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GENERIC RIGIDITY MATROIDS WITH DILWORTH
TRUNCATIONS∗
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Abstract. We prove that the linear matroid that defines the generic rigidity of d-dimensional
body-rod-bar frameworks (i.e., structures consisting of disjoint bodies and rods mutually linked by

bars) can be obtained from the union of
(d+1

2

)
copies of a graphic matroid by applying variants of

Dilworth truncation operations nr times, where nr denotes the number of rods. This result leads
to an alternative proof of Tay’s combinatorial characterizations of the generic rigidity of rod-bar
frameworks and that of identified body-hinge frameworks.

Key words. rigidity matroids, rigidity of graphs, bar-joint frameworks, body-bar frameworks,
count matroids
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1. Introduction. One of the main topics in rigidity theory is to reveal a combi-
natorial characterization of the generic rigidity of frameworks. The celebrated Laman’s
theorem [18] asserts that a two-dimensional bar-joint framework (Figure 1.1(a)) is
minimally rigid on a generic joint-configuration if and only if the graph G = (V,E)
obtained by regarding each joint as a vertex and each bar as an edge satisfies the
following counting condition: |E| = 2|V |− 3 and |F | ≤ 2|V (F )|− 3 for any nonempty
F ⊆ E, where V (F ) denotes the set of vertices spanned by F . However, in spite of
exhausting efforts so far, the three-dimensional counterpart has not been obtained yet
(see, e.g., [13, 41, 42]).

A common strategy to deal with a difficult problem in graph theory is to restrict a
graph class, and several partial results are also known for the problem of characterizing
three-dimensional generic rigidity for, e.g., triangulations [9, 41], bipartite graphs [38],
sparse graphs [13], some minor closed classes [25], and the squares of graphs [16]. In
rigidity theory, it is also reasonable to consider special types of structural models.
Tay [30] considered a body-bar framework (Figure 1.1(b)) that consists of rigid bodies
linked by bars. He proved that if we represent the underlying graph by identifying
each vertex with each body and each edge with each bar, a body-bar framework is
generically rigid in R3 if and only if the underlying graph contains six edge-disjoint
spanning trees. Tay [31, 32] and Whiteley [39] independently proved that, even for
the body-hinge models (Figure 1.1(c)), the same combinatorial characterization is true.
Specifically, a body-hinge framework is a structure consisting of rigid bodies connected
by hinges. Its underlying graph is represented by identifying each body with a vertex
and each hinge with an edge. In this setting, the Tay–Whiteleys theorem asserts that
a body-hinge framework is generically rigid in R3 if and only if the graph obtained
by duplicating each edge by five parallel copies contains six edge-disjoint spanning
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RIGIDITY MATROIDS WITH DILWORTH TRUNCATIONS 1413

Fig. 1.1. (a) Two-dimensional bar-joint framework, (b) Body-bar framework, (c) Body-hinge
framework, and (d) Rod-bar framework.

trees. Jackson and Jordán [14] further discuss the relation of generic rigidity of the
body-bar-hinge model to the forest-packing problem in undirected graphs.

Although it is barely mentioned, Tay’s work was actually done in a more gen-
eral setting. An identified body-hinge framework is a body-hinge framework in which
each hinge is allowed to connect more than two bodies. Historically, a combinatorial
characterization of identified body-hinge frameworks was first conjectured by Tay and
Whiteley in [34], and Tay affirmatively solved the conjecture in [31] as a by-product
of his combinatorial characterization of rod-bar frameworks. A rod-bar framework is
a structure consisting of disjoint rods linked by bars in R3 (Figure 1.1(d)). Each bar
connects two rods, and each rod is allowed to be incident to several distinct bars.
This structural model naturally comes up from body-bar frameworks by regarding
each rod as a degenerated one-dimensional body.

Unfortunately, Tay’s proof is based on a Henneberg-type graph construction with
intricate and long analysis (the combinatorial part now follows from the recent result
by Frank and Szegö [6]), and the combinatorics behind rigidity of rod-bar frameworks
has not been understood well. To shed light on Tay’s result, this paper provides a
new proof of the combinatorial characterization of rod-bar frameworks.

We cope with a more general structural model, body-rod-bar frameworks, and
prove that the linear matroid defining its generic rigidity is equal to a counting ma-
troid defined on the underlying graphs (Theorem 4.9 and Corollary 4.14). Our proof
technique is inspired by the idea of Lovász and Yemini given in [21]. They proved,
as a new proof of Laman’s theorem, that the linear matroid that defines the generic
rigidity of two-dimensional bar-joint frameworks can be obtained from the union of
two copies of a graphic matroid by Dilworth truncation. Roughly speaking, Dilworth
truncation is an operation to construct a new linear matroid from an old one by
restricting the domain of entries of each vector to a generic hyperplane. (See subsec-
tion 2.4 for the definition.) The main difference between our situation and that of
Lovász and Yemini is that we need to apply such truncation operations more than once
(while they used it only once). Indeed, it is not trivial to keep up the representation
of the resulting matroid when applying Dilworth truncation operations several times,
as each hyperplane must be inserted in a “generic” position relative to the preceding
hyperplanes. We will overcome the difficulty by extending an idea of Lovász [20] so
that each truncation is performed within a designated subspace.

A bar-joint framework can be considered as a body-bar framework consisting of
zero-dimensional bodies. As combinatorial properties of body-bar frameworks with
three-dimensional bodies are well understood [30, 37, 39] in R3, it is then natural
to consider body-bar frameworks with one-dimensional bodies (i.e., rods) toward a
combinatorial characterization of bar-joint frameworks. Our proof explicitly describes
how each three-dimensional body can be replaced by a one-dimensional body by the
use of truncations.
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1414 SHIN-ICHI TANIGAWA

The paper is organized as follows. In section 2, we first review (poly)matroids
induced by submodular functions and then review two classical techniques proposed
by Lovász [20]: the first one shows how to obtain a maximum matroid from a polyma-
troid defined by a family of flats in projective space, and the second one is Dilworth
truncation. In section 3, we provide a proof of a combinatorial characterization of
body-bar frameworks by Tay [30] from the viewpoint of matroids of flat families (dis-
cussed in section 2). Our main result is section 4, where we prove a combinatorial
characterization of body-rod-bar frameworks. In section 5, we will discuss identified
body-hinge frameworks and several unsolved problems. As another application of the
Dilworth truncation, in section 6, we provide a direct proof of the combinatorial char-
acterization of d-dimensional direction-rigidity given by Whiteley [41, Theorem 8.2.2].
We believe that our proof technique is so powerful that it can be applied to a wider
range of truncated matroids appeared in combinatorial geometry (see, e.g., [41]).

We conclude this introduction by listing some notation used throughout the paper.
For a vector space W = Rk, let P(W ) denote the projective space Pk−1 associated
with W . For a vector v = (v1, . . . , vk) ∈ W , the projective point associated with
v is denoted by [v] = [v1, . . . , vk] ∈ P(W ). For a flat A in P(W ), the rank of A
is defined by rank(A) = dimW ′, where W ′ is the linear subspace of W associated
with A. For a finite family A of flats, the span of A is denoted by A. A is called
disconnected if there is a partition {A1,A2} of A into nonempty subsets such that
rank(A) =

∑
i=1,2 rank(Ai) (equivalently, A1 ∩ A2 = ∅). Otherwise A is said to be

connected. (Note that a singleton set is connected.)
We consider a finite graph G = (V,E) that may contain parallel edges but no

loop. If G has neither parallel edges nor a loop, G is said to be simple. We sometimes
use V (G) and E(G) to denote the sets of vertices and edges of G, respectively. For
v ∈ V , let δG(v) be the set of edges incident to v in G. We say that F ⊆ E spans
v ∈ V if v is incident to some edge of F . For F ⊆ E, V (F ) denotes the set of vertices
spanned by F .

2. Preliminaries.

2.1. Polymatroids. Let E be a finite set. A function μ : 2E → R is called
submodular if μ(X) + μ(Y ) ≥ μ(X ∪ Y ) + μ(X ∩ Y ) for every X,Y ⊆ E. μ is called
monotone if μ(X) ≤ μ(Y ) for every X ⊆ Y .

Suppose μ : 2E → Z is an integer-valued function on E satisfying μ(∅) = 0.
The pair (E, μ) is called a polymatroid if μ is monotone and submodular, and μ is
called the rank function of (E, μ). It is particularly called a matroid if μ further
satisfies μ(e) ≤ 1 for every e ∈ E. F ⊆ E is called independent if |F | = μ(F ), and a
maximal independent set and a minimal dependent set are called a base and a circuit,
respectively. An element e ∈ E is called a coloop if every base contains e.

2.2. Submodular functions and induced polymatroids. Suppose μ : 2E →
Z is a monotone submodular function such that μ(F ) ≥ 0 for every nonempty F ⊆ E
(but f(∅) < 0 is allowed). We define μ̂ : 2E → Z by

(2.1) μ̂(F ) = min{∑k
i=1μ(Fi)} (F ⊆ E),

where the minimum is taken over all partitions {F1, . . . , Fk} of F into nonempty
subsets. It is known that μ̂ is a monotone submodular function satisfying μ̂(∅) = 0
(see, e.g., [28, Chapter 48] or [7]), and hence the pair (E, μ̂) forms a polymatroid. It
is also known that μ̂ is the unique largest among all monotone submodular functions
μ′ satisfying 0 ≤ μ′(F ) ≤ μ(F ) for each F ⊆ E.
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RIGIDITY MATROIDS WITH DILWORTH TRUNCATIONS 1415

Edmonds and Rota [3] observed that a monotone submodular function μ : 2E → Z

induces a matroid (E, rµ) on E, where F ⊆ E is independent if and only if |F ′| ≤ μ(F ′)
for every nonempty F ′ ⊆ F (see also [27]). Observe that this matroid takes the
maximum rank among those satisfying rµ(F ) ≤ min{μ(F ), |F |} for every nonempty
F ⊆ E, and indeed the rank function rµ can be written as

(2.2) rµ(F ) = min
F0⊆F

{|F0|+ μ̂(F \ F0)} (F ⊆ E),

(see, e.g., [28, section 44.6a]). Namely,

(2.3) rµ(F ) = min{|F0|+
∑k

i=1 μ(Fi)} (F ⊆ E),

where the minimum is taken over all partitions {F0, F1, . . . , Fk} of F such that
F1, . . . , Fk are nonempty (and F0 = ∅ is allowed). Geometric interpretations of these
results will be discussed in the next two subsections. More detailed descriptions on
general (poly)matroids can be found in, e.g., [28, 7, 26].

2.3. Generic matroids. Let E be a finite set. We associate each element e ∈ E
with a flat Ae in a real projective space and let A = {Ae : e ∈ E}. Also, for F ⊆ E,
we denote {Ae ∈ A : e ∈ F} by AF . If we define a rank function rankA : 2E → Z

by rankA(F ) = rank(AF ) for F ⊆ E, the pair (E, rankA) forms a linear polymatroid,
which is denoted by PM(A). A polymatroid turns out to be a matroid by bounding
the rank of each element by one. Below, we review a geometric method for getting a
maximum linear matroid from the linear polymatroid PM(A).

We shall associate a representative point xe ∈ Ae with each Ae ∈ A. Let us
denote {xe : e ∈ E} by X . The set X of representative points is said to be in generic
position if, for every X ′ ⊆ X and for every xe ∈ X ′,

(2.4) xe ∈ X ′ − xe ⇒ Ae ⊆ X ′ − xe.

