different types

of inaccuracies is not considered. Another way to evaluate and train a classifier in binary

classification is to maximise the F1 score.

The F1 score equally weights precision and recall, however, it does not consider the different

costs of the two classes [66], similarly as the training error and entropy. One approach to

consider both inaccuracies is to use the ROC curve. The ROC curve is a graphical approach

that shows the true positive rate TPR = TP
TP+FN and the false positive rate FPR = FP

TN+FP

[108]. Various combinations of TPR and FPR are computed by varying the threshold

Z that the classifier uses for prediction. This threshold Z is used to obtain the predicted

class. Initially, the classifier outputs a score S ∈ [0, 1]. Subsequently, this score is compared
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against the threshold Z (the default value is Z = 0.5) to determine the predicted class. If

the score S ≥ Z, then the prediction is the positive class Y = 1, otherwise negative Y = 0.

Hence, for a testing set, the combinations of (TPR,FPR) values are computed for varying

Zs. Then, these points build the ROC curve.

The ROC curve is used to evaluate classifiers with cost-sensitivity as shown in Fig. 5.2. Each

point corresponds to a single classifier where the decision threshold was varied in Z = [0, 1].

It is possible to estimate the optimal Z̃∗ from an effect/cost minimising viewpoint. The

objective of minimising costs/impacts of inaccurate predictions is

Σ = FN ∗ Π+ ∗ CFN + FP ∗ Π− ∗ CFP, (5.2)

where

Π− =
N−

N− +N+
and Π+ =

N+

N− +N+
(5.3)

are the two class distributions of positive N+ and negative N− points in the testing set

[157]. Typically N+ and N− are not exactly known, however, Π+ and Π− can be assumed to

be similar to the distributions in the training set or inferred from a validation process/set.

Note that in DSA, often Π+ + Π− is an additional (class) imbalance to CFP + CFN.

For the class imbalance problem, the methods developed in this thesis, (Chapters 3 & 4)

could improve the class distribution. For the cost imbalance, although CFN and CFP are

unknown, estimates could be assumed C̃FN and C̃FP and the expected costs are

Σ̃ = FN ∗ Π+ ∗ C̃FN + FP ∗ Π− ∗ C̃FP. (5.4)

Then, the estimated cost ratio γ̃ is computed by using Eq. (5.1) and the estimates C̃FN

and C̃FP. Subsequently, the expected costs from Eq. (5.4)

NΣ̃ =
(1− TP) ∗ Π+ ∗ (1−γ̃

γ̃ ) + FP ∗ (1− Π+)

Π+ ∗ (1−γ̃
γ̃ ) + (1− Π+)

. (5.5)

This (normalised) expected cost is minimised when selecting the decision threshold at the
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estimated cost-optimal point as

Z̃∗ =
Π− ∗ C̃FP

Π− ∗ C̃FP + Π+ ∗ C̃FN
. (5.6)

5.1.2 Maximising the interpretability of DTs

The second objective of a classifier for DSA is to maximise interpretability. If the learning

approach is interpretable, then human experts, here the system operator, can build trust

in using these approaches. The classifier is interpretable when the learned model can be

understood and offers insights into the process of how a prediction is being made. This

requires models and data that are non-complex. For instance, the model complexity can be

described by the type of parametrisation, the number of hyperparameters, and the number

of features. In DTs, the type of parametrisation is a linear splitting scheme. As this linear

splitting scheme is not complex, DTs are known for their interpretability. In DTs, the

number of hyperparameters can be measured as the number of nodes/splits as each node

involves a single hyperparameter. Hence, the number of nodes is a measure for the model

complexity (and inversely interpretability). For trading-off the model complexity with

accuracy, regularisation is typically used in training for the purpose of avoiding overfitting.

Hence, in a similar way accuracy and interpretability can be traded-off as in [38].

5.1.3 Maximising the robustness of classifiers

The third objective is to maximise the robustness of the classification decisions under

uncertainties in the input parameters, as costs/impacts and probabilities of contingencies.

The cost/impact of contingencies on the system C̃FN, C̃FP and γ̃ may be wrongly estimated

and these uncertainties result in sub-optimal prediction decisions. Some classifiers may

be more prone to these uncertainties than others, hence, it is proposed to consider this

uncertainty to select classifiers that are less prone.
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The objective is to minimise Eq. (5.2). However, actually, Eq. (5.4) is minimised as the

cost ratio γ is unknown and the estimate γ̃ is used. The impact of the uncertainty in

these estimates can be studied in a sensitivity analysis involving comparing the expected

normalised costs NΣ̃ from Eq. (5.5) with the normalised actual costs

NΣ =
(1− TP) ∗ Π+ ∗ (1−γ

γ ) + FP ∗ (1− Π+)

Π+ ∗ (1−γ
γ ) + (1− Π+)

(5.7)

that is similarly derived as Eq. (5.5). These two costs N˜ and NΣ are compared for

various errors ∆γ in the cost-ratios, where γ̃ = γ ±∆γ. This sensitivity analysis involves

computing the false negatives and false positives (FN,FP) = f(Z) for a given test set,

where f is the prediction function of the classifier and the decision threshold Z is varied.

Then, the normalised actual costs NΣ are computed from Eq. (5.7) using γ and the

normalised expected costs NΣ̃ from Eq. (5.5). Subsequently, the differences in these

costs are compared, and the various estimation errors ∆γ are studied to understand the

sensitivity of this cost difference. These studies can be repeated for multiple classifiers and

various decision thresholds to find the best combination of classifiers and threshold Z most

insensitive (robust) against uncertainties in the costs.

5.2 Multi-criteria selection of classifiers

This section presents the proposed rigorous workflow to select the best DT classifier, and

subsequently, introduces two approaches for graphical inspection to illustrate and show

the selection sensitivity to estimated parameters. The first graphical approach modifies

the ROC curve and allows considering the first two objectives: to minimise inaccurate

predictions and maximise the interpretability as shown in Fig. 5.10. The second approach

modifies the cost-curves, as shown in Fig. 5.5. The proposed modification to the second

approach allows trading-off on all three objectives.

The proposed workflow has two parts: (i) offline training and (ii) online selection. The first

part is the proposed offline workflow to train and prepare classifiers for application in the
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online selection workflow. The offline workflow of using the proposed cost-curve approach

is illustrated in Fig. 5.3. Initially, many classifiers are trained by varying some (hyper-

)parameters, such as the DT depth, and each classifier training follows cross-validation

resulting in N candidate DTs, Ω = {C(p)
i , ∀ i = 1, 2, ...,N}, and p ∈ 0 is the number

of DT nodes. Subsequently, the task is to select the best DT classifier from this set Ω

according to the introduced criteria of Sec. 5.1.

The second part is the proposed online selection workflow to consider realtime informa-

tion when selecting a classifier. The probabilities of contingencies Π+,Π−, the expected

cost of contingencies C̃FP , C̃FN , and the probability cost function’s (PCF) range of inter-

est [PCFL, PCFU ] ∈ [0, 1] are updated with real time data. The range [PCFL, PCFU ]

represents various expected combinations of contingency probabilities and expected con-

tingency costs. Then, for each DT C(p)
i , the normalised expected costs NΣ̃ are computed

with Eq.(5.5) within the range of [PCFL, PCFU ] at K user-defined, equidistant steps. The

average normalised expected cost is then computed as NΣ̃ =
∑K

i=1 NΣ̃
K , where NΣ̃ measures

on average the expected impact (e.g. cost of loss of load) of wrongly classifying the se-

curity status of an operating condition. Subsequently, the average normalised actual cost

NΣ (NΣ computed with Eq.(5.7)) is calculated assuming γ̃ = γ ± ∆γ within the same

[PCFL, PCFU ] range and K equidistant steps, where NΣ measures on average the actual

impact of wrongly classifying the security status of an operating condition. This step is

done to compare the sensitivity of a classifier C(p)
i to estimation errors ∆γ of the cost ratio

γ̃ that is assumed. The number of steps K is selected by the user, and the more steps are

selected, the better the resolution of both actual NΣ and expected NΣ̃ costs. Finally, the

proposed, optimal DT C(p)
i is the one with the minimum average relative costs across the

range of [PCFL, PCFU ] as G(Σ) = NΣ−NΣ̃
NΣ

, and DT nodes p ≤ a, where a is a user-defined

criterion that constraints the number of DT nodes, and keeping a small aims for high

interpretability. This is the optimal DT as the contingency probabilities and contingency

expected costs are uncertain.

The final cost-curve provides a graphical illustration of the sensitivity of selecting the best

classifier to minimise costs of missed and false alarms considering inaccurate estimations
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Figure 5.3: Proposed cost-curve workflow to select the best DT classifier offline. The selection can be
updated with real-time data.

of the costs C̃FP , C̃FN and probabilities of contingencies Π+,Π−. The DT C(p)
i whose

cost-curve has the least variation in the range [PCFL, PCFU ] is the most suitable DT

and would be the ideal DT from the perspective of cost uncertainty. The two proposed

graphical approaches are introduced as follows.

