392 research outputs found

    LinkWidth: A Method to Measure Link Capacity and Available Bandwidth using Single-End Probes

    Get PDF
    We introduce LinkWidth, a method for estimating capacity and available bandwidth using single-end controlled TCP packet probes. To estimate capacity, we generate a train of TCP RST packets "sandwiched" between trains of TCP SYN packets. Capacity is computed from the end-to-end packet dispersion of the received TCP RST/ACK packets corresponding to the TCP SYN packets going to closed ports. Our technique is significantly different from the rest of the packet-pair based measurement techniques, such as CapProbe, pathchar and pathrate, because the long packet trains minimize errors due to bursty cross-traffic. Additionally, TCP RST packets do not generate additional ICMP replies, thus avoiding cross-traffic due to such packets from interfering with our probes. In addition, we use TCP packets for all our probes to prevent QoS-related traffic shaping (based on packet types) from affecting our measurements (eg. CISCO routers by default are known have to very high latency while generating to ICMP TTL expired replies). We extend the {\it Train of Packet Pairs technique to approximate the available link capacity. We use a train of TCP packet pairs with variable intra-pair delays and sizes. This is the first attempt to implement this technique using single-end TCP probes, tested on a range of networks with different bottleneck capacities and cross traffic rates. The method we use for measuring from a single point of control uses TCP RST packets between a train of TCP SYN packets. The idea is quite similar to the technique for measuring the bottleneck capacity. We compare our prototype with pathchirp, pathload, IPERF, which require control of both ends as well as another single end controlled technique abget, and demonstrate that in most cases our method gives approximately the same results if not better

    Passive available bandwidth: Applying self -induced congestion analysis of application-generated traffic

    Get PDF
    Monitoring end-to-end available bandwidth is critical in helping applications and users efficiently use network resources. Because the performance of distributed systems is intrinsically linked to the performance of the network, applications that have knowledge of the available bandwidth can adapt to changing network conditions and optimize their performance. A well-designed available bandwidth tool should be easily deployable and non-intrusive. While several tools have been created to actively measure the end-to-end available bandwidth of a network path, they require instrumentation at both ends of the path, and the traffic injected by these tools may affect the performance of other applications on the path.;We propose a new passive monitoring system that accurately measures available bandwidth by applying self-induced congestion analysis to traces of application-generated traffic. The Watching Resources from the Edge of the Network (Wren) system transparently provides available bandwidth information to applications without having to modify the applications to make the measurements and with negligible impact on the performance of applications. Wren produces a series of real-time available bandwidth measurements that can be used by applications to adapt their runtime behavior to optimize performance or that can be sent to a central monitoring system for use by other or future applications.;Most active bandwidth tools rely on adjustments to the sending rate of packets to infer the available bandwidth. The major obstacle with using passive kernel-level traces of TCP traffic is that we have no control over the traffic pattern. We demonstrate that there is enough natural variability in the sending rates of TCP traffic that techniques used by active tools can be applied to traces of application-generated traffic to yield accurate available bandwidth measurements.;Wren uses kernel-level instrumentation to collect traces of application traffic and analyzes the traces in the user-level to achieve the necessary accuracy and avoid intrusiveness. We introduce new passive bandwidth algorithms based on the principles of the active tools to measure available bandwidth, investigate the effectiveness of these new algorithms, implement a real-time system capable of efficiently monitoring available bandwidth, and demonstrate that applications can use Wren measurements to adapt their runtime decisions

