research

Generic Rigidity Matroids with Dilworth Truncations

Abstract

We prove that the linear matroid that defines generic rigidity of dd-dimensional body-rod-bar frameworks (i.e., structures consisting of disjoint bodies and rods mutually linked by bars) can be obtained from the union of (d+12){d+1 \choose 2} graphic matroids by applying variants of Dilworth truncation nrn_r times, where nrn_r denotes the number of rods. This leads to an alternative proof of Tay's combinatorial characterizations of generic rigidity of rod-bar frameworks and that of identified body-hinge frameworks

    Similar works