5.2.1 Visual inspection using the ROC curve

A color bar is used for the interpretability on the ROC curve, and the interpretability of a

DT model (here, in terms of the number of nodes) correlates inversely with the DT model

complexity. The ROC curve allows studying the performance of a binary classifier when

adjusting the decision threshold Z as illustrated in Fig. 5.2. The advantage of the ROC

curve is the visual ability to compare classifiers across ranges of various Zs instead of a

single point comparison that does not allow for variability, such as in selecting based on

computing the cost-optimal Z̃∗ using Eq. (5.6). Classifier comparison using the ROC curve

starts by drawing each classifier’s ROC curve. Subsequently, the cost-optimal decision

thresholds Z̃∗ are marked. An example is presented in Fig. 5.2.
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Figure 5.5: Proposed cost-curve based selection considering multiple criteria. The lime classifier has
the best trade-off in terms of interpretability and expected cost in the relevant interval 0.8 ≤ PCF ≤ 1.
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In this example, the DT classifier corresponding to the blue curve is the best in terms of

interpretability (fewer nodes), and the brown is the best in terms of accuracy (closest to

the top left corner). However, when considering these two objectives in the ROC curve

together, the best trade-off is the classifier corresponding to the cyan curve. Although the

interpretability is slightly worse than the blue classifier, the TPR is significantly better

(almost 0.05 higher). Also, the classifiers represented by the brown and green curves only

offer marginal improvements in terms of TPR. However, they are worse in terms of inter-

pretability. Therefore, the cyan curve is the best classifier in this example. This suggested

selection procedure can be quickly and visually performed by an operator to trade-off the

cost-optimality, accuracy, and interpretability using a single graphical approach.

5.2.2 Proposed cost-curve approach for graphical inspection

The proposed approach modifies cost-curves to include information on the sensitivity of

inaccurate estimations of the costs/impacts. The cost-curve shows the normalised expected

cost NΣ̃ from Eq. (5.5) with varying probability cost function PCF. This is the main

difference to the ROC curve where the expected costs of inaccurate predictions are not

directly presented such as in the cost-curve. The proposed modification of the cost-curve

allows selecting the best classifier by considering all three aforementioned objectives.

The construction of the cost-curve starts with the ROC curve of the classifier. The ROC

curve is constructed from a set of (TPR,FPR) points corresponding to applying different

decision thresholds Z to the score-output S of the classifier as illustrated in Fig. 5.2.

Subsequently, the cost-curve aims to investigate the normalised expected costs for each

of these points dependent on changes in C̃FN, C̃FP, Π− and Π+. Changes in these are

considered by using a single parameter, the probability cost function, defined as:

PCF =
Π− ∗ C̃FP

Π− ∗ C̃FP + Π+ ∗ C̃FN
. (5.8)

Subsequently, the normalised expected cost from Eq. (5.5) are



122 Chapter 5. Model Selection

NΣ̃ = (FP− FN) ∗ PCF + FN, (5.9)

where FP and FN can be directly computed from the ROC values TPR and FPR. Then, Eq.

(5.9) is the linear equation connecting the points (PCF,NΣ̃) = (0,FN) and (PCF,NΣ̃) =

(1,FP). The constructions of the lines corresponding to the blue points in Fig. 5.2 are

presented in Fig. 5.4a. The lower envelope of the cost-curve is the minimum costs that

can be obtained. This lower envelope represents selecting the cost-optimal Z̃∗ where the

Z applied to the classifier equalled Z = Z̃∗ = PCF. This final minimal cost-curve is

presented in Fig. 5.4b. The cost-curve shows the classifier performance across all cost-class

distributions whereas the ROC curve allows presenting only a single cost-optimal point.

Subsequently, the proposed approach is to use cost-curves for selecting the best classifier

along with the relevant range of cost-class distributions as shown in Fig. 5.5 to ensure the

best selection according to the discussed multiple objectives.

The sensitivity of errors in estimating the cost ratio γ̃, on the selection based on cost-

curves can be studied by computing the corresponding actual cost-curve for NΣ based on

the actual cost γ assuming an error ∆γ as pointed out in Sec. 5.1.3. Firstly, recall that

the estimated cost ratio γ̃ influences the choice of Z̃∗ and that the cost-curve is defined

by Z = Z̃∗. If the choice of estimated cost ratio γ̃ differs from the actual cost ratio γ,

then the normalised actual cost can be computed based on the actual value of γ and can

be presented similarly as the estimated cost-curve. The PCF values do not differ for the

normalised expected and actual costs as the threshold Z̃∗ is based on the expected cost

ratio of γ̃. This modification of the cost-curve allows for considering the cost/impact of

estimation errors in γ̃ and represents another advantage over the ROC curve. Subsequently,

the proposed cost-curve approach can consider interpretability using color schemes in the

same way as in the ROC curve approach. Consequently, this approach considers all 3

objectives as criteria for visual inspection.
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Figure 5.6: The predicting performance of classifiers with 7 different DT depths. The box plots in (a)
show min, max, interquartiles, and median for 22 × 7 = 154 trees. Using (a), the 22 classifiers with
the highest F1 score are selected and the selection-frequencies are in (b).

5.3 Case study

In this case study, firstly, the challenge of sub-optimal selections when using a single objec-

tive in selecting classifiers is studied. Secondly, the effectiveness of the proposed workflow

that considers multiple objectives concurrently to select the best DT classifier is studied,

with visualisation using the two proposed graphical approaches. Thirdly, the proposed

workflow is studied when considering the uncertainty of the cost estimations. Finally, the

computational times of the proposed workflow are studied and the limitations are discussed.

5.3.1 Test system and assumption

The case study is mainly carried out on the IEEE 68-bus system and the scalability is

demonstrated in a study of the French transmission system.

The first data set for this case study was generated using the network data from the

IEEE 68-bus system [131]. ND = 12000 operating conditions were sampled as follows. The

active loads were sampled from a multivariate Gaussian distribution (via Monte Carlo sam-

pling), and the correlation was assumed to follow Pearson’s correlation with a correlation

coefficient of 0 75. The distribution was converted to a marginal Kumaraswamy(1.6,2.8)
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distribution using the method of inverse transformation. The AC-model of the network was

used to compute the active and reactive powers of generators to ensure feasible operating

conditions. This sampling process of the IEEE 68-bus system results in 12000 samples,

where each describes the operating condition of the power system in a steady-state. Then,

all phase angles and voltages, reactive and active power flows, and the reactive and active

power injections were used to construct the feature vector X ∈ RND×NF , where NF = 438

was the number of features. For each of these 12000 operating conditions, the transient

stability response to faults was simulated using MATLAB Simulink. NC = 22 different

three-phase line outages were simulated as event-type events on the pre-fault steady-state

condition and the faults are cleared after 0.1 s. The simulation time was 10 s on a standard

desktop computer. If at any point in time, the difference of any phase angles of the genera-

tors was larger than 180◦, then the operating condition for that particular contingency was

considered unstable, and the corresponding element of the label matrix Y ∈ {0, 1}ND×NC

was set at 0 for unstable, otherwise stable 1. In total ND × NC = 12000 × 22 = 264000

simulations were performed as each of the 22 contingencies need to be independently sim-

ulated.

The second data set of the French transmission system was used. The French transmission

system had 1955 transmission lines, 798 transformers, 1886 buses, 411 generators and 127

shunt elements. This data-set consisted of ND = 16722 operating conditions in a feature

vector X ∈ RND×NF , where NF = 35873 is the number of features. To generate a single

data point required 56 s time on a computer cluster [42] and 1980 different contingencies

were analysed where each required a single time-domain simulation. Subsequently, the

time-domain simulations were assessed and 9 reliability metrics were computed, including

overload, loss of synchronisation, over/under-voltages, small-signal stability, transient sta-

bility, et cetera. More details can be found in [42, 96]. This second data set was used to

demonstrate the scaling of the proposed approach.

The subsequent processes of the training workflows (feature selection, DT training, et

cetera.) were carried out on a Dell XPS 13 9360 running an Intel(R) Core(TM) i5-8250U

processor with 8 GB installed RAM. DTs were trained with the CART alrorithm [135]
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Figure 5.7: Tree structure of a DT with DT depth of 3. P and Q are the active and reactive power-flow
between buses, and V is the voltage at the bus.

from the package scikit-learn 0.18.1 [134] in Python 3.5.2. The default training settings

were selected except using gini impurity instead of entropy to measure the quality of the

splits. The data-set was split into training/testing sets in ratio of 75% / 25%. The

feature variable X was used and the labels Y were used as the input for the training of

the classifier, however, for each contingency, a single DT was trained (in total 22 DTs).

5-fold cross-validation was applied to address under-/overfitting. Subsequently, the Platt

method was used to calibrate the score-output S of the classifier [136].

5.3.2 Selections based on single criteria

The first study illustrates the effect on the model interpretability when predictive accuracy

is used for selecting the model. Typically, the F1 score or the test accuracy is used for

selecting the model. In this study, firstly, DTs were trained for the depths {1 − 20} for

each of the 22 contingencies. Subsequently, 5-fold cross-validation was used to select the

best DT depth based on the highest F1 score. Fig. 5.6a presents the F1 accuracy values

for all different tree depths involved in this study showing that an increase in tree depth

on average results in higher F1 scores, however, over-fitting occurred for larger depths

than 9 and no tree was selected with a depth larger than 9. Fig. 5.6b shows the exact

breakdown of the final selected classifiers and most of the selected 22 DT depths were
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Figure 5.8: Ratio between missed( ) and false( ) alarms for the 22 DTs without considering the impact
of different costs. Π+ is the class ratio of positive conditions.

around larger depths of [5, 9]. However, the DT structures of larger trees are not easily

readable (interpretable). For example, a DT with DT depth = 3 (Fig. 5.7) has 15 nodes.

Conversely, a DT with DT depth = 9 has 100 nodes. When focusing only on the predicting

accuracy, the user may select the DT with depth = 9 as the F1 score of 0.975 outperforms

the tree with depth = 3 having an F1 score of 0.96. However, when focusing only on the

interpretability, the operator may select the tree with DT depth = 3 with a lower F1 score

of 0.96. These two criteria are contrasting and require a suitable trade-off.

