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Colour Correction using Root-Polynomial

Regression
Graham D. Finlayson, Michal Mackiewicz, Anya Hurlbert

Abstract—Cameras record three colour responses (RGB) which
are device dependent. Camera coordinates are mapped to a stan-
dard colour space such as XYZ - useful for colour measurement
- by a mapping function e.g. the simple 3 × 3 linear transform
(usually derived through regression). This mapping, which we will
refer to as LCC (linear colour correction), has been demonstrated
to work well in the number of studies. However, it can map
RGBs to XYZs with high error. The advantage of the LCC
is that it is independent of camera exposure. An alternative
and potentially more powerful method for colour correction
is polynomial colour correction (PCC). Here, the R,G and B

values at a pixel are extended by the polynomial terms. For a
given calibration training set PCC can significantly reduce the
colorimetric error. However, the PCC fit depends on exposure
i.e. as exposure changes the vector of polynomial components is
altered in a non-linear way which results in hue and saturation
shifts. This paper proposes a new polynomial-type regression
loosely related to the idea of fractional polynomials which we
call ‘Root-Polynomial Colour Correction’ (RPCC). Our idea is
to take each term in a polynomial expansion and take its kth root
of each k-degree term. It is easy to show terms defined in this way
scale with exposure. RPCC is a simple (low complexity) extension
of LCC. The experiments presented in the paper demonstrate
that RPCC enhances colour correction performance on real and
synthetic data.

I. INTRODUCTION

The problem of colour correction arises from the fact

that camera sensor sensitivities cannot be represented as the

linear combination of CIE colour matching functions [1] (they

violate the Luther conditions [2], [3]). The violation of the

Luther conditions results in camera-eye metamerism [4] that is

certain surfaces while different to the eye will induce the same

camera responses and vice-versa. While colour correction can-

not resolve metamerism per se, it aims at establishing the best

possible mapping from camera RGBs to device independent

XYZs (or display sRGBs [5]).

The literature is rich in descriptions of different methods

attempting to establish the mapping between RGBs and XYZs.

Methods include: three dimensional look-up tables [6], least-

squares linear and polynomial regression [7]–[13] and neural

networks [12], [14], [15].

Despite the variety of colour correction methods reported

in the literature the simple 3 × 3 linear transform is not
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easily challenged. First, if we assume that reflectances can

be represented by 3 dimensional linear model (approximately

the case) [16], then under a given light the mapping from RGB

to XYZ has to be a 3× 3 matrix. Marimont and Wandell [17]

extended the notion of modelling surface reflectances using

linear models by proposing that a linear model should account

only for that part of the reflectance which can be measured by

a camera or a human eye or in general any set of sensors

(under different lights). They found that typical lights and

surfaces interact with typical cameras as if reflectances and

illuminants were well described by the 3 dimensional linear

models.

Another advantage of the linear colour correction (LCC) is

that it works correctly as scene radiance/exposure changes.

Let’s assume that for a certain camera exposure setting, a

surface in the scene represented by the RGB vector v is

mapped to the XYZ vector w. We would expect any colour

correction algorithm to map kv to kw as well, where k

denotes a scaling factor of the surface radiance (an additional

assumption is that both v and kv are in the unsaturated range

of the camera). This formal description is equivalent to having

the same surface viewed under different light levels in different

parts of the scene. The key observation here is that the LCC

has this important property i.e. as surface radiance and so the

RGBs are scaled up and down, the corresponding XYZ values

will be scaled accordingly. In other words, the correct linear

map taking RGBs to XYZs (or display sRGBs) is the same for

both v and kv. By a similar reasoning, LCC is also invariant

to the changes in camera exposure settings.

Despite these benefits, LCC may produce significant errors

for some surfaces. Indeed, given a linear fit from RGBs to

XYZs, errors for individual surfaces can be in excess of 10

CIE ∆E (1∆E denotes just noticeable difference [18], 10∆E

differences are highly visually different).

To reduce this error a simple extension to the linear ap-

proach is to use polynomial colour correction (PCC) [7], [11].

In the 2nd degree PCC each image RGB is represented by the

9-vector [R G B R2 G2 B2 RG RB GB]. Analogously, one

can define a higher degree polynomials e.g. the 3rd degree

where the RGB vector is extended to 19 elements and the 4th

degree where it is extended to 34 elements. Significantly, a

polynomial fit can - for fixed calibration settings - reduce the

mapping error (even in excess of 50%) [11]. Unfortunately,

if the RGB is scaled by k, the individual components of the

9-vector either scale by k or k2. Thus, if we scale our data

- physically this is the effect of changing the scene radiance

or exposure - then the best 3 × 9 colour correction matrix

must also change. This presents a significant problem in real
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images.

Fig. 1 illustrates the problem. We map the scene physical

colours at a number of exposures using PCC and plot the

corresponding chromaticities. One can clearly see the chro-

matic shifts induced by the PCC as one scales the intensity

of the light. The red lines show that the scene physical input

chromaticity might be mapped to a range of outputs depending

on exposure.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

u’

v
’

Fig. 1. Selection of reflectances from the SFU 1995 dataset [19] and their
true u′v′ coordinates (x) [18]; chromatic shifts produced by the polynomial
model of the 4

th degree (red solid lines).

A real image example of the problem is presented in Fig.

2. Fig. 2a contains an image of the colour checker captured

with the NIKON D70 camera and colour corrected with the

polynomial model of the 4th degree. Fig. 2b shows the same

image with double the exposure time before it was corrected

by the same transform. One can see that the colours of some

patches have changed as the exposure changed e.g. an orange

patch is corrected to pink as exposure changes.

Other examples of PCC failure are shown in Fig. 3. The

scene containing the Macbeth colour chart and a pepper fruit

under the D65 illuminant was captured with the Specim VNIR

hyperspectral camera 1 and integrated with the sRGB sensors

(shown in Fig. 3a). Next, the scene was integrated with Foveon

sensors [20] and colour corrected by the 4th degree PCC

(shown in Fig. 3b). This image shows a relatively good colour

correction when compared with the sRGB image. However,

when we look at the image that was colour corrected after

the illumination level was increased (shown in Fig. 3c), we

can see that some colours were rendered inaccurately (e.g. the

cyan patch and the pepper highlight). Note, that these patches

are still below the sensor saturation level (the white point in

the original image).