It is not difficult to see that, for any finite flat family A, the set X of representative
points can be taken to be in generic position. For any xe ∈ X , Ae \

⋃{X ′ : X ′ ⊆
X − xe with Ae �⊂ X ′} forms a dense open subset of Ae; hence, if xe ∈ X ′ for some
X ′ ⊆ X − xe with Ae �⊂ X ′, then by continuously (and slightly) moving xe on Ae it
can avoid X ′ without creating a new violation for generic position.

For F ⊆ E, the dimension of the linear subspace spanned by {xe : e ∈ F} is
defined as the rank of F (with respect to X), and we denote it by rankX(F ), i.e.,
rankX(F ) = rank({xe : e ∈ F}). The linear matroid (E, rankX) is called a matroid
associated with A.

Theorem 2.1 (Lovász [20]). Let A = {Ae : e ∈ E} be a finite family of flats,
and let X be a set of representative points of A in generic position. Then,

(2.5) rankX(E) = min
F⊆E

{|E \ F |+ rank(AF )}.

By restricting the argument to F ⊆ E, we also have rankX(F ) = minF ′⊆F {|F \
F ′|+ rank(AF ′)}. The rank of the linear matroid associated with A does depend on
the choice of X . However, Theorem 2.1 implies that it attains the maximum and is
invariant when X is in generic position. (Notice that the ≤ direction of (2.5) holds
even though X is not in generic position. For any F ⊆ E, rankX(E) ≤ rankX(E \
F ) + rankX(F ) ≤ |E \ F |+ rank({Ae ∈ A : e ∈ F}).) This motivates us to define the
generic matroid. The generic matroid associated with A, denoted M(A), is defined
to be M(A) = (E, rankX) with X in generic position.
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2.4. Dilworth truncation. Let A be a finite set of flats. We now consider
restricting flats of A to a generic hyperplane. A hyperplane H is called generic
relative to A if it satisfies the following condition:1; for any A1, A2 ∈ A and any
F ⊆ {A ∩H : A ∈ A},

(2.6) (A1 ∩H) ∪ F ∩ (A2 ∩H) ∪ F �= F ⇒ A1 ∪ F ∩A2 ∪ F �⊂ H.

Although the details are omitted, it can be verified that almost all hyperplanes are
generic relative to A. For a family A of flats and a hyperplane H , we shall abbreviate
{A ∩H : A ∈ A} as A ∩H . The following result was also done by Lovász [20].

Theorem 2.2 (Lovász [20]). Let A be a finite family of flats in a real projective
space and H be a generic hyperplane relative to A. Then,

(2.7) rank(A ∩H) = min{∑k
i=1(rank(Ai)− 1)},

where the minimum is taken over all partitions {A1, . . . ,Ak} of A into nonempty
subsets.

This operation (of restricting flats to a generic hyperplane) is referred to as Dil-
worth truncation. Indeed, as noted in [28], Theorems 2.1 and 2.2 provide geometric
interpretations of the formulae (2.1) and (2.3) for linear polymatroids.

The same result was also obtained by Mason [23, 22] from the view point of
combinatorial geometry (projective matroids). The papers of Mason [23, 22] include
examples of Dilworth truncation.

2.5. M-connectivity and P -connectivity. Let M = (E, r) be a matroid on
a finite set E with the rank function r. A subset F ⊆ E is called M -connected if for
any pair e, e′ ∈ F , F has a circuit of M that contains e and e′. For simplicity of
the description, a singleton {e} is also considered as an M -connected set. A maximal
M -connected set is called an M -connected component. It is well know that the union
of two M -connected sets is M -connected if their intersection is nonempty, and thus
E is uniquely partitioned into M -connected components E1, . . . , Ek (see, e.g., [26,
Chapter 4]). Since there is no circuit intersecting two components, we have r(E) =∑k

i=1 r(Ei). Alternatively, we can use it for the definition of M -connectivity: F ⊆ E
is M -connected if and only if there is no partition {F1, . . . , Fk} of F into at least two

nonempty subsets such that r(F ) =
∑k

i=1 r(Fi).
The concept of connectivity can be extended to polymatroids. Let PM = (E, μ)

be a polymatroid on a finite set E. Then, F ⊆ E is said to be P -connected if
there is no partition {F1, . . . , Fk} of F into at least two nonempty subsets such that

μ(F ) =
∑k

i=1 μ(Fi). A maximal P -connected set is called a P -connected component.
The union of two P -connected sets is P -connected if their intersection is nonempty,
and thus E is uniquely partitioned into P -connected components. If we consider linear
polymatroids, the concept of P -connectivity coincides with the connectivity of flats
we introduced in the introduction.

1Lovász claimed Theorem 2.2 with a much weaker assumption. He defined that a hyperplane
H is generic if for any subsets X, Y , and Z of A satisfying (X ∩H) ∪ Y ∩ (X ∩H) ∪ Z ⊆ H, we

have (X ∩H) ∪ Y ∩ (X ∩H) ∪ Z ⊆ X ∩H. Theorem 2.2, however, fails in this setting. For exam-
ple, suppose the underlying projective space is three-dimensional, and A consists of three distinct
hyperplanes {A1, A2, A3} such that A1 ∩ A2 = A2 ∩ A3 = A3 ∩ A1 is a line l. If we take H as a
hyperplane distinct from Ai but containing l, H satisfies the condition to be generic. However, the
left-hand side of (2.7) is rank({A ∩H : A ∈ A}) = rank(l) = 2, while the right-hand side is equal to

rank({A1, A2, A3})− 1 = 3.
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A P -connected set (and similarly, an M -connected set) is called trivial if it is
singleton; otherwise it is nontrivial.

3. Body-bar frameworks. A body-bar framework is a structure consisting of
rigid bodies linked by bars (Figure 1.1(b)). The generic rigidity of body-bar frame-
works is characterized by Tay [30] (and a simpler proof was given by Whiteley [39]). In
this section, we present a proof of this characterization from the viewpoint of matroids
of flat families. In the subsequent sections, d denotes the dimension of frameworks,
and let D =

(
d+1
2

)
.

3.1. Union of copies of graphic matroid. We first review the union of copies
of graphic matroid to which Tay related the generic rigidity matroid in the body-bar
model.

3.1.1. Graphic matroid. Let G = (V,E) be a finite undirected graph. We de-
note the graphic matroid of G by G(G), that is, the matroid induced by the monotone
submodular function g : 2E → Z defined by g(F ) = |V (F )| − 1 for F ⊆ E. Namely,
F ⊆ E is independent in G(G) if and only if |F | ≤ |V (F )| − 1 for nonempty F ⊆ E,
and equivalently F is a forest.

Let I(G) = [aij ] be the incidence matrix of a digraph obtained fromG by arbitrary
assigning a direction to each edge, i.e,

aij =

⎧⎪⎨⎪⎩
1 if vertex vj is the tail of arc ei,

−1 if vertex vj is the head of arc ei,

0 otherwise.

It is well known that G(G) is linear as it is represented by the row matroid of I(G).

3.1.2. Graphic matroid union. For a matroid M = (E, I) with a collection
I of independent sets, the union of D independent sets, i.e., {I1 ∪ · · · ∪ ID : Ii ∈
I, i = 1, . . . , D}, again forms the collection of independent sets of a matroid. This
matroid is called the union of D copies of M. In the union of D copies of the graphic
matroid, denoted DG(G), F ⊆ E is independent if and only if F can be partitioned
into D edge-disjoint forests. DG(G) is indeed the matroid induced by the monotone
submodular function Dg := D(|V (·)| − 1) defined on E [24]. This implies that E can
be partitioned into D edge-disjoint spanning trees if and only if |E| = D(|V |− 1) and
|F | ≤ D(|V (F )| − 1) for any nonempty F ⊆ E.

It is also known that DG(G) can be represented as a row linear matroid by
introducing indeterminates. For each integer k with 1 ≤ k ≤ D, let Ik = [akij ] be a
|E| × |V |-matrix defined by

akij =

⎧⎪⎨⎪⎩
αk
ei if vertex vj is the tail of arc ei,

−αk
ei if vertex vj is the head of arc ei,

0 otherwise,

where αk
e ’s are algebraically independent indeterminates over Q. Denote the |E| ×

D|V |-matrix [I1|I2| . . . |ID] by DI(G). Then, DG(G) is represented by DI(G) (see,
e.g., [23, 39]).

This representation gives us another way to look at DG(G). We associate a D-
dimensional vector space Vu = RD with each vertex u in the subsequent discussion,
and VV denotes the direct product of Vu for all u ∈ V . In DI(G), the row associated
with an edge e = uv is represented by
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(3.1) (0,
···
· · ·, 0,

u︷ ︸︸ ︷
α1
e, . . . , α

D
e , 0,

···
· · ·, 0,

v︷ ︸︸ ︷
−α1

e, . . . ,−αD
e , 0,

···
· · ·, 0),

where we changed the column ordering so that the entries associated with each vertex
form a block (and throughout the subsequent discussions we will refer to this ordering).
When looking at α1

e, . . . , α
D
e as independent parameters in R, the space spanned by

vectors (3.1) form a D-dimensional vector space contained in Vu×Vv. We can identify
this D-dimensional vector space with a (D− 1)-dimensional flat in P(VV ). We denote
this flat by Ae and let A := {Ae : e ∈ E}. Then, DG(G) can be considered as the
generic matroid M(A) associated with A.

3.2. Generic body-bar matroids.

3.2.1. Plücker coordinates. Throughout the paper, let W = Rd+1. For sim-
plicity, we shall use the standard basis e1, . . . , ed+1 of W = Rd+1 and use the dot
product as an inner product. Also W is identified with its dual.

Recall that the exterior product
∧k W of degree k is a

(
d+1
k

)
-dimensional vector

space and can be naturally identified with R(
d+1
2 ) by associating ei1 ∧ · · · ∧ eik with

an element of the standard basis of R(
d+1
k ) for each 1 ≤ i1 < · · · < ik < d + 1. In

particular,
∧2

W = RD.
The collection of k-dimensional subspaces in W is called the Grassmannian, de-

noted Gr(k,W ). The Plücker embedding p : Gr(k,W ) → P(
∧k W ) is a bijection be-

tween k-dimensional vector spaces X ∈ Gr(k,W ) and projective equivalence classes

[v1 ∧ · · · ∧ vk] ∈ P(
∧k

W ) of decomposable elements, where {v1, . . . , vk} is a basis of
X . In the subsequent discussions, we shall identify Gr(k,W ) and its image of the

Plücker embedding and regard Gr(k,W ) as a subset of P(
∧k

W ).
It is well known that each point of Gr(k,W ) can be coordinatized by the so-called

Plücker coordinate once we fix a basis of W . If a basis {v1, . . . , vk} of X ∈ Gr(k,W )

is represented by vi =
∑d+1

j=1 pijej with the k× (d+1)-matrix P = [pij ], then we have

v1 ∧ · · · ∧ vk =
∑

i1<···<ik
detPi1,...,ikei1 ∧ · · · ∧ eik ,

where Pi1,...,ik is the k × k-submatrix of P consisting of ijth columns. Let us simply
denote pi1,...,ik = detPi1,...,ik . The ratio of pi1,...,ik for 1 ≤ i1 < · · · < ik ≤ d + 1 is
called the Plücker coordinate of X .