The second study investigates the impact when considering neither the difference in ex-

pected costs nor the class imbalances. Typically classifiers are trained to minimise the

test inaccuracy, and this is insensitive to the differences in costs and the imbalance and

is therefore prone to more missed alarms than false alarms. The 22 DTs from the first

study were used, and their relationship between missed and false alarms was investigated

in Fig. 5.8. In this training procedure, neither the impact of costs nor class imbalances

were considered. It shows: when the imbalance is large, for instance when many more pos-

itive than negative operating conditions are in the database (toward high Π+), the share

of missed alarms increases significantly. This is not in favor of operators, as typically the

expected cost for missed alarms is large than that of false alarms CFP + CFN, hence the

operators aim to avoid missed alarms. Here, it is assumed that CFP : CFN = 2 : 1. However,
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Figure 5.9: Ratio between missed( ) and false( ) alarms for the 22 DTs by considering the impact of
different costs.

when the 22 DTs and a shifted decision threshold Z̃∗ from Eq. (5.6) was used as described

in Sec. 5.1.1, then the ratio of missed alarms decreased significantly as demonstrated in

Fig. 5.9. Ideally, when considering the costs and imbalances, the ratio of missed and false

alarms would have been constant for all different contingencies with different imbalances.

However, Fig. 5.9 shows an increase of missed alarms toward high class imbalances of high

Π+. The reason is that these trained classifiers for high Π+ have more knowledge avail-

able on positive than on negative operating conditions and are therefore more accurate on

positive conditions. Cost-sensitive learning aims to address that imbalance, however, can

never fully address it. This highlights another trade-off that needs to be made between

minimising test inaccuracy and the impact of different costs. These two studies showed

that considering a single criterion is insufficient when selecting a classifier.

5.3.3 Multi-criteria selection with modified ROC approach

In this study, the proposed selection workflow is investigated using the modified ROC

approach. This workflow allows for a visual inspection of the accuracy performance and

interpretability at the same time when selecting the classifier. Firstly, a variety of classifiers

were trained with tree depths of {2, 3, 4, 5}. To select the best classifier, the ROC approach

was applied as follows: the TPR and FPR values for each tree were obtained by varying
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the decision threshold Z̃∗ within [0, 1]. The TPR and FPR values are obtained from the

test set and each combination TPR and FPR values represent the classifier being used

with a different decision threshold. Subsequently, their values were plotted for each of the

4 trees in Fig. 5.10. The color spectrum shows the different levels of interpretability (or DT

depths). The blue tree is most interpretable while the brown tree is the least interpretable.

Subsequently, the cost-optimal points for each tree were marked with the X symbol for

an assumed cost ratio C̃FP : C̃FN = 2 : 1. These points represent the cost-optimal use

of the given tree with the specified cost ratio. The ROC approach can be used to select

the best among these 4 cost-optimal DTs. For instance, the lime and cyan curves (and

points) are noteworthy. Both classifiers have similar values for TPR and FPR. However,

the classifier represented in the cyan color offers higher interpretability and is the final

classifier. It would be difficult to see the similarity of these two curves by analysing the

predicting performances based on data and hence the proposed selection is more robust

as the entire curve can be assessed while keeping the focus on the comparison of the cost-

optimal points. The proposed approach increased interpretability by 82% (on average 30

DT nodes in the proposed approach and 54 nodes when focusing only on accuracy) while

the accuracy slightly decreased (0.960 in the proposed approach and 0.964 otherwise).

5.3.4 Multi-criteria selection with cost-curves

In this study, the proposed selection workflow with graphical inspection using the cost-

curve approach is in focus. The cost-curve approach allows for visual inspection of the

accuracy performance, the interpretability, and quantifies the expected costs of misclassifi-

cations. The same DT classifiers with tree depths of {2, 3, 4, 5} were used as in the previous

study. The construction of the cost-curves followed the steps described in Sec. 5.2.2. The

four resulting cost-curves are presented in Fig. 5.5. Showing these curves allows comparing

classifiers across different intervals of costs instead of a single point-wise comparison as in

the ROC curve approach. This is useful as the class-cost distribution PCF can change fre-

quently (PCF is a function of the likelihood of contingency and the outage costs calculated
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Figure 5.10: Selection based on modified ROC curves for multiple criteria. The DT classifier in cyan
has the best trade-off in terms of cost-optimality (x on the curve) and interpretability (the number of
DT-nodes from 0 to 50, where 0 is on the left side of the color scheme ).

using Eq.5.8, where it is assumed that C̃FP : C̃FN = 2 : 1). In this example, the relevant

region is 0.8 ≤ PCF ≤ 1 as this is where high class imbalances are (toward large Π+).

The brown classifier has the lowest expected costs Σ and the blue classifier has the highest

interpretability. The expected cost of the brown and lime classifiers are similar within the

relevant region, however, the lime classifier has a steeper curve for PCF values lower than

around 0.9. Also here, an operator may select the lime classifier as it represents a good

trade-off between interpretability and normalised expected cost in the relevant interval.

This proposed novel cost-curve approach can be used by an operator to study cost-class

distribution intervals, and goes beyond the point-wise comparison that would be possible

with ROC-curves or other data-based comparisons. These are additional insights to the

model-selection.

5.3.5 Reduction of loss of load costs under uncertainties

In this study, the proposed selection workflow is investigated when considering uncertain-

ties in estimates of the cost parameter γ̃. An error of 20% was assumed, where∆γ = ±0.2γ
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Figure 5.11: Sensitivity study on errors in estimations of parameter γ̃. The actual costs NΣ under
the error of +20% ( ) and −20% ( ) are presented against the estimated costs N Σ̃ that is shown
as the baseline. In (a) and (b) are the lime and cyan DTs from Fig. 5.5.

for the two classifiers from the previous study (lime and brown of Fig. 5.5). The actual

normalised cost for loss of load NΣ using γ for the various PCF values based on γ̃ were

computed for three cases as described in Sec. 5.2.2, where the baseline is ∆γ = 0 repre-

senting no error and the two error cases ∆γ = ±0.2γ. Subsequently, the three cases are

presented in Fig. 5.11. In the baseline case, the normalised expected cost NΣ̃ for loss of

loads equals the normalised actual costs NΣ of loss of loads. In cases with errors, the

actual costs NΣ deviate from the expected costs NΣ̃ in both classifiers. In the relevant

region, 0.8 ≤ PCF ≤ 1, the brown classifier shows a higher variability in the impact of

parameter estimations. This is also demonstrated by analysing the average costs NΣ, NΣ̃,

and standard deviations σNΣ, σNΣ̃. Table 5.1 shows the brown classifier has a higher stan-

dard deviation than the lime classifier. In addition, the relative change in operating costs

for loss of load G(Σ) is lower in the lime classifier 13% versus 18% for the brown classifier

(in the case ∆γ = +0.2γ). Thus the lime classifier is more robust against uncertainties,

estimation errors and is, therefore, the final selected classifier under this viewpoint.
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γ −0.2γ 0 +0.2γ
Lime classifier (depth 4) 2.7(.7) 3.1(.7) 3.5(.7)

Brown classifier (depth 5) 2.4(.7) 2.8(.8) 3.3(.9)

Table 5.1: Actual normalised costs NΣ (to the basis 10−2) considering errors of 20% in γ̃. The
presented values are averages and standard deviations in the interval 0.8 ≤ PCF ≤ 1 of Fig. 5.11.

5.3.6 Computation time and scalability

The scalability of the proposed selection workflow is analysed both for larger systems and

for comparing many DT classifiers.

Table 5.2 shows the computational times for the offline workflows and testing the classifiers

online on both the IEEE 68-bus and French systems. The table shows the average time for

ten contingencies selected at random that have a balanced class distribution (Π− ≥ 35%).

Scalability of proposed selection workflow to larger systems

The proposed selection workflow scales well with the size of the system. Table 5.2 shows

the average time for plotting cost-curves is similar for both the IEEE 68 bus and French

systems, 0.06 s and 0.07 s respectively. The data generation and feature selection are,

however, dependent on the size of the network.

Comparing many classifiers with cost curves

Table 5.2 shows the data generation is the most computationally intensive step in the ML

workflow with more than 99.9% of the time. The DT training time, on average 0.4 s for the

IEEE 68 bus system, and 2.4 s for the French system, is negligible in comparison. Thus,

many DTs can be trained and afterward compared. However, as the proposed selection

workflow allows for the comparison of a small number of classifiers at a time (in the order

of 5), a pre-selection step can be added. For instance, a metric-based selection approach

can be used (example F1-score), to reduce the number of candidate classifiers.
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State Process IEEE 68 bus French System (1886 bus)
Data generation 40min 260 h

Offline Feature selection (4.0± 0.8) s (8.7± 3.8)min
DT training (0.40± 0.01) s (2.4± 3.5) s
DT testing (0.01± 0.01) s (0.03± 0.02) s
Cost curve plotting (0.06± 0.01) s (0.07± 0.03) s
Selection by operator 5 s 5 s

Online Prediction < 0.01 s < 0.01 s

Table 5.2: Computation time for the offline and online workflows showing the proposed approach to
compute cost curves for classifier selection scales well to large systems.

5.3.7 Discussion

The proposed selection workflow selects security rules with 5% lower relative operational

costs under uncertainties in the potential impacts of contingencies (e.g., loss of load). Ad-

ditionally, the proposed workflow increases model interpretability by up to 80%. This

proposed workflow is a pivotal step toward manual inspection of security rules and sup-

ports operators building up the trust for using these rules in the critical task of DSA.