In this paper, we develop a new Root Polynomial Colour

Correction (RPCC). By taking the kth root of k-degree poly-

nomial terms, we show RPCC is independent of exposure (like

LCC).

The rest of the paper is organised as follows. In Section II,

we describe the PCC and a few other alterations to the LCC.

1www.specim.fi

Fig. 2. X-rite SG colour chart captured with NIKON D70 camera and colour
corrected using the polynomial model of the 4

th degree (a). The image
RGB values were multiplied by 2 before applying the same colour correction
transform (b). A sample pair of patches with high error has been marked with
arrows.

In Section III, we set out our root-polynomial method. This

is followed by the experiments in Section IV, discussion in

Section V and conclusions in Section VI.

II. POLYNOMIAL COLOUR CORRECTION

Let ρ define a three element vector representing the three

camera responses and q their corresponding tristimulus values.

A simple 3× 3 colour correction transform is written as:

q = Mρ (1)

The matrix M is generally found by some sort of least-

squares regression. Let us denote a set of N known XYZs

for a reflectance target as Q and the corresponding camera

responses as the 3 × N matrix R. We find the least-squares

mapping from R to Q using the Moore-Penrose inverse [21]:

M = QR
T (RR

T )−1 (2)

In polynomial regression, vector ρ is extended by adding

additional polynomial terms of increasing degree. Formally,

let ρ denote responses from N sensors. Then, the set of up to

Kth degree polynomial terms in N variables is defined as:
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Fig. 3. The scene containing the Macbeth colour chart and a pepper fruit illuminated with D65 metamer, captured with Specim hyperspectral camera and
integrated with the sRGB sensors (a). The same hyperspectral image, integrated with Foveon sensors and colour corrected to sRGB using the polynomial
model of the 4

th degree (b). The same colour correction performed after the intensity of the light was increased by 70% (c).

PK,N = {ρα : |α| ≤ K} (3)

where α = (α1, ..., αN )T is a multi-index that is n-tuple of

non-negative integers and its size is defined as |α| = α1 +
...+αN [22]. In multi-index notation, ρα =

∏N
i=1

ραi

i . There

are
((

N
K

))

=
(

N+K−1

N−1

)

=
(

N+K−1

K

)

different multi-indices

of size K [23], and so, that many polynomial terms of degree

K . It can be shown that the number of polynomials of up to

Kth degree in N variables is h =
(

N+K
N

)

− 1 =
(

N+K
K

)

− 1.

For a typical case when N = 3 i.e. ρ = (r, g, b)T ,

the polynomial expansions of the 2nd, 3rd and 4th degree

investigated in this work are given by the sets P2,3, P3,3 and

P4,3, which after ordering are defined by the following vectors:

ρ2,3 =
(

r, g, b, r2, g2, b2, rg, gb, rb
)T

ρ3,3 =
(

r, g, b, r2, g2, b2, rg, gb, rb,

r3, g3, b3, rg2, gb2, rb2, gr2, bg2, br2, rgb
)T

ρ4,3 =
(

r, g, b, r2, g2, b2, rg, gb, rb,

r3, g3, b3, rg2, gb2, rb2, gr2, bg2, br2, rgb,

r4, g4, b4, r3g, r3b, g3r, g3b, b3r, b3g,

r2g2, g2b2, r2b2, r2gb, g2rb, b2rg
)T

In a polynomial expansion the 3 numbers recorded in a pixel

are represented by 9, 19 and 34 numbers respectively. Colour

correction is now carried out by 3 × 9, 3 × 19 and 3 × 34
matrices. If R, in general, denotes the polynomial response

of N surfaces then Equation 2 can be used to solve for the

PCC matrix. Of course high degree data expansions can result

in unstable (rank deficient) data sets. This problem can be

mitigated by regularising the regression [21], [24].

LCC has been extracted in a variety of different ways. In

[25] Vrhel and Trussel showed that if the mapping is defined

relative to the first three principal components of the training

set of surface reflectances then relatively good colour correc-

tion is often obtained for the entire set. Finlayson and Drew

[10] proposed a constrained least-squares regression, where the

3× 3 linear transform is constrained to map one (or possibly

2) colour patches exactly. The authors call this transform the

white preserving colour correction (WPCC). In 3 × 3 LCC,

preserving one colour leaves two degrees of freedom to be

determined by the least-squares fit. Similarly, preserving two

colours leaves one degree of freedom to be determined by the

least-squares fit and preserving three colours fully determines

the colour correction matrix. The authors observed that it is

often beneficial to have the white-point preserving mapping

which can be achieved within the framework of their method.

Constrained regression is particularly useful when there is

incomplete training set in which case a so called maximum

ignorance training is often performed. This method is also

applicable using a polynomial expansion of R, G and B.

Andersen and Hardeberg proposed the Hue Plane Preserving

Colour Correction (HPPCC) [26], which maps RGBs to XYZs

using a finite (on the order of a dozen) set of linear transforms,

where each transform is applied in a different hue slice of the

colour space. Thus, in general different pixels are corrected

using different 3× 3 linear transforms. Each individual 3× 3
transform Mi is derived only from 3 patches: a neutral and two

chromatic patches specifying the extent of the hue slice. This

ensures the error free mapping of the three patches and the C0

continuity of the XYZ estimates at the hue slice boundaries.

The authors show that their method outperforms both the

basic LCC as well as the WPCC mentioned above. It also

outperforms the 2nd degree PCC. Further, the authors point

out that unlike the other three methods, the PCC will not

preserve hue planes across different exposures. A target such

as the Macbeth colour chart (19 distinct chromaticities) does

not have sufficient colour diversity to train this method.

Other variations of LCC include deriving transforms aiming

to be robust to noise [13], [27].

