31,957 research outputs found

    Strategic Directions in Object-Oriented Programming

    Get PDF
    This paper has provided an overview of the field of object-oriented programming. After presenting a historical perspective and some major achievements in the field, four research directions were introduced: technologies integration, software components, distributed programming, and new paradigms. In general there is a need to continue research in traditional areas:\ud (1) as computer systems become more and more complex, there is a need to further develop the work on architecture and design; \ud (2) to support the development of complex systems, there is a need for better languages, environments, and tools; \ud (3) foundations in the form of the conceptual framework and other theories must be extended to enhance the means for modeling and formal analysis, as well as for understanding future computer systems

    Virtual Reality of Earthquake Ground Motions for Emergency Response

    Get PDF
    Ground motions interface earthquake science and engineering to advance understanding of seismic hazards and risk. Virtual reality provides an attractive tool to extend knowledge of the research community to a larger audience. This work visualizes emergency response under extreme motions, in the CAVE of the MARquette Visualization Laboratory. The visualization (a) displays ground motions (from the science community), (b) inputs these motions to structural models (from the engineering community) and illustrates the resulting responses, (c) translates structural responses to damage states of building elements, (d) creates a virtual room subjected to the perception associated with such earthquake shaking, and (e) introduces the human element of emergency response in this immersive environment. Building upon previous work on earthquake simulations, performance-based earthquake engineering (PBEE), building information modeling (BIM), and earthquake awareness, this study integrates elements of PBEE and BIM within the CAVE environment to provide visual information for decision making. Real-time or near real-time information via earthquake early warning (EEW) and structural health monitoring (SHM) further facilitates response within a limited time frame. As advanced technologies contribute to the future of community resilience, visualization plays an emerging role in connecting earthquake science, engineering, and policy

    Component-based simulation for a reconfiguration study of transitic systems

    Get PDF
    This paper is organized as follows. Part A presents the context of reconfiguring transitic systems and the main idea in implementing the decision step. It comprises sections 1 to 3. Section 3 presents an example that illustrates the concepts presented in the next sections. Parts B and C express the models and principles used to simulate transitic systems, the result of which will be helpful for choosing the new configuration. Part B focuses mainly on models. It comprises sections 4 to 6. Part C focuses mainly on simulation principles. It comprises sections 7 to 10

    On motion analysis and elastic response of floating offshore wind turbines

    Get PDF

    Ab initio atomistic thermodynamics and statistical mechanics of surface properties and functions

    Full text link
    Previous and present "academic" research aiming at atomic scale understanding is mainly concerned with the study of individual molecular processes possibly underlying materials science applications. Appealing properties of an individual process are then frequently discussed in terms of their direct importance for the envisioned material function, or reciprocally, the function of materials is somehow believed to be understandable by essentially one prominent elementary process only. What is often overlooked in this approach is that in macroscopic systems of technological relevance typically a large number of distinct atomic scale processes take place. Which of them are decisive for observable system properties and functions is then not only determined by the detailed individual properties of each process alone, but in many, if not most cases also the interplay of all processes, i.e. how they act together, plays a crucial role. For a "predictive materials science modeling with microscopic understanding", a description that treats the statistical interplay of a large number of microscopically well-described elementary processes must therefore be applied. Modern electronic structure theory methods such as DFT have become a standard tool for the accurate description of individual molecular processes. Here, we discuss the present status of emerging methodologies which attempt to achieve a (hopefully seamless) match of DFT with concepts from statistical mechanics or thermodynamics, in order to also address the interplay of the various molecular processes. The new quality of, and the novel insights that can be gained by, such techniques is illustrated by how they allow the description of crystal surfaces in contact with realistic gas-phase environments.Comment: 24 pages including 17 figures, related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Structural and entropic insights into the nature of the random-close-packing limit

    Get PDF
    Disordered packings of equal sized spheres cannot be generated above the limiting density (fraction of volume occupied by the spheres) of ??0.64 without introducing some partial crystallization. The nature of this “random-close-packing” limit (RCP) is investigated by using both geometrical and statistical mechanics tools applied to a large set of experiments and numerical simulations of equal-sized sphere packings. The study of the Delaunay simplexes decomposition reveals that the fraction of “quasiperfect tetrahedra” grows with the density up to a saturation fraction of ?30% reached at the RCP limit. At this limit the fraction of aggregate “polytetrahedral” structures (made of quasiperfect tetrahedra which share a common triangular face) reaches it maximal extension involving all the spheres. Above the RCP limit the polytetrahedral structure gets rapidly disassembled. The entropy of the disordered packings, calculated from the study of the local volume fluctuations, decreases uniformly and vanishes at the (extrapolated) limit ?K?0.66. Before such limit, and precisely in the range of densities between 0.646 and 0.66, a phase separated mixture of disordered and crystalline phases is observed

    Development of 2 underseat energy absorbers for application to crashworthy passenger seats for general aviation aircraft

    Get PDF
    This report presents the methodology and results of a program conducted to develop two underseat energy absorber (E/A) concepts for application to nonadjustable crashworthy passenger seats for general aviation aircraft. One concept utilizes an inflated air bag, and the other, a convoluted sheet metal bellows. Prototypes of both were designed, built, and tested. Both concepts demonstrated the necessary features of an energy absorber (load-limiter); however, the air bag concept is particularly encouraging because of its light weight. Several seat frame concepts also were investigated as a means of resisting longitudinal and lateral loads and of guiding the primary vertical stroke of the underseat energy absorber. Further development of a seat system design using the underseat energy absorbers is recommended because they provide greatly enhanced crash survivability as compared with existing general aviation aircraft seats
    corecore