    Network and service monitoring in heterogeneous home networks

    Get PDF
    Home networks are becoming dynamic and technologically heterogeneous. They consist of an increasing number of devices which offer several functionalities and can be used for many different services. In the home, these devices are interconnected using a mixture of networking technologies (for example, Ethernet, Wifi, coaxial cable, or power-line). However, interconnecting these devices is often not easy. The increasing heterogeneity has led to significant device- and service-management complexity. In addition, home networks provide a critical "last meters" access to the public telecom and Internet infrastructure and have a dramatic impact on to the end-to-end reliability and performance of services from these networks. This challenges service providers not only to maintain a satisfactory quality of service level in such heterogeneous home networks, but also to remotely monitor and troubleshoot them. The present thesis work contributes research and several solutions in the field of network and service monitoring in home networks, mainly in three areas: (1) providing automatic device- and service-discovery and configuration, (2) remote management, and (3) providing quality of service (QoS). With regard to the first area, current service discovery technology is designed to relieve the increasing human role in network and service administration. However, the relevant Service Discovery Protocols (SDPs) are lacking crucial features namely: (1) they are not platform- and network-independent, and (2) they do not provide sufficient mechanisms for (device) resource reservation. Consequently, devices implementing different SDPs cannot communicate with each other and share their functionalities and resources in a managed way, especially when they use different network technologies. As a solution to the first problem, we propose a new proxy server architecture that enables IP-based devices and services to be discovered on non-IP based network and vice versa. We implemented the proxy architecture using UPnP respectively Bluetooth SDP as IP- and non-IP-based SDPs. The proxy allows Bluetooth devices and UPnP control points to discover, access, and utilize services located on the other network. Validation experiments with the proxy prototype showed that seamless inter-working can be achieved keeping all proxy functionalities on a single device, thus not requiring modification of currently existing UPnP and Bluetooth end devices. Although the proxy itself taxes the end-to-end performance of the service, it is shown to be still acceptable for an end user. For mitigating resource conflicts in SDPs, we propose a generic resource reservation scheme with properties derived from common SDP operation. Performance studies with a prototype showed that this reservation scheme significantly improves the scalability and sustainability of service access in SDPs, at a minor computational cost. With regard to the second area, it is known that the end-to-end quality of Internet services depends crucially on the performance of the home network. Consequently, service providers require the ability to monitor and configure devices in the home network, behind the home gateway (HG). However, they can only put limited requirements to these off-the-shelf devices, as the consumer electronics market is largely outside their span of control. Therefore they have to make intelligent use of the given device control and management protocols. In this work, we propose an architecture for remote discovery and management of devices in a highly heterogeneous home network. A proof-of-concept is developed for the remote management of UPnP devices in the home with a TR-069/UPnP proxy on the HG. Although this architecture is protocol specific, it can be easily adapted to other web-services based protocols. Service providers are also asking for diagnostic tools with which they can remotely troubleshoot the home networks. One of these tools should be able to gather information about the topology of the home network. Although topology discovery protocols already exist, nothing is known yet about their performance. In this work we propose a set of key performance indicators for home network topology discovery architectures, and how they should be measured. We applied them to the Link-Layer Topology Discovery (LLTD) protocol and the Link-Layer Discovery Protocol (LLDP). Our performance measurement results show that these protocols do not fulfill all the requirements as formulated by the service providers. With regard to the third area, current QoS solutions are mostly based on traffic classification. Because they need to be supported by all devices in the network, they are relatively expensive for home networks. Furthermore, they are not interoperable between different networking technologies. Alternative QoS provision techniques have been proposed in the literature. These techniques require end-user services to pragmatically adapt their properties to the actual condition of the network. For this, the condition of the home network in terms of its available bandwidth, delay, jitter, etc., needs to be known in real time. Appropriate tools for determining the available home network resources do not yet exist. In this work we propose a new method to probe the path capacity and available bandwidth between a server and a client in a home network. The main features of this method are: (a) it does not require adaptation of existing end devices, (b) it does not require pre-knowledge of the link-layer network topology, and (c) it is accurate enough to make reliable QoS predictions for the most relevant home applications. To use these predictions for effective service- or content-adaptation or admission control, one should also know how the state of the home network is expected to change immediately after the current state has been probed. However, not much is known about the stochastic properties of traffic in home networks. Based on a relatively small set of traffic observations in several home networks in the Netherlands, we were able to build a preliminary model for home network traffic dynamics

    Towards automatic traffic classification and estimation for available bandwidth in IP networks.

    Get PDF
    Growing rapidly, today's Internet is becoming more difficult to manage. A good understanding of what kind of network traffic classes are consuming network resource as well as how much network resource is available is important for many management tasks like QoS provisioning and traffic engineering. In the light of these objectives, two measurement mechanisms have been explored in this thesis. This thesis explores a new type of traffic classification scheme with automatic and accurate identification capability. First of all, the novel concept of IP flow profile, a unique identifier to the associated traffic class, has been proposed and the relevant model using five IP header based contexts has been presented. Then, this thesis shows that the key statistical features of each context, in the IP flow profile, follows a Gaussian distribution and explores how to use Kohonen Neural Network (KNN) for the purpose of automatically producing IP flow profile map. In order to improve the classification accuracy, this thesis investigates and evaluates the use of PCA for feature selection, which enables the produced patterns to be as tight as possible since tight patterns lead to less overlaps among patterns. In addition, the use of Linear Discriminant Analysis and alternative KNN maps has been investigated as to deal with the overlap issue between produced patterns. The entirety of this process represents a novel addition to the quest for automatic traffic classification in IP networks. This thesis also develops a fast available bandwidth measurement scheme. It firstly addresses the dynamic problem for the one way delay (OWD) trend detection. To deal with this issue, a novel model - asymptotic OWD Comparison (AOC) model for the OWD trend detection has been proposed. Then, three statistical metrics SOT (Sum of Trend), PTC (Positive Trend Checking) and CTC (Complete Trend Comparison) have been proposed to develop the AOC algorithms. To validate the proposed AOC model, an avail-bw estimation tool called Pathpair has been developed and evaluated in the Planetlah environment