III. ROOT-POLYNOMIAL COLOUR CORRECTION

For fixed exposure, polynomial regression really can deliver

significant improvements to colour correction. However, in

reality the same reflectance will also induce many different

brightnesses for the same fixed exposure and viewing con-

ditions. As an example, due to shading the same physical

reflectance might induce camera responses from zero to the

maximum sensor value. Clearly, for this circumstance we want

the colour of the object (hue and saturation) to be constant

throughout the brightness range. As shown in Fig. 1-3 simple

polynomial regression does not preserve object colour.

The starting point of this paper was to ask the following

question. Is there a way we can use the undoubted power
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of polynomial data fitting in a way that does not depend on

exposure/scene radiance? We make the observation that the

terms in any polynomial fit each have a degree e.g. R, RG

and R2B are respectively degree 1, 2 and 3. Multiplying each

of R, G and B by a scalar k results in the terms kR, k2RG

and k3R2B. That is the degree of the term is reflected in the

power to which the exposure scaling is raised. Clearly, and this

is our key insight, taking the degree-root will result in terms

which have the same k scalar: (kR)1/1 = kR, (k2RG)1/2 =
k(RG)1/2, (k3R2B)1/3 = k(R2B)1/3. For a given pth degree

polynomial expansion, we take each term and raise it to the

inverse of its degree. The unique individual terms that are left

are what we use in Root-Polynomial Colour Correction.

Formally, the set of up to Kth degree root-polynomial terms

in N variables is defined as:

PK,N =
{

ρ
α

|α| : |α| ≤ K
}

Strictly speaking all root-polynomial terms are multi-

variable polynomials (monomials) of degree 1 as we took the

pth root of every pth degree polynomial term.

For a familiar RGB case when N = 3 i.e. ρ = (r, g, b)T ,

the root-polynomial expansions of the 2nd, 3rd and 4th degree

are given below:

ρ2,3 =
(

r, g, b,
√
rg,

√

gb,
√
rb
)T

ρ3,3 =
(

r, g, b,
√
rg,

√

gb,
√
rb,

3
√

rg2, 3
√

gb2,
3
√
rb2, 3

√

gr2, 3
√

bg2,
3
√
br2, 3

√

rgb
)T

ρ4,3 =
(

r, g, b,
√
rg,

√

gb,
√
rb,

3
√

rg2,
3
√

gb2,
3
√
rb2,

3
√

gr2,
3
√

bg2,
3
√
br2, 3

√

rgb,

4
√

r3g,
4
√
r3b, 4

√

g3r, 4
√

g3b,
4
√
b3r, 4

√

b3g,

4
√

r2gb,
4
√

g2rb,
4
√

b2rg
)T

Notice that the number of root-polynomial terms is reduced

comparing to the number of polynomial terms - it is now

smaller than h. This is because the root operation is many

to 1. For example R, R2, R3 and their respective 1st, 2nd

and 3rd roots are all equal to R. Similarly RG, R2G2, R3G3

and their respective 2nd, 4th and 6th roots are all equal to√
RG. Clearly R or

√
RG can only occur once in the root

polynomial regression. Thus, colour correction is now carried

out by 3× 6, 3× 13 and 3× 22 matrices.

In Fig. 4, we can compare visually the two corresponding

families of polynomial and root-polynomial functions for the

simplest case case when K = 2 and N = 2 i.e. ρ2,2 =
(

r, g, r2, g2, rg
)T

and ρ2,2 =
(

r, g,
√
rg
)T

.

What we expect from the root-polynomial model is im-

provement over the linear model for the regions where linearity

is poor (due to the types of surfaces, sensors and lights),

but also, crucially, elimination of the effects of non-linear

magnification of linear changes in the overall light level.
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Fig. 4. Polynomial and root-polynomial basis functions from P2,2 and P 2,2

sets

A. Theoretical properties of Root-Polynomial Colour Correc-

tion

While experiments later in this paper will show that, em-

pirically, RPCC works well - it delivers comparable or better

colour correction compared with antecedent methods when ex-

posure is fixed and better performance when it varies - we need

to convince ourselves that the method is robust and will work

well in general. The strength of normal polynomial regression

lies on two important theoretical results. First, all the terms in

a Kth degree polynomial expansion are linearly independent

and so, plausibly, add new useful information to the regression.

Second, that a K+1 degree polynomial expansion always has

more terms than a Kth degree expansion: we can, at least in

principle, fit ever more complex functions simply by adding

more higher degree terms.

This second result is particularly useful in the discrete

domain where regressions are typically performed. If data

is represented by a vector X of m unique measurements

then an m-degree polynomial expansion of X will span m-

dimensional space and so X can be related to any other

variable, say Y by polynomial regression.

Below we prove two companion propositions for root-

polynomial colour correction. We show that a Kth degree

root polynomial basis is a basis. Second, that a K +1 degree

root-polynomial expansion adds more linearly independent

terms. In the limit the root-polynomial expansion can, like

conventional polynomial regression, provide a basis for any
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m dimensional vector space.

Let V be a real vector space generated by the set of root-

polynomials PK,N .

Proposition 1: Elements of PK,N are linearly independent

and hence form a basis of V.

Proof: We prove the above assuming N = 2 (2 sensors)

and K = 3 (3rd degree root-polynomial expansion). Our

arguments naturally extend to higher number of sensors and

higher degree expansions.

We denote the 2 sensors as r and g. The 1st degree

polynomial basis is simply the 2-D coordinates themselves:

r and g (where it is understood that that r and g can take

on arbitrary values in the range 0 to 1). The 2nd degree

polynomial basis is denoted as r, g, r2, g2 and rg. The 3rd

degree polynomial basis has the additional terms r3, g3, r2g

and g2r i.e.

P3,2 =
{

r, g, r2, g2, rg, r3, g3, r2g, g2r
}

(4)

The root-polynomial expansion corresponding to the afore-

mentioned 3rd degree polynomial expansion is equal to:

P 3,2 =
{

r, g,
√
rg,

3
√

r2g,
3
√

gr2
}

(5)

We notice that P 3,2 has only 5 elements compared to 9 for

the 3rd degree polynomial P3,2.

