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Abstract
We study the simplex method over polyhedra satisfying certain “discrete curvature” lower bounds,
which enforce that the boundary always meets vertices at sharp angles. Motivated by linear
programs with totally unimodular constraint matrices, recent results of Bonifas et al (SOCG
2012), Brunsch and Röglin (ICALP 2013), and Eisenbrand and Vempala (2014) have improved
our understanding of such polyhedra.

We develop a new type of dual analysis of the shadow simplex method which provides a clean
and powerful tool for improving all previously mentioned results. Our methods are inspired by
the recent work of Bonifas and the first named author [4], who analyzed a remarkably similar
process as part of an algorithm for the Closest Vector Problem with Preprocessing.

For our first result, we obtain a constructive diameter bound of O(n
2

δ ln n
δ ) for n-dimensional

polyhedra with curvature parameter δ ∈ [0, 1]. For the class of polyhedra arising from totally
unimodular constraint matrices, this implies a bound of O(n3 lnn). For linear optimization,
given an initial feasible vertex, we show that an optimal vertex can be found using an expected
O(n

3

δ ln n
δ ) simplex pivots, each requiring O(mn) time to compute. An initial feasible solution

can be found using O(mn
3

δ ln n
δ ) pivot steps.
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1 Introduction

The simplex method is one of the most important methods for solving linear programs (LP),
that is, optimization problems of the form max {〈c,x〉 : x ∈ P} where P is a polyhedron
defined by linear constraints. Starting from an initial vertex v, a simplex algorithm provides
a rule for moving from vertex to vertex along edges of the graph or 1-skeleton of P until an
optimal vertex w (or an unbounded ray) is found.

A long standing open question is whether there exists a polynomial-time simplex algorithm
for LP. The first obstacle in proving the existence (or non-existence) of such a method is the
following fundamental question:
I Question 1. Given any two vertices v,w of a polyhedron P , what is the best possible
bound on the length of the shortest path between them, as a function of the dimension n
and the number of constraints m?

The polynomial Hirsch conjecture posits that the diameter of the graph of a polyhedron
is bounded by a polynomial in m and n. The best known general upper bounds are however
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much larger. Barnette [3] and Larman [14] proved a bound of O(2nm), and Todd [20]
recently proved a bound of (m− n)logn, slightly improving an earlier bound of Kalai and
Kleitman [12, 13]. The original Hirsch conjecture, which posited a bound of m − n, was
recently disproved for polytopes (i.e. bounded polyhedra) by Santos [17, 15], who gave a
lower bound of (1 + ε)m (only slightly violating the conjectured bound).

Given the difficulty of the general question, much research has been aimed at bounding
the diameter of special classes of polyhedra. For example, polynomial bounds have been
given for 0/1 polytopes [16], transportation polytopes [2, 7, 9], and flag polytopes [1].

Another important class, which has recently received much attention and is directly
related to this work, are polyhedra whose constraint matrices are “well-conditioned”. Dyer
and Frieze [10] showed that the diameter of totally unimodular polyhedra – i.e. having integer
constraint matrices with all subdeterminants in {0,±1} – is bounded by O(m16n3(logmn)3)).
Their work also contains a polynomial time randomized simplex algorithm that solves linear
programs over totally unimodular polyhedra.

The diameter bound of Dyer and Frieze was both generalized and improved in the work
of Bonifas et al [5]. They showed that polyhedra with integer constraint matrices and all
subdeterminants bounded by ∆ have diameter O(∆2n4 log(n∆)) if they are unbounded and
O(∆2n3.5 log(n∆)) if they are bounded. Their proof used certain expansion properties of the
polyhedral graph and was non-constructive.

In an attempt to make the bound of [5] constructive, Brunsch and Röglin [8] showed
that given any two vertices v,w on such a polyhedron P , a path between them of length
O(m∆4n4) (note the dependence on m) can be constructed using the shadow simplex method.
In fact, they give a more general bound based on the so-called δ-distance property of the
constraint matrix, which measures how “well spread” the rows of the constraint matrix are1.
Using this parameter they give a bound of O(mn2/δ2) on the length of the constructed path,
and recover the previous bound by the relationship δ ≥ 1/(n∆2).

Most recently, Eisenbrand and Vempala [11] provided a different approach to making the
Bonifas et al [5] result constructive, which more closely resembles the random walk approach
of Dyer and Frieze and also extends to optimization. When the constraint matrix satisfies the
δ-distance property, they show that given an initial vertex and objective, an optimal vertex
can be computed using poly(n, 1/δ) random walk steps (no dependence on m). Furthermore,
an initial feasible vertex can be computed using m calls to their optimization algorithm over
subsets of the original constraints.

2 Results

Building and improving upon the works of Bonifas et al [5], Brunsch and Röglin [8] and
Vempala and Eisenbrand [11], we give an improved (constructive) diameter bound and
simplex algorithm for polyhedra satisfying the δ-distance and other related properties. We
also make improvements in the treatment of unbounded polyhedra and degeneracy. All our
results are based on a new variant and analysis of the shadow simplex method.

We now introduce the “discrete curvature measures” we use along with the corresponding
results. We list these measures in order of increasing strength. In the next section, we
shall explain our variant of the shadow simplex method and compare it with previous
implementations.

1 We note that this measure is already implicit in [5] and that the diameter bound factors through it.
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Let P = {x ∈ Rn : Ax ≤ b}, A ∈ Rm×n, b ∈ Rn be a pointed polyhedron (A has
full column rank ⇔ P has vertices). For a vertex v of P , the normal cone at v is
Nv =

{∑
i∈Iv

λiai : λi ≥ 0, i ∈ Iv
}
, where Iv = {i ∈ [m] : 〈ai,v〉 = bi} is the set of tight

constraints. Equivalently, Nv is the set of all linear objective functions whose maximum over
P is attained at v. Nv is simplicial (non-degenerate) if it is generated by a basis of A, that
is, if exactly n linearly independent constraints of P are tight at v. The normal fan of P
is the collection of all the vertex normal cones, and the support of the normal fan N(P ) is
their union. A polyhedron is simple (or non-degenerate) if all its vertex normal cones are
simplicial.

I Definition 2 (τ -wide Polyhedra). We say that a cone C is τ -wide if it contains a Euclidean
ball of radius τ centered on the unit sphere. We define a polyhedron P to have a τ -wide
normal fan (or simply P to be τ -wide) if every vertex normal cone is τ -wide.

a1

a2

a3

Nv
τ

Roughly speaking, having a τ -wide normal fan enforces that facets always intersect at
“sharp angles” (i.e. angle bounded away from π). In particular, for any vertex v of P , the
angle between any two rays emanating from v and (non-trivially) passing through P is at
most π − 2τ . Hence one can interpret this condition as a discrete form of curvature for
polyhedra. We now state our diameter bound for τ -wide polyhedra.

I Theorem 3 (Diameter Bound, see Theorem 11). Let P ⊆ Rn be an n-dimensional pointed
polyhedron having a τ -wide normal fan. Then the graph of P has diameter bounded by
8n/τ(1 + ln(1/τ)). Furthermore, a path of this expected length can be constructed via the
shadow simplex method.

Restricting to n-dimensional polyhedra with subdeterminants bounded by ∆, using the
relation τ ≥ 1/(n∆)2 (see Lemma 35) we achieve a bound of O(n3∆2 ln(n∆)), improving on
the existential bounds of Bonifas et al [5]. In contrast to [5], we note that our bound (and
proof) is the same for polytopes and unbounded polyhedra.

While our bound is constructive – we follow a shadow simplex path – it is in general
only efficiently implementable when the polyhedron is simple. In the presence of degeneracy,
we note that computing a single edge of the path is essentially as hard as solving linear
programming. Furthermore, standard techniques for removing degeneracy, such as the
perturbation or lexicographic method, may unfortunately introduce a large number of extra
simplex pivots.

Interestingly, our diameter bound can take advantage of degeneracy in situations where
it makes the normal cones wider. While degeneracy does not occur for “generic polyhedra”,
it is very common for combinatorial polytopes. Furthermore, it can occur in ways that are
useful to our diameter bound. For example, we remark that using degeneracy one can prove
that the normal fan of the perfect matching polytope is Ω(1/

√
|E|)-wide, see Appendix 9.