The proposed workflow is fast and adaptive. It takes less than 1 s to plot the cost-curves

and around 5 s to select the best security rule. In addition, the workflow allows studying

sensitivities on the input parameters when the basis for choosing decisions changes, and in

response, adjusts quickly to these changes. Such an adaptive approach for model selection

is needed as the future power system is ever-shifting. For instance, the probabilities of

contingencies and the impact of faults can change within hours. In binary classification,

it is important to consider the costs associated with misclassifications. However, defining

the cost of an incorrect prediction can be challenging if the model does not predict certain

outcomes, such as loss of load. In such cases, it becomes necessary to contextualize the

costs by incorporating relevant metrics that reflect the potential consequences of misclassi-

fications. Metrics such as the value of loss load or customer average interruption duration

index can be utilised to concretise the estimated and actual costs of misclassifications. By

incorporating these metrics, a more comprehensive understanding of the implications and

impact of incorrect predictions can be provided. This approach improves the usability of

the metrics and models by providing a clearer picture of the costs associated with misclas-
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sifications, even in scenarios where the model does not directly predict specific outcomes.

A first limitation of the proposed workflow is to conceptualise an intuition for the parameter

sensitivities as they do not directly have a physical meaning. The sensitivity serves as a

relative comparison between different security rules as a tool to compare them and decide on

the best security rule. A second limitation is that the proposed workflow does not support

different types of models (e.g., neural networks and DTs), as in this work, interpretability

is defined for a single type of model, DTs. There, recent advancements on using SHAP

values [110] offer new insights into a generalised definition of interpretability which can be

used to compare amongst different types of models beyond DTs.

5.4 Conclusion

This proposed work showcased a promising application for methods from the field of AI

which is DSA for power systems. This work also provides insights into the importance of

metrics and criteria to learn models from AI for DSA and beyond. Those insights are trans-

ferable from DTs exercised in this work to other AI models. This work focuses on selecting

a DT model for power system security assessment. Typically, a single selection criterion,

the predictive accuracy is used, resulting in sub-optimal data-driven security rules. As a re-

sult, security rules are often not interpretable and can result in many missed alarms. These

missed alarms have very high risks and economic costs for system operations. In response,

this work proposes a rigorous selection workflow to consider multiple objectives in the

model selection: accuracy, interpretability, and cost-robustness. The workflow increases

interpretability by more than 80% while making minimal compromises in the predictive

accuracy. Likewise, the proposed workflow reduces expected relative operating costs by

around 5% with little compromise in the predictive accuracy. Other single-objective-based

selection approaches miss such trade-offs, and finding these trade-offs is the key advantage

of the proposed workflow. Also, the proposed workflow is fast and adaptive to new situa-

tions of system operation. The proposed workflow computes cost-curves within less than

0.1 s, and operators can select the best security rules based on analysing the sensitivity to
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new situations. This adaptation is crucial as it increases interpretability through visual

inspection and offers a high degree of situational awareness to the operators. In the future,

this work shall consider selections across different types of models and include a general

definition of interpretability.



Chapter 6

Machine Learning in Real-time

Operation

“AI is a tool. The choice about how it gets deployed is ours.”

—- Oren Etzioni

The classical formulation of the transmission switching problem as a mixed-integer problem

is intractable for large systems in real-time control settings. Several heuristics have been

proposed in the past to speed up the computation time, which only limits the number

of switchable lines. In this chapter, this thesis presents a real-time switching heuristic

based on Neural Networks that provides almost instantaneous switching actions. The

findings are demonstrated on a case study of the IEEE 118-bus test system, and the

results show that the proposed heuristic is robust to out of distribution data. Additionally,

the proposed heuristic has significant computational savings while all other performance

metrics like accuracy are similar to state-of-the-art machine learning methods proposed for

transmission switching.

135
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6.1 Introduction

Transmission switching (TS) involves the opening or closing of circuits or substations in a

transmission network and has been used as a control mechanism by power system operators

(SO) to improve voltage profiles and manage congestion on the electric network [73][160].

Although power networks are planned with redundancies to handle multiple contingencies

and deal with the uncertainty of future operating conditions, in real-time operation, SOs

could use TS to efficiently operate the network infrastructure according to the loading con-

ditions and generator costs. From a reliability perspective, circuits can be switched off to

improve cost in normal operations and brought back during contingencies [73][74]. Other-

wise, TS happens while considering possible contingencies. Further work by Hedman [75]

showed that TS does not inherently deteriorate reliability in the event on contingencies.

Importantly the short-term operations savings can be up to 25% of dispatch costs on the

IEEE 118-bus system [73].

Fisher’s flagship paper [73] formulated the TS problem as a mixed-integer problem (MIP)

that considers a DC optimal power flow (DCOPF) with binary variables tracking the state

of lines as on or off. The formulation adopts the big-M method that constrains the line

flows on switched-off lines to zero. As the SO schedules new dispatches every 5 minutes for

the power system [161], solving for this optimised network topology and verifying as AC

feasible ought to be done within that time frame. However, the computational burden of

solving even the DC formulation of the TS problem in real-time prevents the adoption of

TS in the control room as it is an NP-hard problem [162][163]. To quantify the magnitude

of the search space, the IEEE 118-bus test case, which is small compared to real-world

power systems, has 186 lines and thus 2186 switching possibilities. Exploring such a search

space is intractable with modern-day computing power.

Heuristic approaches based on greedy local search using sensitivity-based algorithms [164][165],

constraint identification techniques [76], and power transfer distribution factors (PTDFs) [166],

have been proposed to improve the computation speed. The sensitivity-based heuristics

involve reducing the large search space of the original MIP problem into a computationally
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tractable problem by ranking candidate switching actions. This ranking allows the easy ex-

ploration of possible ’relevant’ line switches with the computationally inexpensive solution

of multiple DCOPF problems. In [164][165] the dual problem of the DCOPF informs how

the authors rank the switchable lines based on a line’s tendency to improve the baseline

dispatch cost. The baseline cost considers a topology with all lines as closed. A greedy

local search of such a sensitivity-based ranking involves solving all possible DCOPFs for

every possible line switching action [167][161]. High performance computing (as in [168])

and priority listing (as in [164][169]) may be used to reduce the computation burden. The

main drawback of these heuristics is their scalability to large networks, as they only pro-

vide a limitation on the number of switching options and then greedily search the reduced

solution space. Granted, very few lines result in the largest cost reductions [73][170]. An

alternative sensitivity-based heuristic involves active constraint identification proposed by

Crozier [76] to determine the need for TS in a congestion setting. The approach ranks

the sensitivity of constraints on the dispatch cost when there is a mismatch between the

DCOPF with economic dispatch (ED) and iteratively eliminates the constraints while solv-

ing a series of DCOPF problems. A different approach to the sensitivity-based heuristics

avoids solving multiple DCOPFs and instead computes the PTDFs as done in ref [171].

However, these heuristics only work for a limited number of line switches and introduce

sub-optimality resulting in higher normal operating costs than necessary.

Machine learning (ML) is promising to outperform heuristics in power system applications

or make completely new applications feasible for the first time. For example, ML can

simplify power system reliability studies [1] so they can run in real-time while avoiding

sub-optimalities otherwise introduced by heuristics. There, when selecting a supervised

ML model for real-time reliability studies [95], the topological configuration can result

in discrete changes in the underlying data distributions that challenge the learned ML-

models [172]. Hence, exploring these discrete topological changes is an alternative that is

then trained to an ML-model through reinforcement rather than in supervision [173]. Such

explorations can enhance the operator’s experience and heuristics that would otherwise

never use the explored actions.



138 Chapter 6. Machine Learning in Real-time Operation

To use supervised ML within the OTS framework is a new proposal to improve solution

times of the OTS problem, as the canonical MIP formulation introduced by Fisher [73] is

intractable in practical settings. A major advantage of the ML approach is the reduction

in computation time required to select a candidate topology, which makes it a suitable ap-

proach to applying in real-time by the SO. The proposed ML workflow for TS is shown in

Fig. 6.1. There, the ML model is trained offline on historical operating data, and near-real

time, proposes feasible topological configurations for possible operating conditions. After

the physical feasibility of the proposed topology is confirmed, the proposed topology is con-

figured in real-time. Previously, the authors in [167] use ML to predict a list of high priority

candidate line switches. There, ML models including a decision tree, a k-nearest neighbour

(KNN), and a feed-forward multilayer perceptron artificial neural network (ANN) identify

sets of suitable lines for TS. Moving the research further, Johnson [161] proposed a KNN

heuristic to explicitly learn k-best candidate topologies for different load profiles. There, a

classifier learns the relationship between operating conditions and their optimal topologies

and proposes k nearest candidate topologies to evaluate the best topology for a new load

profile. The results show that the KNN heuristic has negligible computational bottlenecks

and can provide significant cost savings on dispatch costs. However, the KNN model faces

scalability issues related to k-neighbours in higher dimensions [174]. Additionally, the

robustness of the KNN heuristic to out of distribution data is in question.