Let r = r̂l and g = ĝl (l is chosen so that the corresponding

root powers become positive integers). Note that for P 3,2, l =
6 i.e. r = r̂6 and g = ĝ6. This substitution yields P 3,2 ⇔ P̂

where

P̂ =
{

r̂6, ĝ6, r̂3ĝ3, r̂2ĝ4, ĝ2r̂4
}

(6)

P̂ is a set of 6th degree unique polynomials and hence its

elements are linearly independent. Thus, P 3,2 (and in general

PK,N ) elements are also linearly independent and form a basis

of V.

Proposition 2: PK+1,N has more linearly independent

elements than PK,N

Proof: Suppose the Kth degree root-polynomial set has

n elements. If K is even, then the Kth root-polynomial set

has the term r
K

2
−1

K g
K

2
+1

K . If K is odd, then the Kth root-

polynomial set has the term r
K−1

K g
1
K . Both terms cannot

appear in any L < K degree expansion as their corresponding

fractional powers are in their simplest form. From Proposition

1 this new term contributes information to the basis expansion.

Finally we would like to draw the readers’ attention to

Fig. 4 (bottom right). We can see that the surface of the√
rg function is relatively flat in the neighbourhood of the

achromatic line. Similarly, the surfaces of higher degree root-

polynomials e.g. 3
√

r2g, 3
√

rg2, 4
√

r3g etc. are also relatively

flat in this neighbourhood (in addition, they all intersect at

the achromatic line) and will only have the steeper slopes

closer to the rg-axes. This inherent property of the root-

polynomial terms ensures root-polynomial regression tends

to correctly preserve colors that are achromatic. The only

way to achieve non-smooth data fits near the achromatic axis

is when the coefficient vectors (deterring the fit) have large

positive and negative values. Typically, our root-polynomial

regression is regularized and this effectively limits the norm

of the coefficient vector [21]. This is an important observation

since many studies (e.g. [28]) have shown that real-world

objects, statistically, are desaturated. Colours which are very

saturated are rare.

B. Related Work

Our proposition of root-polynomials is related to the frac-

tional polynomials (termed by Royston and Altman in [29]; for

more comprehensive review see [30]) being an extension of the

BoxTidwell power transformation [31]. Using fractional expo-

nents in polynomial fitting is common in statistics, but we are

unaware of previous work that forms these specific polynomial

terms which have the advantage that they all have degree 1.

Royston and Altman noted that polynomial regression lacks in

terms of the number of shapes for the low degree polynomials

and is often unstable at the extreme values for the high degree

polynomials (Runge’s phenomenon). The authors suggested

choosing the powers of the fractional polynomials from the

following restricted set: {−2,−1,−0.5, 0, 0.5, 1, 2, 3}. In their

notation, ‘zero’ power denotes ln(x). Note, that the last

three elements are the ‘standard’ polynomial powers. The

authors applied their fractional polynomial models in medical

data analysis. They concluded that using the extended set of

polynomial powers offers more flexibility in fitting regression

models to the data. The root-polynomials discussed here are

not fractional polynomials in the strict sense as they all have

degree 1. However, for all terms except the first three linear,

the individual variables are in the fractional powers. The root-

polynomials are also related to the multi-linear polynomials,

which arise in a multi-linear LUT interpolation [32]. However,

the latter do not have the desired property of degree 1

and hence will not demonstrate the aforementioned exposure

invariance.

IV. EXPERIMENTS

To measure the performance of the RPCC, we performed

both real camera experiment and synthetic data simulations,

which are given in the following subsections. For both types

of data, we compared the performance of RPCC with the

LCC and PCC up to degree of four. We also compared the

above with the colour correction using the tri-linear LUT

interpolation implemented as suggested in [32]. Here, we used

13×13×13 LUT and employed the Graph Hessian Regularizer

also described in the above reference. And finally, we tested

the HPPCC [26] that was briefly described in Section II. As

suggested by the authors, we partitioned the hue circle into

twelve slices and performed sample selection based on relative

susceptibility to noise (details of this procedure can be found

in [26]).

A. Real camera experiments

We performed two real camera characterisations. The exper-

imental set-up was as follows. The X-rite SG colour chart was
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positioned in a viewing box, illuminated with a D65 metamer

[18] produced by Gamma Scientific RS-5B LED illuminator

[33] and imaged with Nikon D70 and Sigma SD15 cameras.

We also measured XYZs of each of the 96 patches using

a Photo Research PR-650 spectrophotometer (see Fig. 5a).

The linear 16-bit images were extracted from the camera raw

images using DCRAW 1 (Nikon) and PROXEL X3F 2 (Sigma)

packages. The 96 patches were manually segmented and for

the purpose of this exercise we used the average RGB of each

patch. The dark levels were captured with the lens cap on and

subtracted from the average camera responses [19]. Resulting

RGBs and measured XYZs were used to derive a set of colour

correction models as described in the earlier sections. The

models were evaluated using the leave-one-out method i.e.

we built the model using all but one of the surfaces from

the dataset and tested that model on the remaining patch; we

repeated this for all the patches in the dataset and calculated

mean ∆E in the CIELUV colour space [18]. The results of

the validation can be seen in the second column (original

exposure) in Table I.

The remaining two columns contain the results of perform-

ing colour correction on the same image data after multiplying

all RGBs by the factors of 1

2
and 2 and excluding those patches

whose at least one sensor response (R, G or B) exceeded

the corresponding sensor response of the white patch at the

original exposure. This ensures that we are not taking into

account those patches which in the real situation would be

clipped. Thus, after multiplying RGBs by the factor of 2, we

are left with 66 out of the original 96 patches for the Nikon

camera and with 73 patches for the Sigma camera (see the last

rows of Table I).