To solve linear optimization problems via the shadow simplex method, we will need more
than a wide normal fan. In fact, we will have different requirements for the two phases of
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the simplex algorithm: Phase 1, which finds an initial feasible vertex, will require more than
Phase 2, which finds an optimal vertex with respect to the objective starting from a feasible
vertex.

I Definition 4 (δ-distance property). A set of linearly independent vectors v1, . . . ,vk ∈ Rn
satisfy the δ-distance property if for every i ∈ [k], the vector vi is at Euclidean distance at
least δ‖vi‖ from the span of {vj : j ∈ [k] \ {i}}.

For a polyhedron P = {x ∈ Rn : Ax ≤ b}, we define P to satisfy the local δ-distance
property if every feasible basis of A, i.e. the rows of A defining a vertex of P , satisfies the
δ-distance property.

We say that a set of vectors v1, . . . ,vm ∈ Rn satisfy the global δ-distance property if
every linearly independent subset satisfies the δ-distance property. We say that a matrix
A ∈ Rm×n satisfies the global δ-distance property if its row vectors do.

I Lemma 5. Let v1, . . . ,vn ∈ Sn−1 be a basis satisfying the δ-distance property. Then
cone(v1, . . . ,vn) is δ/n-wide.

Proof. See Appendix 10. J

The definitions differ in strength mainly based on the sets of bases to which they apply.
The local δ-distance property is stronger than the τ -wide property for τ = δ/n, because it
implies that all triangulations of the normal fan are τ -wide.2 The global property is stronger
than the local property since it applies also to infeasible bases, which allows one to control
the geometry of polyhedra related to P , such as polyhedra obtained by removing a subset of
constraints, which will be needed for Phase 1.

We now state our main result for Phase 2 simplex.

I Theorem 6 (Optimization via Shadow Simplex, see Theorem 20). Let P = {x ∈ Rn : Ax ≤ b}
be an n-dimensional polytope with m constraints satisfying the local δ-distance property.
Then, given an objective c ∈ Rn and a vertex v of P , an optimal vertex can be computed
using an expected O(n3/δ ln(n/δ)) shadow simplex pivots, where each pivot requires O(mn)
arithmetic operations.

Our Phase 2 algorithm above is faster than the algorithms in [8, 11] and relies on a
weaker assumption than [11]. The v,w path finding algorithm of Brunsch and Röglin [8] is
in fact a special case of the above, since we can choose c to be any objective maximized at
w. Comparing to the Phase 2 algorithm of Eisenbrand and Vempala [11], we require only
the local δ-distance property instead of the global one. Whether one could rely only on the
local property was left as open question in [11], which we resolve in the affirmative.

A small technical caveat is that as stated, the algorithm requires knowledge of δ. Since δ ≤
1, we can always guess a number δ′ ≤ δ ≤ 2δ′ by trying O(ln 1/δ) different values, incurring
an O(ln 1/δ) factor increase in running time (overestimating δ only affects correctness, not
runtime). For simplicity, we shall henceforth assume that δ is known.

A more important caveat is that the above algorithm requires that P be a polytope
(i.e. bounded). This restriction is due to the fact that we can only generate the randomness
required for our bounds efficiently (that is, without solving a general LP) when the support
of the normal fan equals Rn.

The unbounded setting can be reduced to the bounded setting, in the standard way, by
adding one or more constraints to make P bounded while not cutting off any of its vertices.

2 However, the τ -wide property is weaker even when all normal cones are simplicial: a 2-dimensional cone
of inner angle close to π is almost 1-wide, but satisfies δ-distance only for δ close to 0.
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I Definition 7. Let P = {x ∈ Rn : Ax ≤ b} be a pointed polyhedron. Then a polytope
P ′ = {x ∈ Rn : Ax ≤ b, A′x ≤ b′} is LP equivalent to P if every vertex v ∈ P satisfies
〈a′i,v〉 < b′i for all i; in particular, x is a vertex of P ′.

Given an optimal vertex v of P ′ as above, one can easily check whether v is a vertex of
P . If it is not, the original LP must be unbounded. In general, however, adding constraints
to P happens at the expense of a degraded δ. In particular, the standard reduction of adding
a large box constraint can degrade δ arbitrarily, hence the constraints must be added with
care. We state the guarantees we can achieve below.

I Lemma 8 (Removing Unboundedness, see Appendix 7). Let P = {x ∈ Rn : Ax ≤ b} be an
n-dimensional pointed polyhedron with m constraints. Let a1, . . . ,am denote the rows of A
and bmax = maxi∈[m] |bi|/‖ai‖.

1. Assume that P satisfies the local δ-distance property and that I ⊆ [m], |I| = n, indexes
the rows of a feasible basis. Letting w = −1/n

∑
i∈I ai/‖ai‖, we have that

P ′ = {x ∈ Rn : Ax ≤ b, 〈w,x〉 ≤ nbmax/δ} ,

is a polytope that is LP equivalent to P and satisfies the local δ2/(2n)-distance property.
2. Assume that A satisfies the global δ-distance property. Then

P ′ = {x ∈ Rn : −n‖ai‖bmax/δ − 1 ≤ 〈ai,x〉 ≤ bi, ∀i ∈ [m]} ,

is a polytope that is LP equivalent to P and satisfies the global δ-distance property.

Finally, we use standard techniques for reducing feasibility to phase 2 type optimization.
As this generally requires pivoting over infeasible bases, we will require global instead of
local properties here. Interestingly, for LPs with bounded subdeterminants, we get that the
number of simplex pivots is completely independent of the number of constraints.

I Theorem 9 (Feasibility via Shadow Simplex, see Appendix 8). Let P = {x ∈ Rn : Ax ≤ b} be
an n-dimensional polyhedron whose constraint matrix has full column rank and satisfies the
global δ-distance property. Then a feasible solution to P can be computed using an expected
O(mn3/δ ln(n/δ)) shadow simplex pivots. Furthermore, if A is integral and has subdetermin-
ants bounded by ∆, a feasible solution can be computed using an expected O(n5∆2 ln(n∆)))
shadow simplex pivots.

Shadow Simplex Method

Our main technical contribution is a new analysis and variant of the shadow simplex method,
which utilizes (rather unexpectedly) an approach developed in [4] for navigating over the
Voronoi graph of a Euclidean lattice (see related work section).

The shadow simplex has been at the heart of many theoretical attempts to explain the
surprising efficiency of the simplex method in practice. It has been shown to give polynomial
bounds for the simplex method over random and smoothed linear programs [6, 19, 21]. As
mentioned above, Brunsch and Röglin [8] already showed that it yields short paths for the
polyhedra we consider here.

At a high level, the shadow simplex over a polyhedron P works as follows. Given an
initial objective function c, a vertex v of P which maximizes this objective, and a target
objective function d, the shadow simplex interpolates between the objective functions c and
d and performs a pivot step whenever the optimal vertex changes (hence the alternative
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name parametric simplex method referring to the parameterization c(λ) = (1− λ)c + λd of
the objective function, where λ grows from 0 to 1 over the course of the algorithm).

Traditionally, this method is understood and analyzed with a primal interpretation: The
polyhedron P is orthogonally projected onto the 2-dimensional plane spanned by c and d
(hence the term “shadow”), and the algorithm is understood in terms of the boundary of
the projection P ′. The optimal vertices for c and d project to the boundary of P ′, and as
long as c and d are in sufficiently general position, edges of P ′ lift to edges of P so that the
boundary can be followed efficiently by an algorithm that performs simplex pivots in the
original space. The number of pivot steps is then typically bounded in terms of the lengths
of edges or in terms of angles between edges of P ′.

Our analysis is substantially different and based on a dual perspective: The shadow
simplex method follows the line segment [c,d] through the normal fan of P , pivoting whenever
the segment crosses into a different n-dimensional normal cone. We express the number of
crossings, that is, the number of intersections between [c,d] and the facets of the normal fan
of P , in terms of certain surface area measures of translates of the normal fan. The bounds
we obtain on the number of intersections are stated below.

I Theorem 10 (Intersection bounds, see Lemmas 22 and 25). Let T = (C1, . . . , Ck) be a
partition of a cone Σ into polyhedral τ -wide cones. Let c,d ∈ Rn and let X ∈ Rn be
exponentially distributed on Σ.