Neural Networks have previously been used in power system classification problems. [175]

reviewed fault detection methodologies in power systems, and ANNs are suitable non-

parametric models for the fault detection classification problem. Due to the non-linear

activation functions of ANNs, they can capture non-linear dependencies of complex dy-

namic systems as power systems [167]. The perceptron-layered network has been a popular

ANN architecture for classification problems in power systems. Particularly, the 3-layered

radial basis function neural network (RBFNN) architecture is robust to inputs not in the

training data [176]. This robustness makes it a favourite for power systems classification

problems such as fault detection. RBFNNs [177] have been shown to perform well in terms

of accuracy, interpretability, training data and time over other feed-forward architectures
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Figure 6.1: ML workflow for real-time topology change

like multilayer perceptron and probabilistic neural networks in other fields as well.

The contributions in this chapter are as follows: (i) we propose an RBFNN heuristic that

is robust to noisy data to predict the TS solution in real-time settings considering J

maximum line switches. The proposed heuristic provides significant computational savings

with similar accuracy performance as state-of-the-art ML heuristics for TS (ii) we propose

a modified optimisation formulation of the TS problem to speed up the offline generation

of training data.

The rest of the chapter is structured as follows: Section 6.2 introduces the proposed RBFNN

heuristic and describes the RBFNN architecture. Firstly, the KNN and greedy search

heuristics considered for comparison are briefly described. Section 6.3 presents a case

study that compares the performance of the proposed RBFNN heuristic with KNN and

greedy-search heuristics relative to a baseline best-known solution obtained using Gurobi-

based heuristics. Section 6.4 concludes the chapter with an outlook for future work.

6.2 Heuristic approaches

This section introduces the proposed RBFNN heuristic and other state-of-the-art heuristics

in the literature. The computational complexity of the heuristic approaches considered are
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also presented.

ML-based heuristics assume the availability of solved TS instances ΩS to learn the mapping

between input features (loading conditions) and output vectors (topology). Generating this

set of solved TS instances ΩS often requires solving a relaxed MIP problem of DCOPF.

This chapter adopts the MIP formulation in Fisher [73] slightly modified to penalise the

objective function. The formulation considers a single period economic dispatch problem

with binary variables to track switching decisions, where (zl = 1) and (zl = 0) indicate

available and unavailable lines, respectively.

The proposed modified objective function in Eq.(6.1) explicitly considers the switching

action alongside minimising the generation costs CgPg, thereby improving the solution time

of the MIP problem. This explicit consideration of switching actions is the minimisation of

the Euclidean distance wl(z∗l − αl)2 between the binary variables zl and the base topology

that considers all lines as available α|Ω|
l ∈ {1}|Ω|, where wl is a weighting parameter that

determines the contribution of the switching action to the cost minimisation function, which

can be tuned in the orders of magnitude of the cost function or scaled down to regulate

the effect of the penalty contribution. The physical constraints that ensure the capacity

of power systems are met are in Eqs.(6.2)-(6.5) and the big-M method in Eqs.(6.6)-(6.7)

ensures that when a line is switched off (zl = 0), the line flow constraints on other lines

that share same bus connections remain active. θb, θm ∀ l represent nodal angles for a line

l connecting buses b,m and b )= m. J in Eq.(6.8) sets an upper bound for the number of

transmission lines that can be switched at all times.

All ML-based heuristics consider a set of TS solved instances ΩS generated using the

formulation in Eqs. (6.1)-(6.9).

minimise
Pg ,zl

∑

g

CgPg +
∑

l

wl(zl − αl)
2

subject to
(6.1)

θmin
b ≤ θb ≤ θmax

b , ∀ b (6.2)
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Algorithm 5 Proposed RBFNN heuristic for real-time TS
Require: set of solved TS instances ΩS = {{X1, Y1}, {X2, Y2}, · · · , {Xr, Yr}}

1: Train RBFNN using ΩS

2: To solve a new instance Xr+1, use Xr+1 as input into RBFNN to get Yr+1

3: Solve:

minimise
Y ∗
r+1

|Ω|∑

i=1

(Y ∗
r+1 − Y i

r+1)
2

s.t Eqs. (6.2)-(6.9) are satisfied
where Y i

r+1 ∈ {0, 1},

4: Yr+1 ←− Y ∗
r+1

5: return Yr+1

Pmin
g ≤ Pg ≤ Pmax

g , ∀ g (6.3)

Pmin
l zl ≤ Pl ≤ Pmax

l zl, ∀ l (6.4)

−
∑

l

Pl −
∑

g

Pg −
∑

e

Pe = 0, ∀ b (6.5)

Bl(θb − θm)− Pl + (1− zl)M ≥ 0, ∀ l (6.6)

Bl(θb − θm)− Pl − (1− zl)M ≤ 0, ∀ l (6.7)
∑

l

(1− zl) ≤ J (6.8)

zl ∈ {0, 1}, αl ∈ {1} (6.9)

In the rest of this section, this work presents the proposed RBFNN heuristics and describe

other heuristics considered for comparison as follows. These heuristics serve as baseline

for state-of-art approaches to transmission switching and show how the proposed RBFNN

differ in its approach.

6.2.1 Proposed RBFNN Heuristic

The proposed RBFNN heuristic is presented in Algorithm 5. The heuristic assumes the

availability of many solved instances of the TS problem ΩS = {{X1, Y1}, {X2, Y2}, · · · , {Xr, Yr}}

that covers a range of possible operating conditions, where Xr represents the loading condi-

tion and f(Xr) = Yr ∈ {0, 1}|Ω| are optimised topologies. Then, in real-time, the RBFNN
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considers active load profiles Xr+1 as inputs and outputs a topology Yr+1 that can minimise

the dispatch cost considering TS. An example architecture of the RBFNN (presented in

Fig. 6.2) is composed of 3 layers, the input layer, a non-linear hidden radial basis function

(RBF) layer, and an output layer. The activation function of the non-linear hidden layer

of the RBFNN architecture maps the input vector X

Φ(X) = e−β||x−µ||2 (6.10)

to a Gaussian function such that the feature space spans a set of Gaussian neural nodes.

The Gaussian function is well-suited for capturing non-linear relationships in the data, by

assigning higher activation values to inputs that are closer to the center points and lower

activation values to inputs that are farther away, which creates a smooth and continuous

transformation of the input space, allowing the network to capture intricate patterns and

non-linear relationships in the data. The node centers µ are initialised with a K-means

clustering algorithm, and the output of each node depends on ||x − µ||, such that similar

inputs X in the Euclidean space generate similar outputs. β is a hyper-parameter of

the hidden-layer to be tuned. The activation function of the output layer is a linear

transformation of the weighted sum of all the outputs of the non-linear hidden layer wij.

The training of the RBFNN with input vector X, hidden layer weights W , and output

vector Y uses the Least Squares Linear Regression (LSLR) to obtain the weights

W = (XTX)−1XTY (6.11)

The exponential activation function allows the RBFNN to provide confidence intervals of

predictions which is an important feature as SOs prefer to be in the decision loop when

using ML-based approaches [173].

Finally, in real-time, the RBFNN model accepts as input the current load profiles Xr+1

and instantaneously outputs a TS solution Yr+1. As it is possible that Yr+1 is not a feasible
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Figure 6.2: An example RBFNN architecture

solution, the algorithm solves the optimisation

minimise
Y ∗
r+1

|Ω|∑

i=1

(Y ∗
r+1 − Y i

r+1)
2 (6.12)

while satisfying the constraints in Eq. (6.2)-(6.7). Solving this optimisation returns the

nearest feasible topology Y ∗
r+1 in the event that the TS solution obtained Yr+1 is not

feasible.

6.2.2 KNN Heuristic

The KNN heuristic is based on Johnson [161], where a mapping exists between vectors

of OCs X and the known DC optimal switching instances f(X) resulting in a set ΩS of

TS solved instances. The KNN heuristic trains on the training data ΩS, and in real-time

chooses k instances that are similar to a candidate OC X based on the Euclidean distance

or l∞-norm. Subsequently, k-DCOPFs are solved and the TS instance with the lowest

dispatch cost is returned as the selected switching action.
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6.2.3 Sensitvity-based Greedy Search Heuristic

Another heuristic considered is the heuristic proposed in Fuller [164] to rank the lines

according to the sensitivity parameter of the dual of the DCOPF (nodal price). Subse-

quently, the algorithm iterates over half the ranked lines in a sequential manner as done by

Yang [167] termed the line enumeration algorithm. The algorithm starts with a baseline

cost considering a topology with all lines in service. At the i-th iteration, the algorithm

then solves |Ω|− i DCOPF problems by opening single lines according to the line ranking

and permanently switching off the line that results in the most cost improvement. Starting

with i = 0, the algorithm continues until there is no cost improvement or the upper limit

of switchable lines
∑

l(1− zl) = J is satisfied.

6.2.4 Gurobic Heuristic

The Gurobi heuristic solves for the optimal TS problem described in Eqs. (6.1)-(6.9). This

work also considers this formulation as a heuristic as there is a limit to the upper-bound

of switched lines
∑

l(1 − zl) ≤ J . This heuristic serves as the yardstick to compare the

different heuristics.

6.2.5 Computational complexity

The computational complexity of the different heuristics differ depending on whether the

comparison is offline or online. In the offline setting, the ML approaches generally require

a significant amount of time that increases relative to the size of the test network, as com-

putationally expensive MIPs need to be solved to curate the set ΩS. Training the RBFNN

varies with the number of neurons in the architecture and the number of epochs, but the

simple architecture of the RBFNN allows for a linear training time. The offline training

time for the KNN heuristic is dependent on the k-neigbours. The offline computation for

the sensitivity-based greedy local search heuristic is trivial as it requires only solving a

DCOPF.
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In the online setting where there is a huge constraint in time, an exhaustive search for

the greedy search heuristic requires O(|Ω|2) DCOPF solves and thus scales poorly in large

systems. The KNN heuristic depends on the k DCOPFs required to be solved. The

RBFNN heuristic provides almost instantaneous solutions that requires at most a single

DCOPF solve to verify feasibility. Thus, it is expected that the proposed RBFNN heuristic

will provide significant computational improvements in the online setting even with the

feasibility verification step.

