11,943 research outputs found

    SDSS Standard Star Catalog for Stripe 82: the Dawn of Industrial 1% Optical Photometry

    Get PDF
    We describe a standard star catalog constructed using multiple SDSS photometric observations (at least four per band, with a median of ten) in the ugrizugriz system. The catalog includes 1.01 million non-variable unresolved objects from the equatorial stripe 82 (∣ΎJ2000∣<|\delta_{J2000}|< 1.266∘^\circ) in the RA range 20h 34m to 4h 00m, and with the corresponding rr band (approximately Johnson V band) magnitudes in the range 14--22. The distributions of measurements for individual sources demonstrate that the photometric pipeline correctly estimates random photometric errors, which are below 0.01 mag for stars brighter than (19.5, 20.5, 20.5, 20, 18.5) in ugrizugriz, respectively (about twice as good as for individual SDSS runs). Several independent tests of the internal consistency suggest that the spatial variation of photometric zeropoints is not larger than ∌\sim0.01 mag (rms). In addition to being the largest available dataset with optical photometry internally consistent at the ∌\sim1% level, this catalog provides practical definition of the SDSS photometric system. Using this catalog, we show that photometric zeropoints for SDSS observing runs can be calibrated within nominal uncertainty of 2% even for data obtained through 1 mag thick clouds, and demonstrate the existence of He and H white dwarf sequences using photometric data alone. Based on the properties of this catalog, we conclude that upcoming large-scale optical surveys such as the Large Synoptic Survey Telescope will be capable of delivering robust 1% photometry for billions of sources.Comment: 63 pages, 24 figures, submitted to AJ, version with correct figures and catalog available from http://www.astro.washington.edu/ivezic/sdss/catalogs/stripe82.htm

    Data Fusion of Objects Using Techniques Such as Laser Scanning, Structured Light and Photogrammetry for Cultural Heritage Applications

    Full text link
    In this paper we present a semi-automatic 2D-3D local registration pipeline capable of coloring 3D models obtained from 3D scanners by using uncalibrated images. The proposed pipeline exploits the Structure from Motion (SfM) technique in order to reconstruct a sparse representation of the 3D object and obtain the camera parameters from image feature matches. We then coarsely register the reconstructed 3D model to the scanned one through the Scale Iterative Closest Point (SICP) algorithm. SICP provides the global scale, rotation and translation parameters, using minimal manual user intervention. In the final processing stage, a local registration refinement algorithm optimizes the color projection of the aligned photos on the 3D object removing the blurring/ghosting artefacts introduced due to small inaccuracies during the registration. The proposed pipeline is capable of handling real world cases with a range of characteristics from objects with low level geometric features to complex ones

    Colour correction using root-polynomial regression

    Get PDF

    Pair Analysis of Field Galaxies from the Red-Sequence Cluster Survey

    Full text link
    We study the evolution of the number of close companions of similar luminosities per galaxy (Nc) by choosing a volume-limited subset of the photometric redshift catalog from the Red-Sequence Cluster Survey (RCS-1). The sample contains over 157,000 objects with a moderate redshift range of 0.25 < z < 0.8 and absolute magnitude in Rc (M_Rc) < -20. This is the largest sample used for pair evolution analysis, providing data over 9 redshift bins with about 17,500 galaxies in each. After applying incompleteness and projection corrections, Nc shows a clear evolution with redshift. The Nc value for the whole sample grows with redshift as (1+z)^m, where m = 2.83 +/- 0.33 in good agreement with N-body simulations in a LCDM cosmology. We also separate the sample into two different absolute magnitude bins: -25 < M_Rc < -21 and -21 < M_Rc < -20, and find that the brighter the absolute magnitude, the smaller the m value. Furthermore, we study the evolution of the pair fraction for different projected separation bins and different luminosities. We find that the m value becomes smaller for larger separation, and the pair fraction for the fainter luminosity bin has stronger evolution. We derive the major merger remnant fraction f_rem = 0.06, which implies that about 6% of galaxies with -25 < M_Rc < -20 have undergone major mergers since z = 0.8.Comment: ApJ, in pres

    Olivine or Impact Melt: Nature of the "Orange" Material on Vesta from Dawn

    Full text link
    NASA's Dawn mission observed a great variety of colored terrains on asteroid (4) Vesta during its survey with the Framing Camera (FC). Here we present a detailed study of the orange material on Vesta, which was first observed in color ratio images obtained by the FC and presents a red spectral slope. The orange material deposits can be classified into three types, a) diffuse ejecta deposited by recent medium-size impact craters (such as Oppia), b) lobate patches with well-defined edges, and c) ejecta rays from fresh-looking impact craters. The location of the orange diffuse ejecta from Oppia corresponds to the olivine spot nicknamed "Leslie feature" first identified by Gaffey (1997) from ground-based spectral observations. The distribution of the orange material in the FC mosaic is concentrated on the equatorial region and almost exclusively outside the Rheasilvia basin. Our in-depth analysis of the composition of this material uses complementary observations from FC, the visible and infrared spectrometer (VIR), and the Gamma Ray and Neutron Detector (GRaND). Combining the interpretations from the topography, geomorphology, color and spectral parameters, and elemental abundances, the most probable analog for the orange material on Vesta is impact melt

    A Search for Candidate Light Echoes: Photometry of Supernova Environments

    Get PDF
    Supernova (SN) light echoes could be a powerful tool for determining distances to galaxies geometrically, Sparks 1994. In this paper we present CCD photometry of the environments of 64 historical supernovae, the first results of a program designed to search for light echoes from these SNe. We commonly find patches of optical emission at, or close to, the sites of the supernovae. The color distribution of these patches is broad, and generally consistent with stellar population colors, possibly with some reddening. However there are in addition patches with both unusually red and unusually blue colors. We expect light echoes to be blue, and while none of the objects are quite as blue in V-R as the known light echo of SN1991T, there are features that are unusually blue and we identify these as candidate light echoes for follow-on observations.Comment: 13 pages, Latex, 5 Postscript Tables, 42 Postscript figures, accepted for publication in the A&AS. Figures 1 through 36 are available at the web address: http://www.stsci.edu/~boffi
    • 

    corecore