It is well known that [pi,j ]1≤i<j≤d+1 ∈ P(
∧2

W ) is in Gr(2,W ) if and only if
pi,jpk,l − pi,kpj,l + pi,lpj,k = 0 for 1 ≤ i < j < k < l ≤ d + 1, and Gr(2,W ) is an
irreducible quadratic variety (see, e.g., [10]). In particular, if d = 3, Gr(2,W ) is a
nonsingular quadratic variety written by

(3.2) {[pi,j ]1≤i<j≤4 ∈ P(
∧2

W ) : p1,2p3,4 − p1,3p2,4 + p1,4p2,3 = 0}.
Through the one-to-one correspondence between a k-dimensional linear subspace and
its orthogonal complement, Gr(d − 1,W ) is also an irreducible quadratic variety in

P(
∧d−1 W ) described in the same form as Gr(2,W ).

Let us define a product 〈·, ·〉 : ∧k
W ×∧d+1−k

W → R by

〈p, q〉 =
∑

i1<···<ik

(−1)i1+···+ikpi1,...,ikqj1,...,jd+1−k

for p = (pi1...ik) ∈
∧k W and q = (qi1...id+1−k

) ∈ ∧d+1−k W , where j1, . . . , jd+1−k are
the complement of i1, . . . , ik in [d+1] with j1 < · · · < jd+1−k. For example, for d = 3
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RIGIDITY MATROIDS WITH DILWORTH TRUNCATIONS 1419

and k = 2, we have 〈p, q〉 = p1,2q3,4 − p1,3q2,4 + p1,4q2,3 + p2,3q1,4 − p2,4q1,3 + p3,4q1,2.
In general, it has the following useful property: a k-dimensional linear subspace X
and a (d + 1 − k)-dimensional linear subspace Y have a nonzero intersection if and
only if the corresponding Plücker coordinates [p] and [q] satisfy 〈p, q〉 = 0. This is
because if p and q are decomposable, then 〈p, q〉 is the determinant of a square matrix
obtained by aligning composition elements of p and q.

This product can be seen as a dot product in R(
d+1
k ) through the so-called Hodge

star-operator. The Hodge star-operator is a linear operation ∗ : ∧k
W → ∧d+1−k

W
defined by

∗(ei1 ∧ · · · ∧ eik) = sign(σ)ej1 ∧ · · · ∧ ejd+1−k
,

where j1, . . . , jd+1−k are the complement of i1, . . . , ik in [d + 1] and sign(σ) denotes

the sign of the permutation σ =

(
i1 . . . ik j1 . . . jd+1−k

1 . . . k k + 1 . . . d+ 1

)
. For example,

if d = 3 and k = 2, ∗q = (q3,4,−q2,4, q2,3, q1,4,−q1,3, q1,2) for q = (q1,2, q1,3, q1,4, q2,3,
q2,4, q3,4).

By identifying
∧k

W with
∧d+1−k

W through ∗ and identifying
∧k

W with R(
d+1
k )

as above, we may consider 〈·, ·〉 as a dot product in R(
d+1
k ). In this way we can simply

consider a product between
∧k

W and
∧d+1−k

W , where p · q = 0 if and only if
X ∩ Y �={0}, for a k-dimensional linear subspace X and a (d + 1 − k)-dimensional
linear subspace Y with the Plücker coordinates [p] and [q].

For general treatments of these operations, see, e.g., [1, 11].

3.2.2. Body-bar frameworks. We shall use the following conventional nota-
tion to denote body-bar frameworks and to describe infinitesimal motions. A body-bar
framework is a pair (G, q), where

• G = (V,E) is a graph;
• q is a mapping called a bar-configuration

q : E → Gr(2,W ) ⊆ P(
∧2

W ),

e �→ [qe] = [q1e , . . . , q
D
e ].

Namely, a line q(e) associated with e = uv represents a bar connecting between
two bodies associated with u and v. An infinitesimal motion of (G, q) is a mapping

m : V → ∧d−1
W satisfying

(3.3) qe · (m(u)−m(v)) = 0 for all e = uv ∈ E.

This definition is essentially the same as the conventional one used in the bar-joint
model, in the sense that it requires the orthogonality of the direction of a bar and
the difference of infinitesimal motions assigned to the adjacent bodies. A detailed
geometric meaning of (3.3) is explained in Appendix A. (Detailed description can also
be found in, e.g., [32, 37, 36, 14].)

The set of infinitesimal motions forms a D|V |-dimensional vector space. An
infinitesimal motion is called trivial if m(v) = m(u) for all u, v ∈ V . It is easy to see
that the collection of trivial motions forms a D-dimensional vector space. A body-bar
framework is called infinitesimally rigid if every infinitesimal motion is trivial.
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1420 SHIN-ICHI TANIGAWA

3.2.3. Body-bar matroids. The body-bar matroid B(G, q) is defined as a ma-
troid on E whose rank is the maximum size of independent linear equations in (3.3)
(for unknownm). Namely, B(G, q) is a linear matroid on E in which each edge e = uv
is represented by the following vector in VV (= RD|V |):

(3.4) (0,
···
· · ·, 0,

u︷ ︸︸ ︷
q1e , . . . , q

D
e , 0,

···
· · ·, 0,

v︷ ︸︸ ︷
−q1e , . . . ,−qDe , 0,

···
· · ·, 0).

Notice that unlike the union of D copies of the graphic matroid, [q1e , . . . , q
D
e ] is re-

stricted to Gr(2,W ) for each e ∈ E (compare to (3.1)). The direct product of this
restricted space over all edges is called the bar-configuration space C.

A bar-configuration q is called generic if the rank of every F ⊆ E in B(G, q) is
maximized among all bar-configurations. As pointed out in [39], it can be seen that
almost all bar-configurations q are generic as follows. Let B(q) be the |E| × D|V |-
matrix representing B(G, q). Note that the rank of B(G, q) decreases only if a minor
of B(q) vanishes. Each minor of B(q) defines an algebraic variety S of C, which is
lower-dimensional than C since a polynomial generating S is linear with respect to
q1e , . . . , q

D
e for each e ∈ E. Thus, C \ S is a dense subset of C. Since there are a finite

number of minors in B(q), the set of points in C in which no minor vanishes is also a
dense subset of C. In other words, almost all bar-configurations are generic.

Notice that once we assume generic bar-configurations, the rank of B(G, q) is
determined only by G. We hence define the generic body-bar matroid B(G) as B(G, q)
with a (any) generic bar-configuration q. The following result is proved by Tay [30].
Simpler proofs based on tree-decompositions are given in [37, 39]. We shall provide a
proof from our viewpoint.

Theorem 3.1 (Tay [30]). Let G = (V,E) be a graph. Then, B(G) = DG(G).
Proof. From the discussion given in subsection 3.1, DG(G) is equal to the generic

matroid M(A) associated with the flat family A = {Ae : e ∈ E} defined by

(3.5) Ae = {[0,
···
· · ·, 0,

u

α, 0,
···
· · ·, 0,

v

−α, 0,
···
· · ·, 0] : [α] ∈ PD−1} ⊆ P(VV ).

In order to prove B(G) = M(A), it is sufficient to show that the representative
point xe of Ae (that defines M(A)) can be taken to be in general position from

(3.6) Âe = {[0,
···
· · ·, 0,

u

α, 0,
···
· · ·, 0,

v

−α, 0,
···
· · ·, 0] : [α] ∈ Gr(2,W )} ⊆ P(VV ).

Specifically, we need to show that there exists X = {xe ∈ Âe : e ∈ E} such that, for
each X ′ ⊆ X and xe ∈ X ′,

xe ∈ X ′ − xe ⇒ Ae ⊆ X ′ − xe

(c.f. (2.4)). Let us consider the case d = 3 (and D = 6). For e = uv ∈ E, let us pick
a point

xe = [0,
···
· · ·, 0,

u︷ ︸︸ ︷
x1
e, . . . , x

6
e, 0,

···
· · ·, 0,

v︷ ︸︸ ︷
−x1

e, . . . ,−x6
e, 0,

···
· · ·, 0] ∈ Ae.

Then, xe ∈ Âe if and only if x1
ex

6
e − x2

ex
5
e + x3

ex
4
e = 0. We now focus on a five-

dimensional affine space A by setting x4
e = 1. Note that Gr(2,W ) ∩ A is a smooth

four-dimensional manifold parameterized by x1
e, x

2
e, x

5
e, x

6
e since x3

e = −x1
ex

6
e + x2

ex
5
e.
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RIGIDITY MATROIDS WITH DILWORTH TRUNCATIONS 1421

Fig. 4.1. Example of f ◦G for D = 3, where circles and squares represent vertices of R and B,
respectively.

Let us take xe so that the set of parameters x1
e, x

2
e, x

5
e, x

6
e for all e ∈ E is alge-

braically independent over Q. Suppose, for a contradiction, that xe ∈ X ′ − xe but
Ae �⊂ X ′ − xe for some e = uv. Let us consider a hyperplane H of P(VV ) that con-
tains X ′ − xe but does not contain Ae. We can take such a hyperplane H so that
each coefficient is written as a polynomial of {x1

e′ , x
2
e′ , x

5
e′ , x

6
e′ : e′ ∈ E − e} over Q.

Moreover, H ∩ Âe is a lower-dimensional subspace of Âe since Gr(2,W ) is quadratic
and irreducible. In particular, H does not contain Âe. Therefore, if xe ∈ H , then
{x1

e, x
2
e, x

5
e, x

6
e : e ∈ E} satisfies a nontrivial algebraic relation over Q, contradicting

the choice of xe.

The general d-dimensional case follows in the same way based on the following
fact. If Gr(2,W ) is restricted to a (D − 1)-dimensional affine space A by fixing one
coordinate, then Gr(2,W )∩A is known to be a smooth 2(d−1)-dimensional manifold
(see, e.g., [10]). Moreover, each coordinate of a point in Gr(2,W ) ∩A is written as a
rational function of 2(d − 1) parameters with coefficients in Q. Thus, we can apply
the exact same argument.

4. Body-rod-bar frameworks. We now provide our main result on the generic
rigidity of body-rod-bar frameworks. We first introduce a counting matroid defined
on graphs in subsection 4.1, and then in subsection 4.2 we show that generic rigidity
of body-rod-bar frameworks can be characterized by the combinatorial matroid.

4.1. Combinatorial truncated matroids.

4.1.1. Count matroids. Let G = (V,E) be a graph with an (ordered) partition
P = {B,R} of V into two subsets (where B and R will represent a set of bodies and a
set of rods, respectively, in the next subsection). We define an integer-valued function
f on E defined by

(4.1) f(F ) = D(|V (F )| − 1)− |R(F )| (F ⊆ E),

where R(F ) denotes the set of vertices in R spanned by F , and D =
(
d+1
2

)
as in

section 3. Then, f is a monotone submodular function on E, since f(F ) = D|B(F )|+
(D − 1)|R(F )| −D and |B(·)| and |R(·)| are both monotone and submodular. Thus,
f induces the matroid (E, rf ) on E, denoted Mf (G,P). If the bipartition P is clear
from the context, we abbreviate it and simply denote Mf(G). This matroid is a
special case of so-called count matroids on undirected graphs; see, e.g., [4, section
13.5] for more detail.