1. The expected number of facets hit by the shifted line segment [c +X,d +X] satisfies

E[|∂T ∩ [c +X,d +X]|] ≤ ‖d− c‖
τ

.

2. Let α ∈ (0, 1). Then

E[|∂T ∩ [c + αX, c +X]|] ≤ 2n
τ

ln 1
α

.

To achieve the above bounds, the main idea is to relate the probability that the above
random line segments pass through a normal cone to the probability that the associated
perturbation vector lands in the cone (or some joint shift). Under the τ -wideness condition,
we can in fact uniformly upper bound these proportionality factors. Since the jointly shifted
normal cones are all disjoint, we can deduce the desired bounds from the fact that the sum
of their measures is ≤ 1.

We compose these bounds in a way that also departs from the classical template by using
three consecutive shadow simplex paths instead of just one. For given vertices v and w
we first pick objectives c and d that are “deep inside” the respective normal cones. From
here, we sample an exponentially distributed perturbation vector X and traverse three paths
through the normal fan in sequence:

c (a)−→ c +X
(b)−→ d +X

(c)−→ d

The perturbation X will be quite large and hence almost always large enough to push c and
d away from their normal cones. Indeed, the high level intuition behind our path is that in
order to avoid unusually long paths from c to d, we first travel to a “random intermediate
location”.

We note that in phases (a) and (c), randomness is only used to perturb one of the
objectives. As far as we are aware, this paper provides the first successful analysis of the
shadow simplex path in this setting. Furthermore, this extension is crucial to achieving our
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improved diameter bound. Previous algorithms were constrained to random perturbations
that kept c and d inside their respective normal cones, making the amount of randomness
they could take advantage of much smaller.

We now use the bounds from Theorem 10 to derive the diameter bound.

I Theorem 11. Let P ⊆ Rn be a pointed full dimensional polyhedron with τ -wide outer
normal cones. Then P has diameter bounded by 8n

τ (1 + ln 1/τ).

Proof. Let v1,v2 be vertices of P with outer normal cones Nv1 , Nv2 . Let c1, c2 ∈ Sn−1

satisfy ci + τBn2 ⊆ Nvi , i ∈ {1, 2}. Let Σ = N(P ) denote the support of the normal fan of P ,
and let X be exponentially distributed over Σ.

We will construct a path from v1 to v2 by following the sequence of vertices optimizing
the objectives in the segments [sc1, sc1 +X], [sc1 +X, sc2 +X], [sc2 +X, sc2], where s > 0 is
a scalar to be chosen later. We will condition on the event that ‖X‖ ≤ 2n. Since E[‖X‖] = n

(see Lemma 13), by Markov’s inequality this occurs with probablity at least 1/2. Under this
event, by τ -wideness, we will not pivot in the segments [sc1, sc1 + sτ

2nX] and [sc2 + sτ
2nX, sc2].

Using Theorem 10, the number of pivots along the segments [sc1 + sτ
2nX, sc1 +X], [sc1 +

X, sc2 +X], [sc2 +X, sc2 + sτ
2nX], is bounded by(

s‖c2−c1‖
τ + 4n

τ ln
( 2n
sτ

))
Pr[‖X‖ ≤ 2n] ≤ 2

(
s‖c2 − c1‖

τ
+ 4n

τ
ln
(

2n
sτ

))
.

Setting s = 4n
‖c2−c1‖ , the above bound becomes

8n
τ

(
1 + ln

(
‖c2 − c1‖

2τ

))
≤ 8n

τ

(
1 + ln 1

τ

)
, as needed. J

Related Work

In a surprising connection, we borrow techniques developed in a recent work of Bonifas and
the first named author [4] for a totally different purpose, namely, for solving the Closest
Vector Problem with Preprocessing on Euclidean lattices. In [4], a 3-step “perturbed” line
path was analyzed to navigate over the Voronoi graph of the lattice, where lattice points are
connected if their associated Voronoi cells touch in a facet.

In the current work, we show a strikingly close analogy between analyzing the number of
intersections of a random straight line path with a Voronoi tiling of space and the intersections
of a shadow simplex path with the normal fan of a polyhedron. This unexpected connection
makes us hopeful that these ideas may have even broader applicability.

Organization

In section 3, we regroup all the necessary notation and definitions. In section 4, we give
our shadow simplex based optimization algorithm. In section 5, we prove the intersection
bounds for our shadow simplex method. In section 6, we show how to implement shadow
simplex pivots and how to deal with degeneracy. In section 7, we give our reductions from
unbounded δ-wide LPs to bounded ones. In section 8, we give our shadow simplex based
algorithms for LP feasibility. In section 9, we give lower bounds on the width of the normal
fan of the perfect matching polytope. Missing proofs can be found in Appendix 10.
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3 Notation and definitions

For vectors x,y ∈ Rn, we let 〈x,y〉 =
∑n
i=1 xiyi denote their inner product. We let

‖x‖ =
√
〈x,x〉 denote the Euclidean norm, Bn2 = {x ∈ Rn : ‖x‖ ≤ 1} the unit ball and

Sn−1 = ∂Bn2 the unit sphere. We denote the linear span of a set A ⊆ Rn by span(A).
We use the notation I[x ∈ A] for the indicator of A, that is I[x ∈ A] is 1 if x ∈ A and
0 otherwise. For a set of scalars S ⊆ R, we write SA = {sa : s ∈ S,a ∈ A}. For two
sets A,B ⊆ Rn, we define their Minkowski sum A + B = {a + b : a ∈ A,b ∈ B}. We let
d(A,B) = inf {‖x− y‖ : x ∈ A,y ∈ B}, denote the Euclidean distance between A and B.
For vectors a,b ∈ Rn we write [a,b] for the closed line segment and [a,b) for the half-open
line segment from a to b.

I Definition 12 (Cone). A cone Σ ⊆ Rn satisfies the following three properties:

0 ∈ Σ.
x + y ∈ Σ if x and y are in Σ.
λx ∈ Σ if x ∈ Σ and λ ≥ 0.

For vectors y1, . . . ,yk ∈ Rn, we define the closed cone they generate as

cone(y1, . . . ,yk) =
{

m∑
i=1

λiyi : λi ≥ 0, i ∈ [m]
}
.

A cone is polyhedral if it can be generated by a finite number of vectors, and is simplicial if
the generators are linearly independent. By convention, we let cone(∅) = 0. A simplicial
cone has the δ-distance property if its extreme rays satisfy the δ-distance property.3

For a convex setK ⊆ Rn, a subset F ⊆ K is a face ofK, if for all x,y ∈ K, λx+(1−λ)y ∈
F , λ ∈ [0, 1], implies that x,y ∈ F . For a simplicial cone C, we note that its faces are exactly
all the subcones generated by any subset of the generators of C.

A set of cones T = {C1, . . . , Ck} is an n-dimensional cone partition if:

Each Ci ⊆ Rn, i ∈ [k], is a closed n-dimensional cone.
Any two cones Ci, Cj , i 6= j, meet in a shared face.
The support of T , sup(T ) def= ∪i∈[k]Ci, is a closed cone.

We say that F is a face of T if it is a face of one of its contained cones. A cone partition
T is τ -wide if every Ci is τ -wide. It is simplicial if every Ci is simplicial. In this case, we
also call T a cone triangulation. A cone triangulation satisfies the local δ-distance property
if every Ci satisfies it. We define the boundary of T , ∂T = ∪ki=1∂Ci. We say that a cone
triangulation T triangulates a cone partition P if T and P have the same support and every
cone C ∈ T is generated by a subset of the extreme rays of some cone of P . This means that
T partitions (“refines”) every cone of P into simplicial cones.

3.1 Exponential distribution
We say that a random variable X ∈ Rn is exponentially distributed on a cone Σ if

Pr[X ∈ S] =
∫
S

ζΣ(x)dx,

3 The δ-distance property is invariant under scaling, so the choice of generators of the extreme rays is
irrelevant.
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where ζΣ(x) = cΣe
−‖x‖I[x ∈ Σ]. A standard computation, which we include for completeness,

yields the normalizing constant and the expected norm.

I Lemma 13. The normalizing constant c−1
Σ = n!voln(Bn2 ∩ Σ). For X exponentially

distributed on Σ, we have that E[‖X‖] = n.