Fig. 5a-d allow us to compare the colour correction errors

visually. Fig. 5a contains the sRGB SG chart patches, whereas

the remaining figures contain the patches that were synthesised

from the manually segmented average Nikon D70 RGBs that

were multiplied by 2 (simulating light intensity increase) and

colour corrected using PCC of degree 3 (Fig. 5b), 4 (Fig. 5c)

and RPCC of degree 4 (Fig. 5d). These figures correspond to

the errors reported in Table I in column multiplied by 2. It can

be clearly seen that as Table I suggests, the errors for the PCC

of degree 3 and 4 are significant, which is particularly visible

for some green as well as pink and red patches. In contrast the

high degree RPCC result in Fig. 5d does not manifest these

chromatic errors.

Table I shows that the RPCC performs better than the LCC

and is invariant with respect to the change of illumination

intensity. It is also clear that PCC fails under the change

of illumination condition. The smaller errors for the Nikon

sensors than those for the Sigma suggest that the former are

more colorimetric than the latter. The LUT method provides

comparable performance to the PCC, i.e. it outperforms the

LCC for the original exposure, but is not exposure invariant so

it is clearly worse than RPCC as the exposure level is varied.

Against our expectations, HPPCC does not provide clearly

better results than the LCC.

1http://www.cybercom.net/∼dcoffin/dcraw/
2http://www.proxel.se/x3f.html

Fig. 5. SG chart synthesised from the spectrophotometer measurements (a).
SG chart patches (66) captured with Nikon D70, multiplied by 2 and corrected
with polynomial of degree 3 (b), degree 4 (c) and root-polynomial of degree
4 (d). The patches that are crossed over have been removed as they were
clipped following the multiplication. Note, these are synthetic patches derived
from RGB averages.

B. Synthetic data experiments

Here, we used the Sony DXC-930 camera [19] and Foveon

sensor sensitivities [20] to integrate the spectral data from

three surface reflectance datasets. The first dataset comprised

96 reflectances of the X-rite SG colour chart (border patches

excluded), the second 180 patches of the Macbeth DC chart

(again border patches excluded) and the third 1995 surfaces

collated at the Simon Fraser University [19]. For each dataset



8

TABLE I
NIKON D70 AND SIGMA SD15 CHARACTERISATION RESULTS. THE ERRORS OBTAINED ARE GIVEN AS THE MEAN, MEDIAN AND 95 PERCENTILE ERROR

IN THE CIELUV COLOUR SPACE.

exposure original exp. divided by 2 multiplied by 2

model type (N = 3) mean med 95 pt. mean med 95 pt. mean med 95 pt.

Nikon D70

PCC,1 (LCC) 2.5 2.3 5.1 2.5 2.3 5.1 2.9 2.7 5.7

PCC,2 2.1 1.8 4.8 2.3 2.1 5.3 2.3 2.0 5.0

PCC,3 1.7 1.6 3.1 2.1 1.8 4.4 5.7 2.5 23

PCC,4 1.6 1.5 3.5 2.1 1.8 4.9 7.5 2.0 29

LUT 1.7 1.4 4.4 2.6 2.1 6.1 2.3 1.8 5.6

RPCC,2 1.9 1.7 4.0 1.9 1.7 4.0 2.1 1.8 3.8

RPCC,3 1.6 1.3 3.4 1.6 1.3 3.4 1.8 1.8 3.3

RPCC,4 1.6 1.4 3.3 1.6 1.4 3.3 1.8 1.7 3.2

HPPCC 2.5 2.1 6.0 2.5 2.4 6.0 2.6 2.4 5.9

number of patches all (96) all (96) 66

Sigma SD15

PCC,1 (LCC) 5.2 4.0 16 5.2 4.0 16 5.8 4.6 16

PCC,2 3.9 3.2 9.4 4.5 3.7 10 5.0 3.4 13

PCC,3 3.1 2.3 7.0 4.2 3.2 11 7.2 3.7 26

PCC,4 3.2 2.5 7.8 3.7 2.8 9.0 57 6.4 280

LUT 4.3 3.3 12 6.9 5.5 17 5.5 3.5 20

RPCC,2 3.8 2.8 8.7 3.8 2.8 8.7 4.1 2.9 9.6

RPCC,3 3.2 2.4 9.1 3.2 2.4 9.1 3.6 2.6 9.3

RPCC,4 3.2 2.5 8.6 3.2 2.5 8.6 3.5 2.7 9.4

HPPCC 5.0 3.2 17 5.0 3.2 17 5.7 3.4 18

number of patches all (96) all (96) 73

we performed a simulation, in which we integrated both sensor

sensitivities and the colour matching functions under D65

illuminant producing corresponding sets of camera responses

(RGBs) and XYZs. Spectra calculations were carried out

for 31 spectral channels - 400-700nm sampled every 10nm.

Next, we built the previously described regression models. For

each of the three datasets, we performed the leave-one-out

validation in the same manner as in the earlier real camera

experiments. We split the results and discussions of these

simulations into four parts, which are given in the following

four subsections.

1) Fixed exposure: Table II synthetic data results corre-

spond to the real camera results contained in the original exp.

column in Table I. We can see that the RPCC usually performs

similarly to the PCC of higher degree. However, it clearly

outperforms the LCC. We can also see that for the DC dataset

the RPCC performs worse than PCC, but for the smaller SG

dataset the situation is reversed and for the largest and most

relevant SFU dataset, the results are comparable for the Sony

sensor and slightly favour PCC for the Foveon sensor. The

LUT method provided the best results for the larger datasets

for the Sony sensor. For the Foveon sensor, it performed less

well, comparable to the PCC of the 2nd or 3rd degree.

2) Variable exposure: Next, for the DC and SFU datasets,

we simulated an increase and decrease in the scene radiance

by multiplying camera responses and the ground truth XYZs

by factors 1

2
and 2. We used these corresponding sets of RGBs

and XYZs to test the same colour correction models. The

results of these simulations can be seen in Table III, which

shows that the PCC (as well as LUT) models deteriorate

under change of scene radiance/exposure condition, whereas

the RPCC models remain invariant. An important observation

is the fact that the RPCC results are always better than the

results obtained for the LCC - the only polynomial model,

which is invariant to the change of radiance or exposure. The

message from Table III as well as Fig. 1 is clear. If you

carry out naı̈ve polynomial regression to fit data at different

exposures, high error can result. Conversely, the RPCC works

well independent of exposure. Further, the LUT interpolation

exhibits the same drawback of the high-degree polynomials.