We denote by f ◦G the graph obtained from G by replacing each edge e by f(e)
parallel copies of e (see Figure 4.1). Also, f ◦e denotes the set of corresponding copies
of e, and let f ◦F =

⋃
e∈F f ◦e. We can naturally extend f to that on f ◦E by setting

f(F ) = D|V (F )| −D − |R(F )| for F ⊆ f ◦ E.
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1422 SHIN-ICHI TANIGAWA

Let us consider f̂ : 2E → Z defined by (2.1), i.e., for F ⊆ E,

(4.2) f̂(F ) = min{∑k
i=1(D(|V (Fi)| − 1)− |R(Fi)|) : a partition {F1, . . . , Fk} of F}.

As mentioned in subsection 2.1, f̂ is a monotone submodular function satisfying
f(∅) = 0, and thus (E, f̂) forms a polymatroid, denoted by PMf (G,P) (or sim-
ply by PMf (G)). The following lemma implies that PMf (G) is essentially the same
as Mf (f ◦G).

Lemma 4.1. For any F ⊆ E, f̂(F ) = rf (f ◦ F ). Namely, the rank of F ⊆ E in
PMf (G) is equal to the rank of f ◦ F in Mf (f ◦G).

Proof. Recall that for any F ⊆ E, rf (f ◦F ) is written as rf (f ◦F ) = min{|F0|+∑k
i=1 f(Fi)}, where the minimum is taken over partitions {F0, F1, . . . , Fk} of f ◦ F

such that F1, . . . , Fk �= ∅ (see (2.3)). Let {F ∗
0 , F

∗
1 , . . . , F

∗
k } be a partition of f ◦F that

attains that minimum. Since |f ◦ e| = f(e) for every e ∈ E, we may assume F ∗
0 = ∅.

Also, since f(f ◦ F ) = f(F ) for any F ⊆ E, we may assume that each F ∗
i (⊆ f ◦ F )

is written as F ∗
i = f ◦ F ′

i for some F ′
i ⊆ F . Thus, rf (f ◦ F ) is actually written as

rf (f ◦ F ) = min{∑k
i=1 f(f ◦ F ′

i )} = min{∑k
i=1 f(F

′
i )}, where the minimum is taken

over all partitions {F ′
1, . . . , F

′
k} of F . This is exactly the definition of f̂(F ).

A reduction technique of general polymatroids to matroids can be found in, e.g.,
[28, section 44.6b].

4.1.2. Properties of Mf . We now show several properties of Mf (G,P) for a
graph G = (V,E) with a bipartition P = {B,R} of V . (These lemmas are generally
known for count matroids. We provide proofs for completeness.)

Lemma 4.2. Let C be a circuit of Mf (G). Then, rf (C) = f(C).
Proof. Since C is a minimal dependent set, |C| > f(C) and |C| − 1 = |C − e| ≤

f(C−e) ≤ f(C) for any e ∈ C. This implies |C| = f(C)+1. Thus, rf (C) = |C|−1 =
f(C).

Lemma 4.3. Let F ⊆ E be a nontrivial M -connected set in Mf(G). Then,
rf (F ) = f(F ).

Proof. Suppose rf (F ) < f(F ). Then, there are u, v ∈ V (F ) with uv /∈ F such that
rf (F+uv) = rf (F )+1. Let us take two distinct edges e and e′ of F incident to u and v,
respectively. (It is easy to see that two such edges exist since F isM -connected.) Since
F isM -connected, there is a circuit C ⊆ F that contains e and e′. Then, by Lemma 4.2
and by f(C + uv) = f(C), we obtain rf (C + uv) ≤ f(C + uv) = f(C) = rf (C),
implying rf (C + uv) = rf (C). In other words, uv is contained in the closure of C.
This contradicts rf (F + uv) = rf (F ) + 1.

Lemma 4.4. Let F ⊆ E be a nontrivial M -connected set in Mf(G). Then, the
closure of F , that is, {e ∈ E(G) : rf (F + e) = rf (F )}, is the set of edges induced
by V (F ). In particular, if F is an M -connected component, then (V (F ), F ) is an
induced subgraph.

Proof. Since f(F + e) = f(F ) holds for any edge e induced by V (F ), the claim
follows from Lemma 4.3.

4.1.3. Properties of PMf . Let us consider Mf(f ◦G) for a graph G = (V,E)
with a bipartition P . By Lemma 4.4, an M -connected component C of Mf (f ◦ G)
is either trivial or of the form C = f ◦ F for some F ⊆ E with |F | ≥ 2. The M -
connected component decomposition of Mf(f ◦ G) thus induces a unique partition
{C1, . . . , Ck} of E such that Ci is singleton or f ◦ Ci is an M -connected component
in Mf(f ◦ G). The following lemma says that this partition coincides with the P -
connected component decomposition of PMf (G).
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Fig. 4.2. Simplification.

Lemma 4.5. For a graph G = (V,E) with a bipartition P = {B,R} of V , the
following hold:

(i) Any nontrivial M -connected component X of Mf (f ◦ G) can be written as
X = f ◦ F for some nontrivial P -connected component F ⊆ E.

(ii) If F ⊆ E is a nontrivial P -connected set in PMf (G), then f ◦ F is M -
connected in Mf (G).

(iii) The P -connected component decomposition {C1, . . . , Ck} of PMf (G) is a
minimizer of the right-hand side of (4.2).

Proof. (i) and (ii) are direct consequences of Lemma 4.1.

For the last claim, Lemma 4.1, Lemma 4.4, and (ii) imply f̂(E) =
∑k

i=1 f̂(Ci) =∑k
i=1 rf (f ◦ Ci) =

∑k
i=1 f(f ◦ Ci) =

∑k
i=1 f(Ci).

For a simple graph G = (V,E), it is sometimes useful to introduce the underly-
ing complete simple graph K(V ) on V that contains G and extend PMf (G,P) to
PMf (K(V ),P). We shall denote by cl the closure operator of PMf (K(V ),P), i.e.,

cl(F ) = {uv ∈ K(V ) : f̂(F + uv) = f̂(F )} for F ⊆ E. Then, by Lemma 4.5, cl(F )
forms the complete graph on V (F ) if F is P -connected.

The following lemmas are key observations used in the proof of the main theorem
(Theorem 4.12).

Lemma 4.6. Let G = (V,E) be a connected simple graph with a bipartition
P = {B,R} of V . Suppose D ≥ 6. Then G has (i) three vertices each of which is
spanned by exactly two P -connected components of PMf (G) or (ii) a vertex that is
spanned by only one P -connected component.

Proof. Let {C1, . . . , Ck} be the P -connected component decomposition of PMf (G).
Note then, since G is simple, any nontrivial P -connected component Ci satisfies
|V (Ci)| ≥ 3.

For each nontrivial Ci, we consider the following graph operation on G, called the
simplification of Ci; remove Ci, insert a new vertex vc to B, and connect each vertex
of V (Ci) with vc. Namely, we replace the induced subgraph (V (Ci), Ci) by the star
(V (Ci) ∪ {vc}, S) with the centered new vertex vc and the set S of edges between vc
and V (Ci) (see Figure 4.2).

Claim 4.7. Let C be a nontrivial P -connected component of PMf (G,P). Let G′

be the graph obtained by the simplification of C, where we denote V (G′) = V ∪ {vc}
and E(G′) = (E \ C) ∪ S, with the bipartition P ′ = {B ∪ {vc}, R} of V (G′). Then,
each new edge e ∈ f ◦ S is a coloop in Mf (f ◦G′,P ′).

Proof. From the definition of f , it is easy to check that f ◦ S is independent in
Mf (f ◦G′,P ′). Since C is a P -connected component, we have cl(S) ∩ cl(C′) = ∅ for
any other P -connected component C′ of PMf (G,P). This implies that there is no
circuit of Mf(f ◦ G′,P ′) that intersects both f ◦ (E \ C) and f ◦ S. Since f ◦ S is
independent, there is also no circuit within f ◦ S and thus no circuit that contains
e ∈ f ◦ S in Mf (f ◦G′,P ′).
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Claim 4.7 implies that if we apply the simplification of the P -connected compo-
nent Ci, then no new nontrivial P -connected component appears, and C1, . . . , Ci−1,
Ci+1, . . . , Ck are all nontrivial P -connected components in the resulting polymatroid.
Hence, we may apply the simplifications for all C1, . . . , Ck simultaneously. Let G′′

be the resulting graph with the corresponding bipartition P ′′ of V (G′′) after the sim-
plifications. Notice that the degree of each vertex v ∈ V (G) in G′′ corresponds to
the number of P -connected components among C1, . . . , Ck that span v in G. We also
remark that each vertex of V (G′′) \ V (G) has degree at least three since |V (Ci)| ≥ 3.
Thus, to complete the proof, it is sufficient to show that G′′ has at least three vertices
of degree 2 or a vertex of degree 1. To see this, observe that f ◦E(G′′) is independent
inMf (f◦G′′,P ′′) by Claim 4.7. So, we have |f◦E(G′′)| = rf (f◦E(G′′)). This implies
(D − 2)|E(G′′)| ≤ ∑e∈E(G′′) f(e) = |f ◦ E(G′′)| = rf (f ◦ E(G′′)) ≤ D|V (G′′)| −D.

Let davg be the average degree of G′′. Then we have

davg = 2|E(G′′)|
|V (G′′)| ≤ 2D

D−2

(
1− 1

|V (G′′)|
)
.

Suppose there is no vertex of degree 1. Denoting the set of vertices of degree 2 in G′′

by V2, we have

davg ≥ 3− |V2|
|V (G′′)| .

Putting them together, we obtain

|V2| ≥ 2D
D−2 + D−6

D−2 |V (G′′)| ≥ 2D
D−2 + D−6

D−2 = 3

(where we used D ≥ 6 and |V (G′′)| ≥ 1). This completes the proof.
Remark. Lemma 4.6 does not hold for d = 2 and D = 3. For example, in the

cube graph, all P -connected components are trivial and hence each vertex is spanned
by three P -connected components since each vertex has degree 3.

Lemma 4.8. Let G = (V,E) be a simple graph for which E is P -connected in
PMf (G,P). Suppose further that there are two disjoint nonempty P -connected sets
C1 and C2 both of which span a vertex u ∈ V . Then, G contains a P -connected set
C such that C1 ⊆ C ⊆ E \ C2 and uv ∈ cl(C) ∩ cl(E \ C) for some uv ∈ K(V ).

Proof. Let us take an inclusion-wise maximal P -connected set C such that C1 ⊆
C ⊆ E \C2. Since E is P -connected, we have cl(C) ∩ cl(E \C) �= ∅, and hence there
is an edge vw ∈ K(V ) such that vw ∈ cl(C) ∩ cl(E \ C). If either v = u or w = u,
then C satisfies the required property. Thus, suppose to the contrary that every edge
in cl(C) ∩ cl(E \ C) is not incident to u. Let C′ be a P -connected set in E \ C with
vw ∈ cl(C′). Since vw ∈ cl(E\C), such C′ exist. (C′ = {vw} may hold if vw ∈ E\C.)