Proof. See Appendix 10. J

4 Optimization

While bounding the number of intersections of line segments [c,d] with the facets of the
normal fan of P = {x ∈ Rn : Ax ≤ b} is sufficient to obtain existential bounds on the
diameter of P , we also need to be able to efficiently compute the corresponding pivots to
obtain efficient algorithms. The following summarizes the required results, the technical
details of which are found in Appendix 6.

I Theorem 14 (Shadow simplex, see Theorem 29). Let P = {x ∈ Rn : Ax ≤ b} be pointed,
c,d ∈ Rn, and B an optimal basis for c. If every intersection of [c,d) with a facet F of a
cone spanned by a feasible basis of P lies in the relative interior of F , the Shadow Simplex
can be used to compute an optimal basis for d in O(mn2 + Nmn) arithmetic operations,
where N is the number of intersections of [c,d] with some triangulation T of the normal fan
of P , where T contains the cone spanned by the initial basis B.

As explained in Section 2, we want to follow segments [c, c+X], [c+X,d+X], [d+X,d]
in the normal fan. Our intersection bounds from Theorem 10 are not quite sufficient to
bound the number of steps on the first and last segments entirely. This is easily dealt with
for the first segment, because we can control the initial objective function c so that it lies
deep in the initial normal cone.

For the final segment, we follow the approach of Eisenbrand and Vempala [11], who
showed that if A satisfies the global δ-distance property, then an optimal facet for d can be
derived from a basis that is optimal for some d̃ with ‖d− d̃‖ ≤ δ

n . Recursion can then be
used on a problem of reduced dimension to move from d̃ to d. We strengthen their result
(thereby answering a question left open by [11]) and show that the local δ-distance property
is sufficient to get the same result as long as ‖d− d̃‖ ≤ δ

n2 .4

I Definition 15. Let F be a face of a cone triangulation T and let x be a vector in the
support of T . Let G = cone(x1, . . . ,xk), ‖xi‖ = 1, be the minimal face of T that contains x
and consider the unique conic combination x = λ1x1 + · · ·+ λkxk. We define

αF (x) :=
∑
i:xi 6∈F

λi

In particular, αF (x) ≥ 1 if x is a unit vector and the minimal face containing it is disjoint
from F , and αF (x) = 0 if x ∈ F .

I Lemma 16. Let x1, . . . ,xm ∈ Sn−1 be a set of vectors. Then the following are equivalent:

1. x1, . . . ,xm satisfy the δ-distance property.

4 In the final bound, the loss of a factor n here disappears inside a logarithm.
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2. ∀ I ⊆ [m] for which {xi : i ∈ I} are linearly independent and ∀ (ai ∈ R : i ∈ I)

‖
∑
i∈I

aixi‖ ≥ δmax
i∈I
|ai| .

Proof. See Appendix 10. J

I Lemma 17. Let F be a cone of an n-dimensional cone triangulation T satisfying the local
δ-distance property. Let x be a point in the support of T . Then d(x, F ) ≥ αF (x) · δn .

Proof. Let y ∈ F be the (unique) point with d(x,y) = d(x, F ). Note that by convexity, the
segment [x,y] is contained in the support of T . By considering the cones of T that contain
points on the segment [x,y], we obtain a sequence of points

x = x0,x1, . . . ,xr = y

on the segment [x,y] and (full-dimensional) cones G1, . . . , Gr such that

Gi ∩ [x,y] = [xi−1,xi].

Since αF (y) = 0, the result of the lemma follows immediately from the claim that

d(xi−1,xi) ≥ |αF (xi−1)− αF (xi)| ·
δ

n
,

which we will now prove.
Fix some Gi = cone(y1, . . . ,yn). By relabelling, we may assume that cone(y1, . . . ,yk) =

Gi ∩ F (since Gi and F are both faces of T ), for some 0 ≤ k ≤ n (if k = 0 then Gi ∩ F = 0).
For every z ∈ Gi, the minimal cone containing z is a face of Gi. Therefore, using the

unique conic combination z =
∑
i=1 λiyi, we have that αF (z) =

∑
k<i≤n λi.

Writing xi−1 =
∑n
i=1 aiyi and xi =

∑n
i=1 biyi, by Lemma 16 we have that

d(xi−1,xi) ≥ δ max
1≤i≤n

|ai − bi| ≥ δ max
k<i≤n

|ai − bi| ≥
δ

n

∑
k<i≤n

|ai − bi|

≥ δ

n
|αF (xi−1)− αF (xi)|,

which completes the proof of the claim. J

I Lemma 18. Let F be a cone of a triangulation T satisfying the local δ-distance property
and let x be a point in the support of T with d(x, F ) ≤ δ

n2 . Let G = cone(x1, . . . ,xn),
‖xi‖ = 1, be a cone of T containing x and let

x = λ1x1 + · · ·+ λnxn

be the corresponding conic combination. Then for every i ∈ [n] with λi > 1
n one has xi ∈ F .

Proof. Suppose there is some i with λi > 1
n and xi 6∈ F . Then αF (x) > 1

n and by Lemma 17
we get d(x, F ) > δ

n2 , which is a contradiction. J

For the recursion on a facet, we let πi(x) := x− 〈x,ai〉
〈ai,ai〉ai be the orthogonal projection

onto the subspace orthogonal to ai and we let Fi be the facet of P defined by 〈ai,x〉 = bi.

I Lemma 19. Let v1, . . . ,vk ∈ Rn be linearly independent vectors that satisfy the δ-distance
property and let π be the orthogonal projection onto the subspace orthogonal to vk. Then
π(v1), . . . , π(vk−1) satisfy the δ-distance property.
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Proof. See Appendix 10. J

This Lemma, which was already used by [11], implies that if P satisfies the local δ-distance
property then so does Fi, where the definition of local δ-distance is understood relative to
the affine hull of Fi,5 because the normal vectors of Fi arise from orthogonal projections of
the normal vectors of P .

Input: polytope P = {x ∈ Rn : Ax ≤ b}, δ > 0, feasible basis B, d ∈ Rn
Output: optimal basis B ⊂ [m] for d
c←

∑
i∈B

ai

‖ai‖ , d← 2 d
‖d‖

Sample X ∈ Rn from the exponential distribution conditioned on ‖X‖ ≤ 2n
Follow segments [c, c +X], [c +X,d +X], [d +X,d + δ

2n3X] using Shadow Simplex
Find λi such that d̃ := d + δ

2n3X =
∑
i∈B λi

ai

‖ai‖ where B is the current basis
Choose i? such that λi? > 1

n

B′ ← optimal basis of Fi? for πi?(d), obtained by recursion starting at B \ {i?}
return B′ ∪ {i?}

Algorithm 1: Optimization

I Theorem 20. If P satisfies the local δ-distance property, then Algorithm 1 correctly
computes an optimal basis for d using an expected O(n3/δ ln(n/δ)) shadow simplex pivots.

Proof. For correctness, let T be some triangulation of the normal fan of P and let C be
a cone in T that contains d. We have ‖ δ

2n3X‖ ≤ δ
n2 and therefore d(d̃, C) ≤ d(d̃,d) ≤ δ

n2 .
Furthermore, ‖d̃‖ ≥ ‖d‖ − δ

n2 > 1 implies that
∑
i∈B λi > 1 so that there is some i with

λi >
1
n . Applying Lemma 18 yields that ai? is a generator of C, which means that i? is

contained in some optimal basis for d. This implies that recursion on Fi? yields the correct
result.

In order to bound the number of pivots, let C be the cone of the initial basis and observe
that c + δBn2 ⊆ C by the proof of Lemma 5. Hence the segment [c + δ

2nX) does not cross a
facet of the triangulation T1 of the normal fan that is implicitly used by the first leg of the
shadow simplex path.

If X were exponentially distributed (without the conditioning on ‖X‖ ≤ 2n), Theorem 10
would bound the expected number of pivot steps along the three segments by

E[N ] ≤ 2n2

δ
ln 2n

δ
+ n‖d− c‖

δ
+ 2n2

δ
ln 2n3

δ
≤ O(n

2

δ
ln(n

δ
))

Since E[‖X‖] = n we have Pr[‖X‖ ≤ 2n] ≥ 1
2 by Markov’s inequality and therefore

E[N | ‖X‖ ≤ 2n] ≤ 2E[N ] ≤ O(n
2

δ
ln(n

δ
)).

