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Abstract

The obstacle number is a new graph parameter introduced by Alpert, Koch,
and Laison (2010). Mukkamala et al. (2012) show that there exist graphs with n
vertices having obstacle number in Ω(n/ log n). In this note, we up this lower bound
to Ω(n/(log log n)2). Our proof makes use of an upper bound of Mukkamala et al.
on the number of graphs having obstacle number at most h in such a way that any
subsequent improvements to their upper bound will improve our lower bound.

1 Introduction

The obstacle number is a new graph parameter introduced by Alpert, Koch, and Laison
[2]. Let G = (V,E) be a graph, let ϕ : V → R2 be a one-to-one mapping of the vertices
of G onto R2 (hereafter called a drawing of G), and let S be a set of connected subsets
of R2. The pair (ϕ, S) is an obstacle representation of G when, for every pair of vertices
u,w ∈ V , the edge uw is in E if and only if the closed line segment with endpoints ϕ(u)
and ϕ(w) does not intersect any obstacle in S. An obstacle representation (ϕ, S) is an
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h-obstacle representation if |S| = h. The obstacle number of a graph G, denoted by
obs(G), is the minimum value of h such that G has an h-obstacle representation.1

Note that obstacle representations of planar graphs using few obstacles often require
drawings of those graphs that are far from crossing free. For example, any crossing-free
drawing of the 5 × 5 grid, G5×5 shown in the left part of Figure 1 requires at least one
obstacle in each of the sixteen internal faces (each of which has at least four sides).

It is somewhat surprising, therefore, that G5×5 has obstacle number 1. The obstacle
representation, illustrated on the right part of Figure 1 was given to us by Fabrizio Frati.
In this figure, the single obstacle is drawn as a shaded region. Since at least one obstacle
is clearly necessary to represent any graph other than a complete graph, this proves that
obs(G5×5) = 1. (A similar drawing can be used to show that the a × b, grid graph has
obstacle number 1, for any integers a, b > 1.)

Figure 1: The 5× 5 grid graph has obstacle number 1.

Since their introduction, obstacle numbers have generated significant research interest
[4, 5, 6, 7, 8, 9, 10]. A fundamental—and far from answered—question about obstacle
numbers is that of determining the worst-case obstacle number,

obs(n) = max{obs(G) : G is a graph with n vertices} ,

of a graph with n vertices.
For a graph G = (V,E), we call elements of

(
V
2

)
\ E non-edges of G. The worst-case

obstacle number obs(n) is obviously upper bounded by
(
n
2

)
∈ O(n2) since, by mapping

the vertices of G onto a point set in sufficiently general position, one can place a small
obstacle—even a single point—on the mid-point of each non-edge of G. No upper bound
on obs(n) that is asymptotically better than O(n2) is known.

More is known about lower bounds on obs(n). Alpert, Koch, and Laison [2] initially

show that the worst-case obstacle number is Ω
(√

log n/ log log n
)

and posed as an open

problem the question of determining if obs(n) ∈ Ω(n). Mukkamala et al. [7] showed
that obs(n) ∈ Ω(n/ log2 n) and Mukkamala et al. [6] later increased this to obs(n) ∈

1Note that this definition of obstacle representation is more generous than that of Alpert, Koch, and
Laison [2], which requires that the obstacles be polygonal and that the set of points determined by vertices
of the obstacles and the image of ϕ not contain 3 collinear points. Since the current paper proves a lower
bound on the obstacle number, this lower bound also applies to the original definition.
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Ω(n/ log n). In the current paper, we up the lower bound again by proving the following
theorem:

Theorem 1. For every integer n > 0, obs(n) ∈ Ω(n/(log log n)2), that is, there exists
a sequence, 〈Gn〉∞n=1, such that Gn is a graph with n vertices and such that obs(G) ∈
Ω(n/(log log n)2).

The proof of Theorem 1 makes use of an upper bound of Mukkamala et al. [6, Theo-
rem 1] on the number of graphs having obstacle number at most h in such a way that any
subsequent improvements on their upper bound will result in an improved lower bound
on obs(n).

Although some aspects of our proof are a little technical, the main idea is quite simple:
Mukkamala et al. [6] show that, with probability at least 1 − 2−Ω(n2), a random graph
on n vertices has obstacle number at least Ω(n/(log n)2). Our proof trades off a lower
probability for a higher obstacle number. When all is said and done, our proof shows
that, with probability at least 1− 2−Ω(n logn), a random graph on n vertices has obstacle
number at least Ω(n/(log log n)2).