If C2 ∩ C′ �= ∅, then C2 ∪ C′ is P -connected, and hence cl(C2 ∪ C′) forms the
complete graph on V (C2 ∪ C′). Since u ∈ V (C2) and v ∈ V (C′), we obtain uv ∈
cl(C2∪C′) ⊆ cl(E \C). On the other hand, since C is P -connected with u, v ∈ V (C),
we also have uv ∈ cl(C). This, however, contradicts that every edge in cl(C)∩cl(E\C)
is not incident to u

If C2 ∩ C′ = ∅, then C ∪ C′ is P -connected since cl(C) ∩ cl(C′) is nonempty,
and thus C ∪ C′ is P -connected with C1 ⊆ C ∪ C′ ⊆ E \ C2 and is larger than C,
contradicting the choice of C.

4.2. Generic body-rod-bar matroids.

4.2.1. Body-rod-bar frameworks. A body-rod-bar framework is a body-bar
framework in which some of bodies are degenerate as one-dimensional bodies in the
case of d = 3. In the general dimensional case, a body-rod-bar framework can be
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RIGIDITY MATROIDS WITH DILWORTH TRUNCATIONS 1425

defined as a structure consisting of d-dimensional subspaces (bodies) and (d − 2)-
dimensional flats (rods) mutually linked by one-dimensional lines (bars). (The term
“rod” is actually appropriate only for d = 3.) We thus define a body-rod-bar frame-
work as (G, q, r), where

• G = (V,E) is a graph with a bipartition P = {B,R} of V ;
• r is a mapping called a rod-configuration,

r : R → Gr(d − 1,W ) ⊆ P(
∧d−1

W ),

v �→ [rv] = [r1v, . . . , r
D
v ];

• q is a bar-configuration,

q : R → Gr(2,W ) ⊆ P(
∧2

W ),

e �→ [qe] = [q1e , . . . , q
D
e ],

satisfying the incidence condition:

(4.3) qe · rv = 0 if e ∈ E is incident to v ∈ R.

That is, r(v) represents a rod associated with v ∈ R, and [rv] denotes the Plücker
coordinate of the rod. Recall that for [q] ∈ Gr(2,W ) and [r] ∈ Gr(d−1,W ), q ·r = 0
holds if and only if the corresponding linear subspaces have a nonzero intersection
(equivalently, the corresponding flats have a nonempty intersection). Thus, the sys-
tem (4.3) describes incidence constraints between rods and bars. Throughout the
subsequent discussions, we also impose an additional condition that all rods are dis-
tinct, i.e., r(u) �= r(v) for any u, v ∈ R with u �= v.

As in the case of body-bar frameworks, an infinitesimal motion of (G, q, r) is

defined as m : V → ∧d−1
W satisfying (3.3), and m is called trivial if m(u) = m(v)

for all u, v ∈ V .
For each v ∈ R, define mv : V → ∧d−1

W by mv(v) = rv and mv(u) = 0 for
u ∈ V \ {v}. Then, by incidence condition (4.3), mv always satisfies (3.3), and mv

is an infinitesimal motion of (G, q, r). Conventionally, we also include mv in the set
of trivial motions. The set of all trivial motions thus forms a (D + |R|)-dimensional
vector space. If every motion of (G, q, r) is trivial, it is said to be infinitesimally rigid.

4.2.2. Body-rod-bar matroids. As defined in the body-bar matroid, the body-
rod-bar matroid BR(G, q, r) is defined as that on E whose rank is the maximum size of
independent linear equations in (3.3) (for unknown m). From the definition, (G, q, r)
is infinitesimally rigid if and only if the rank of BR(G, q, r) is D|V | − (D+ |R|). The
following theorem is our main result.

Theorem 4.9. Let G = (V,E) be a graph with a bipartition P = {B,R} of
V and f be the function defined by (4.1). Suppose d ≥ 3. Then, for almost all
bar-configurations q and almost all rod-configurations r, BR(G, q, r) = Mf (G,P).
Namely, I ⊆ E is independent in BR(G, q, r) if and only if |F | ≤ D|V (F )| − D −
|R(F )| for any nonempty F ⊆ I.

We need to introduce a notation for the proof. Let r : R → Gr(d − 1,W ) be a
rod-configuration. For each v ∈ R, let Hr(v) be the dual hyperplane to the point [rv]

in P(
∧2

W ), i.e., Hr(v) = {[p] ∈ P(
∧2

W ) : p · rv = 0}. For easie of the description,

we also define Hr(v) for v ∈ B to be Hr(v) = P(
∧2 W ). Notice that, due to the

incidence condition (4.3), the space of quv is restricted to Gr(2,W ) ∩Hr(u) ∩Hr(v)
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1426 SHIN-ICHI TANIGAWA

for uv ∈ E. We hence define two subspaces associated with e = uv ∈ E as follows:

Ae(r) = {[0, · · ·, 0,
u

α, 0, · · ·, 0,
v

−α, 0, · · ·, 0] : [α] ∈ P(
∧2W ) ∩Hr(u) ∩Hr(v)},(4.4)

Âe(r) = {[0, · · ·, 0,
u

α, 0, · · ·, 0,
v

−α, 0, · · ·, 0] : [α] ∈ Gr(2,W ) ∩Hr(u) ∩Hr(v)}.(4.5)

Also, let A(r) = {Ae(r) : e ∈ E}, and as before let AF (r) = {Ae(r) : e ∈ F} for
F ⊆ E.

The proof of Theorem 4.9 proceeds as follows. We first show that BR(G, q, r) is
equal to the linear matroid M(A(r)) associated with the flat family A(r) for almost
all configurations (Theorem 4.10). We then provide an explicit formula of the rank
of A(r) in terms of the underlying graph G (Theorem 4.12) and finally show that
M(A(r)) is indeed equal to Mf (G,P) (Corollary 4.13).

Theorem 4.10. Let G = (V,E) be a graph with a bipartition P = {B,R}.
Then, for almost all rod-configurations r and bar-configurations q, BR(G, q, r) =
M(A(r)).

Proof. The proof is basically the same as that of Theorem 3.1. Recall that
BR(G, q, r) is a linear matroid on E in which each element e = uv ∈ E is represented
by

(0,
···
· · ·, 0,

u

qe, 0,
···
· · ·, 0,

v

− qe, 0,
···
· · ·, 0),

where [qe] is restricted to Gr(2,W ) ∩ Hr(u) ∩ Hr(v) in the case of body-rod-bar
frameworks. Hence, to prove BR(G, q, r) = M(A(r)), it is sufficient to show that
a representative point xe = [0, . . . , 0, x1

e, . . . , x
D
e , 0, . . . , 0,−x1

e, . . . ,−xD
e , 0, . . . , 0] of

Ae(r) can be taken from Âe(r) so that X = {xe : e ∈ E} is in generic position (in
the sense of definition (2.4)).

Let us consider the case d = 3. Let us take r so that r(u) �= r(v) for each u, v ∈ V

with u �= v. Then, for each e = uv ∈ E, Ae(r) is isomorphic to P(
∧2

W ) ∩Hr(u) ∩
Hr(v) = Pk, where k = 3 if u, v ∈ R; k = 4 if either u ∈ R or v ∈ R; otherwise k = 5.
Recall that the quadratic variety Gr(2,W )∩Hr(u)∩Hr(v) is singular if the associated
matrix is singular. Since the determinant of the associated matrix is a polynomial of
entries of r(u) and r(v), Gr(2,W ) ∩Hr(u)∩Hr(v) becomes a nonsingular quadratic
variety of Pk for almost all rod-configurations r. Then, by setting x4

e = 1, it can be
easily checked that Gr(2,W ) ∩ Hr(u) ∩ Hr(v) can be parameterized by x1

e and x2
e

such that the rest of coordinates x3
e, . . . , x

6
e are described as rational functions of x1

e

and x2
e with coefficients in Q. If we take xe so that {x1

e, x
2
e : e ∈ E} is algebraically

independent over Q, X = {xe : e ∈ E} is in generic position by the same reason as
the proof of Theorem 3.1.

The general d-dimensional case follows in the same way, as each coordinate of a
point in Gr(2,W ) ∩A is written as a rational function of 2(d− 1) parameters among
xi,j
e (1 ≤ i < j ≤ d+1), if Gr(2,W ) is restricted to a (D−1)-dimensional affine space

A (see, e.g., [10]).
As noted above, BR(G, q, r) has rank at most D|V | − D − |R| since the corre-

sponding framework (G, q, r) always has D+ |R| trivial motions. The same argument
can be applied to show the following fact.

Lemma 4.11. Let G = (V,E) be a graph with a bipartition P = {B,R} of V .
Then, for any rod-configuration r such that r(u) �= r(v) for u, v ∈ R with u �= v,
rank(A(r)) ≤ D|V | −D − |R|.

The following is a key result for proving Theorem 4.9.
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Theorem 4.12. Let G = (V,E) be a graph with a bipartition P = {B,R} of V .
If d ≥ 3, then for almost all rod-configurations r,

(4.6) rank(A(r)) = min{∑k
i=1(D|V (Ei)| −D − |R(Ei)|)},

where the minimum is taken over all partitions {E1, . . . , Ek} of E into nonempty
subsets. Namely, the linear polymatroid PM(A(r)) defined by A(r) is equal to the
combinatorial polymatroid PMf (G,P) for almost all rod-configurations r.

One direction of Theorem 4.12 is straightforward from Lemma 4.11. For any parti-
tion {E1, . . . , Ek} ofE, we have rank(A(r)) ≤∑k

i=1 rank(AEi(r)) ≤
∑k

i=1(D|V (Ei)|−
D − |R(Ei)|). Since the proof is not short, the converse direction is left to the next
subsection.

Corollary 4.13. Let G = (V,E) be a graph with a bipartition P = {B,R} of
V . If d ≥ 3, then M(A(r)) = Mf (G,P) for almost all rod-configurations r.

Proof. This directly follows from Theorem 4.12 and general results on polyma-
troids reviewed in section 2. Indeed, by Theorems 2.1 and 4.12, the rank of F ⊆ E
in M(A(r)) is written as

min{|F0|+
∑k

i=1(D|V (Fi)| −D − |R(Fi)|)},

where the minimum is taken over all partitions {F0, F1, . . . , Fk} of F such that
F1, . . . , Fk �= ∅. This is exactly the rank formula (2.3) of the matroid induced
by f .

Combining Theorem 4.10 and Corollary 4.13, we conclude the proof of
Theorem 4.9.

Remark. Due to the absence of Lemma 4.6, the proof of Theorem 4.12 (given
in the next subsection) could not be applied to the two-dimensional case. Although
Theorem 4.12 can be proved even for the two-dimensional case with a slightly different
manner, we will not go into detail as there are already many simpler proofs for this
case [21, 39, 35, 41].

Theorem 4.9 is restated in terms of rigidity as follows.

Corollary 4.14. Let G = (V,E) be a graph with a bipartition P = {B,R}
of V . Then, there exists a bar-configuration q and a rod-configuration r such that
the body-rod-bar framework (G, q, r) is minimally infinitesimally rigid (i.e., removing
any bar results in a flexible framework) in Rd if and only if G satisfies the following
counting conditions:

• |E| = D|B|+ (D − 1)|R| −D;
• |F | ≤ D|B(F )|+ (D − 1)|R(F )| −D for any nonempty F ⊆ E.

Tay’s combinatorial characterization of rod-bar frameworks is an easy
consequence.

Corollary 4.15 (Tay [32, 31]). Let G = (V,E) be a graph. Then, there exists a
bar-configuration q and a rod-configuration r such that the rod-bar framework (G, q, r)
is minimally infinitesimally rigid in Rd if and only if G satisfies the following counting
conditions:

• |E| = (D − 1)|V | −D;
• |F | ≤ (D − 1)|V (F )| −D for any nonempty F ⊆ E.