6.3 Case Study

In this section, this work showcases case studies to compare the proposed RBFNN heuristic

with the KNN, sensitivity-based Greedy Search, and Gurobi-based heuristics. The first

study investigates the performance of the heuristics to out of distribution data as a measure

of robustness. In the second study, the real-time performance of the heuristics in respect

to cost savings and computational time are compared. The third case study highlights the

offline computational improvements of the modified MIP formulation. Finally, a discussion

section concludes the case study section.

6.3.1 Test System and assumption

The case studies use the modified IEEE 118-bus test case in Blumsack [178]. The load

profiles are generated via Monte Carlo sampling. The active loads were sampled from

a multivariate Gaussian distribution and assume the correlation between loads to follow

Pearson’s correlation with a correlation coefficient of 0.75. The distribution was then

converted to a marginal Kumaraswamy(1.6,2.8) distribution using inverse transformation.

A ±10% variation is consdered in the load distribution for the training data-set. The

optimisation in Eqs.(6.1)-(6.9) is then ran for each load profile with an upper-bound on

switching actions J ≤ 5. The training data is then a feature space comprising 1000 active

load profiles Xr ∈ {Pe} and labels that correspond to a binary sequence Yr ∈ {0, 1}|Ω|,
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Figure 6.3: Change in average dispatch cost (∆q̄) with variation in load distribution for the proposed
RBFNN ( ) and (a) KNN ( ) (b) a feed-forward ANN ( ) heuristics.

where Y i
r = 0 and Y i

r = 1 represents the i-th line as absent and present, respectively. In

studying the real-time computational performance, all previously introduced heuristics are

tested on 200 active load profiles with ±35% variation in the load distribution. Unless

otherwise stated, all studies consider the ±35% variation in the testing data.

All optimisation problems were implemented using the package Pyomo 5.6.8 [137] in Python

3.7.4 and solved using Gurobi 9.5.0 [152]. The RBFNN is implemented using Keras package

2.8.0, with root mean squared propagation (RMSprop) as the optimiser and mean squared

error as the loss function. The activation function between the input and hidden layer, and

between the hidden and output layer is linear. A sigmoid activation function is included

after the output layer such that all outputs lie in the range [0, 1]. The β parameters of the

hidden layer were 0.001, and the training considered an epoch length of 200 and a batch

size of 5.

6.3.2 Performance of heuristics on out of distribution data

This case study investigates the performance of the proposed RBFNN heuristic to out of

distribution data. This study compares the proposed RBFNN heuristic against the KNN

heuristic and a feed-forward perceptron ANN. The feed-forward ANN follows Algorithm (5)
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similar to the proposed RBFNN with the difference only in the model architecture of 5

as opposed to 3 layers. All the heuristics were trained considering a ±10% variation in

the load distribution as described in Sec. 6.3.1. The baseline performance is considered

using data not in the training set but following a similar ±10% variation. Subsequently,

the relative change in performance of the heuristics on test instances that differ from the

±10% variation is compared.

The results are shown in Fig. 6.3a, which presents a scatter-plot that compares the change

in average relative dispatch cost with different variations (10%, 20%, 30%, · · · , 100%) in

load distribution for the proposed RBFNN, KNN and feed-forward ANN heuristics. The

average relative change in dispatch costs considers a baseline where the training and testing

data come from the same distribution of ±10% variation. Subsequently the heuristics are

tested for each variation in load distribution and compute the change (∆q̄ = q̄−q
q ) from

the baseline relative cost q for 200 test cases in ΩS ′′, where q̄ =
∑|ΩS ′′|

i=1
q̂−q
q

|ΩS ′′| is the average

relative cost for an heuristic.

The results in Fig. 6.3a show a minimum and maximum change in relative costs ∆q̄ of 2.5%

and 34.6%, respectively, corresponding to the ±20% and ±100% load variation for the

proposed RBFNN heuristic. The linear regression line is horizontal, which denotes little to

no change and thus robustness to out of distribution data. In contrast, the KNN heuristic

has a minimum and maximum change ∆q̄ of 224% and 1000%, respectively, corresponding

to the±20% and±100% load variation. Additionally, the linear regression line makes an≈

∠45◦ with the horizontal axis, which suggests that the heuristic performance changes with

different load variations. A further comparison between the proposed RBFNN heuristic

with a feed-forward ANN heuristic for similar changes in load distribution in Fig. 6.3b shows

that the proposed RBFNN has a similar regression line as a feed-forward ANN. There, the

feed-forward ANN has a minimum and maximum change of 10.9% and 45.2%, respectively.

While both the proposed RBFNN and the feed-forward ANN have an average relative cost
q̄−q
q of ≤ 5%, the average change ∆q̄ over the different variations (10%, 20%, · · · , 100%)

for the proposed RBFNN is 9.7% while that of the feed-forward ANN is 26.7%. These
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q ) for 200 test instances using different

heuristics

Table 6.1: The relative cost and computation time and for different heuristics on 200 TS test instances

Heuristic Relative cost ( q̂−q
q ) Time

Gurobi 0.00± 0.00 (31.31± 61.38) s
RBFNN 0.03± 0.03 (0.57± 0.21) s
KNN 0.01± 0.02 (6.25± 0.25) s

Greedy Search 0.04± 0.03 (21.93± 0.32) s

results support the robustness of the proposed RBFNN heuristic.

6.3.3 Real-time computational performance

This case study shows the computational results of the heuristics introduced in Sec. 6.2

in terms of dispatch cost savings and computational time. While the heuristics training

was on data from the ±10% variation, the testing data had a ±35% variation. The box

plots in Fig. 6.4 and Fig. 6.5, and the data in Table 6.1 summarise the results in terms of

relative cost savings and computational time. The box plots indicate the median value as

the middle line in the box, the first and third quartiles as the top and bottom lines in the

box, respectively, and the outliers as individual points.
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Cost performance

Fig. 6.4 compares the relative cost savings using the different heuristics for 200 test in-

stances. The relative costs are calculated according to the best known dispatch cost (cal-

culated using the Gurobi heuristic) as q̂−q
q , where q̂ represents the dispatch cost obtained

using an heuristic for TS, and q is the best known cost. Concretely, the figure shows

that the proposed RBFNN heuristic with a median relative cost of 0.8%, outperforms the
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Table 6.2: Handling infeasible TS of the propsoed RBFNN heuristic for J ≤ 5

Heuristic Infeasible TS Time Relative cost ( q̂−q
q )

RBFNN 4 / 200 (1.32± 0.05) s 0.08± 0.10
Gurobi 0 / 200 (7.25± 2.62) s 0.00± 0.00

greedy search heuristics at 3.3%, and is similar to the KNN heuristic at 0.3% relative

cost. This result is consistent with the data in Table 6.1 showing the mean and standard

deviation of the relative costs for the different heuristics. The results in Table 6.1 show

that the proposed RBFNN heuristic is on average 3% close to the best known TS solution.

This result suggests that the proposed RBFNN heuristic can propose good TS solutions.

Computational time performance

The clear advantage of the proposed RBFNN heuristic is visible in the real-time compu-

tation time in Fig. 6.5 and Table 6.1. Concretely, Fig. 6.5 presents the distribution of the

computation time it takes to solve the TS problem for 200 test instances. The proposed

RBFNN heuristic has a median value of 1.2 s, while the Gurobi, KNN and greedy search

heuristics have median values of 13 s, 6 s, 22 s, respectively. This result is supported by the

data in Table 6.1 that shows the mean and standard deviation of the computation time for

the different heuristics. There, the proposed KNN heuristic outputs a TS solution on aver-

age in 0.57 s, while the KNN, Greedy Search and Gurobi heuristics average 6.25 s, 21.93 s,

and 31.31 s respectively. This massive computational saving makes the proposed RBFNN

a suitable approach for real-time applications. These results also match the computational

expectations described in Sec 6.2.5.

6.3.4 Guaranteeing feasible topology near real-time

Notably, the crucial comparison is between the proposed RBFNN and the KNN heuristics,

as the scalability of the greedy search heuristic is poor due toO(|Ω|2)DCOPF computations

required. While the KNN offers a marginally better relative cost value, the value of k
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determines the number of DCOPF problems to solve and thus worsens the computational

time. Sometimes, however, the initial predicted solution by the RBFNN is infeasible and in

such cases the feasibility is ensured by solving Eq. (6.12) that returns the nearest feasible

topology. In this case study, these infeasible solutions appeared in 4 out of 200 test instances

(2%). For these 4 infeasible TS instances, the proposed heuristic took an average of 1.32 s

to obtain the nearest feasible topology and the obtained result was within 8% of the best-

known solution considering J ≤ 5 line switches, as opposed to an average of 7.25 s required

to solve the same MIP formulation with a similar relaxation. These results are summarised

in Table 6.2 and importantly the proposed RBFNN solves for a feasible TS topology within

8% of the best-known solution while being more than 5× faster than solving Fisher’s [73]

MIP formulation.

6.3.5 Offline computational improvements

In this case study, the effect of penalising the objective function on the solution times of the

MIP is investigated. A thousand TS solution instances of the MIP problem for a given load

profile with J ≤ 3 are considered . The original formulation does not consider the penalty

term
∑

l wl(z∗l − αl)2 in Eq.6.1, while the modified formulation is exactly as presented

in Sec.6.2. The results are presented as box-plots of solution times in seconds in Fig. 6.6.