The bound on the total expected number of pivot steps follows from the depth n of recursion.
J

5 Alternatively, one can apply a rotation and translation so that Fi lies in the subspace Rn−1 spanned by
the first n− 1 coordinates. The rotation does not affect the δ-distance property, and we can then treat
Fi as a polytope in Rn−1.
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5 Intersection Bounds and Diameter Bounds

I Lemma 21. Let C be a polyhedral cone containing u + τBn2 , where ‖u‖ = 1. Let c,d ∈ Rn
and let X ∈ Rn be exponentially distributed on a full dimensional cone Σ 3 u. Then the
expected number of times the shifted line segment [c +X,d +X] hits the boundary of C is at
most

E[|∂C ∩ [c +X,d +X]|] ≤ ‖d− c‖
τ

∫ 1

0

∫
(C−((1−λ)c+λd))∩Σ

ζΣ(x)dxdλ

Proof. Let F be a facet of C. Note that with probability 1, the line segment [c +X,d +X]
passes through F at most once. By linearity, we see that

E[|∂C ∩ [c +X,d +X]|] =
∑

F facet of C
Pr[(F ∩ [c +X,d +X]) 6= ∅]. (1)

We now bound the crossing probability for any facet F .
We first calculate the hitting probability as

Pr[F ∩ [c +X,d +X] 6= ∅] = Pr[X ∈ −[c,d] + F ]

=
∫
−[c,d]+F

ζΣ(x)dx

= | 〈n,d− c〉 |
∫ 1

0

∫
F−((1−λ)c+λd)

ζΣ(x)dvoln−1(x)dλ

≤ ‖d− c‖
∫ 1

0

∫
(F−((1−λ)c+λd))∩Σ

cΣe
−‖x‖dvoln−1(x)dλ (2)

where n ∈ Rn is a unit normal vector to F . Bounding the hitting probability therefore boils
down to bounding the measure of a shift of the facet F . Letting h = | 〈n,u〉 | ≥ τ (which
holds by assumption on u), for any shift t ∈ Rn we have that∫

(F+t+cone(u))∩Σ
e−‖x‖dx ≥

∫
((F+t)∩Σ)+cone(u)

e−‖x‖dx ( since u ∈ Σ )

=
∫ ∞

0

∫
((F+t)∩Σ)+ r

h u
e−‖x‖dvoln−1(x)dr

=
∫ ∞

0

∫
(F+t)∩Σ

e−‖x+ r
h u‖dvoln−1(x)dr

≥
∫ ∞

0
e−r/hdr

∫
(F+t)∩Σ

e−‖x‖dvoln−1(x)

≥ τ
∫

(F+t)∩Σ
e−‖x‖dvoln−1(x) (3)

The lemma now follows by combining (1),(2),(3), using the fact that the F+cone(u) partition
the cone C up to sets of measure 0. J

I Lemma 22. Let T = (C1, . . . , Ck) be a partition of a cone Σ into polyhedral τ -wide cones.
Let c,d ∈ Rn and let X ∈ Rn be exponentially distributed on Σ. Then the expected number
of facets hit by the shifted line segment [c +X,d +X] satisfies

E[|∂T ∩ [c +X,d +X]|] ≤ ‖d− c‖
τ

.
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Proof. Using Lemma 21, we bound

E[|∂T ∩ [c +X,d +X]|] ≤
k∑
i=1

E[|∂Ci ∩ [c +X,d +X]|]

≤
k∑
i=1

‖d− c‖
τ

∫ 1

0

∫
(Ci−((1−λ)c+λd))∩Σ

ζΣ(x)dxdλ

≤ ‖d− c‖
τ

∫ 1

0

∫
Σ
ζΣ(x)dxdλ

≤ ‖d− c‖
τ

,

as needed.
For the furthermore, note that each intersection is overcounted twice in the summation

above, since each facet belongs to exactly two cones in the partition. J

We will need the following simple lemma about the exponential distribution.

I Lemma 23. Let Y be exponentially distributed on R+. Then for any c ∈ R, E[|Y − c|] ≥
|c|/2.

Proof. Since Y ≥ 0, the inequality is trivial if c ≤ 0. Hence we may assume that c ≥ 0.
Using integration by parts, we have that

E[|Y − c|] =
∫ c

0
(c− x)e−xdx+

∫ ∞
c

(x− c)e−xdx

= (x− c)e−x
∣∣c
0 −

∫ c

0
e−xdx+ (c− x)e−x

∣∣∞
c

+
∫ ∞
c

e−xdx

= (x− c+ 1)e−x
∣∣c
0 + (c− x− 1)e−x

∣∣∞
c

= 2e−c + c− 1.

We wish to show that 2e−c + c− 1 ≥ c/2, hence it suffices to show 2e−c + c/2− 1 ≥ 0 for all
c ≥ 0. This function is minimized at c = ln 4 where it achieves value (ln 4− 1)/2 > 0. J

While we could choose c and d such that c + X and d + X lie in the same cone with
high probability, this would require us to choose ‖d− c‖ quite large. Instead, we will bound
the number of facets that are hit by the segment [c, c +X].

I Lemma 24. Let C ⊆ Rn be a polyhedral cone containing u + τBn2 , where ‖u‖ = 1. Let
c ∈ Rn and X ∈ Rn be exponentially distributed on a cone Σ 3 u. Then for every α ∈ (0, 1)
we have

E[|∂C ∩ [c + αX, c +X]|] ≤ 2
τ

∫ 1/α

1

1
s

∫
(C−sc)∩Σ

‖x‖ζΣ(x)dxds

Proof. As in the proof of Lemma 21, we will decompose the expectation over the facets of
C, where we have

E[|∂C ∩ [c + αX, c +X]|] =
∑

F facet of C
Pr[F ∩ [c + αX, c +X] 6= ∅] (4)
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Take a facet F of C and let n denote a unit normal to F pointing in the direction of the
cone (i.e., 〈n, u〉 > 0).

Pr[F ∩ [c + αX, c +X] 6= ∅] = Pr[X ∈ [1, 1
α

](F − c)]

=
∫ 1/α

1

∫
(F−sc)∩Σ

| 〈n, c〉 |ζΣ(x)dvoln−1(x)ds

=
∫ 1/α

1

1
s

∫
(F−sc)∩Σ

| 〈n, sc〉 |cΣe−‖x‖dvoln−1(x)ds. (5)

Again, we have to bound an integral over a shifted facet, similar to the proof of Lemma 21.
Letting h = | 〈n,u〉 | ≥ τ , we have that∫

(F+t+cone(u))∩Σ
‖x‖e−‖x‖dx ≥

∫
((F+t)∩Σ)+cone(u)

‖x‖e−‖x‖dx (since u ∈ Σ)

=
∫ ∞

0

∫
((F+t)∩Σ)+ r

h u
‖x‖e−‖x‖dvoln−1(x)dr

=
∫ ∞

0

∫
(F+t)∩Σ

‖x + r

h
u‖e−‖x+ r

h u‖dvoln−1(x)dr

≥
∫ ∞

0

∫
(F+t)∩Σ

|
〈

n,x + r

h
u
〉
|e−r/he−‖x‖dvoln−1(x)dr

= h2
∫ ∞

0
| 〈n, t〉 /h+ s|e−sds

∫
(F+t)∩Σ

e−‖x‖dvoln−1(x)

≥ h

2

∫
(F+t)∩Σ

| 〈n, t〉 |e−‖x‖dvoln−1(x) (by Lemma 23)

≥ τ

2

∫
(F+t)∩Σ

| 〈n, t〉 |e−‖x‖dvoln−1(x)

(6)

The Lemma now follows by combining (4),(5),(6). J

I Lemma 25. Let T = (C1, . . . , Ck) be partition of a cone Σ into polyhedral τ -wide cones.
Let c ∈ Rn and α ∈ (0, 1) be fixed and let X ∈ Rn be exponentially distributed over Σ. Then

E[|∂T ∩ [c + αX, c +X]|] ≤ 2n
τ

ln 1
α

.