Proof. The rod-bar framework (G, q, r) is a body-rod-bar framework with R = V
and B = ∅. In this case D(|V (F )|− 1)−|R(F )| = (D− 1)|V (F )|−D for each F ⊆ E.
Therefore, the statement follows from Corollary 4.14.
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4.3. Proof of Theorem 4.12. We have already seen the ≤ direction of (4.6).
The converse direction is proved by induction on the lexicographical ordering of the
triples (|V |, |R|, |E|). Since the base case is trivial, let us consider the general case.
Since Ae(r) = Ae′ (r) for any parallel e and e′, we may assume that G is simple
throughout the proof.

We split the proof into two cases depending on whether B = ∅.
4.3.1. Case of B �= ∅. Let us first consider the easier case where there is a

vertex u ∈ B. Let N(u) = {v1, . . . , vt} be the neighbors of u in G. We remove u and
insert the edge set K(N(u)), that is, the edge set of the complete graph on N(u).
Let H = (V − u,E \ δG(u) ∪K(N(u))) be the resulting graph with the bipartition
{B − u,R} of V − u.

Let {E∗
1 , . . . , E

∗
k} be the P -connected component decomposition of E(H) in

PMf (H). By Lemma 4.5, {E∗
1 , . . . , E

∗
k} is a minimizer of the right-hand side of

(4.6) for E(H). By induction, we have

(4.7) rank({Ae(r) : e ∈ E(H)}) =∑k
i=1 f(E

∗
i )

for almost all rod-configurations r : R → Gr(d − 1,W ).
If N(u) = {v} for some v ∈ V , then E = E(H) + uv. It is easy to see A(r) =

{Ae(r) : e ∈ E(H)} ⊕ Auv(r), and hence rank(A(r)) = rank({Ae(r) : e ∈ E(H)}) +
rank(Auv(r)) =

∑k
i=1 f(E

∗
i )+f({uv}), implying the≥ direction of (4.6) since {E∗

1 , . . . ,
E∗

k , {uv}} is a partition of E.
Thus, let us assume |N(u)| ≥ 2. Since K(N(u)) is a clique in H , it is straightfor-

ward to check that K(N(u)) is P -connected in PMf (H), and hence a P -connected
component, say, E∗

k , contains K(N(u)) as a subset. This implies

(4.8) f(E∗
k \K(N(u)) ∪ δG(u)) = f(E∗

k) +D.

Observe that for any vw ∈ K(N(u)), we have

(4.9) Avw(r) ⊆ Avu(r) ∪ Auw(r).

Indeed, any element of Avw(r) is written as

[0,
···
· · ·, 0,

v

α, 0,
···
· · ·, 0,

w

−α, 0,
···
· · ·, 0]

for some α ∈ P(
∧2 W ) ∩Hr(v) ∩Hr(w). This can be decomposed as

[0,
···
· · ·, 0,

v

α, 0,
···
· · ·, 0,

u

−α, 0,
···
· · ·, 0] + [0,

···
· · ·, 0,

u

α, 0,
···
· · ·, 0,

w

−α, 0,
···
· · ·, 0],

where these two terms are contained in Avu(r) and Auw(r), respectively, because

Hr(u) = P(
∧2 W ) by u ∈ B.

Equation (4.9) implies {Ae(r) : e ∈ E(H)} ⊆ A(r). Moreover, we can always take
independent D points p1, . . . , pD from {Ae(r) : e ∈ δ(u)} since u ∈ B and |N(u)| ≥ 2.
Note that they always satisfy {p1, . . . , pD}∩{Ae(r) : e ∈ E(H)} = ∅ since u /∈ V (H).
We thus obtain

(4.10) rank(A(r)) ≥ rank({Ae(r) : e ∈ E(H)}) +D.

Combining (4.8), (4.7), and (4.10), we obtain rank(A(r)) ≥ ∑k−1
i=1 f(E∗

i ) + f(E∗
k \

K(N(u))∪δ(u)), implying the ≥ direction of (4.6) since {E∗
1 , . . . , E

∗
k−1, E

∗
k\K(N(u))∪

δ(u)} is a partition of E. This completes the proof for case B �= ∅.
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4.3.2. Case of B = ∅. For any u ∈ V , let Pu = {B + u,R − u}. Note that,
by induction, the linear polymatroid PM(A(r′)) is equal to PMf (G,Pu) for almost
all rod-configurations r′ on R − u. Our proof is based on this inductive relation.
Intuitively speaking, we will replace a body associated with u by a rod r(u). This

operation corresponds with restricting P(Vu) = P(
∧2

W ) to a hyperplane Hr(u) of

P(
∧2 W ), which is the dual of the point r(u). This operation is equivalent to the

restriction of A(r′) to a special hyperplane H in P(VV ) such that H ∩P(Vu) = Hr(u)
and P(Vv) ⊂ H for all v ∈ V − u. This hyperplane H is not generic within P(VV )
(and hence this operation is not Dilworth truncation), but we may take H so that
H ∩ P(Vu) is generic within P(Vu). We will show that the naturally extended rank
formula of Dilworth truncation holds for this operation for some u ∈ V .

The proof consists of a sequence of lemmas. We first define a generic hyperplane
within P(Vu) for a vertex u ∈ V and show the existence of generic hyperplanes in
Lemma 4.16. We then discuss about an extension of a rod-configuration r′ : R− u →
Gr(d − 1,W ) to r : R → Gr(d − 1,W ), where r is said to be an extension of r′

if r(v) = r′(v) for all v ∈ V − u. We shall define a generic extension of a rod-
configuration based on a generic hyperplane in P(Vu). Then in Lemma 4.18 we shall
show an existence of a vertex u ∈ V having special properties and finally perform a
variant of Dilworth truncation at u in Lemma 4.19.

For a flat A of P(VV ) and a vertex u ∈ V , proju(A) denotes the orthogonal
projection2 of A onto P(Vu). A hyperplane Hu of P(Vu) is called generic relative to a
finite set A of flats in P(VV ) if it satisfies the following property; for every A1,A2 ⊆ A
with proju(A1 ∩ A2) �= ∅ (where we allow A1 = A2),

(4.11) rank(proju(A1 ∩ A2) ∩Hu) = rank(proju(A1 ∩ A2))− 1.

The next lemma shows the existence of generic hyperplanes.
Lemma 4.16. Let u ∈ V and A be a finite set of flats in P(VV ). Suppose

Gr(d − 1,W ) ⊆ P(Vu) (by identifying Vu with
∧d−1W ). Then, for almost all points

[ru] ∈ Gr(d − 1,W ), the hyperplane Hu of P(Vu) dual to [ru] is generic relative
to A.

Proof. Take any A1,A2 ⊆ A with proju(A1 ∩ A2) �= ∅, and let us denote A =
A1∩A2 for simplicity. It is clear that rank(proju(A)∩Hu) ≥ rank(proju(A))−1 for any
Hu. Let us consider the ≤ direction. If proju(A) = P(Vu), this relation clearly holds.
Otherwise proju(A) is a linear subspace of P(Vu), and hence rank(proju(A) ∩Hu) ≤
rank(proju(A))− 1 holds if we take [ru] ∈ Gr(d − 1,W ) so that [ru] is not contained
in the dual of proju(A) in P(Vu). Since the intersection of the dual of proju(A) with
Gr(d−1,W ) is a lower-dimensional subvariety of Gr(d−1,W ), almost all [ru] satisfy
this property.

Since there are a finite number of possible A = A1 ∩ A2, almost all hyperplanes
Hu of P(Vu) are indeed generic.

We now define a generic extension of a rod-configuration r′ : R−u → Gr(d−1,W )
as follows: a rod-configuration r : R → Gr(d − 1,W ) is a generic extension of r′ if
r(v) = r′(v) for v ∈ V − u and r(u) satisfies the property that the dual hyperplane
of r(u) in P(Vu) is generic relative to A(r′). By Lemma 4.16, almost all extensions
are generic.

Once we pick out a generic extension r of r′, the unique hyperplane H of P(VV )
is determined in such a way that H ∩ P(Vu) is the dual hyperplane of r(u) in P(Vu)

2More precisely, let W ′ be the linear subspace of VV satisfying A = P(W ′), and let proju(W
′)

be the orthogonal projection of W ′ onto Vu. We define proju(A) by P(proju(W
′)).
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1430 SHIN-ICHI TANIGAWA

and P(Vv) ⊂ H for all v ∈ V −u. Such a unique hyperplane H is called the hyperplane
associated with the generic extension.

It is important to observe

(4.12) Ae(r) = Ae(r
′) ∩H for every e ∈ E.

Also, if we define χu by

χu(A) =

{
1 if proju(A) �= ∅,
0 otherwise

for a flat A ⊂ P(VV ), then we have the following from the genericity (4.11): for every
A1,A2 ⊆ A(r′),

(4.13) rank((A1 ∩A2) ∩H) = rank(A1 ∩ A2)− χu(A1 ∩ A2).

Note that, setting A1 = A2, (4.13) implies, for every A1 ⊆ A(r′)

(4.14) rank(A1 ∩H) = rank(A1)− χu(A1).

In particular, for any Ae(r
′) ∈ A(r′),

(4.15) rank(Ae(r
′) ∩H) = rank(Ae(r

′))− χu(Ae(r
′)).

By (4.12), our goal is now to extend Theorem 2.2 to the case of our special
hyperplane H . Such an extension will be given in Lemma 4.19 by performing a
truncation at a vertex u shown in the following lemma (Lemma 4.18). Before that,
we need an easy observation.

Lemma 4.17. Let C be a P -connected set in PM(G,P) with C �= E. Then, for
almost all rod-configurations r on R, AC(r) is connected.

Proof. Let us consider the restriction to C, i.e., consider G′ = (V (C), C), P ′ =
{B ∩ V (C), R ∩ V (C)}. Note that |V (C)| ≤ |V |, |R ∩ V (C)| ≤ |R|, and |C| < |E|
by C ⊆ E − e. Hence, by induction, the linear polymatroid PM(AC(r)) is equal to
PMf (G

′,P ′) for almost all rod-configurations r on R. Since C is a P -connected in
PMf (G

′,P ′), AC(r) is connected.
Lemma 4.18. There exists a vertex u satisfying one of the following two proper-

ties: For almost all rod-configurations r′ on R− u and almost all extension r,
(A) G has an edge subset C with δG(u) ⊂ C � E such that AC(r) is connected; or
(B) G has disjoint edge subsets C and C′ with δG(u) ⊂ C ∪ C′ such that both

AC(r) and AC′(r) are connected. Furthermore, if A(r′) is connected, then
proju(AC(r′) ∩ AE\C(r′)) �= ∅.

Proof. Take any edge e ∈ E, and consider G-e. By Lemma 4.6, G-e has (i) three
vertices each of which is spanned by two P -connected components of PM(G− e,P),
or (ii) a vertex spanned by exactly one P -connected component of PM(G − e,P).
Since any P -connected set of PM(G− e,P) is also P -connected in PM(G,P), these
P -connected components are P -connected in PM(G,P).

