130 research outputs found

    On the Shadow Simplex Method for Curved Polyhedra

    Get PDF

    On the Shadow Simplex Method for Curved Polyhedra

    Get PDF
    We study the simplex method over polyhedra satisfying certain “discrete curvature” lower bounds, which enforce that the boundary always meets vertices at sharp angles. Motivated by linear programs with totally unimodular constraint matrices, recent results of Bonifas et al (SOCG 2012), Brunsch and Röglin (ICALP 2013), and Eisenbrand and Vempala (2014) have improved our understanding of such polyhedra. We develop a new type of dual analysis of the shadow simplex method which provides a clean and powerful tool for improving all previously mentioned results. Our methods are inspired by the recent work of Bonifas and the first named author [4], who analyzed a remarkably similar process as part of an algorithm for the Closest Vector Problem with Preprocessing. For our first result, we obtain a constructive diameter bound of O( n2 ln n ) for n-dimensional polyhedra with curvature parameter 2 [0, 1]. For the class of polyhedra arising from totally unimodular constraint matrices, this implies a bound of O(n3 ln n). For linear optimization, given an initial feasible vertex, we show that an optimal vertex can be found using an expected O( n3 ln n ) simplex pivots, each requiring O(mn) time to compute. An initial feasible solutioncan be found using O(mn3 ln n ) pivot steps

    Geometric entropy, area, and strong subadditivity

    Full text link
    The trace over the degrees of freedom located in a subset of the space transforms the vacuum state into a density matrix with non zero entropy. This geometric entropy is believed to be deeply related to the entropy of black holes. Indeed, previous calculations in the context of quantum field theory, where the result is actually ultraviolet divergent, have shown that the geometric entropy is proportional to the area for a very special type of subsets. In this work we show that the area law follows in general from simple considerations based on quantum mechanics and relativity. An essential ingredient of our approach is the strong subadditive property of the quantum mechanical entropy.Comment: Published versio

    Optical triangulations of curved spaces

    Get PDF
    Not only do curved spaces fascinate scientists and non-scientists, but they are also at the heart of general relativity and modern theories of quantum gravity. Optical systems can provide models for the wave and quantum behavior of curved spaces. Here we show how to construct optical systems that simulate triangulations of 3D curved spaces, for example, the curved 3D surface of a 4D hypersphere. Our work offers a new approach to the optical simulation of curved spaces, and has the potential to lead to new ways of thinking about physics in curved spaces and simulating otherwise inaccessible phenomena in non-Euclidean geometries

    Packing and covering with balls on Busemann surfaces

    Full text link
    In this note we prove that for any compact subset SS of a Busemann surface (S,d)({\mathcal S},d) (in particular, for any simple polygon with geodesic metric) and any positive number δ\delta, the minimum number of closed balls of radius δ\delta with centers at S\mathcal S and covering the set SS is at most 19 times the maximum number of disjoint closed balls of radius δ\delta centered at points of SS: ν(S)≤ρ(S)≤19ν(S)\nu(S) \le \rho(S) \le 19\nu(S), where ρ(S)\rho(S) and ν(S)\nu(S) are the covering and the packing numbers of SS by δ{\delta}-balls.Comment: 27 page

    Combinatorial Optimization

    Get PDF
    Combinatorial Optimization is an active research area that developed from the rich interaction among many mathematical areas, including combinatorics, graph theory, geometry, optimization, probability, theoretical computer science, and many others. It combines algorithmic and complexity analysis with a mature mathematical foundation and it yields both basic research and applications in manifold areas such as, for example, communications, economics, traffic, network design, VLSI, scheduling, production, computational biology, to name just a few. Through strong inner ties to other mathematical fields it has been contributing to and benefiting from areas such as, for example, discrete and convex geometry, convex and nonlinear optimization, algebraic and topological methods, geometry of numbers, matroids and combinatorics, and mathematical programming. Moreover, with respect to applications and algorithmic complexity, Combinatorial Optimization is an essential link between mathematics, computer science and modern applications in data science, economics, and industry

    Upper and Lower Bounds on the Smoothed Complexity of the Simplex Method

    Full text link
    The simplex method for linear programming is known to be highly efficient in practice, and understanding its performance from a theoretical perspective is an active research topic. The framework of smoothed analysis, first introduced by Spielman and Teng (JACM '04) for this purpose, defines the smoothed complexity of solving a linear program with dd variables and nn constraints as the expected running time when Gaussian noise of variance σ2\sigma^2 is added to the LP data. We prove that the smoothed complexity of the simplex method is O(σ−3/2d13/4log⁡7/4n)O(\sigma^{-3/2} d^{13/4}\log^{7/4} n), improving the dependence on 1/σ1/\sigma compared to the previous bound of O(σ−2d2log⁡n)O(\sigma^{-2} d^2\sqrt{\log n}). We accomplish this through a new analysis of the \emph{shadow bound}, key to earlier analyses as well. Illustrating the power of our new method, we use our method to prove a nearly tight upper bound on the smoothed complexity of two-dimensional polygons. We also establish the first non-trivial lower bound on the smoothed complexity of the simplex method, proving that the \emph{shadow vertex simplex method} requires at least Ω(min⁡(σ−1/2d−1/2log⁡−1/4d,2d))\Omega \Big(\min \big(\sigma^{-1/2} d^{-1/2}\log^{-1/4} d,2^d \big) \Big) pivot steps with high probability. A key part of our analysis is a new variation on the extended formulation for the regular 2k2^k-gon. We end with a numerical experiment that suggests this analysis could be further improved.Comment: 41 pages, 5 figure

    A Spectral Approach to Polytope Diameter

    Get PDF
    We prove upper bounds on the graph diameters of polytopes in two settings. The first is a worst-case bound for integer polytopes in terms of the length of the description of the polytope (in bits) and the minimum angle between facets of its polar. The second is a smoothed analysis bound: given an appropriately normalized polytope, we add small Gaussian noise to each constraint. We consider a natural geometric measure on the vertices of the perturbed polytope (corresponding to the mean curvature measure of its polar) and show that with high probability there exists a "giant component" of vertices, with measure 1−o(1)1-o(1) and polynomial diameter. Both bounds rely on spectral gaps -- of a certain Schr\"odinger operator in the first case, and a certain continuous time Markov chain in the second -- which arise from the log-concavity of the volume of a simple polytope in terms of its slack variables.Comment: Replaced the proof of Theorem 2.2 with a reference, added acknowledgments. 28p
    • …
    corecore