Proof. By Lemmas 13 and 24, we have that

E[|∂T ∩ [c + αX, c +X]|] ≤
k∑
i=1

E[|∂Ci ∩ [c + αX, c +X]|]

≤ 2
τ

k∑
i=1

∫ 1/α

1

1
s

∫
(Ci−sc)∩Σ

‖x‖ζΣ(x)dxds

≤ 2
τ

∫ 1/α

1

1
s

∫
Σ
‖x‖ζΣ(x)dxds

≤ 2
τ

∫ 1/α

1

1
s
E[‖X‖]ds = 2n

τ
ln 1
α

J



D. Dadush and N. Hähnle 15

6 The shadow simplex method with symbolic perturbation

In this section, we will give a self-contained presentation of the algorithmic details of
the shadow simplex method, including the details of coping with degenerate P using a
perturbation of the right-hand sides b. For clarity of presentation, we will first consider the
case of simple polyhedra. We will also assume that c and d are in general position as made
precise in the precondition of Algorithm 2.

Input: P = {x ∈ Rn : Ax ≤ b}, c,d ∈ N(P ), optimal basis B ⊂ [m] for c
Precondition: P is pointed and simple
Precondition: [c,d) intersects facets of normal cones only in their relative interiors
Output: optimal basis B ⊂ [m] for d
λ← 0
Gauss elimination: A← AU , c← UT c, d← UTd so that AB = In
loop

i? ← arg min
{

ci

ci−di
: i ∈ B, ci > di

}
if i? undefined or λ? = ci?

ci?−di?
≥ 1 then return B

j? ← arg min
{
〈aj ,bB〉−bj

aji?
: j 6∈ B,aji? < 0

}
B ← B \ {Bi?} ∪ {j?}, λ← λ?

Gauss elimination: A← AU , c← UT c, d← UTd so that AB = In

end
Algorithm 2: Shadow Simplex

I Lemma 26. Let A ∈ Rm×n, b ∈ Rm, and U ∈ Rn×n invertible. Then a basis B is optimal
for max {〈c,x〉 : Ax ≤ b} if and only if it is optimal for max

{〈
UT c,x

〉
: AUx ≤ b

}
.

Proof. Let a1, . . . ,am ∈ Rn be the rows of A. The basis B is optimal for the first problem
if and only if c ∈ cone {ai : i ∈ B}. This is equivalent to UT c ∈ cone

{
UTai : i ∈ B

}
. Since

the UTai are the rows of AU , this is equivalent to B being an optimal basis for the second
problem. J

I Theorem 27. Algorithm 2 is correct as specified and requires O(mn2 +Nmn) arithmetic
operations, where N is the number of normal cone facets intersected by [a,b].

Proof. The initial Gauss elimination requires O(mn2) arithmetic operations. Each iteration
is dominated by the computation of j? and the rank-1 Gauss elimination update, both of
which require O(mn) arithmetic operations.

We will show the invariant that B is an optimal basis for max {〈cλ,x〉 : Ax ≤ u}, where
cλ = (1 − λ)c + λd. The invariant initially holds by definition of the input and remains
unchanged by the Gauss elimination steps due to Lemma 26.

A typical iteration is illustrated in Figure 1. The vertex corresponding to B is bB, its
normal cone is the positive orthant Rn+. The invariant implies that cλ ∈ Rn+. If d− c ≥ 0,
the algorithm returns B. Indeed, B is an optimal basis for d in this case because d ∈ Rn+.

Otherwise, the ray from cλ through d eventually leaves the positive orthant, and in fact
cλ? is the last point contained in Rn+. If λ? ≥ 1 we know that d = c1 ∈ Rn+ and so the
current basis is optimal for d. The index i? is the index into the basis whose contribution to
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bB
aB1

aB2

c

d
cλ

cλ?aj?

Figure 1 One iteration of the Shadow Simplex

the conic combination describing cλ? is 0.6
Letting B′ = B \ {Bi?} ∪ {j?}, where Bi? is the i?-th index in the basis, it is trivially

true that cλ? ∈ coneATB′ , so it only remains to show that B′ is a feasible basis. The edge of
the polyhedron described by the constraints B \ {Bi?} is contained in the ray starting at
the vertex bB in direction −ei? . This ray can only be cut off by constraints ajx ≤ bj with
aji? < 0. At least one such constraint must exist by the condition that d lies in the support
of the normal fan, i.e. the corresponding linear program is bounded. The fraction 〈aj ,bB〉−bj

aji?

is the Euclidean distance from bB to the intersection of the constraint 〈aj ,x〉 ≤ bj with the
ray, and so B′ is feasible.7 This completes the proof of the invariant and thus the proof of
correctness.

If the initial objective c lies in the facet of a normal cone we may get λ? = λ in the first
iteration. Nevertheless, due to the precondition on [c,d), every computed value λ? is distinct
and, except for the last one, corresponds to one intersection point of [c,d] with a facet of a
normal cone. Therefore, the number of iterations is bounded by N + 1. J

If the input polyhedron were non-simple, the proof of correctness and termination would
still work given c in sufficiently general position. However, the λ? would then correspond
to points of intersection between [c,d] and cones corresponding to bases. Those cones are
merely subsets of normal cones, and they may not be mutually consistent with a single
triangulation of the normal fan. For this reason, we consider a perturbed polyhedron

Pε := {x ∈ Rn : Ax ≤ b + γ(ε)}

where γ(ε) := (ε, ε2, . . . , εm) for ε > 0.

I Lemma 28. If ε > 0 is sufficiently small, one has that

1. every feasible basis B for Pε is also feasible for P ,
2. the normal fan of Pε triangulates the normal fan of P , and
3. if B = {m− n+ 1, . . . ,m} is a feasible basis for P , then it is also feasible for Pε.

Proof. If Pε is not simple, there is some basis B and a constraint j 6∈ B such that〈
aj , A−1

B (bB + γ(ε)B)
〉

= bj + εj

In other words, ε is a root of a non-zero polynomial. Since there are only finitely many pairs
of B and j 6∈ B, we have that Pε is simple for sufficiently small ε > 0. In particular, the

6 This is just a different way of saying that (cλ? )i? = 0. Due to the precondition on [c,d) this index is
uniquely defined when λ? < 1.

7 Note that the minimum is positive and unique because the underlying polyhedron is simple.
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normal fan of Pε is a triangulation. For the second claim, it remains to show that for all
vertices x ∈ Pε one has Nx ⊆ Ny for some vertex y ∈ P . In fact, this is implied by the first
claim, which we show next.

Let B be an infeasible basis for P , i.e. there is some j 6∈ B such that〈
aj , A−1

B (bB + γ(ε)B)
〉
> bj + εj

holds for ε = 0. Since both sides of the inequality are continuous as functions in ε, strict
inequality also holds for all sufficiently small ε > 0. There are only finitely many infeasible
bases for P , so we have that all of them are infeasible for Pε when ε > 0 is sufficiently small.
This implies the first claim.

Finally, if B = {m− n+ 1, . . . ,m} is feasible for P , we have that〈
aj , A−1

B (bB + γ(ε)B)
〉
− bj − εj ≤ 0

holds for all j ≤ m−n when ε = 0. The left hand side is a polynomial in ε whose lowest-degree
non-constant monomial is −εj . This implies that the inequality also holds when ε > 0 is
sufficiently small, hence B is feasible for Pε. J

Without explicit bounds on the coefficients describing P , we cannot give a quantitative
bound for ε. We avoid the need for such a bound by applying the perturbation symbolically.
Since the right-hand sides b never appear in divisors, we can perform related computations
in the polynomial ring R := R[ε]. The order ≤ on R naturally extends to a lexicographic
order on R such that a ≤ b holds for a, b ∈ R if and only if a(ε) ≤ b(ε) holds over the reals
for all sufficiently small ε > 0.

I Theorem 29. Let P = {x ∈ Rn : Ax ≤ b} be pointed, c,d ∈ Rn, and B an optimal basis
for c. If every intersection of [c,d) with a facet F of a cone spanned by a feasible basis of
P lies in the relative interior of F , the Shadow Simplex can be used to compute an optimal
basis for d in O(mn2 +Nmn) arithmetic operations, where N is the number of intersections
of [c,d] with some triangulation of the normal fan of P that contains the cone spanned by
the initial basis B.

