11 research outputs found

    On the Structure of Graphs with Low Obstacle Number

    Get PDF
    The obstacle number of a graph G is the smallest number of polygonal obstacles in the plane with the property that the vertices of G can be represented by distinct points such that two of them see each other if and only if the corresponding vertices are joined by an edge. We list three small graphs that require more than one obstacle. Using extremal graph theoretic tools developed by Prömel, Steger, Bollobás, Thomason, and others, we deduce that for any fixed integer h, the total number of graphs on n vertices with obstacle number at most h is at most 2o(n2){2^{o(n^2)}} . This implies that there are bipartite graphs with arbitrarily large obstacle number, which answers a question of Alpert etal. (Discret Comput Geom doi: 10.1007/s00454-009-9233-8 , 2009

    Lower bounds on the obstacle number of graphs

    Full text link
    Given a graph GG, an {\em obstacle representation} of GG is a set of points in the plane representing the vertices of GG, together with a set of connected obstacles such that two vertices of GG are joined by an edge if and only if the corresponding points can be connected by a segment which avoids all obstacles. The {\em obstacle number} of GG is the minimum number of obstacles in an obstacle representation of GG. It is shown that there are graphs on nn vertices with obstacle number at least Ω(n/logn)\Omega({n}/{\log n})

    Obstacle Numbers of Planar Graphs

    Full text link
    Given finitely many connected polygonal obstacles O1,,OkO_1,\dots,O_k in the plane and a set PP of points in general position and not in any obstacle, the {\em visibility graph} of PP with obstacles O1,,OkO_1,\dots,O_k is the (geometric) graph with vertex set PP, where two vertices are adjacent if the straight line segment joining them intersects no obstacle. The obstacle number of a graph GG is the smallest integer kk such that GG is the visibility graph of a set of points with kk obstacles. If GG is planar, we define the planar obstacle number of GG by further requiring that the visibility graph has no crossing edges (hence that it is a planar geometric drawing of GG). In this paper, we prove that the maximum planar obstacle number of a planar graph of order nn is n3n-3, the maximum being attained (in particular) by maximal bipartite planar graphs. This displays a significant difference with the standard obstacle number, as we prove that the obstacle number of every bipartite planar graph (and more generally in the class PURE-2-DIR of intersection graphs of straight line segments in two directions) of order at least 33 is 11.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Graphs with Plane Outside-Obstacle Representations

    Full text link
    An \emph{obstacle representation} of a graph consists of a set of polygonal obstacles and a distinct point for each vertex such that two points see each other if and only if the corresponding vertices are adjacent. Obstacle representations are a recent generalization of classical polygon--vertex visibility graphs, for which the characterization and recognition problems are long-standing open questions. In this paper, we study \emph{plane outside-obstacle representations}, where all obstacles lie in the unbounded face of the representation and no two visibility segments cross. We give a combinatorial characterization of the biconnected graphs that admit such a representation. Based on this characterization, we present a simple linear-time recognition algorithm for these graphs. As a side result, we show that the plane vertex--polygon visibility graphs are exactly the maximal outerplanar graphs and that every chordal outerplanar graph has an outside-obstacle representation.Comment: 12 pages, 7 figure

    Graphs with no grid obstacle representation

    Get PDF
    A graph G = ( V; E ) admits a grid obstacle representation , if there exist a subset Ω of the planar integer grid Z 2 and an embed- ding f : V ! Z 2 such that no vertex of G is mapped into a point of Ω , and two vertices u; v 2 V are connected by an edge of G if and only if there is a shortest path along the edges of Z 2 that con- nects f ( u ) and f ( v ) and avoids all other elements of Ω [ f ( V ) . We answer a question of Bishnu, Ghosh, Mathew, Mishra, and Paul, by showing that there exist graphs that do not admit a grid obstacle representation

    On obstacle numbers

    Get PDF
    The obstacle number is a new graph parameter introduced by Alpert, Koch, and Laison (2010). Mukkamala et al. (2012) show that there exist graphs with n vertices having obstacle number in Ω(n/ log n). In this note, we up this lower bound to Ω(n/(log log n)2). Our proof makes use of an upper bound of Mukkamala et al. on the number of graphs having obstacle number at most h in such a way that any subsequent improvements to their upper bound will improve our lower bound

    Geometric Graph Theory and Wireless Sensor Networks

    Full text link
    In this work, we apply geometric and combinatorial methods to explore a variety of problems motivated by wireless sensor networks. Imagine sensors capable of communicating along straight lines except through obstacles like buildings or barriers, such that the communication network topology of the sensors is their visibility graph. Using a standard distributed algorithm, the sensors can build common knowledge of their network topology. We first study the following inverse visibility problem: What positions of sensors and obstacles define the computed visibility graph, with fewest obstacles? This is the problem of finding a minimum obstacle representation of a graph. This minimum number is the obstacle number of the graph. Using tools from extremal graph theory and discrete geometry, we obtain for every constant h that the number of n-vertex graphs that admit representations with h obstacles is 2o(n2). We improve this bound to show that graphs requiring Ω(n / log2 n) obstacles exist. We also study restrictions to convex obstacles, and to obstacles that are line segments. For example, we show that every outerplanar graph admits a representation with five convex obstacles, and that allowing obstacles to intersect sometimes decreases their required number. Finally, we study the corresponding problem for sensors equipped with GPS. Positional information allows sensors to establish common knowledge of their communication network geometry, hence we wish to compute a minimum obstacle representation of a given straight-line graph drawing. We prove that this problem is NP-complete, and provide a O(logOPT)-factor approximation algorithm by showing that the corresponding hypergraph family has bounded Vapnik-Chervonenkis dimension
    corecore