322 research outputs found

    Abstract 3-Rigidity and Bivariate C21C_2^1-Splines II: Combinatorial Characterization

    Full text link
    We showed in the first paper of this series that the generic C21C_2^1-cofactor matroid is the unique maximal abstract 33-rigidity matroid. In this paper we obtain a combinatorial characterization of independence in this matroid. This solves the cofactor counterpart of the combinatorial characterization problem for the rigidity of generic 3-dimensional bar-joint frameworks. We use our characterization to verify that the counterparts of conjectures of Dress (on the rank function) and Lov\'{a}sz and Yemini (which suggested a sufficient connectivity condition for rigidity) hold for this matroid

    Abstract 3-Rigidity and Bivariate C½-Splines II: Combinatorial Characterization

    Get PDF
    We showed in the first paper of this series that the generic C1-cofactor matroid is the unique maximal abstract 3-rigidity matroid. In this paper we obtain a combinatorial characterization of independence in this matroid. This solves the cofactor counterpart of the combinatorial characterization problem for the rigidity of generic 3-dimensional bar-joint frameworks. We use our characterization to verify that the counterparts of conjectures of Dress (on the rank function) and Lovász and Yemini (which suggested a sufficient connectivity condition for rigidity) hold for the C1-cofactor matroid

    Generic Rigidity Matroids with Dilworth Truncations

    Get PDF
    We prove that the linear matroid that defines generic rigidity of dd-dimensional body-rod-bar frameworks (i.e., structures consisting of disjoint bodies and rods mutually linked by bars) can be obtained from the union of (d+12){d+1 \choose 2} graphic matroids by applying variants of Dilworth truncation nrn_r times, where nrn_r denotes the number of rods. This leads to an alternative proof of Tay's combinatorial characterizations of generic rigidity of rod-bar frameworks and that of identified body-hinge frameworks

    Rigidity of frameworks on expanding spheres

    Get PDF
    A rigidity theory is developed for bar-joint frameworks in Rd+1\mathbb{R}^{d+1} whose vertices are constrained to lie on concentric dd-spheres with independently variable radii. In particular, combinatorial characterisations are established for the rigidity of generic frameworks for d=1d=1 with an arbitrary number of independently variable radii, and for d=2d=2 with at most two variable radii. This includes a characterisation of the rigidity or flexibility of uniformly expanding spherical frameworks in R3\mathbb{R}^{3}. Due to the equivalence of the generic rigidity between Euclidean space and spherical space, these results interpolate between rigidity in 1D and 2D and to some extent between rigidity in 2D and 3D. Symmetry-adapted counts for the detection of symmetry-induced continuous flexibility in frameworks on spheres with variable radii are also provided.Comment: 22 pages, 2 figures, updated reference

    Algebraic matroids with graph symmetry

    Get PDF
    This paper studies the properties of two kinds of matroids: (a) algebraic matroids and (b) finite and infinite matroids whose ground set have some canonical symmetry, for example row and column symmetry and transposition symmetry. For (a) algebraic matroids, we expose cryptomorphisms making them accessible to techniques from commutative algebra. This allows us to introduce for each circuit in an algebraic matroid an invariant called circuit polynomial, generalizing the minimal poly- nomial in classical Galois theory, and studying the matroid structure with multivariate methods. For (b) matroids with symmetries we introduce combinatorial invariants capturing structural properties of the rank function and its limit behavior, and obtain proofs which are purely combinatorial and do not assume algebraicity of the matroid; these imply and generalize known results in some specific cases where the matroid is also algebraic. These results are motivated by, and readily applicable to framework rigidity, low-rank matrix completion and determinantal varieties, which lie in the intersection of (a) and (b) where additional results can be derived. We study the corresponding matroids and their associated invariants, and for selected cases, we characterize the matroidal structure and the circuit polynomials completely

    Natural realizations of sparsity matroids

    Get PDF
    A hypergraph G with n vertices and m hyperedges with d endpoints each is (k,l)-sparse if for all sub-hypergraphs G' on n' vertices and m' edges, m'\le kn'-l. For integers k and l satisfying 0\le l\le dk-1, this is known to be a linearly representable matroidal family. Motivated by problems in rigidity theory, we give a new linear representation theorem for the (k,l)-sparse hypergraphs that is natural; i.e., the representing matrix captures the vertex-edge incidence structure of the underlying hypergraph G.Comment: Corrected some typos from the previous version; to appear in Ars Mathematica Contemporane
    corecore