Proof. Rearrange the rows of Ax ≤ b so that B = {m− n+ 1, . . . ,m} and apply Lemma 28.
This gives us all preconditions of the Shadow Simplex algorithm, and the proof of Theorem 27
applies with a single caveat: the computation of j? involves computations and comparisons
of terms of the form 〈aj ,bB+γ(ε)B〉−bj−εj

aji?
∈ R. The resulting polynomials contain at most

n+ 2 monomials. By storing them as sparse sorted vectors, we can compute each term and
compare it to the previous best in time O(n), so that the computation of j? still requires
only O(mn) arithmetic operations. J

7 Removing unboundedness

In this section, we discuss two approaches to add constraints to a pointed polyhedron
P = {x ∈ Rn : Ax ≤ b} to construct an LP equivalent polytope P ′. This requires the
additional constraints to be strictly valid for all vertices of P .

I Lemma 30. Let M ∈ Rn×n be a matrix whose rows are v1, . . . ,vn ∈ Sn−1. Then
v1, . . . ,vn satisfy the δ-distance property if and only if the columns u1, . . . ,un of M−1 satisfy
‖uj‖ ≤ 1/δ for all j.
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Proof. Let Hi = span {vj : j 6= i}. Then

1 = 〈vi,ui〉 = ‖ui‖d(vi, Hi) ⇐⇒ d(vi, Hi) = 1
‖ui‖

implies the statement. J

I Lemma 31. Let P = {x ∈ Rn : Ax ≤ b} satisfy the local δ-distance property and let
bmax = max

{
|bi|
‖ai‖ : i ∈ [m]

}
. Then every vertex x ∈ P satisfies ‖x‖ ≤ nbmax

δ .

Proof. We may assume without loss of generality that ‖ai‖ = 1 for all i ∈ [m]. Let x be a
vertex and let B be a basis for x. Let u1, . . . ,un ∈ Rn be the columns of A−1

B . The triangle
inequality and Lemma 30 imply ‖x‖ = ‖A−1

B bB‖ ≤
∑
i∈B ‖ui‖bmax ≤ nbmax/δ. J

Proof of Lemma 8. 1. Let P = {x ∈ Rn : Ax ≤ b} satisfy the local δ-distance property.
For some feasible basis I we let

w = − 1
n

∑
i∈I

ai
‖ai‖

and P ′ =
{

x ∈ P : 〈w,x〉 ≤ nbmax
δ

}
. The normal fan of P ′ covers Rn, because 0 lies in

the interior of conv({ai : i ∈ I} ∪ {w}), and so P ′ is a polytope. Since ‖w‖ < 1, we have
〈w,x〉 < ‖x‖ ≤ nbmax

δ for every vertex x ∈ P by Lemma 31, so P ′ is LP equivalent to P .
Every vertex of P ′ is either a vertex of P or the intersection of an unbounded ray of P
with the new constraint. Consider a feasible basis B of P ′. Either B is already feasible
for P , in which case it satisfies the δ-distance property. Otherwise, it is of the form
a1, . . . ,an−1,w, where a1, . . . ,an is a feasible basis for P , after a suitable renumbering
of indices.
In this case, cone {a1, . . . ,an−1} is on the boundary of the support of the normal fan of P ,
and so by the proof of Lemma 5 we have d(w, H) ≥ δ/n, where H = span {a1, . . . ,an−1}.
Using an orthogonal transformation, we may assume without loss of generality that
a1n = · · · = a(n−1),n = 0 and so the matrix M whose rows are the basis vectors
normalized to unit length is of the form

M =
(
A′ 0

w′T h

)
∈ Rn×n

where h = d(w/‖w‖, H) ≥ δ/n and ‖w′‖ < 1. We compute

M−1 =
(

A′−1 0
−w′TA′−1/h 1/h

)
By Lemma 30, it is sufficient to show that the norms of the columns of M−1 are bounded
by 2n/δ2. This is immediate for the last column. Let u1, . . . ,un−1 be the columns of
A′−1. We have ‖ui‖ ≤ 1/δ by Lemma 30. Furthermore, the i-th entry of the last row of
M−1 is bounded in absolute value by∣∣∣∣ 〈w′,ui〉h

∣∣∣∣ ≤ ‖ui‖nδ ≤ n

δ2

By the triangle inequality, the norms of the first n− 1 columns of M−1 are bounded by
1/δ + n/δ2 ≤ 2n/δ2. This completes the proof that P ′ satisfies the local δ2/(2n)-distance
property.
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2. Now suppose that A satisfies the global δ-distance property. For every vertex x ∈ P , we
have

〈−ai,x〉 ≤ ‖ai‖‖x‖ ≤
n‖ai‖bmax

δ

by Lemma 31, and so the polytope

P ′ =
{

x ∈ Rn : −n‖ai‖bmax

δ
− 1 ≤ 〈ai,x〉 ≤ bi ∀i ∈ [m]

}
is LP equivalent to P . Furthermore, every (not necessarily feasible) basis of the constraint
matrix of P ′ is equal to a basis of A up to sign changes, which do not affect the δ-distance
property. Therefore, P ′ satisfies the global δ-distance property. J

8 Feasibility

I Lemma 32. Let P = {x ∈ Rn : Ax ≤ b} where A ∈ Zm×n is an integral matrix of full
column rank with subdeterminants bounded by ∆. One can compute a feasible basis of P or
decide infeasibility using an expected O(n5∆2 lnn∆) shadow simplex pivots.
Proof. Consider the linear program

min s

〈ai,x〉 − s ≤ bi ∀i ∈ [m]
s ≥ 0

The (m + 1) × (n + 1)-constraint matrix is integral of full column rank and has n × n-
subdeterminants bounded by n∆. Therefore, it satisfies the global δ-distance property with
δ = 1

n2∆2 by Lemma 35. The point (0,−min({0} ∪ {bi : i ∈ [m]})) is feasible, and so a
feasible basis can be found using a standard ray-casting procedure. Lemma 8 implies that
we can construct an LP equivalent polytope with the same parameter δ, which we can then
optimize in O(n5∆2 lnn∆) shadow simplex pivots by Theorem 6. If the optimal solution
we found satisfies s = 0, we can read off a feasible basis of P ; otherwise, we know that P is
empty. J

I Lemma 33. Let P = {x ∈ Rn : Ax ≤ b} where A ∈ Rm×n satisfies the global δ-distance
property. One can compute a feasible basis of P or decide infeasibility using an expected
O(mn3/δ lnn/δ) shadow simplex pivots.
Proof. We proceed by iteratively adding the constraints of P , one at a time. First, observe
that we can find a basis B of A efficiently using Gauss elimination, which gives us the unique
feasible basis of PB = {x ∈ Rn : ABx ≤ bB}.

Now suppose we already found a feasible basis B of PI = {x ∈ Rn : AIx ≤ bI}, I ( [m].
Let i 6∈ I. Since PI satisfies the global δ-distance property, we can combine Lemma 8 with
Theorem 6 to solve the linear program

min {〈ai,x〉 : x ∈ PI} = γ

using an expected O(n3/δ lnn/δ) shadow simplex pivots. If γ > bi, this implies that PI+i is
empty and therefore P is empty. Otherwise, the solution of the linear program yields a point
x ∈ PI+i (if γ = −∞, we find a suitable point on an unbounded ray) which we can round to
a feasible basis of PI+i using a standard ray-casting procedure if necessary.

Applying this procedure iteratively until I = [m], we use an expected O(mn3/δ lnn/δ)
shadow simplex pivots to obtain a feasible basis of P . Observe that the time required for
those pivots dominates the time required for any intermediate ray-casting. J
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v1
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un−1

vn = v0

un = u0

. . .

Figure 2 A perfect matching and a selection of tight odd sets.

9 The perfect matching polytope

The perfect matching polytope PG ⊂ RE of an undirected graph G = (V,E), |V | = 2n, is
the convex hull of the characteristic vectors χM of perfect matchings M ⊆ E (see chapter 25
of [18] for a collection of fundamental results on PG). It is described by the system of
inequalities∑

e∈δ(v)

x(e) ≤ 1 ∀v ∈ V

∑
e∈δ(U)

x(e) ≥ 1 ∀U ⊆ V, |U | odd

x(e) ≥ 0 ∀e ∈ E

We will also use the fact that two vertices χM and χN of PG are adjacent if and only if
M4N is a cycle.

We will show that even though this polytope has an exponential number of facets, so
that its normal fan contains an exponential number of extreme rays, every normal cone is
rather wide. This is due to the high level of degeneracy of the polytope. While a much better
bound on the diameter of PG follows directly from the combinatorial adjacency structure
noted above, it is interesting to see that some of our techniques can be applied to PG. As far
as we know, this is the first example of a combinatorial polytope that satisfies this kind of
“discrete curvature bound” without having a constraint matrix with small subdeterminants.

