126 research outputs found

    Network-Level Performance Evaluation of a Two-Relay Cooperative Random Access Wireless System

    Full text link
    In wireless networks relay nodes can be used to assist the users' transmissions to reach their destination. Work on relay cooperation, from a physical layer perspective, has up to now yielded well-known results. This paper takes a different stance focusing on network-level cooperation. Extending previous results for a single relay, we investigate here the benefits from the deployment of a second one. We assume that the two relays do not generate packets of their own and the system employs random access to the medium; we further consider slotted time and that the users have saturated queues. We obtain analytical expressions for the arrival and service rates of the queues of the two relays and the stability conditions. We investigate a model of the system, in which the users are divided into clusters, each being served by one relay, and show its advantages in terms of aggregate and throughput per user. We quantify the above, analytically for the case of the collision channel and through simulations for the case of Multi-Packet Reception (MPR), and we provide insight on when the deployment of a second relay in the system can yield significant advantages.Comment: Submitted for journal publicatio

    Interference-Based Optimal Power-Efficient Access Scheme for Cognitive Radio Networks

    Full text link
    In this paper, we propose a new optimization-based access strategy of multipacket reception (MPR) channel for multiple secondary users (SUs) accessing the primary user (PU) spectrum opportunistically. We devise an analytical model that realizes the multipacket access strategy of SUs that maximizes the throughput of individual backlogged SUs subject to queue stability of the PU. All the network receiving nodes have MPR capability. We aim at maximizing the throughput of the individual SUs such that the PU's queue is maintained stable. Moreover, we are interested in providing an energy-efficient cognitive scheme. Therefore, we include energy constraints on the PU and SU average transmitted energy to the optimization problem. Each SU accesses the medium with certain probability that depends on the PU's activity, i.e., active or inactive. The numerical results show the advantage in terms of SU throughput of the proposed scheme over the conventional access scheme, where the SUs access the channel randomly with fixed power when the PU is sensed to be idle

    Modern Random Access for Satellite Communications

    Full text link
    The present PhD dissertation focuses on modern random access (RA) techniques. In the first part an slot- and frame-asynchronous RA scheme adopting replicas, successive interference cancellation and combining techniques is presented and its performance analysed. The comparison of both slot-synchronous and asynchronous RA at higher layer, follows. Next, the optimization procedure, for slot-synchronous RA with irregular repetitions, is extended to the Rayleigh block fading channel. Finally, random access with multiple receivers is considered.Comment: PhD Thesis, 196 page

    Opportunistic Multiple Access for Cognitive Radio Networks

    Full text link

    Relay-assisted Multiple Access with Full-duplex Multi-Packet Reception

    Full text link
    The effect of full-duplex cooperative relaying in a random access multiuser network is investigated here. First, we model the self-interference incurred due to full-duplex operation, assuming multi-packet reception capabilities for both the relay and the destination node. Traffic at the source nodes is considered saturated and the cooperative relay, which does not have packets of its own, stores a source packet that it receives successfully in its queue when the transmission to the destination has failed. We obtain analytical expressions for key performance metrics at the relay, such as arrival and service rates, stability conditions, and average queue length, as functions of the transmission probabilities, the self interference coefficient, and the links' outage probabilities. Furthermore, we study the impact of the relay node and the self-interference coefficient on the per-user and aggregate throughput, and the average delay per packet. We show that perfect self-interference cancelation plays a crucial role when the SINR threshold is small, since it may result to worse performance in throughput and delay comparing with the half-duplex case. This is because perfect self-interference cancelation can cause an unstable queue at the relay under some conditions.Comment: Accepted for publication in the IEEE Transactions on Wireless Communication

    Throughput, stability and fairness of carrier-sense multiple access with cooperative diversity

    Get PDF
    Cooperative diversity has been identified as a potential candidate for boosting the physical (PHY) layer performance of future wireless networks. However, several issues remain open today in the design of an appropriate medium access control (MAC) layer for this type of system. This paper attempts to partially fill this gap by addressing the MAC-PHY cross-layer design of a class of carrier-sense multiple access protocols where collision-free transmissions are assisted by the potential cooperative retransmission of the remaining silent terminals in the network. Unlike previous works, the analysis is focused on full asymmetrical settings, where terminals experience different channel and queuing statistics. To achieve this goal, a packet reception model is here proposed for cooperative schemes where the relaying phase is activated only when the reception of previous (re)transmissions has failed. Closed-form expressions of correct reception probability are derived for Rayleigh fading channels assuming that correct reception occurs only when the instantaneous signal-to-noise ratio (SNR) exceeds a reception threshold. This reception model allows for a MAC-layer design aware of PHY-layer information, and vice versa, PHY-layer enhancement and activation using MAC-layer information. The boundary of the throughput region (i.e., the set of all achievable throughput values) is derived in a parametric closed-form expression using a multi-objective optimization approach. A method for deriving a non-parametric form was further proposed, which allows for a geometric interpretation of the two-user case. Stability features such as backlog user distribution and backlog delay are evaluated by using a novel Markov model for asymmetrical systems. Fairness is evaluated by means of the Gini index, which is a metric commonly used in the field of economics to measure income inequality. The protocol is shown to outperform its non-cooperative counterparts under diverse network conditions that are here discussed
    • …
    corecore