    The Design of FTTH Network

    Get PDF
    The aim of this thesis is to explain the problems of optical access networks with wavelength division multiplexers, main purpose is to demonstrate the difference between theoretical and real measurement. The work is divided into several thematic areas. The introduction outlines the basic of telecommunications, fiber optics lasers, single mode, multimode, lasers fibers cables & cores, splitters division multiplexing system, there are known solutions discussed fundamental wavelength multiplexes and their possible combinations. The following chapter deals with the active elements such as AON, PON, which are essential part xWDM systems such as optical lasers, detectors and amplifiers. Another chapter focuses on passive elements, which form a key part of the wavelength multiplex. Methods of measurement of WDM/PON networks are discussed in the following part. The next section describes the topology used active and passive optical networks. The penultimate part of the work consists of architecture & technology of xWDM such as GPON and WDM-PON networks and comparing their transmission parameters. The final part of the paper presents the results of practical experimental measurements of optical access networks with wavelengths division multiplex while these results are compared with the theoretical output & methods of Optical lost test, OTDR & LSPM, with advantage & disadvantage of every methods. The second part of practical is the draft to the connection resident housing units of 30 houses, boarding-house (10 rooms) and 2 shops, 20 km distant from exchange. With comparing the possibilities of two options- passive and active optical network- PON system – WDM- Wave multiplex. Suggest the possibility of measuring and monitoring the created network.The aim of this thesis is to explain the problems of optical access networks with wavelength division multiplexers, main purpose is to demonstrate the difference between theoretical and real measurement. The work is divided into several thematic areas. The introduction outlines the basic of telecommunications, fiber optics lasers, single mode, multimode, lasers fibers cables & cores, splitters division multiplexing system, there are known solutions discussed fundamental wavelength multiplexes and their possible combinations. The following chapter deals with the active elements such as AON, PON, which are essential part xWDM systems such as optical lasers, detectors and amplifiers. Another chapter focuses on passive elements, which form a key part of the wavelength multiplex. Methods of measurement of WDM/PON networks are discussed in the following part. The next section describes the topology used active and passive optical networks. The penultimate part of the work consists of architecture & technology of xWDM such as GPON and WDM-PON networks and comparing their transmission parameters. The final part of the paper presents the results of practical experimental measurements of optical access networks with wavelengths division multiplex while these results are compared with the theoretical output & methods of Optical lost test, OTDR & LSPM, with advantage & disadvantage of every methods. The second part of practical is the draft to the connection resident housing units of 30 houses, boarding-house (10 rooms) and 2 shops, 20 km distant from exchange. With comparing the possibilities of two options- passive and active optical network- PON system – WDM- Wave multiplex. Suggest the possibility of measuring and monitoring the created network.

    Wireless Communication in Data Centers: A Survey

    Get PDF
    Data centers (DCs) is becoming increasingly an integral part of the computing infrastructures of most enterprises. Therefore, the concept of DC networks (DCNs) is receiving an increased attention in the network research community. Most DCNs deployed today can be classified as wired DCNs as copper and optical fiber cables are used for intra- and inter-rack connections in the network. Despite recent advances, wired DCNs face two inevitable problems; cabling complexity and hotspots. To address these problems, recent research works suggest the incorporation of wireless communication technology into DCNs. Wireless links can be used to either augment conventional wired DCNs, or to realize a pure wireless DCN. As the design spectrum of DCs broadens, so does the need for a clear classification to differentiate various design options. In this paper, we analyze the free space optical (FSO) communication and the 60 GHz radio frequency (RF), the two key candidate technologies for implementing wireless links in DCNs. We present a generic classification scheme that can be used to classify current and future DCNs based on the communication technology used in the network. The proposed classification is then used to review and summarize major research in this area. We also discuss open questions and future research directions in the area of wireless DCs

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    An Autonomous Channel Selection Algorithm for WLANs

    Get PDF
    IEEE 802.11 wireless devices need to select a channel in order to transmit their packets. However, as a result of the contention-based nature of the IEEE 802.11 CSMA/CA MAC mechanism, the capacity experienced by a station is not fixed. When a station cannot win a sufficient number of transmission opportunities to satisfy its traffic load, it will become saturated. If the saturation condition persists, more and more packets are stored in the transmit queue and congestion occurs. Congestion leads to high packet delay and may ultimately result in catastrophic packet loss when the transmit queue’s capacity is exceeded. In this thesis, we propose an autonomous channel selection algorithm with neighbour forcing (NF) to minimize the incidence of congestion on all stations using the channels. All stations reassign the channels based on the local monitoring information. This station will change the channel once it finds a channel that has sufficient available bandwidth to satisfy its traffic load requirement or it will force its neighbour stations into saturation by reducing its PHY transmission rate if there exists at least one successful channel assignment according to a predicting module which checks all the possible channel assignments. The results from a simple C++ simulator show that the NF algorithm has a higher probability than the dynamic channel assignment without neighbour forcing (NONF) to successfully reassign the channel once stations have become congested. In an experimental testbed, the Madwifi open source wireless driver has been modified to incorporate the channel selection mechanism. The results demonstrate that the NF algorithm also has a better performance than the NONF algorithm in reducing the congestion time of the network where at least one station has become congested
    corecore