Since PG is not full-dimensional, there are two different but essentially equivalent defin-
itions for the normal cones of PG. One can treat PG as a polytope in the ambient space
RE , keeping the definition of the normal cone Nv of a vertex v ∈ PG as the set of objective
functions c ∈ RE that are maximized at v. Hence Nv is not pointed, and its lineality space
L⊥ is the set of vectors that are orthogonal to the affine hull aff(PG) of PG. Alternatively,
one may treat PG as a full-dimensional polytope within aff(PG), in which case the normal
cone N ′v is simply the restriction of Nv to the linear space L of vectors parallel to aff(PG).
The choice of definition does not affect τ -width: given a ball w + τBE2 ⊆ Nv, ‖w‖ = 1, the
orthogonal projection of the ball onto L is w′ + τBL2 ⊆ N ′v with ‖w′‖ ≤ 1.

I Theorem 34. PG is τ -wide for τ = 1/(3
√
|E|).

Proof. Let χM ∈ PG be a vertex and let NχM
be its normal cone. Let us label the vertices

of G such that

M = {u0v0, u1v1, . . . , un−1vn−1}
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For an odd set U ⊆ V of vertices, let aU be the corresponding row of the constraint matrix
in normal form, i.e. aU = −χδ(U). We consider the following 3-element sets, see Figure 2:

U :=
{
{uk, vk, w} : 0 ≤ k ≤ n− 1, w ∈

{
uk+1 (mod n), vk+1 (mod n)

}}
Since the corresponding constraints are tight at χM , we have that

w :=
∑
U∈U

aU ∈ NχM

Note that for e ∈ M , we have w(e) = −2, and for e ∈ E \M , we have w(e) ∈ {−4,−6}
(every vertex is contained in exactly 3 of the sets in U , and there can be at most one set in
U that contains both endpoints of e 6∈M). In particular, ‖w‖ ≤ 6

√
|E|.

Every facet F of NχM
corresponds to an edge from χM to some other vertex χN . We

know that M4N is a cycle C. The direction v of the edge from χN to χM , which is (inner)
normal to F , satisfies

v(e) =


1 e ∈ C ∩M
−1 e ∈ C \M
0 e 6∈ C

We compute

〈v,w〉 =
∑

e∈C∩M
w(e)−

∑
e∈C\M

w(e) ≥ −2|C ∩M |+ 4|C \M | = |C|

where we use the fact that C alternates between edges in M and edges in N for the last
equation. Let H be the affine span of F . We obtain

d(w, H) = 〈v,w〉
‖v‖ ≥

|C|
‖v‖ =

√
|C| ≥ 2

In other words, NχM
contains a ball of radius 2 around w, and so NχM

is τ -wide for
τ = 2/‖w‖ ≥ 1/(3

√
|E|). J
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10 Additional proofs

Proof of Lemma 5. Let v∗1, . . . ,v∗n be the dual basis satisfying
〈
vi,v∗j

〉
= 1 if i = j and 0

otherwise. By definition of the δ-distance property

〈vi,v∗i /‖v∗i ‖〉 ≥ δ ⇒ ‖v∗i ‖ ≤ 1/δ.

Note that x ∈ cone(v1, . . . ,vn) iff 〈v∗i ,x〉 ≥ 0, for all i ∈ [n]. Let v̄ =
∑n
i=1 vi/n, and note

that ‖v̄‖ ≤ 1, since it is an average of unit vectors.
We will show that v̄ + δ

nB
n
2 ⊆ cone(v1, . . . ,vn), which suffices to prove the lemma. Take

any vector e, ‖e‖ ≤ δ/n. Then for any i ∈ [m], note that

〈v∗i , v̄ + e〉 = 1/n+ 〈v∗i , e〉 ≥ 1/n− ‖v∗i ‖‖e‖ ≥ 0.

Hence v̄ + e ∈ cone(v1, . . . ,vn), as needed. J



D. Dadush and N. Hähnle 23

Proof of Lemma 13. For the first part,

c−1
Σ =

∫
Σ
e−‖x‖dx =

∫
Σ

∫ ∞
‖x‖

e−tdtdx

=
∫ ∞

0
e−t

∫
Σ

I[‖x‖ ≤ t]dxdt =
∫ ∞

0
e−ttnvoln(Bn2 ∩ Σ)dt = n!voln(Bn2 ∩ Σ).

For the expected norm,

E[‖X‖] = cΣ

∫
Σ
‖x‖e−‖x‖dx = cΣ

∫
Σ
‖x‖

∫ ∞
‖x‖

e−tdtdx

= cΣ

∫ ∞
0

e−t
∫
t(Bn

2 ∩Σ)
‖x‖dxdt = cΣ

∫ ∞
0

e−ttn+1dt
∫
Bn

2 ∩Σ
‖x‖dx

= cΣ(n+ 1)!
∫ 1

0
(1− sn)voln(Bn2 ∩ Σ)ds

= cΣ(n+ 1)!voln(Bn2 ∩ Σ) n

n+ 1 = n. J

Proof of Lemma 16. (1) ⇒ (2) Let I ⊆ [m] for which {xi : i ∈ I} are linearly independent,
and examine the linear combination

∑
i∈I aixi. Letting j = arg maxi∈I |ai|, we have that

‖ajxj +
∑

i∈I\{j}

aixi‖ ≥ d(ajxj , span({xi : i ∈ I \ {j}}))

= |aj |d(xj , span({xi : i ∈ I \ {j}})) ≥ δ|aj |, ( by property (1) )

as needed.
(2) ⇒ (1) Take i ∈ [m] and J ⊆ [m], such that xi 6∈ span({xj : j ∈ J}). Since we need

only prove a lower bound on d(xi, span({xj : j ∈ J})), we may clearly assume that
{xj : j ∈ {i} ∪ J} are linearly independent. Given this, we have that

d(xi, span({xj : j ∈ J})) = min

xi −
∑
j∈J

ajxj : aj ∈ R, j ∈ J


≥ min

{
δmax

{
1,max

j∈J
|aj |
}

: aj ∈ R, j ∈ J
}

( by property (2) )

≥ δ, as needed. J

Proof of Lemma 19. Let i ∈ {1, . . . , k− 1}. Let Si = span {π(vj) : j 6= i, k}. First, observe

span({vk} ∪ Si) = span({vj : j 6= i}).

Assume that d(π(vi), Si) < δ‖π(vi)‖. So there exists some x ∈ Si such that d(π(vi),x) <
δ‖π(vi)‖. Since we can write vi = π(vi) + λvk for some λ ∈ R, we get

d(vi, span({vj : j 6= i})) ≤ d(vi,x + λvk) = d(π(vi),x) < δ‖π(vi)‖ ≤ δ‖vi‖,

which contradicts the δ-distance property of v1, . . . ,vk. So we must in fact have d(π(vi), Si) ≥
δ‖π(vi)‖ for all i ∈ {1, . . . , k − 1}, which completes the proof. J

The following result is already implicit in [5]. We provide it here for completeness.
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I Lemma 35. Let A ∈ Rm×n be an integral matrix whose entries are bounded by ∆1 and
whose (n− 1)× (n− 1) subdeterminants are bounded by ∆n−1 in absolute value. Then A
satisfies the global δ-distance property with δ = 1/(n∆1∆n−1). Furthermore, any polyhedron
with constraint matrix A is τ -wide with τ = 1/(n2∆1∆n−1).

Proof. It is sufficient to consider the case where A ∈ Zn×n is invertible. Let a1, . . . ,an be
the rows of A and let Hi = span {aj : j 6= i}. The vector ui satisfying Aui = | det(A)|ei is a
normal vector of Hi with ui ∈ Zn and ‖ui‖∞ ≤ ∆n−1 by Cramer’s rule. We can compute

d(ai/‖ai‖, Hi) = 〈ai,ui〉
‖ai‖‖ui‖

≥ 1
(
√
n∆1)(

√
n∆n−1)

= 1
n∆1∆n−1

using the fact that ‖ai‖∞ ≤ ∆1.
The “furthermore” part of the statement of the Lemma follows from Lemma 5. J
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