Concretely, the results show an average improvement of 0.90 s for the modified formulation,

which is 43% faster than the original MIP formulation. This percentage improvement does

not extrapolate a linear relationship as the maximum number of number of line switches

J increase. However, as the number of crucial line switches are usually few, this result is

still relevant.

6.3.6 Key Findings

ML has shown tremendous promise for real-time TS. Previous literature [175] have shown

the promise of ML models in fault detection classification problem, and the RBFNN model
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has been shown to be robust to inputs not in the training data. This robustness makes

it a favorite for power systems classification problems such as fault detection. In the

case studies, the proposed RBFNN TS heuristic showed similar accuracy performance

across different data distributions, with a maximum deviation of 34.6% in contrast to the

1000% deviation of the KNN model. RBFNN models have been shown to perform well in

terms of accuracy, interpretability, training data and computation time. Similarly, RBFNN

models show significant benefits of providing almost instantaneous TS options and thus

are applicable in real-time settings by SOs. The main computational burden comes from

generating the solved TS instances for training the RBFNN model which is done offline.

However, this offline step is necessary for any ML workflow that require synthetic data

to train a model. On a positive note, the simplicity of the RBFNN makes training the

model relatively fast and its architecture allows for more interpretability of the model.

The proposed RBFNN has an error margin of 3% relative to the best known solution and

provides the TS solution more than 10× faster than state of the art ML-based TS.

6.4 Conclusion
This work proposed a RBFNN heuristic for real-time TS. The proposed heuristic outper-

forms heuristics in the literature such as KNN models and sensitivity-based greedy search

algorithms in terms of significant savings in computation time. The proposed RBFNN

heuristic is fairly robust to noisy data (where the testing data has a different distribution

than the training data) and performs as well as the state of art ML approach to TS. In sit-

uations where the proposed RBFNN outputs an infeasible topology, the proposed RBFNN

solves for a feasible TS topology that is within 8% of the best-known solution while being

more than 5× faster than solving a standard MIP. The proposed approach is tested on the

IEEE 118-bus test case and limited the maximum number of switchable lines to J ≤ 5.

In larger systems, the maximum number of switchable lines may increase, albeit a small

number of lines result in the largest cost reductions [73]. As the issue of contingencies is

of utmost importance to the SO, further work will investigate learning a model to propose

TS actions that are N-1 secure.
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Conclusion

“There is no real ending. It’s just the place where you stop the story.”

—Frank Herbert

“What is our life? A play of passion,

Our mirth the music of division.

Our mothers’ wombs the tiring houses be

Where we are dressed for this short comedy.

Heaven the judicious sharp spectator is

That sits and marks still who doth act amiss.

Our graves that hide us from the searching sun

Are like drawn curtains when the play is done.

Thus march we playing to our latest rest,

Only we die in earnest, that’s no jest.”

—Sir Walter Raleigh

“Stay hungry; stay foolish.”

—Steve Jobs (more recently)
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7.1 Summary of Thesis Achievements

The power system is undergoing a significant transformation driven by the need to decar-

bonise, decentralise and digitise the system. As power systems integrate more renewable

energy sources to replace conventional thermal generation, the operational uncertainty in-

creases further in an already complex system. Similarly, the direction of power flow evolves

from unidirectional to bidirectional, as prosumers may actively wish to trade their electric-

ity in this decentralised system. This bidirectional flow will require the development of new

dynamic power markets as well as new services of flexibility services to handle increasing

uncertainties. Historically, the system operator has relied on asset redundancy to conserva-

tively operate equipment below rated capacity, thereby managing uncertainty. However,

this approach is inefficient and may not be able to cope with the increased operational

uncertainties introduced by the integration of renewable energy sources. Therefore, new

approaches which are more effective and efficient are needed to manage these uncertainties,

such as using advanced data analytics and machine learning algorithms.

The transition towards a decarbonised, decentralised and digitised power system necessi-

tates the development of new operation and control techniques to manage the increased

uncertainty inherent in integrating renewable energy sources. Instead of investing in new

grid infrastructure, it is imperative to adopt innovative strategies for the existing grid.

Specifically, the system operator can leverage the flexibility inherent in DERs at medium

to low voltage levels. By harnessing the capabilities of these local assets, the system op-

erator can substantially reduce operational costs and improve the security of the power

system.

Although the digitalisation paradigm offers cost-effective solutions by avoiding asset re-

dundancy and providing more data for system operators, it also brings along increased

cybersecurity risks and possible inaccurate predictions. However, the digitalisation of the

power system can support the adoption of data-driven methods in the control room, which

can significantly enhance the situational awareness of the system operator and even pro-

pose appropriate control actions. The use of data-driven models is increasingly becoming
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popular in power systems with recent advances and successes in other domains like biology

(Deep Mind’s AlphaFold) and gaming (AlphaGo). The promising proposal of using these

data-driven models to predict more uncertain dynamic phenomena that may be rare, the

so-called ’low probability, high impact’ events, can be the key to preventing power black-

outs in electricity grids. In power systems, although the physics is known, for instance, the

swing equations for the dynamics or Kirchhoff’s laws for the power flows, the system is a

highly non-linear and complex interconnected system. There, data-driven approaches can

tease out salient relationships and provide an advantage of speed. Additionally, baseline as-

sumptions can be verified from the underlying physics. Further, there are opportunities for

using data-driven methods that embed the known physics, which can be learned through

regularising the loss function, for instance, as physics-informed learning [179]. Incorpo-

rating the established principles of network physics into ML approaches holds significant

promise as it can enhance interpretability, robustness and generalisation.

However, applying data-driven approaches to the power system has some challenges, which

this thesis attempted to address. These challenges include improving the quality of the

training data, model selection and usage in real-time settings, and managing risks when

using a machine-learned model. Building upon previous work on ML-based DSA and

control [99, 4, 96], this thesis presented the challenges and corresponding contributions to

address them. In this section, this thesis concludes by discussing future research directions.

7.1.1 Quality of training data

The first challenge addressed was on generating quality training data for ML-based DSA.

This challenge is crucial for the adoption of ML-based approaches to DSA as the quality

of the training data has a strong correlation with the quality of the trained models, and

therefore, to improve the prediction performance of ML-based models for DSA, the training

data must of high quality. The work presented in Chapters 3 & 4 addressed this challenge.

In Chapter 3, this thesis presented a novel sampling method that sequentially generates

physically feasible but ’rare’ OCs that have not been previously observed in power systems
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operations. The developed method aims to move beyond the limitations of historical ob-

servations to explore the full range of possible OCs. In Chapter 4, this thesis presented a

novel approach based on Wasserstein distance and entropy to efficiently trade-off contrast-

ing properties of quality datasets, trading off historically relevant with feasible but ’rare’

OCs to create an enriched database capable of training a high-performing classifier. The

proposed methods can generate datasets that can serve to benchmark the performance of

ML models for security assessments.

Future research can focus on developing a sophisticated sampling procedure for different

scenarios where the ML model to be used by the system operator then depends on the

forecasted online conditions. A crucial feature of the proposed split-based sampling method

is the sequential nature of synthetic sample generation. Hence, it can be adapted to consider

multiple objectives by the system operator for creating different datasets according to

the changing needs. For instance, the probabilities and impacts of contingencies can be

considered as metrics to guide sampling from more ’relevant’ regions of the feasible space,

similar to the trade-off of different properties in Chapter 4. The proposed method can serve

as a baseline for generating scenario-based datasets, as the sequential sampling process can

consider the many requirements of the system operator by modifying the objective function.

To generate datasets that generalise to different configurations, such as topology, Section

7.2.4 outlines possible research directions.

7.1.2 Model selection and usage for real-time application

The second challenge that this thesis addressed was the selection and usage of machine-

learned models in the control room for real time operation. In this context, the system

operator must balance multiple and often contrasting objectives in the training and se-

lection process of the ML model. For instance, while high predictive accuracy is a pre-

requisite for these models, interpretability and sensitivity to changing risks and impacts

are also crucial. In security assessments, interpretability is crucial for understanding the

decision-making mechanism of a classifier, which is vital for building trust and adapting to
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changing assumptions such as topological reconfiguration or data distribution. Addition-

ally, verification of the feasibility of the solutions from these models within an optimisation

framework can enable adoption by system operators. In Chapter 5, this thesis proposed a

scalable workflow to trade-off between multiple objective criteria when selecting decision

tree models for real time operation by system operators. Furthermore, in Chapter 6, this

thesis presented a practical implementation of using a machine-learned model to optimise

the cost of power system operations using topological control actions.

Future research on the selection of machine-learned models for real-time operation can

further develop the concept of interpretability and establish a standardised approach that

can be applied to various types of models, enabling a more rigorous and sophisticated

selection process. An additional avenue for research is to incorporate the contingency

probabilities and impacts into the data generation process and in model selection, creating

a closed-loop framework of ML-based solutions [52] that better reflects the reality of power

system operations.

Future work on ML-based real-time transmission switching can include extending the pro-

posed method to consider probable contingencies in the solution, ensuring the optimised

topology is secure against possible contingencies, such as N-1 security. As data-driven

models continue to be developed, it will be essential to conduct real-world demonstra-

tions in collaboration with system operators to assess the applicability of these methods

and identify new areas for research. These studies can provide insights into how system

operators can efficiently utilise existing assets to operate the grid.

