267,792 research outputs found

    A Model-based transformation process to validate and implement high-integrity systems

    Get PDF
    Despite numerous advances, building High-Integrity Embedded systems remains a complex task. They come with strong requirements to ensure safety, schedulability or security properties; one needs to combine multiple analysis to validate each of them. Model-Based Engineering is an accepted solution to address such complexity: analytical models are derived from an abstraction of the system to be built. Yet, ensuring that all abstractions are semantically consistent, remains an issue, e.g. when performing model checking for assessing safety, and then for schedulability using timed automata, and then when generating code. Complexity stems from the high-level view of the model compared to the low-level mechanisms used. In this paper, we present our approach based on AADL and its behavioral annex to refine iteratively an architecture description. Both application and runtime components are transformed into basic AADL constructs which have a strict counterpart in classical programming languages or patterns for verification. We detail the benefits of this process to enhance analysis and code generation. This work has been integrated to the AADL-tool support OSATE2

    A UML Profile for Security and Code Generation

    Get PDF
    Recently, many research studies have suggested the integration of safety engineering at an early stage of modeling and system development using Model-Driven Architecture (MDA). This concept consists in deploying the UML (Unified Modeling Language) standard as aprincipal metamodel for the abstractions of different systems. To our knowledge, most of this work has focused on integrating security requirements after the implementation phase without taking them into account when designing systems. In this work, we focused our efforts on non-functional aspects such as the business logic layer, data flow monitoring, and high-quality service delivery. Practically, we have proposed a new UML profile for security integration and code generation for the Java platform. Therefore, the security properties will be described by a UML profile and the OCL language to verify the requirements of confidentiality, authorization, availability, data integrity, and data encryption. Finally, the source code such as the application security configuration, the method signatures and their bodies, the persistent entities and the security controllers generated from sequence diagram of system’s internal behavior after its extension with this profile and applying a set of transformations

    Generating Network Security Protocol Implementations from Formal Specifications

    Get PDF
    We describe the Spi2Java code generation tool, which we have developed in an attempt to bridge the gap between formal security protocol specification and executable implementation. Implemented in Prolog, Spi2Java can input a formal security protocol specification in a variation of the Spi Calculus, and generate a Java code implementation of that protocol. We give a brief overview of the role of code generation in the wider context of security protocol development. We cover the design and implementation of Spi2Java which we relate to the high integrity code generation requirements identified by Whalen and Heimdahl. By defining a Security Protocol Implementation API that abstracts cryptographic and network communication functionality we show that protocol logic code can be separated from underlying cryptographic algorithm and network stack implementation concerns. The design of this API is discussed, particularly its support for pluggable implementation providers. Spi2Java's functionality is demonstrated by way of example: we specify the Needham-Schroeder Public Key Authentication Protocol, and Lowe's attack on it, in the Spi Calculus and examine a successful attack run using Spi2Java generated implementation of the protocol roles

    System to Software Integrity: A Case Study

    Get PDF
    It is widely acknowledged that the main source of cost for developing high-integrity software systems is their verification. A significant portion of this verification cost is spent assessing that software complies with its requirements. Over the years several different methods have been developed to address this issue, in particular: testing, peer reviews, formal verification and automatic code generation. It is more and more frequent that these verification strategies are mixed within the same system, so as to adopt the most appropriate one for each component. This increases the complexity of the integration phase because it has to cope with multiple formalisms, development and verification methods. Our goal is to propose a pragmatic process to integrate components developed using different methods into a single system and demonstrate that properties already verified for each component in isolation are preserved in their composition. This process leverages AADL as a pivotal modeling language for system specification and relies on specific verifications between the latter and the components developed using heterogeneous modeling and programming languages, namely Simulink for computation intensive parts and Ada/SPARK 2014 for other components. Our paper proceeds as follows. First we provide a high-level overview of our approach and enumerate the current methods for addressing the property preservation problem. Then we illustrate practically our approach using the Nose Gear Challenge problem, a simplified yet complete example of a high-integrity real-time system. We then conclude by comparing our approach to the state of the art

    TCG based approach for secure management of virtualized platforms: state-of-the-art

    Get PDF
    There is a strong trend shift in the favor of adopting virtualization to get business benefits. The provisioning of virtualized enterprise resources is one kind of many possible scenarios. Where virtualization promises clear advantages it also poses new security challenges which need to be addressed to gain stakeholders confidence in the dynamics of new environment. One important facet of these challenges is establishing 'Trust' which is a basic primitive for any viable business model. The Trusted computing group (TCG) offers technologies and mechanisms required to establish this trust in the target platforms. Moreover, TCG technologies enable protecting of sensitive data in rest and transit. This report explores the applicability of relevant TCG concepts to virtualize enterprise resources securely for provisioning, establish trust in the target platforms and securely manage these virtualized Trusted Platforms

    Transparent code authentication at the processor level

    Get PDF
    The authors present a lightweight authentication mechanism that verifies the authenticity of code and thereby addresses the virus and malicious code problems at the hardware level eliminating the need for trusted extensions in the operating system. The technique proposed tightly integrates the authentication mechanism into the processor core. The authentication latency is hidden behind the memory access latency, thereby allowing seamless on-the-fly authentication of instructions. In addition, the proposed authentication method supports seamless encryption of code (and static data). Consequently, while providing the software users with assurance for authenticity of programs executing on their hardware, the proposed technique also protects the software manufacturers’ intellectual property through encryption. The performance analysis shows that, under mild assumptions, the presented technique introduces negligible overhead for even moderate cache sizes

    A survey on cyber security for smart grid communications

    Get PDF
    A smart grid is a new form of electricity network with high fidelity power-flow control, self-healing, and energy reliability and energy security using digital communications and control technology. To upgrade an existing power grid into a smart grid, it requires significant dependence on intelligent and secure communication infrastructures. It requires security frameworks for distributed communications, pervasive computing and sensing technologies in smart grid. However, as many of the communication technologies currently recommended to use by a smart grid is vulnerable in cyber security, it could lead to unreliable system operations, causing unnecessary expenditure, even consequential disaster to both utilities and consumers. In this paper, we summarize the cyber security requirements and the possible vulnerabilities in smart grid communications and survey the current solutions on cyber security for smart grid communications. © 2012 IEEE
    corecore