2 The Proof

Our proof strategy is an application of the probabilistic method [1]. We fix an arbitrary
ordering, π, on the vertices of an Erdős–Rényi random graph, G = Gn, 1

2
. We then show

that it is very unlikely that there is an obstacle representation, (ϕ, S) of G such that
|S| ∈ o(n/(log log n)2) and the lexicographic ordering of the points assigned to vertices by
ϕ agrees with the ordering given by π. Here, “very unlikely” means that this occurs with
probability p < 1/n!. Since there are only n! possible orderings of G′s vertices, we then
apply the union bound which shows that with probability 1−pn! > 0, there is no obstacle
representation of G using o(n/(log log n)2) obstacles, that is, obs(G) ∈ Ω(n/(log log n)2).

2.1 A Random Graph with a Fixed Ordering

We make use of the following theorem, due to Mukkamala, Pach, and Pálvölgyi [6, The-
orem 1] about the number of n-vertex graphs with obstacle number at most h:

Theorem 2 (Mukkamala, Pach, and Pálvölgyi 2012). For any h > 1, the number of
graphs having n vertices and obstacle number at most h is at most 2O(hn log2 n).

Recall that an Erdős-Rényi random graph Gn, 1
2

is a graph with n vertices and each
pair of vertices is chosen as an edge or non-edge with equal probability and independently
of every other pair of vertices [3]. The following lemma shows that, for random graphs,
a fixed drawing is very unlikely to yield an obstacle representation with few obstacles.
Recall that the lexicographic ordering, ≺, for points in the plane is defined as

(x1, y1) ≺ (x2, y2) iff x1 < x2 or (x1 = x2 and y1 < y2) .
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Lemma 1. Let G = (V,E) be an Erdős–Rényi random graph Gn, 1
2
, let v1, . . . , vn be an

ordering of the vertices in V that is independent of the choices of edges in G, and let
(ϕ, S) be an obstacle representation of G using the minimum number of obstacles subject
to the constraint that

ϕ(v1) ≺ ϕ(v2) ≺ · · ·ϕ(vn) ,

where ≺ denotes the lexicographic ordering of points. Then, for any constant c > 0,

Pr{|S| ∈ Ω(n/(log log n)2)} > 1− e−cn logn .

Proof. Fix some integer k = k(n) ∈ ωn(1) to be specified later and first consider the
subgraph G0 of G induced by the vertices v1, . . . , vk. Applying Theorem 2 with n = k
and h = αk/ log2 k, we obtain

Pr{obs(G0) 6 αk/ log2 k} 6 2O(αk2)

2(k2)
6 e−βk

2

, (1)

where β > 0 for a sufficiently small constant α > 0, and sufficiently large k. Note that,
if obs(G0) > h, then, in the obstacle representation (ϕ, S), there must be at least h − 1
obstacles of S that are contained in the convex hull of ϕ(v1), . . . , ϕ(vk); this is because
the obstacle representation (ϕ, S) can be turned into an obstacle representation of G0 by
merging all obstacles that are not contained in the convex hull of ϕ(v1), . . . , ϕ(vk).

Let m = bn/kc and notice that the preceding argument applies to any subset Vi =
{vki+1, . . . , v(k+1)i} of vertices, for any i ∈ {0, . . . ,m − 1}. That is, Equation (1) shows

that, with probability at least 1−2−Ω(k2), the obstacle number of the subgraph Gi induced
by Vi is Ω(k/ log2 k). If this occurs, then S has Ω(k/ log2 k) obstacles that are completely
contained in the convex hull of Vi. In particular, the obstacles contained in the convex
hull of Vi are different from the obstacles contained in the convex hull of Vj, for all j 6= i.

We are proving a lower bound on the number of obstacles, so we are worried about the
case where the number of convex hulls that do not contain at least αk/ log2 k obstacles
exceeds m/e.2 The number of convex hulls, M , not containing at least αk/ log2 k obstacles
is dominated by a binomial(m, e−βk

2
) random variable. Using Chernoff’s bound on the

tail of a binomial random variable,3 we have that

Pr{M > m/e} = Pr{M > (1 + δ)µ} (where µ = me−βk
2

and δ = eβk
2−1 − 1)

6

(
eδ

(1 + δ)1+δ

)µ

6

(
ee
βk2

(eβk2−1)eβk
2−1

)me−βk
2

2Euler’s constant e = limn→∞(1− 1/n)n is just a convenient constant to use here.
3Chernoff’s Bound: For any binomial(m, p) random variable, B, any δ > 0 and µ = mp,

Pr{B > (1 + δ)µ} 6
(

eδ

(1 + δ)1+δ

)µ
.
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=

(
ee
βk2

e(βk2−1)eβk2−1

)me−βk
2

=
em

em(βk2−1)eβk2−1e−βk2

=
em

em(βk2−1)/e

= e−Ω(mk2) .