Note that the entries in two columns called ‘DC/SFU divided

by 2’ in Table III for the root-polynomial methods (as well as

LCC and HPPCC) are as expected the same as the results for

these methods in Table II. As to the other two columns called

‘DC/SFU multiplied by 2’, the results are slightly different as

we took into account a smaller number of patches, which did

not saturate at any of the three colour channels. The results

in Table III also show that varying the exposure has a larger

negative impact on the PCC and LUT models for the Foveon

sensor than for the Sony.

The HPPCC method does not compare favourably with the

RPCC. Reference [26] compared the results of HPPCC to the

LCC and the PCC of degree two. The HPPCC outperformed

both of them. Our results are more mixed. For the Sony

sensor, the results of the SG and DC datasets in Table II

(fixed exposure) confirm the results shown in [26] i.e. the

HPPCC results are better than LCC and also better (or at least

comparable) with PCC of degree 2. Here, we can also see that
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TABLE II
SYNTHETIC DATA SIMULATION RESULTS FOR FIXED ILLUMINATION CONDITION.

dataset SG DC SFU

model type (N = 3) mean med 95 pt. mean med 95 pt. mean med 95 pt.

Sony

PCC,1 (LCC) 4.8 2.9 20 3.8 1.9 14 2.6 1.4 7.7

PCC,2 4.0 2.7 11 3.1 1.8 10 2.4 1.4 7.2

PCC,3 3.2 2.2 7.5 2.4 1.3 7.7 1.9 1.2 6.5

PCC,4 3.1 2.2 8.2 2.0 1.2 6.9 1.8 1.1 6.0

LUT 2.7 1.9 7.3 1.8 1.0 6.7 1.5 1.0 5.0

RPCC,2 2.8 1.8 8.7 2.4 1.3 8.5 2.1 1.2 7.0

RPCC,3 2.6 1.6 8.1 2.2 1.3 7.5 1.8 1.2 6.1

RPCC,4 2.6 1.6 8.3 2.2 1.3 7.7 1.8 1.1 6.1

HPPCC 3.8 2.2 14 2.8 1.4 10 3.6 1.8 14

Foveon

PCC,1 (LCC) 3.9 3.6 10 3.6 2.5 10 2.5 1.6 7.5

PCC,2 2.9 2.4 6.8 2.9 2.2 8.6 2.2 1.7 5.7

PCC,3 2.2 1.6 5.8 2.1 1.6 6.3 1.9 1.5 5.0

PCC,4 2.5 1.7 7.5 1.8 1.4 5.5 1.7 1.2 4.1

LUT 3.4 2.7 9.9 2.7 1.7 8.7 2.0 1.4 5.2

RPCC,2 3.0 2.3 7.1 2.9 1.8 7.0 2.0 1.4 5.5

RPCC,3 2.0 1.6 5.1 2.2 1.4 6.4 1.9 1.4 5.0

RPCC,4 2.2 1.6 6.2 2.2 1.4 6.4 1.9 1.4 4.9

HPPCC 4.9 2.7 19 5.4 3.4 18 3.3 2.2 9.2

TABLE III
SYNTHETIC DATA SIMULATION RESULTS FOR THE DC AND SFU DATASET AS THE LIGHT LEVEL WAS DECREASED AND INCREASED.

dataset DC divided by 2 DC multiplied by 2 SFU divided by 2 SFU multiplied by 2

model type (N = 3) mean med 95 pt. mean med 95 pt. mean med 95 pt. mean med 95 pt.

Sony

PCC,1 (LCC) 3.8 1.9 14 4.5 2.1 21 2.6 1.4 7.7 2.9 1.4 9.3

PCC,2 3.9 2.5 12 3.8 2.2 14 2.6 1.6 8.0 2.6 1.4 8.7

PCC,3 3.3 1.9 10 3.0 1.3 14 2.5 1.5 7.8 2.5 1.3 9.6

PCC,4 3.0 1.6 11 2.6 1.5 9.5 2.4 1.4 8.0 2.5 1.2 9.3

LUT 3.0 1.7 9.0 2.3 1.2 9.3 2.5 1.8 7.3 2.2 1.2 8.1

RPCC,2 2.4 1.3 8.5 2.6 1.4 9.3 2.1 1.2 7.0 2.2 1.2 7.5

RPCC,3 2.2 1.3 7.5 2.4 1.3 9.5 1.8 1.2 6.1 2.0 1.2 6.5

RPCC,4 2.2 1.3 7.7 2.4 1.2 9.6 1.8 1.1 6.1 1.9 1.1 6.4

HPPCC 2.8 1.4 10 3.2 1.5 13 3.6 1.8 14 3.9 1.9 15

Foveon

PCC,1 (LCC) 3.6 2.5 10 3.9 3.2 11 2.5 1.6 7.5 2.7 1.8 8.0

PCC,2 4.0 3.1 10 4.8 2.6 18 2.6 1.8 7.2 2.6 1.7 8.5

PCC,3 3.6 2.7 11 4.9 1.8 16 2.5 1.9 7.2 2.6 1.5 9.6

PCC,4 2.6 2.1 7.1 5.7 1.6 22 2.2 1.6 5.9 3.3 1.5 13

LUT 4.5 2.9 15 4.0 2.5 12 2.9 2.2 7.9 3.1 1.9 11

RPCC,2 2.9 1.8 7.0 3.2 1.8 10 2.0 1.4 5.5 2.0 1.4 5.8

RPCC,3 2.2 1.4 6.4 2.4 1.6 6.4 1.9 1.4 5.0 1.9 1.4 5.1

RPCC,4 2.2 1.4 6.4 2.4 1.5 6.5 1.9 1.4 4.9 1.9 1.4 5.1

HPPCC 5.4 3.4 18 5.0 3.4 16 3.3 2.2 9.2 3.4 2.3 9.1

HPPCC is worse than polynomial models of higher degree

and all the root-polynomials. However, this is no longer the

case for the largest SFU dataset. The failure of HPPCC here

comes from the fact that it uses only a small subset of 1995

samples to learn the colour correction matrices, whereas the

other methods were trained using the leave-one-out procedure

that uses 1994 samples. We also discovered that HPPCC is

very sensitive to the selection of the training samples.