We define C,C ′ ⊆ E − e as follows: If (i) occurs, then take a vertex u that is not
an endpoint of e and is spanned by two P -connected components in PM(G − e,P).
Let C and C ′ be such components. If (ii) occurs, then we have a vertex u spanned
by exactly one P -connected component in PM(G− e,P). Let C be that component.
Furthermore, if u is an endpoint of e, let C′ = {e}.
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Consequently, one of the followings holds: (i′) C is P -connected set with δG(u) ⊂
C � E or (ii′) C and C′ are disjoint P -connected sets (that may be trivial) with
δG(u) ⊂ C ∪ C′. Note that both C and C′ are proper subsets of E, and thus
Lemma 4.17 implies that AC(r) and AC′(r) are connected for almost all rod-
configurations r.

The remaining thing is to prove the last property of (B) when (ii′) occurs. Recall
Pu = {B + u,R− u}, and the linear polymatroid PM({Ae(r

′) : e ∈ K(V )}) is equal
to PMf (K(V ),Pu) by induction on the lexicographical order of (|V |, |R|, |E|). Since
A(r′) is connected, E is P -connected in PMf (G,Pu). Thus, applying Lemma 4.8,
we may assume that there is a vertex v ∈ V − u with uv ∈ cl(C) ∩ cl(E \ C) for the
closure operator of PMf (G,Pu). This implies Auv(r

′) ⊂ AC(r′) ∩ AE\C(r′)), and
thus proju(AC(r′) ∩ AE\C(r′)) �= ∅.

We are now ready to extend Theorem 2.2 to our nongeneric hyperplane. Recall
that for a family A of flats and a hyperplane H , we abbreviate {A ∩ H : A ∈ A}
as A ∩ H . Note that (A) ∩ H implies {A : A ∈ A} ∩H , which may not be equal to
A ∩H = {A ∩H : A ∈ A}.

Lemma 4.19. Let u be a vertex shown in Lemma 4.18 and r′ be a generic rod-
configuration on R−u. Then, for the hyperplane H of P(VV ) associated with a generic
extension of r′,

(4.16) rank(A(r′) ∩H) = min{∑k
i=1(rank(AEi(r

′))− χu(AEi(r
′)))},

where the minimum is taken over all partitions {E1, . . . , Ek} of E into nonempty
subsets.

Proof. For simplicity, we abbreviate Ae(r
′) as A′

e and A(r′) as A′, respectively.
Consider the connected component decomposition of A′∩H (that is, the P -connected
component decomposition of the linear polymatroid PM(A′∩H)). To see the equality
of (4.16), we show (4.16) for each connected component of A′∩H Thus, by induction,
we may assume A′ ∩H is connected and it is sufficient to show

(4.17) rank(A′ ∩H) = rank(A′)− 1.

From the choice of u, (A) or (B) of Lemma 4.18 holds. Let C and C′ be subsets
of E satisfying properties of Lemma 4.18, where C′ = ∅ if (A) holds (otherwise we
may assume C′ �= ∅). Namely, if C′ = ∅, A′

C ∩ H is connected with δG(u) ⊆ C.
(Note that in the current situation, A′

C ∩H corresponds to AC(r) of the statement of
Lemma 4.18).) If C′ �= ∅, A′

C ∩H and A′
C′ ∩H are connected with δG(u) ⊆ C ∪ C′.

We may further assume δG(u) ∩ C �= ∅ and δG(u) ∩ C′ �= ∅, since otherwise we have
the former case.

We now calculate the rank ofA′
C ∩H , A′

C′ ∩H , andA′
E\C ∩H. The connectivity

of A′
C ∩H and δG(u) ∩ C implies

(4.18) rank(A′
C ∩H) = rank(A′

C)− 1

by induction. Similarly, if C′ �= ∅, the connectivity of A′
C′ ∩H and δG(u)∩C′ implies

(4.19) rank(A′
C′ ∩H) = rank(A′

C′)− 1.

Also, since all flats of A′
E\(C∪C′) are contained in H by δG(u) ⊂ C ∪ C′, we have

(4.20) A′
E\(C∪C′) ∩H = A′

E\(C∪C′).
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1432 SHIN-ICHI TANIGAWA

Suppose C′ �= ∅, and let us take an edge e ∈ δG(u) ∩ C′ and a point x ∈ A′
e \

H . (Note that by (4.15), A′
e \ H �= ∅.) Then, clearly rank((A′

C′ ∩H) ∪ {x}) =

rank(A′
C′ ∩H) + 1. Combined with (4.19), we have

(4.21) A′
C′ = (A′

C′ ∩H) ∪ {x}.
By (4.20) and (4.21),

A′
E\C ∩H = A′

E\(C∪C′) ∪ A′
C′ ∩H

= (A′
E\(C∪C′) ∩H) ∪ (A′

C′ ∩H) ∪ {x} ∩H

= (A′
E\(C∪C′) ∩H) ∪ (A′

C′ ∩H) = A′
E\C ∩H.(4.22)

Thus, applying (4.14), we obtain

(4.23) rank(A′
E\C ∩H) = rank(A′

E\C ∩H) = rank(A′
E\C)− 1

if C′ �= ∅. In total, combining (4.20) and (4.23),

(4.24) rank(A′
E\C ∩H) =

{
rank(A′

E\C)− 1 (if C′ �= ∅),
rank(A′

E\C) (if C′ = ∅).

We then compute the rank of (A′
C ∩H) ∩ (A′

E\C ∩H). Since rank((A′
C) ∩H) =

rank(A′
C)− 1 by (4.14), comparing this relation with (4.18), we have

(4.25) A′
C ∩H = A′

C ∩H.

By (4.22) and (4.25), we obtain

(4.26) (A′
C ∩H) ∩ (A′

E\C ∩H) = (A′
C) ∩ (A′

E\C) ∩H.

Therefore, applying (4.26) and then (4.13), we obtain

rank((A′
C ∩H) ∩ (A′

E\C ∩H)) = rank((A′
C) ∩ (A′

E\C) ∩H)

= rank(A′
C ∩ A′

E\C)− χu(A′
C ∩A′

E\C).(4.27)

We show that χu(A′
C ∩A′

E\C) takes distinct values depending on whether C′ = ∅. If
C′ = ∅, then no edge in E \ C is incident to u by δG(u) ⊆ C, and proju(A′

E\C) = ∅.
Thus, χu(A′

C ∩ A′
E\C) = 0. On the other hand, if C′ �= ∅, then property (B) of

Lemma 4.18 implies proju(A′
C∩AE\C) �= ∅ sinceA′ is connected from the connectivity

ofA′∩H . Therefore, χu(A′
C∩A′

E\C) = 1 if C′ �= ∅. In total, (4.27) can be rewritten by

(4.28) rank((A′
C ∩H) ∩ (A′

E\C ∩H)) =

{
rank(A′

C ∩ A′
E\C)− 1 (if C′ �= ∅),

rank(A′
C ∩ A′

E\C) (if C′ = ∅).
By (4.18), (4.24), (4.28), and the modularity of rank(·),

rank(A′ ∩H) = rank((A′
C ∩H) ∪ (A′

E\C ∩H))

= rank(A′
C ∩H) + rank(A′

E\C ∩H)− rank((A′
C ∩H) ∩ (A′

E\C ∩H))

= rank(A′
C) + rank(A′

E\C)− rank(A′
C ∩ A′

E\C)− 1

= rank(A′)− 1,

implying (4.17). This completes the proof of the lemma.
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For F ⊆ E, let

χu(F ) =

{
1 if u ∈ V (F ),

0 otherwise,

where u is a vertex shown in Lemma 4.18. Then, Lemma 4.19 implies, for almost all
bar-configurations r′ on R− u and its generic extension r,
(4.29)

rank(A(r)) = min

{∑
i

(rank(AEi(r
′))− χu(Ei)) : a partition {E1, . . . , Ek} of E

}
.

Let R′ = R − u. The induction hypothesis on |R| implies

rank(AEi(r
′))

= min

⎧⎨⎩∑
j

(D|V (Ei,j)| −D − |R′(Ei,j)|) : a partition {Ei,1, . . . , Ei,k′} of Ei

⎫⎬⎭

(4.30)

for each Ei ⊆ E. Since χu(Ei) ≤ ∑j χu(Ei,j) for any Ei ⊆ E and any partition
{Ei,1, . . . , Ei,k′} of Ei, (4.29) and (4.30) imply

rank(A(r))

≥ min

{∑
i

(D|V (Ei)| −D − |R′(Ei)| − χu(Ei)) : a partition {E1, . . . , Ek} of E

}
.

(4.31)

Note that for any F ⊆ E, we have |R(F )| = |R′(F )| + χu(F ). Thus, (4.31) im-
plies the ≥ direction of (4.6) for case B = ∅. This completes the proof of Theorem
4.12.

5. Identified body-hinge frameworks. An identified body-hinge framework
(simply called a body-hinge framework) is a structure consisting of rigid bodies con-
nected by hinges (that is, (d − 2)-dimensional flats). A hinge is allowed to connect
any number of bodies. A body-hinge framework is formally defined as a pair (G,h),
where

• G = (B,H ;E) is a bipartite graph with vertex classes B and H , representing
bodies and hinges, respectively;

• h : H → Gr(d− 1,W ) is a hinge-configuration.
Note that each v1 ∈ B and v2 ∈ H correspond to a body and a hinge, respectively,
and e ∈ E indicates their incidence.

A motion of (G,h) is defined as a mapping m : B → ∧d−1
W such that m(u)−

m(v) is contained in h(w) for any neighbors u, v ∈ B of w ∈ H . A motion m is called
trivial if m(v)’s are equal for all v ∈ B. (G,h) is said to be infinitesimally rigid if
every motion is trivial.

For a bipartite graph G = (B,H ;E), the graph obtained from G by duplicating
each edge by (D−1) parallel copies is denoted by (D−1)◦G, and (D−1)◦E denotes
the edge set of (D− 1) ◦G. Tay showed a combinatorial characterization of identified
body-hinge frameworks by converting to rod-bar frameworks. Below, we give a more
natural proof.
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1434 SHIN-ICHI TANIGAWA

Fig. 5.1. Conversion of the body-hinge model to the body-rod-bar model.

Corollary 5.1 (Tay [31]). Let G = (B,H ;E) be a bipartite graph. Then, there
exists a hinge-configuration h such that (G,h) is infinitesimally rigid if and only if
(D− 1) ◦G contains an edge subset I ⊆ (D− 1) ◦E satisfying the following counting
conditions:

• |I| = D|B|+ (D − 1)|H | −D;
• |F | ≤ D|B(F )|+ (D − 1)|H(F )| −D for each nonempty F ⊆ I.

Proof. Let (G,h) be an identified body-hinge framework. For an edge e = uv ∈ E
with u ∈ H and v ∈ B, we can regard h(u) as a rod (generically) linked by (D−1) bars
with the body associated with v (see Figure 5.1). Hence, the identified body-hinge
framework (G,h) is equal to the body-rod-bar framework (G′, q, r), where G′ is the
graph with V (G′) = B ∪H and E(G′) = (D − 1) ◦ E, r = h, and q is a generic bar-
configuration. Since D(|B(F )∪H(F )|− 1)−|H(F )| = D|B(F )|+(D− 1)|H(F )|−D
for any F ⊆ (D − 1) ◦ E, the statement follows from Theorem 4.9.

The proof can be extended to frameworks consisting of bodies, rods, bars, and
hinges without difficulty.