Taking k = c′ log n, for a sufficiently large constant, c′, and recalling that m = bn/kc, we
obtain the desired result. In particular,

|S| > Ω
((
k/ log2 k

)
· (m−m/e)

)
= Ω

(
n/(log log n)2

)
with probability at least

1− e−Ω(mk2) = 1− e−Ω(c′n logn) > 1− e−cn logn ,

for all n greater than some sufficiently large constant n0. For n ∈ {1, . . . , n0}, the lemma
is trivially satisfied since |S| > 0 with probability 1 > 1− e−cn logn.

2.2 Finishing Up

For completeness, we now spell out the proof of Theorem 1.

Proof of Theorem 1. Let G = (V,E) be an Erdős-Rényi random graph with n vertices
with vertex set V = {1, . . . , n}. For every obstacle representation (ϕ, S) of G, there is an
ordering on V given by the lexicographic ordering of the points {ϕ(v) : v ∈ V }.

By Lemma 1, the probability that a particular such ordering, v1, . . . , vn, allows an
obstacle representation using o(n/(log log n)2) obstacles is at most p 6 e−cn logn for every
constant c > 0. In particular, for sufficiently large c, we have p < 1/n!. By the union
bound the probability that there is any ordering that supports an obstacle representation
of G with o(n/(log log n)2) obstacles is at most

p̂ = p · n! < 1 .

We deduce that there exists some graph, G′, with obs(G′) ∈ Ω(n/(log log n)2).

3 Remarks

Our proof of Theorem 1 relates the problem of counting the number of n-vertex graphs
with obstacle number at most h to the problem of determining the worst-case obstacle
number of a graph with n vertices. Currently, we use Theorem 2 of Mukkamala et al.
[7], which proves an upper bound of eO(hn log2 n) on the number of n-vertex graphs with
obstacle number at most h.
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Any improvement on the upper bound for the counting problem will immediately
translate into an improved lower bound on the worst-case obstacle number. Let f(h, k)
denote the number of k-vertex graphs with obstacle number at most h and let

ĥ(k) = max
{
h : f(h, k) 6 2k

2/4
}

.

The quantity ĥ(k) is chosen so that a random graph on k vertices has probability at
most 2−Ω(k2) of having obstacle number less than ĥ(k); Theorem 2 shows that ĥ(k) ∈
Ω(k/(log k)2). Our proof of Lemma 1 shows that there exist graphs with obstacle number
at least Ω(nĥ(c log n)/(c log n)).

We note that our technique gives an improved lower bound until someone is able to
prove that ĥ(n) ∈ Ω(n). At this point, our approach gives a lower bound worse than the
trivial lower bound ĥ(n).

We conjecture that improved upper bounds on f(h, n) that reduce the dependence on
h are the way forward:

Conjecture 1. f(h, n) 6 2g(n)·o(h), where g(n) ∈ O(n log2 n).

In support of this conjecture, we observe that an upper bound of the form f(1, n) 6
2g(n) is sufficient to give the crude upper bound f(h, n) 6 2h·g(n) since any graph with
an h-obstacle representation is the common intersection of h graphs that each have a
1-obstacle representation. That is, if obs(G) 6 h, then there exists E1, . . . , Eh such that
G = (V,

⋂h
i=1Ei) and obs(V,Ei) = 1 for all i ∈ {1, . . . , h}. This seems like a very crude

upper bound in which many graphs are counted multiple times. Conjecture 1 asserts that
this argument overestimates the dependence on h.
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[10] D. Sariöz. Approximating the obstacle number for a graph drawing efficiently.
In Proceedings of the 23rd Canadian Conference on Computational Geometry
(CCCG 2011), 2011.

the electronic journal of combinatorics 22(3) (2015), #P3.1 7

http://arxiv.org/abs/1107.4624
http://arxiv.org/abs/1012.5907

	Introduction
	The Proof
	A Random Graph with a Fixed Ordering
	Finishing Up

	Remarks

