44 research outputs found

    On the Richter-Thomassen Conjecture about Pairwise Intersecting Closed Curves

    Get PDF
    A long standing conjecture of Richter and Thomassen states that the total number of intersection points between any nn simple closed Jordan curves in the plane, so that any pair of them intersect and no three curves pass through the same point, is at least (1−o(1))n2(1-o(1))n^2. We confirm the above conjecture in several important cases, including the case (1) when all curves are convex, and (2) when the family of curves can be partitioned into two equal classes such that each curve from the first class is touching every curve from the second class. (Two curves are said to be touching if they have precisely one point in common, at which they do not properly cross.) An important ingredient of our proofs is the following statement: Let SS be a family of the graphs of nn continuous real functions defined on R\mathbb{R}, no three of which pass through the same point. If there are ntnt pairs of touching curves in SS, then the number of crossing points is Ω(ntlog⁥t/log⁥log⁥t)\Omega(nt\sqrt{\log t/\log\log t}).Comment: To appear in SODA 201

    The number of tangencies between two families of curves

    Full text link
    We prove that the number of tangencies between the members of two families, each of which consists of nn pairwise disjoint curves, can be as large as Ω(n4/3)\Omega(n^{4/3}). We show that from a conjecture about forbidden 00-11 matrices it would follow that this bound is sharp for doubly-grounded families. We also show that if the curves are required to be xx-monotone, then the maximum number of tangencies is Θ(nlog⁥n)\Theta(n\log n), which improves a result by Pach, Suk, and Treml. Finally, we also improve the best known bound on the number of tangencies between the members of a family of at most tt-intersecting curves

    Beyond the Richter-Thomassen conjecture

    Get PDF
    If two closed Jordan curves in the plane have precisely one point in common, then it is called a touching point-All other intersection points are called crossing points. The main result of this paper is a Crossing Lemma for closed curves: In any family of n pairwise intersecting simple closed curves in the plane, no three of which pass through the same point, the number of crossing points exceeds the number of touching points by a factor of fK(loglogn)1/8). As a corollary, we prove the following long-standing conjecture of Richter and Thomassen: The total number of intersection points between any n pairwise intersecting simple closed curves in the plane, no three of which pass through the same point, is at least (1 - o(l))n2

    A Crossing Lemma for Jordan curves

    Get PDF
    If two Jordan curves in the plane have precisely one point in common, and there they do not properly cross, then the common point is called a touching point. The main result of this paper is a Crossing Lemma for simple curves: Let X and T stand for the sets of intersection points and touching points, respectively, in a family of n simple curves in the plane, no three of which pass through the same point. If |T|>cn, for some fixed constant c>0, then we prove that |X|=Ω(|T|(log⁥log⁥(|T|/n))1/504). In particular, if |T|/n→∞ then the number of intersection points is much larger than the number of touching points. As a corollary, we confirm the following long-standing conjecture of Richter and Thomassen: The total number of intersection points between n pairwise intersecting simple closed (i.e., Jordan) curves in the plane, no three of which pass through the same point, is at least (1−o(1))n2. © 201

    On Minimizing Crossings in Storyline Visualizations

    Get PDF
    In a storyline visualization, we visualize a collection of interacting characters (e.g., in a movie, play, etc.) by xx-monotone curves that converge for each interaction, and diverge otherwise. Given a storyline with nn characters, we show tight lower and upper bounds on the number of crossings required in any storyline visualization for a restricted case. In particular, we show that if (1) each meeting consists of exactly two characters and (2) the meetings can be modeled as a tree, then we can always find a storyline visualization with O(nlog⁥n)O(n\log n) crossings. Furthermore, we show that there exist storylines in this restricted case that require Ω(nlog⁥n)\Omega(n\log n) crossings. Lastly, we show that, in the general case, minimizing the number of crossings in a storyline visualization is fixed-parameter tractable, when parameterized on the number of characters kk. Our algorithm runs in time O(k!2klog⁥k+k!2m)O(k!^2k\log k + k!^2m), where mm is the number of meetings.Comment: 6 pages, 4 figures. To appear at the 23rd International Symposium on Graph Drawing and Network Visualization (GD 2015

    Discrete Geometry

    Get PDF
    A number of important recent developments in various branches of discrete geometry were presented at the workshop. The presentations illustrated both the diversity of the area and its strong connections to other fields of mathematics such as topology, combinatorics or algebraic geometry. The open questions abound and many of the results presented were obtained by young researchers, confirming the great vitality of discrete geometry
    corecore