There are opportunities for developing machine-learned models that are not only accurate

but also interpretable and sensitive to changing risks and impacts and the integration of

these models into the decision-making process of the system operator in real time.
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7.2 Future Research Directions

This section outlines a high-level outlook on potential future research directions for ML

applications in power systems operations. While the section above summarises the incre-

mental improvements from this thesis, the focus here is on three promising future directions.

These directions include utilising knowledge of physics in the ML workflow, overlapping

ML-based operational planning with asset deployment, and in the area of DSA, research on

training models that generalise to different conditions such as faults and topology. These

research directions are especially important given the role machine-learned can model play

in securing low inertia (LI) systems. Below, this thesis briefly discusses the role of machine-

learned models in securing low inertia systems and outlines the research directions.

7.2.1 Machine learning in low inertia systems

Most studies on ML-based security assessment assume power systems dominated by syn-

chronous machines, characterized by high inertia (HI) [180]. However, the increasing pen-

etration of renewable energy sources has led to a rise in converter-interfaced devices, re-

sulting in lower inertia and faster dynamics [180]. This changing grid structure requires

reevaluation of assumptions and conclusions in ML-based security assessment. The pres-

ence of converter-interfaced generators (CIGs) introduces faster dynamic time scales and

changing variables, impacting stability classifications. Flexible loads, previously ignored

transmission system dynamics, and the risk of large faults caused by High-voltage direct

current (HVDC) lines further complicate the assessment [181, 180, 5, 3].

Integration of CIGs necessitates considering converter-driven stability, resonance stability,

rotor angle, voltage, and frequency stability. CIGs associated with renewable sources of-

fer fast primary frequency response critical for maintaining stability in low-inertia systems

[180]. These changes must be studied within the ML-based security assessment framework.

Two examples of these changes are the requirement for high-quality training data, including

”rare” operating conditions (OCs), and the need for different models for various genera-
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tor/converter insecurity patterns. Clustering dynamics and training unique classifiers for

each cluster could address this challenge [101, 182].

A recent comprehensive analysis emphasized the feasibility and value of utilizing machine-

learned models in low-inertia (LI) systems, indicating a stronger dependence on power

generation changes for system security [101]. ML-based methods hold promise for effi-

ciently securing LI systems, but standardized systems representing LI systems need con-

tinuous development and updates to ensure model validity. As power systems transition

to LI systems, important research questions arise, and three future research directions are

highlighted below.

7.2.2 Physics-informed learning

ML, particularly deep learning (DL), has shown great promise in recent years, both for

operational planning and security assessment. However, DL is often marred with several

challenges, including high requirements for training data, physically inconsistent solutions,

and low generalisability and interpretability. Physics-informed neural networks (PINNs)

can address these challenges by integrating physics-informed rules into DL methodology.

PINN utilises scientific knowledge or physics laws to direct the optimisation, design of

architecture, and implementation of deep neural networks [179]. The literature describes

four types of PINN: (a) physics-informed loss functions, (b) physics-informed initialisation,

(c) physics-informed architecture design, and (d) hybrid physics-DL models. In physics-

informed loss functions, the idea is to attach physical interpretations to the variables

present in the hidden or output layers of neural networks and subsequently add a term

that represents these physical variables to the loss function through regularisation [183].

Physics-informed initialisation utilises transfer learning to enhance training efficiency and

avoid getting stuck in a local minimum. First principles are utilised to provide good initial

guesses, as good initial weights can influence the convergence rate [184]. Physics-informed

architecture design optimises the neural network architecture and avoids redundant con-

nections. Graph neural networks (GNNs) [185] are an example where the neurons, weights,
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and outputs can physically represent real-world entities. Hybrid physics-DL models utilise

a priori first principle knowledge to complement the function-approximating ability of DL

models. The output of a physical model can be used as input to the neural network [186],

thereby efficiently incorporating prior physical knowledge to choose, modify, and combine

the most significant input variables of the neural network.

Research has shown promising results in using PINNs to improve state estimation, dy-

namic analysis, power flow calculation, anomaly detection, and optimal power flow [179].

For example, in state estimation, PINNs can overcome the limitations of the intractability

and complexity of conventional methods for estimating large-scale three-phase imbalanced

distribution networks. However, modelling unbalanced components and the coupling be-

tween phases in unbalanced distribution remains an open challenge. Further research can

also consider using PINNs in future integrated energy systems, where understanding the

dynamics of flow and different time characteristics of combined heat and power systems

can unlock new insights into the cost-efficient utilisation of local flexibility. Moreover,

PINNs can aid in the digitalisation paradigm and facilitate the integration of DERs, such

as electric vehicles (EVs), with advanced metering and communication infrastructure.

The development of PINN is motivated by several potential advantages, such as improved

accuracy, interpretability, physical consistency, generalisability, reduced search space of

weights, improved training and convergence performance, and enhanced sampling effi-

ciency, thus reducing the need for a large amount of training data. The use of PINN has

shown promising results in current research to improve state estimation, dynamic analysis,

power flow calculation, anomaly detection and optimal power flow [179]. For instance, in

state estimation, PINNs can overcome the limitations of the intractability and complex-

ity of conventional methods for estimating large-scale three-phase imbalanced distribution

networks. However, modelling unbalanced components and the coupling between phases

in unbalanced distribution remains an open challenge. Further research can also consider

using PINNs in future integrated energy systems, where understanding the dynamics of

flow and different time characteristics of combined heat and power systems can unlock new

insights into the cost-efficient utilisation of local flexibility. Moreover, PINNs can also aid
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in the digitalisation paradigm and facilitate the increasing integration of DERs, such as

EVs, with advanced metering and communication infrastructure. As the world becomes

more digitised, it is crucial to create networks that are both efficient and sustainable. This

importance will only increase as more DERs are added in the future. Network opera-

tors must design innovative solutions to maintain a reliable power system. Consequently,

PINNs offer valuable assistance for exploring these complex topics and will undoubtedly

require further research.

7.2.3 ML-based network planning for secure operations

The decarbonisation of the transport and heating sector across the globe will see the

massive adoption of technologies like EVs and hydrogen electrolysers in power systems

distribution networks. These technologies offer unique opportunities for their smart inte-

gration into electricity distribution networks and coordination with other storage devices

to harness DERs for demand-side flexibility and autonomous local energy. In the digital-

isation paradigm, smart controls are essential for efficiently utilising existing assets. As

local assets aggregate to provide flexibility services, there are research opportunities at the

intersection of coordinating the deployment of these assets for optimal operations. One

research gap exists in developing probabilistic models and prediction tools to support city

planners, network operators, and businesses deploy the required infrastructure. Ensuring

power system security is crucial in system operation, and therefore, identifying critical

nodes like transmission lines, distribution lines, and transformers as the grid evolves ac-

commodating more renewable energy and DERs is vital. There may be higher peak load

requirements imposed on the grid due to more DERs on the grid, such as EVs, leading

to voltage violations in distribution networks. ML techniques can detect critical nodes

based on PMU measurements in real-time, and probabilistic methods can support plan-

ning decisions for cost-effective and optimal grid reinforcement. For instance, the strategic

deployment of charging infrastructure to reliably support the massive adoption of EVs can

be coordinated alongside the operational needs of the system operator to efficiently run
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the power system. Since EVs, alongside other DERs, can contribute to the secure oper-

ation of power systems [187], there is a research need for the development of data-driven

distributed control of DERs for flexibility services and corrective control of local faults,

as previous work indicates that the spatial distribution of inertia is vital [180]. Therefore

there is a research gap in developing probabilistic models of usage patterns and prediction

tools to support city planners, network operators, and businesses deploy the necessary

infrastructure.

In the context of secure operations, corrective control is a promising approach to ensure

system stability by efficiently utilising existing grid assets. EVs equipped with vehicle-to-

grid (V2G) technologies can be utilised for corrective control, showing significant economic

value [188]. New research directions include the use of corrective control in real-time

operations to address transient instability [189]. For instance, reinforcement learning can

be employed as a corrective control tool to identify optimal load-shedding strategies for

different operating conditions. This approach can identify the crucial buses that are pivotal

to system security and inform the deployment of infrastructure for local flexible assets

such as EVs with V2G technologies and hydrogen electrolysers. This research direction is

particularly important in future low inertia systems, as local DERs can be used to provide

ancillary services [190].

7.2.4 Robust training dataset

Another important possible future research direction considers the generalisability of the

training data needed to develop robust models. This generalisability is not only related

to the data distribution but also with regard to topology and different fault types. For

instance, graph neural networks (GNNs), with their ability to learn from graph-structured

data can model the electricity grid and attach physical meanings to the nodes and edge

weights. GNNs are a type of PINNs, where the nodes represent buses and the edges

are transmission lines. However, GNNs can be intractable when dealing with large graphs,

containing millions of nodes and billions of edges. Recent research has proposed mini-batch
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training of the GNNs [191] while attempting to capture the complex dependencies between

the training samples that are inherently present in the graph structure. However, selecting

which nodes to consider in the mini-batches is not trivial and differs from other applications

such as natural language processing. There is a gap in developing novel discrete sampling

strategies to select the ”relevant” nodes.

Novel discrete sampling is also promising to estimate the flexibility boundary between

the transmission and distribution, where the effects of discrete assets such as on-load tap

changers and capacitor banks can create disjoint flexibility areas. However, current research

assumes that these regions are convexly connected, leading to a research gap in search space

exploration algorithms that take integer variables into account [192]. The significance of

this research is expected to increase with the rise of DERs in the power system and the

need for new tools in the control room that can facilitate the activation of these flexibility

services.
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