For the Foveon sensor, the HPPCC provides even worse

results than the LCC. This is due to the broad shape of the

sensors, that require a more ”aggressive” colour correction.

The fact that the responses are desaturated means they are

located nearer the white point in the chromaticity space. The

HPPCC is calculated in each hue slice based on only three



10

patches: white and two certain chromatic patches. The fact

that these two patches are relatively close to white means that

the plane through these points is more difficult to determine.

3) Noise influence: We also investigated the influence of

the shot noise on the PCC and RPCC. A random noise with

σ =
√
N , where N denotes a single channel value was added

to each channel before transforming the patch with the colour

correction matrix. We assumed the well capacity [34] of 4000.

Table IV contains the results of these simulations for DC

and SFU datasets respectively. Having analysed the results in

Tables I - III and keeping in mind the length of the tables,

we did not test the LUT and HPPCC methods beyond the first

two experiments.

Table IV results confirm our earlier observations. Of course,

the colour correction performance deteriorates for all models

when shot noise is added, but in general it is the RPCC which

produces better or at least the results that are comparable

with the best PCC. From the statistics of the shot noise,

we know that decreasing the exposure that is equivalent to

placing an object in a shadow will decrease SNR [35] and

this is evident from the second column of Table IV, where the

results are clearly worse than those in the first column. On

the other hand, placing an object in a brighter light (Table IV,

column three), increases SNR and hence both types of models

improve. However then, the polynomial models are affected

by the exposure change and this is the reason why they do

not improve as much as the root-polynomials.

4) Additional illuminants: We looked whether our results

are not affected by the choice of the illuminant. Table V

contains the results of the same experiments for illuminants A

and F11 [18] for the SFU dataset.

The trends in results for these two illuminants are similar

with an exception that colour correction is easier for the F11

illuminant i.e. the LCC provides results which are only slightly

worse than any of the PCC or RPCC. The colour error for this

illuminant is significantly smaller than for A and D65. This

was to be expected as the F11 spectrum comprises distinctive

peaks, which in some sense sample the reflectance spectra

and hence decrease the variance of the colour signals. Two

different reflectance spectra, which vary mostly at wavelengths

where the F11 spectrum is low, will produce similar colour

signals and hence similar both RGB and XYZ pairs. As a

corollary, an illuminant comprising only three very narrow

peaks would not require anything beyond the simple LCC,

which would provide a perfect colour correction result.

V. DISCUSSION

Noise is an important problem in colour correction as in

general the process of colour correction boosts noise. The

impact of noise on the PCC in particular is significant, which

is the reason why the various versions of the LCC are more

popular with the manufacturers. For example, the LCC can

be optimized for different exposure levels so that for low ex-

posure, a less ”aggressive” colour correction is performed i.e.

a suboptimal colour correction is an acceptable trade-off for

improved noise variance; and for the high exposure, the colour

transform matrix can become more ”aggressive” i.e. a more

optimal colour correction is performed as the noise variance

is a smaller problem [27]. The same type of trade-off scheme

could be employed for the root-polynomial and the polynomial

methods. Moreover, there is no reason that would prevent us

from mixing different types of transforms so e.g. the lowest

exposure level could use the LCC, the middle exposure the

RPCC optimized for a tolerable noise level for that exposure,

and the high exposure could use the most ”aggressive” RPCC

or similar. While the RPCC will undoubtedly boost noise more

than the LCC, its exposure invariance and low number of terms

needed to achieve significant edge over the LCC would suggest

that this polynomial type technique could play part in a scheme

similar to the one described above

Another interesting observation about the RPCC is that, the

results obtained for different degrees are relatively similar,

which is particularly true for the Sony sensor. Usually, the

largest improvement over the linear model takes place in the

second degree root-polynomial by adding just three extra terms

into the model. The results of the third and the fourth degree

RPCC are very similar and only slightly better than those

of the second degree. In Table II, we can see that for the

Sony sensor the 2nd degree RPCC (6 terms) outperforms even

4th degree PCC (34 terms) for the SG dataset and as to

the other results, 3rd degree RPCC (13 terms) is comparable

to the best performing 4th degree PCC (34 terms). Thus,

the smaller number of terms of root-polynomials is their yet

another advantage over the polynomials. This suggests that

at least for the Sony sensor the shape of the underlying 3D

mapping is well described by the low-degree root-polynomial

basis. It is also notable that the improvement discussed is

particularly visible in the smallest dataset (SG) leading to

a conclusion that despite the use of the leave-one-out cross-

validation, there is some over-fitting taking place. In that case,

the lower dimensionality of the root-polynomial model will

provide the smoother solution, which will be less prone to

over-fitting.

A clue to the good performance of low in number set of

root-polynomials may also lay in the nature of the non-linear

RGB to XYZ mapping. From the low dimensional assumption

of the reflectance spectra and a relatively good performance

of the linear transform, we know that the mapping is approxi-

mately linear, thus we can expect that any non-linearities will

be smooth across the sensor domain (the idea supported by

e.g. the early work of Wandell and Farrell [36]) and therefore

the non-linear alterations of the individual sensors with root-

polynomials may suffice to model those non-linearities and in

some cases they may model those non-linearities better than

the polynomials. Note, the root-polynomial cross-term basis

functions are different than the polynomial cross-terms, in

particular they are smoother around the achromatic region (see

the two bottom sub-figures in Fig. 4). The performance of the

low-degree RPCC against the PCC will depend on the shape

of the sensor sensitivities in question. We have seen in Table

II that the improvement of root-polynomials over polynomials

was more visible for the Sony sensor than for the Foveon.

