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Abstract. In a storyline visualization, we visualize a collection of inter-
acting characters (e.g., in a movie, play, etc.) by x-monotone curves that
converge for each interaction, and diverge otherwise. Given a storyline
with n characters, we show tight lower and upper bounds on the number
of crossings required in any storyline visualization for a restricted case. In
particular, we show that if (1) each meeting consists of exactly two charac-
ters and (2) the meetings can be modeled as a tree, then we can always find
a storyline visualization with O(n logn) crossings. Furthermore, we show
that there exist storylines in this restricted case that require Ω(n logn)
crossings. Lastly, we show that, in the general case, minimizing the number
of crossings in a storyline visualization is fixed-parameter tractable, when
parameterized on the number of characters k. Our algorithm runs in time
O(k!2k log k + k!2m), where m is the number of meetings.

1 Introduction

Ever since an xkcd comic6 featured storyline visualizations of various popular films,
storyline visualizations have increasingly gained popularity as an area of research
in the information visualization community (although the precursors of this kind of
visualization may date back to Minard’s 1861 visualization of Napoleon’s Russian
campaign of 1812). Informally, a storyline consists of characters (e.g., in a movie,
play, etc.) who meet at certain times during a story. In a storyline visualization,
each character is represented as an x-monotone curve. When characters meet
(e.g., appear together in a scene, or interact), their representative curves should be
grouped close together vertically, and otherwise their curves should be separate
(see Fig. 1, left). We assume that every character can only be in one meeting
group at every point in time. One of the main goals for producing readable
storyline visualizations is to minimize the number of crossings between character
curves. Most previous results for constructing storyline visualizations are practical,
implementing drawing routines that rely on heuristics or genetic algorithms [5,10].

6 http://xkcd.com/657
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Fig. 1: Left: A storyline visualization with characters a, b, c, d. Right: The event graph.

However, there are only few theoretical results for storyline visualizations. Storyline
visualization is tightly related to layered graph drawing [9], where layers correspond
to meeting times in the storyline, and a permutation of all character curves needs to
be computed for each time point. Minimizing crossings in a storyline visualization
is also related to bounding the ratio of (proper) crossings to touchings for families
of monotone curves [6].

Our Results. While previous results focus on drawing storyline visualizations
in practice using heuristics [5,10], here we investigate the minimum number of
crossings required in any storyline visualization. First, we investigate storyline
visualizations in a restricted case. We show that if (1) each meeting consists of
exactly two characters and (2) the meetings can be modeled as a tree, then we
can always find a storyline visualization with O(n log n) crossings, where n is
the number of characters. Furthermore, we show that there exist storylines in
this restricted case that require Ω(n log n) crossings. Lastly, we show that, in the
general case, minimizing the number of crossings in a storyline visualization is
fixed-parameter tractable, when parameterized on the number of characters k. Our
algorithm runs in time O(k!2k log k + k!2m), where m is the number of meetings.

Problem Formulation. In the storyline problem, we are given a storyline S =
(C, T , E), that is defined by set of characters C = {1, . . . , n}, that meet during
closed time intervals T ⊂ {[s, t]|s, t ∈ N, s ≤ t}. We call a meeting an event, and
denote the set of events as E ⊂ 2C × T , where each event Ei = (Ci, [si, ti]) ∈ E
(with 1 ≤ i ≤ m) is defined by a subset Ci ⊆ C of characters that meet for
the entire time interval [si, ti] ∈ T (naturally, a character cannot participate in
two overlapping events). The goal then is to produce a 2D drawing of S, called
a storyline visualization, where the x-axis represents time, and characters are
drawn as x-monotone curves placed in some vertical order for each point in time.
During each event Ei = (Ci, [si, ti]), curves representing characters in Ci should be
grouped within some small vertical distance δgroup of each other, and otherwise the
characters should be separated by some larger vertical distance δseparate > δgroup.

2 Pairwise Single-Meeting Storylines

We focus on a simplified version of the storyline problem, where each event consists
of exactly two characters, and these characters meet exactly once in E . For this
simplified version, we can represent our events as a graph where every vertex is a
character, and every edge is a meeting of the corresponding characters. We call
this graph an event graph (Fig. 1, right).
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Fig. 2: The curve for vi before (left) and after (right) introducing detours.