Katoh and Tanigawa [16] showed that if each hinge is allowed to connect only
two bodies, then each body can be realized as a rigid panel (i.e., a hyperplane).
That is, a panel-hinge framework, which consists of rigid panels connected by hinges,
is generically characterized by the counting condition of Corollary 5.1. A natural
question is whether we can drop the restriction.

Problem 1. Let G = (B,H ;E) be a bipartite graph satisfying the counting
condition of Corollary 5.1. Is there a hinge-configuration h such that (G,h) is an
infinitesimally rigid panel-hinge framework?

Indeed, this problem was already discussed in, e.g., [34, 31, 40] and is unsolved
even for the two-dimensional case. In [40], Whiteley presented a partial solution for
the two-dimensional case.

In the context of combinatorial rigidity, three types of characterizations are typ-
ically considered: Maxwell–Laman-type counting conditions, Henneberg-type graph
constructions, and tree-decompositions. In particular, tree-decompositions often pro-
vide very short proofs for combinatorial characterizations. See, e.g., [39, 33, 14]. It
is hence natural to ask a tree-decomposition for identified body-hinge frameworks,
which leads to Corollary 5.1.

Problem 2. Let G = (B,H ;E) be a bipartite graph. Suppose there is an edge
set I ⊆ (D − 1) ◦ E such that |I| = D|B| + (D − 1)|H | − D and |F | ≤ D|B(F )| +
(D − 1)|H(F )| − D for each nonempty F ⊆ I. Then, does (D − 1) ◦ G contain D
edge-disjoint trees such that each vertex of B is spanned by all of them and each vertex
of H is spanned by exactly D − 1 trees among them?

The problem may be false since the problem of deciding whether a hypergraph
contains k edge-disjoint spanning connected subgraphs is NP-hard even for k = 2 [5].

As for computational issue, O(|V |2) time algorithms are known for computing the
rank of the counting (poly)matroids appearing in this paper (see, e.g., [12, 8, 19, 2] for
more detail). Developing a subquadratic algorithm is indeed a challenging problem.
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6. Direction-rigidity. As a direct application of Dilworth truncation, we shall
briefly discuss direction-rigidity of bar-joint frameworks.

Recall that a d-dimensional bar-joint framework is a pair (G,p), whereG = (V,E)
is a graph and p : V → Rd. Each vertex represents a joint and each edge represents
a bar which usually constraints the distance between two endpoints. As a variant
of length-constraint, direction-constraint (and the mixture of length and direction
constraints) has been considered in the literature (see, e.g., [41, 15, 29]). In [41],
Whiteley showed a combinatorial characterization of direction-rigidity as a corollary
of a combinatorial characterization of reconstructivity of pictures appeared in scene
analysis (see, e.g., [40, 41, 42]). In this section we provide a direct proof of this
characterization.

For a d-dimensional bar-joint framework (G,p), an infinitesimal motion m : V →
Rd of (G,p) under direction-constraint is an assignment of m(v) ∈ Rd to each v ∈ V
such that m(u)−m(v) is parallel to p(u)−p(v) for any uv ∈ E, i.e., m(u)−m(v) =
t(p(u) − p(v)) for some t ∈ R. Of course, the direction-constraint for each uv ∈ E
can be written as

(6.1) (m(u)−m(v)) · α = 0 for any α ∈ Rd with (p(u)− p(v)) · α = 0.

It is easy to observe that the space of infinitesimal motions of (G,p) has dimension
at least d+1; a linear combination of parallel transformations to d directions and the
dilation centered at the origin (see, e.g., [41, section 8] for more detail). We say that
(G,p) is direction-rigid if the dimension of the motion space is exactly d+ 1.

In this section, we shall use Vu to denote a d-dimensional vector space associated
with u (which was D-dimensional in the preceding sections) and let VV denote the
direct product of Vu for all u ∈ V . Hence, VV is d|V |-dimensional in this case. For
each uv ∈ E, let us define a (d− 2)-dimensional flat of P(VV ) by

(6.2) Auv(p) = {[0, · · ·, 0,
u

α, 0, · · ·, 0,
v

−α, 0, · · ·, 0] : α ∈ Rd, (p(u)−p(v)) ·α = 0},

and let A(p) = {Ae(p) : e ∈ E}. Then, it is easy to see that direction-rigidity is
characterized by the polymatroid PM(A(p)) in the sense that (G,p) is direction-
rigid if and only if the rank of PM(A(p)) is equal to d|V | − (d + 1). The following
theorem provides a combinatorial characterization of this polymatroid.

Theorem 6.1. Let f ′ : 2E → Z be an integer-valued monotone submodular
function defined by

(6.3) f ′(F ) = d|V (F )| − (d+ 1) (F ⊆ E).

Then, for almost all joint-configurations p : V → Rd, PM(A(p)) is equal to the

polymatroid PMf ′(G) = (E, f̂ ′) induced by f ′.
Proof. We prove rank(AF (p)) = f̂ ′(F ) for any nonempty F ⊆ E (see (2.1) for

the definition of f̂). The idea is exactly the same as the alternative proof of Laman’s
theorem by Lovász and Yemini [21].

Recall that g = |V (·)| − 1 is the monotone submodular function inducing graphic
matroid. As mentioned in section 3.1, the union of d copies of the graphic matroid is
the matroid induced by dg as well as the generic matroid associated with the family
A = {Ae : e ∈ E} of flats

Auv = {[0, · · ·, 0,
u

α, 0, · · ·, 0,
v

−α, 0, · · ·, 0] : α ∈ Rd}.
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In other words, PM(A) = (E, d̂g).
Denote V = {v1, v2, . . . , vn}. For p : V → Rd, we define a hyperplane H of P(VV )

by

H = {[xv1 , xv2 , . . . , xvn ] : xv ∈ Vv = Rd,
∑

v∈V p(v) · xv = 0}.
Then, observe Ae(p) = Ae ∩H for any e ∈ E. Therefore, if we take p so that the set
of coordinates of p is algebraically independent over Q, we find that PM(A(p)) is
obtained from PM(A) by Dilworth truncation. By Theorem 2.2, we obtain, for any
F ⊆ E,

rank(AF (p))

= min{∑i(rank(AFi)− 1) : a partition {F1, . . . , Fk} of F}
= min{∑i(d̂g(Fi)− 1) : a partition {F1, . . . , Fk} of F}
= min{∑i((min{∑j dg(Fi,j) : a partition of Fi})− 1) : a partition of F}
= min{∑i(dg(Fi)− 1) : a partition {F1, . . . , Fk} of F}
= min{∑i f

′(Fi) : a partition {F1, . . . , Fk} of F} = f̂ ′(F ),

where we used f ′(F ) = dg(F )− 1. This completes the proof.
Let (d − 1) ◦G be the graph obtained from G by replacing each edge by (d− 1)

copies, and let (d− 1) ◦E be the edge set. Notice f ′(e) = d− 1 for any e ∈ E. Hence,
applying the same argument given in Lemma 4.1, it is not difficult to see that the
rank of PMf ′(G) = (E, f̂ ′) is equal to the rank of Mf ′((d − 1) ◦ G), that is, the
matroid on (d − 1) ◦ E induced by f ′. Thus, Theorem 6.1 implies a combinatorial
characterization of direction-rigidity of bar-joint frameworks proved by Whiteley [41].

Corollary 6.2 (Whiteley [41]). For almost all joint-configurations p : V → Rd,
(G,p) is direction-rigid if and only if (d−1)◦G contains an edge subset I ⊆ (d−1)◦E
satisfying the following counting conditions:

• |I| = d|V | − (d+ 1);
• |F | ≤ d|V (F )| − (d+ 1) for any nonempty F ⊆ E.

Servatius and Whiteley [29] further proved a combinatorial characterization of
generic rigidity of two-dimensional bar-joint frameworks having both length and di-
rection constraints. It can be observed that the representation of the associated
rigidity matrix can be obtained from the representation of the union of two copies of
the graphic matroid by restricting some of rows to a generic hyperplane H and the
others to a hyperplane (determined by H). It is still unclear why Theorem 2.2 can
be extended in this situation.

Appendix A. Description of bar-constraints. Here we give a note on how
to obtain bar-constraints (3.3). This note also appears in [17, Appendix].

We can coordinatize the exterior product Rd ∧Rd as follows. For a = (a1, a2, . . . ,
ad) ∈ Rd and b = (b1, b2, . . . , bd) ∈ Rd,
(A.1)

a∧b =

⎛⎜⎝ (1,2)∣∣∣∣a1 a2
b1 b2

∣∣∣∣,
(1,3)

−
∣∣∣∣a1 a3
b1 b3

∣∣∣∣, · · · ,

(i,j)

(−1)i+j+1

∣∣∣∣ai aj
bi bj

∣∣∣∣, · · · ,

(d−1,d)∣∣∣∣ad−1 ad
bd−1 bd

∣∣∣∣
⎞⎟⎠ ∈ R(

d
2).

Suppose we are given rigid bodies B1 and B2 in Rd, which can be identified
with a pair (pi,Mi) of a point pi ∈ Rd and an orthogonal matrix Mi ∈ SO(d) for
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each i = 1, 2. Namely, each (pi,Mi) is a local Cartesian coordinate system for each
body. We consider a situation, where the bodies B1 and B2 are connected by a bar.
We denote the endpoints of the bars by p1 + M1q1 and p2 + M2q2, where qi is the
coordinate of each endpoint (joint) in the coordinate system of each body.

The constraint by the bar can be written by

(A.2) 〈p2 +M2q2 − p1 −M1q1, p2 +M2q2 − p1 −M1q1〉 = �2

for some � ∈ R. If we take the differentiation with variables pi and Mi, we get

(A.3) 〈p2 +M2q2 − p1 −M1q1, ṗ2 + Ṁ2q2 − ṗ1 − Ṁ1q1〉 = 0.

We may simply assume pi = 0 and Mi = Id. Then by setting h = q2−q1 and Ṁi = Ai

with a skew-symmetric matrix Ai,

(A.4) 〈h, ṗ2 +A2q2 − ṗ1 −A1q1〉 = 0.

Also we denote a skew-symmetric matrix A by

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −w1,2 · · · · · · · · · · · · (−1)d+1w1,d

w1,2 0
...

...
. . . (−1)i+jwi,j

...

... 0
...

... (−1)i+j+1wi,j
. . .

...

... 0 wd−1,d

(−1)dw1,d · · · · · · · · · · · · −wd−1,d 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and let w =

(
w1,2 w1,3 · · · wd−1,d

) ∈ R(
d
2). Then, for any h ∈ Rd and q ∈ Rd, we

have

(A.5) 〈h,Aq〉 = 〈q ∧ h,w〉.
Therefore, we can simply describe the infinitesimal bar-constraint (A.4) by

(A.6) 〈q2 − q1, ṗ2 − ṗ1〉+ 〈q2 ∧ q1, w2 − w1〉 = 0,

where w1 ∈ R(
d
2) and w2 ∈ R(

d
2) denote the

(
d
2

)
-dimensional vectors corresponding to

A1 and A2, respectively.

We call a pair si = (wi, pi) ∈ R(
d
2) × Rd a screw motion, which can be identified

with a vector in
∧d−1

Rd+1. Using the homogeneous coordinate of qi in Pd, (A.6) is
written as

(A.7) 〈(q2, 1) ∧ (q1, 1)), s2 − s1〉 = 0,

where [(q2, 1) ∧ (q1, 1)] is the Plücker coordinate of the corresponding bar.
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