10 research outputs found

    Part-to-whole Registration of Histology and MRI using Shape Elements

    Get PDF
    Image registration between histology and magnetic resonance imaging (MRI) is a challenging task due to differences in structural content and contrast. Too thick and wide specimens cannot be processed all at once and must be cut into smaller pieces. This dramatically increases the complexity of the problem, since each piece should be individually and manually pre-aligned. To the best of our knowledge, no automatic method can reliably locate such piece of tissue within its respective whole in the MRI slice, and align it without any prior information. We propose here a novel automatic approach to the joint problem of multimodal registration between histology and MRI, when only a fraction of tissue is available from histology. The approach relies on the representation of images using their level lines so as to reach contrast invariance. Shape elements obtained via the extraction of bitangents are encoded in a projective-invariant manner, which permits the identification of common pieces of curves between two images. We evaluated the approach on human brain histology and compared resulting alignments against manually annotated ground truths. Considering the complexity of the brain folding patterns, preliminary results are promising and suggest the use of characteristic and meaningful shape elements for improved robustness and efficiency.Comment: Paper accepted at ICCV Workshop (Bio-Image Computing

    Salient Level Lines Selection Using the Mumford-Shah Functional

    Get PDF
    International audienceMany methods relying on the morphological notion of shapes, (i.e., connected components of level sets) have been proved to be very useful for pattern analysis and recognition. Selecting meaningful level lines (boundaries of level sets) yields to simplify images while preserving salient structures. Many image simplification and/or segmentation methods are driven by the optimization of an energy functional, for instance the Mumford-Shah functional. In this article, we propose an efficient shape-based morphological filtering that very quickly compute to a locally (subordinated to the tree of shapes) optimal solution of the piecewise-constant Mumford- Shah functional. Experimental results demonstrate the efficiency, usefulness, and robustness of our method, when applied to image simplification, pre-segmentation, and detection of affine regions with viewpoint changes

    A unified framework for detecting groups and application to shape recognition

    Get PDF
    A unified a contrario detection method is proposed to solve three classical problems in clustering analysis. The first one is to evaluate the validity of a cluster candidate. The second problem is that meaningful clusters can contain or be contained in other meaningful clusters. A rule is needed to define locally optimal clusters by inclusion. The third problem is the definition of a correct merging rule between meaningful clusters, permitting to decide whether they should stay separate or unit. The motivation of this theory is shape recognition. Matching algorithms usually compute correspondences between more or less local features (called shape elements) between images to be compared. This paper intends to form spatially coherent groups between matching shape elements into a shape. Each pair of matching shape elements indeed leads to a unique transformation (similarity or affine map.) As an application, the present theory on the choice of the right clusters is used to group these shape elements into shapes by detecting clusters in the transformation space

    A unified framework for detecting groups and application to shape recognition

    Get PDF
    International audienceA unified a contrario detection method is proposed to solve three classical problems in clustering analysis. The first one is to evaluate the validity of a cluster candidate. The second problem is that meaningful clusters can contain or be contained in other meaningful clusters. A rule is needed to define locally optimal clusters by inclusion. The third problem is the definition of a correct merging rule between meaningful clusters, permitting to decide whether they should stay separate or unite. The motivation of this theory is shape recognition. Matching algorithms usually compute correspondences between more or less local features (called shape elements) between images to be compared. Each pair of matching shape elements leads to a unique transformation (similarity or affine map.) The present theory is used to group these shape elements into shapes by detecting clusters in the transformation space

    Detectando agrupamientos y contornos: un estudio doble sobre representación de formas