2.1 O(n log n) Crossings for Tree Event Graphs

Let our event graph be a tree T with n nodes. Then we show that we can always
draw a storyline visualization with O(n log n) crossings. Our result relies on decom-
posing T into disjoint subtrees that are drawn in disjoint axis-aligned rectangles.
We reach this bound by using the heavy path decomposition technique [8].

Definition 1 (heavy path decomposition [8]). Let T be a rooted tree. For
each internal node v in T , we choose a child w with the largest subtree among all
of v’s children. We call the edge (v, w) a heavy edge, and the edges to v’s other
children light edges. We call a maximal path of heavy edges a heavy path, and the
decomposition of T into heavy paths and light edges a heavy path decomposition.

We first arbitrarily root T , and compute its heavy path decomposition. Note
that any root-leaf path of the event graph T contains at most dlog ne light edges [8].
Let P be the heavy path beginning at the root of T . We denote the node on P at
depth i in T by vi. For each vi, with li light children, we first lay out each light
subtree Li,j for 1 ≤ j ≤ li. We then order these layouts vertically in increasing
order of meeting start time between vi and the root ri,j of Li,j , separating each
layout by vertical distance δseparate. We denote the rectangle containing all layouts
Li,j by Ri (see Fig. 2). Then, we draw a single x-monotone curve from the top
left to the bottom right of Ri, passing through the layout of each Li,j , meeting
the curve for each root ri,j at time si,j , and leaving at time ti,j , for each event
({vi, ri,j}, [si,j , ti,j ]).

Now for each vi, we have a layout of vi and its light subtrees in a rectangle Ri.
We now show how to draw events between characters that are adjacent via a heavy
edge in P . We first place all Ri vertically in order along the path P (from R1

to R|P |), separated by distance δgroup. We must have the curves meet for each
event ({vi, vi+1}, [si, ti]). We show how to introduce detours so that the curve vi
joins curve vi+1 at time si. Let ni be the number of curves in the light subtrees
of vi. Before time si, curve vi has intersected some number γ of the curves from
its light subtrees, and has ni−γ curves still to intersect. Just before time si, we
divert the curve so that it intersects the remaining ni−γ curves and reaches the
bottom of rectangle Ri to meet with vi+1 at time si. Then at time ti, we return



the curve back to between curves γ and γ + 1 and allow the curve to continue
as before, passing through the remaining ni−γ curves. For each vi we must also
introduce a similar detour to the top of its rectangle Ri so that it can meet the
curve of vi−1 at time si−1; see Fig. 2(right).

We introduce at most two such detours for each rectangle Ri, and therefore
increase the number of crossings of each curve vi by a constant factor of at most
five. Therefore, the total number of crossings N(T ) in our drawing of T satisfies

N(T ) ≤
∑|P |
i=1

∑li
j=1N(Li,j) + 5n, with base case N(({v}, ∅)) = 0. Since all Li,j

are disjoint, each iteration of the recurrence contributes at most O(n) crossings.
Further, since there are O(log n) light edges on the simple path from the root to
any leaf in the heavy path decomposition [8], the recurrence reaches the base case
after O(log n) iterations. Therefore, the recurrence solves to N(T ) = O(n log n)
crossings.

Theorem 1. Any pairwise single-meeting storyline with a tree event graph has a
storyline visualization with O(n log n) crossings.

2.2 A Lower Bound
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Fig. 3: Event graph on line
t = 0 before and on line t = 1
after swapping u and v.

Consider some storyline visualization V with an event
graph G with n nodes and m edges. Let π0 be the
ordering of the characters along a vertical line t = 0
in V . Assign labels [1, . . . , n] to the characters accord-
ing to π0. Then permutation π0 defines an embedding
of G on the line t = 0. As time progresses and char-
acter curves intersect, the corresponding vertices in
the embedding of G are swapped, see Fig. 3.

For every edge e = (i, j) ∈ G define its cost ct(e)
to be the number of characters between i and j on the vertical line at any given
time t.

Then initially c0(e) = |i− j|− 1. So before i and j can meet, their curves must
cross at least |i− j| − 1 curves that were initially between them, which may be 0.

When two character curves cross, their corresponding vertices u and v swap
in the embedding of G on the vertical line. Notice that, after the swap, the costs
of edges incident to u or v change by ±1, and there is no change for non-incident
edges. Thus, the crossing changes the cost of at most deg(u) + deg(v) edges in G.