It is worth noting that as intensity of the light/exposure

deviates from the original, the failure of the PCC does not

manifest itself in all the patches equally, but rather it can be
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TABLE IV
AS IN TABLES II AND III (DC AND SFU DATASETS, SONY SENSOR), BUT WITH ADDITION OF THE SHOT NOISE. WELL CAPACITY SET TO 4000.

dataset DC DC divided by 2 DC multiplied by 2

model type (N = 3) mean med 95 pt. mean med 95 pt. mean med 95 pt.

PCC,1 (LCC) 5.4 4.2 14 6.5 5.1 17 5.2 3.2 22

PCC,2 4.6 3.6 12 6.7 5.7 16 4.9 3.5 15

PCC,3 4.2 3.3 9.2 6.2 5.1 14 4.3 3.0 18

PCC,4 4.1 3.6 8.2 6.2 5.3 14 4.0 2.9 10

RPCC,2 4.4 3.5 10 5.4 4.5 11 3.7 2.9 10

RPCC,3 4.4 3.3 11 5.3 4.5 11 3.8 2.8 11

RPCC,4 4.1 3.4 9.0 5.7 5.0 14 3.7 2.8 11

dataset SFU SFU divided by 2 SFU multiplied by 2

PCC,1 (LCC) 4.5 3.6 10 5.5 4.8 12 4.0 2.8 10

PCC,2 4.3 3.5 9.8 5.6 4.8 12 3.7 2.9 9.2

PCC,3 4.0 3.5 9.0 5.6 5.0 12 3.8 2.9 10

PCC,4 3.9 3.4 8.3 5.6 4.9 12 3.7 2.8 11

RPCC,2 4.0 3.5 8.8 5.3 4.7 11 3.3 2.7 8.0

RPCC,3 3.8 3.2 8.5 5.2 4.7 11 3.3 2.7 7.9

RPCC,4 3.9 3.4 8.3 5.0 4.5 10 3.2 2.6 7.5

TABLE V
AS IN TABLES II AND IV (SFU DATASET, SONY SENSOR), BUT FOR THE ILLUMINANTS A AND F11.

dataset SFU SFU (noise) SFU div. by 2 (noise) SFU mult. by 2 (noise)

model type (N = 3) mean med 95 pt. mean med 95 pt. mean med 95 pt. mean med 95 pt.

Illuminant A

PCC,1 (LCC) 3.6 2.0 12 5.5 4.2 13 6.8 5.5 16 5.1 3.4 14

PCC,2 3.4 2.0 11 5.5 4.2 14 7.0 5.9 16 4.6 3.3 13

PCC,3 2.7 1.5 9.0 4.7 3.8 12 6.5 5.4 15 4.7 3.3 15

PCC,4 2.4 1.5 8.5 4.6 3.9 11 6.8 5.6 16 4.6 3.2 15

RPCC,2 2.8 1.6 10 4.8 3.9 12 6.1 5.2 14 4.1 3.0 10

RPCC,3 2.5 1.6 8.7 4.6 3.8 11 5.9 4.9 13 3.9 3.0 10

RPCC,4 2.4 1.4 8.0 4.6 3.7 11 6.1 5.0 13 3.9 3.0 9.7

Illuminant F11

PCC,1 (LCC) 1.7 0.8 6.1 3.7 3.0 8.3 4.8 4.2 11 3.0 2.3 7.5

PCC,2 1.7 1.0 5.7 3.6 3.0 8.5 4.9 4.4 10 3.0 2.4 7.2

PCC,3 1.4 0.8 5.1 3.5 3.0 7.9 4.8 4.2 10 3.1 2.4 8.3

PCC,4 1.3 0.7 4.6 3.4 3.0 7.3 4.8 4.2 10 3.0 2.2 8.3

RPCC,2 1.5 0.8 5.5 3.5 2.9 7.8 4.7 4.1 10 2.8 2.3 6.3

RPCC,3 1.3 0.8 5.0 3.4 3.0 7.7 4.6 4.1 10 2.7 2.3 6.4

RPCC,4 1.3 0.8 4.5 3.3 2.9 7.0 4.6 4.1 9.5 2.7 2.1 6.2

observed in few patches. Thus, it is important to look at the

95 percentile error as well as the mean and the median, as it is

there where we can see significant error increases i.e. the 95

percentile error increases faster than the mean error and even

faster than the median. For example see Table I, where the 95

percentile errors for the 3rd degree PCC in the 3 consecutive

columns were 3.1; 9.7 and 23 and the corresponding median

errors are 1.6; 1.9 and 2.5. These large error increases for

the top 5% worst patches will result in easy to detect visual

differences, as it is the differences of around 10∆E, which are

easy to spot visually. This observation is consistent with what

we can see in Fig. 2, 3 and 5 where the colour correction

errors can be spotted only for a relatively small number of

colour chart patches.

On another note, one might observe that degree of one and

hence the scene radiance/exposure invariance property of all

root-polynomial terms can be also achieved by application of

not only fractional powers, but also negative (not necessarily

fractional) e.g. r2g−1 or r3/2g−1/2. While this would indeed

achieve the key property that we emphasised so much in

this paper, it creates the problem at the low end of the

sensor responses. As sensor responses tend to zero, the term

containing the negative power becomes unstable. This effect

makes the above approach inapplicable to our problem.

VI. CONCLUSIONS

‘Root-Polynomial Colour Correction’ builds on the earlier

widely used polynomial models, but unlike its predecessors

is invariant to the change of camera exposure and/or scene

irradiance. The results presented in this paper show that this

algorithm outperforms linear regression and offers a signif-

icant improvement over polynomial models when the expo-
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sure/scene irradiance varies. RPCC falls firmly into the well

established family of linear and polynomial colour correction

and therefore certain improvements to the last methods pre-

sented earlier in the literature (such as white-point preserving

method) can be applied for RPCC case as well.
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