    Get PDF
    Las formas juegan un rol clave en nuestro sistema cognitivo: en la percepción de las formas yace el principio de la formación de conceptos. Siguiendo esta línea de pensamiento, la escuela de la Gestalt ha estudiado extensivamente la percep- ción de formas como el proceso de asir características estructurales encontradas o impuestas sobre el material de estímulo.En resumen, tenemos dos modelos de formas: pueden existir físicamente o ser un producto de nuestros procesos cogni- tivos. El primer grupo está compuesto por formas que pueden ser definidas extra- yendo los contornos de objetos sólidos. En este trabajo nos restringiremos al caso bidimensional. Decimos entonces que las formas del primer tipo son formas planares. Atacamos el problema de detectar y reconocer formas planares. Cier- tas restricciones teóricas y prácticas nos llevan a definir una forma planar como cualquier pedazo de línea de nivel de una imagen. Comenzamos por establecer que los métodos a contrario existentes para de- tectar líneas de nivel son usualmente muy restrictivos: una curva debe ser enter- amente saliente para ser detectada. Esto se encuentra en clara contradicción con la observación de que pedazos de líneas de nivel coinciden con los contornos de los objetos. Por lo tanto proponemos una modificación en la que el algoritmo de detección es relajado, permitiendo la detección de curvas parcialmente salientes. En un segundo acercamiento, estudiamos la interacción entre dos maneras diferentes de determinar la prominencia de una línea de nivel. Proponemos un esquema para competición de características donde el contraste y la regularidad compiten entre ellos, resultando en que solamente las líneas de nivel contrastadas y regulares son consderedas salientes. Una tercera contribución es un algoritmo de limpieza que analiza líneas de nivel salientes, descartando los pedazos no salientes y conservando los salientes. Está basado en un algoritmo para detección de multisegmentos que fue extendido para trabajar con entradas periódicas. Finalmente, proponemos un descriptor de formas para codificar las formas detectadas, basado en el Shape Context global. Cada línea de nivel es codificada usando shape contexts, generando así un nuevo descriptor semi-local. A contin- uación adaptamos un algoritmShape plays a key role in our cognitive system: in the perception of shape lies the beginning of concept formation. Following this lines of thought, the Gestalt school has extensively studied shape perception as the grasping of structural fea- tures found in or imposed upon the stimulus material. In summary, we have two models for shapes: they can exist physically or be a product of our cognitive pro- cesses. The first group is formed by shapes that can be defined by extracting contours from solid objects. In this work we will restrict ourselves to the two dimensional case. Therefore we say that these shapes of the first type are planar shapes. We ad- dress the problem of detecting and recognizing planar shapes. A few theoretical and practical restrictions lead us to define a planar shape as any piece of mean- ingful level line of an image. We begin by stating that previous a contrario methods to detect level lines are often too restrictive: a curve must be entirely salient to be detected. This is clearly in contradiction with the observation that pieces to level lines coincide with object boundaries. Therefore we propose a modification in which the detection criterion is relaxed by permitting the detection of partially salient level lines. As a second approach, we study the interaction between two different ways of determining level line saliency: contrast and regularity. We propose a scheme for feature competition where contrast and regularity contend with each other, resulting in that only contrasted and regular level lines are considered salient. A third contribution is a clean-up algorithm that analyses salient level lines, discarding the non-salient pieces and returning the salient ones. It is based on an algorithm for multisegment detection, which was extended to work with periodic inputs. Finally, we propose a shape descriptor to encode the detected shapes, based on the global Shape Context. Each level line is encoded using shape contexts, thus generating a new semi-local descriptor. We then adapt an existing a contrario shape matching algorithm to our particular case. The second group is composed by shapes that do not correspond to a solid object but are formed by integrating several solid objects. The simplest shapes in this group are arrangements of points in two dimensions. Clustering techniques might be helpful in these situations. In a seminal work from 1971, Zahn faced the problem of finding perceptual clusters according to the proximity gestalt and proposed three basic principles for clustering algorithms: (1) only inter-point distances matter, (2) stable results across executions and (3) independence from the exploration strategy. A last implicit requirement is crucial: clusters may have arbitrary shapes and detection algorithms must be capable of dealing with this. In this part we will focus on designing clustering methods that completely fulfils the aforementioned requirements and that impose minimal assumptions on the data to be clustered. We begin by assessing the problem of validating clusters in a hierarchical struc- ture. Based on nonparametric density estimation methods, we propose to com- pute the saliency of a given cluster. Then, it is possible to select the most salient clusters in the hierarchy. In practice, the method shows a preference toward com- pact clusters and we propose a simple heuristic to correct this issue. In general, graph-based hierarchical methods require to first compute the com- plete graph of interpoint distances. For this reason, hierarchical methods are often considered slow. The most usually used, and the fastest hierarchical clustering al- gorithm is based on the Minimum Spanning Tree (MST). We therefore propose an algorithm to compute the MST while avoiding the intermediate step of computing the complete set of interpoint distances. Moreover, the algorithm can be fully par- allelized with ease. The algorithm exhibits good performance for low-dimensional datasets and allows for an approximate but robust solution for higher dimensions. Finally we propose a method to select clustered subtrees from the MST, by computing simple edge statistics. The method allows naturally to retrieve clus- ters with arbitrary shapes. It also works well in noisy situations, where noise is regarded as unclustered data, allowing to separate it from clustered data. We also show that the iterative application of the algorithm allows to solve a phenomenon called masking, where highly populated clusters avoid the detection less popu- lated ones.Fil:Tepper, Mariano. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina

    Analyse et recherche d'oeuvres d'art 2D selon le contenu pictural

    Get PDF
    État de l'art des méthodes manuelles et automatiques d'analyse des oeuvres d'art 2D -- Recherche d'images selon l'organisation spatiale des couleurs -- Seuil automatique pour la recherche d'images selon l'OSC -- Extraction des contours des traits -- Analyse de l'impact pictural dans les oeuvres au trait -- Conclusion et perspectives

    Registration of histology and magnetic resonance imaging of the brain

    Get PDF
    Combining histology and non-invasive imaging has been attracting the attention of the medical imaging community for a long time, due to its potential to correlate macroscopic information with the underlying microscopic properties of tissues. Histology is an invasive procedure that disrupts the spatial arrangement of the tissue components but enables visualisation and characterisation at a cellular level. In contrast, macroscopic imaging allows non-invasive acquisition of volumetric information but does not provide any microscopic details. Through the establishment of spatial correspondences obtained via image registration, it is possible to compare micro- and macroscopic information and to recover the original histological arrangement in three dimensions. In this thesis, I present: (i) a survey of the literature relative to methods for histology reconstruction with and without the help of 3D medical imaging; (ii) a graph-theoretic method for histology volume reconstruction from sets of 2D sections, without external information; (iii) a method for multimodal 2D linear registration between histology and MRI based on partial matching of shape-informative boundaries

    ON THE THEORY OF PLANAR SHAPE

    No full text
    One of the aims of computer vision in the past 30 years has been to recognize shapes by numerical algorithms. Now, what are the geometric features on which shape recognition can be based? In this paper, we review the mathematical arguments leading to a unique definition of planar shape elements. This definition is derived from the invariance requirement to not less than five classes of perturbations, namely noise, affine distortion, contrast changes, occlusion, and background. This leads to a single possibility: shape elements as the normalized, affine smoothed pieces of level lines of the image. As a main possible application, we show the existence of a generic image comparison technique able to find all shape elements common to two images
    corecore