Let C0 =
∑
c0(e) be the total initial cost of the edges of G embedded on the

line t = 0. Then C0 is the number of decrements in edge costs needed before all
edges would have had cost 0 at some moment in time. Every crossing of character
curves u and v in V decreases this cost by at most deg(u) + deg(v). Therefore,

there are at least
minπ0 C0

2∆ crossings in any storyline visualization V with an event
graph G, where ∆ is the maximum degree of G. Notice that minπ0 C0 = L∗ −m,
where L∗ is the total edge length in the optimal linear ordering of graph G (the
numbering of its vertices that minimizes the sum of differences of numbers over
the graph’s edges; see [1] and [3, Problem GT42]).



Theorem 2. Any storyline visualization with an event graph G requires Ω(L
∗−m
2∆ )

crossings, where L∗ is the total edge length of the optimal linear ordering of G,
and ∆ is the maximum degree of G.

Corollary 1. There exists a pairwise single-meeting storyline with a tree event
graph whose storyline visualization requires Ω(n log n) crossings.

Proof. Let G be a full binary tree. Chung [2] showed that for any assignment of
unique labels [1, . . . , n] to vertices of a full binary tree, the sum of label differences
|i− j| over all edges (i, j) ∈ G is Ω(n log n) (see also [7]). Therefore, there will be

Ω(Ω(n logn)−n+1
2×3 ) = Ω(n log n) crossings. ut

3 An FPT Algorithm for the Storyline Problem

We now consider general storylines, where any number of characters may participate
in an event, and we have no restrictions on the event (hyper)-graph structure.
The general storyline problem is NP-complete, by a straightforward reduction
from Bipartite Crossing Number [4]. However, in real-world storylines,
there may be only a few characters of interest and these characters participate
frequently in events. We therefore are interested in a parameterized algorithm
to better capture the complexity in this scenario. Let k = |C| be the number
of characters in a storyline, and let m = |E| be the number of events. We show
that the storyline problem is fixed-parameter tractable when parameterized on k.
A problem is said to be fixed-parameter tractable if it can be solved in time
f(k)mO(1), where f is some function of k that is independent of m.

Theorem 3. For storylines with k characters and m events, we can solve the
storyline problem in time O(k!2k log k + k!2m).

Proof. We show how to reduce the storyline problem to finding shortest path in
a graph. For each time interval [si, ti] in the storyline we take its start time si
and create a vertex for each of the O(k!) possible vertical orderings of the curves
that satisfy the event groupings at si. We denote the vertices for time si by vi,j ,
where 1 ≤ j ≤ k!, and say these vertices are on level i.

Denote the minimum number of crossings to transform one ordering vi,j at
level i to ordering vi+1,l at level i+ 1 by I(vi,j , vi+1,l). For all levels, we connect
each vertex vi,j to each vertex vi+1,l by a directed edge with weight I(vi,j , vi+1,l).
We then create source and terminal vertices s and t and connect them with edges
of weight 0 to vertices on levels 1 and m, respectively. Then the weight of a
shortest path from s to t is the minimum number of crossings in any embedding,
and this path specifies the vertical orderings of the curves at each time step si.

We now compute the number of crossings to transform between vertical
orderings. First note that we can compute the minimum number of swaps between
two vertical orderings of size k in time O(k log k) by counting inversions with
merge sort. Thus, we can precompute the weights between all pairs of orderings
in time O(k!2k log k), and assign edge weights when building the graph at a cost
of O(k!2) per level.



Now a minimum-weight path from s to t fully specifies a storyline visualization.
We can lay out each curve by the vertical ordering specified by each vertex on the
path with its time step, swapping curve order between time steps. Then during
each event we group the curves together, otherwise we separate them.

In total there are m levels, each with O(k!) vertices and O(k!2) edges. Thus,
there are O(k!m) vertices and O(k!2m) edges. We can compute a shortest path
from s to t in time linear in the number of vertices and edges, by dynamic
programming: For each level i, we compute the minimum weight for each vertex v
by iterating over all incoming edges from vertices on level i− 1 and choosing the
one that minimizes the total weight to v. Thus we can compute a shortest path
from s to t in time O(k!2m). Including the time to precompute edge weights, we
get total time O(k!2k log k) +O(k!2m) = O(k!2k log k + k!2m). ut
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