692 research outputs found

    Facial Expression Recognition from World Wild Web

    Full text link
    Recognizing facial expression in a wild setting has remained a challenging task in computer vision. The World Wide Web is a good source of facial images which most of them are captured in uncontrolled conditions. In fact, the Internet is a Word Wild Web of facial images with expressions. This paper presents the results of a new study on collecting, annotating, and analyzing wild facial expressions from the web. Three search engines were queried using 1250 emotion related keywords in six different languages and the retrieved images were mapped by two annotators to six basic expressions and neutral. Deep neural networks and noise modeling were used in three different training scenarios to find how accurately facial expressions can be recognized when trained on noisy images collected from the web using query terms (e.g. happy face, laughing man, etc)? The results of our experiments show that deep neural networks can recognize wild facial expressions with an accuracy of 82.12%

    Integrating Emotion Recognition Tools for Developing Emotionally Intelligent Agents

    Get PDF
    Emotionally responsive agents that can simulate emotional intelligence increase the acceptance of users towards them, as the feeling of empathy reduces negative perceptual feedback. This has fostered research on emotional intelligence during last decades, and nowadays numerous cloud and local tools for automatic emotional recognition are available, even for inexperienced users. These tools however usually focus on the recognition of discrete emotions sensed from one communication channel, even though multimodal approaches have been shown to have advantages over unimodal approaches. Therefore, the objective of this paper is to show our approach for multimodal emotion recognition using Kalman filters for the fusion of available discrete emotion recognition tools. The proposed system has been modularly developed based on an evolutionary approach so to be integrated in our digital ecosystems, and new emotional recognition sources can be easily integrated. Obtained results show improvements over unimodal tools when recognizing naturally displayed emotions

    Real Time Facial Expression Recognition Using Webcam and SDK Affectiva

    Get PDF
    Facial expression is an essential part of communication. For this reason, the issue of human emotions evaluation using a computer is a very interesting topic, which has gained more and more attention in recent years. It is mainly related to the possibility of applying facial expression recognition in many fields such as HCI, video games, virtual reality, and analysing customer satisfaction etc. Emotions determination (recognition process) is often performed in 3 basic phases: face detection, facial features extraction, and last stage - expression classification. Most often you can meet the so-called Ekman’s classification of 6 emotional expressions (or 7 - neutral expression) as well as other types of classification - the Russell circular model, which contains up to 24 or the Plutchik’s Wheel of Emotions. The methods used in the three phases of the recognition process have not only improved over the last 60 years, but new methods and algorithms have also emerged that can determine the ViolaJones detector with greater accuracy and lower computational demands. Therefore, there are currently various solutions in the form of the Software Development Kit (SDK). In this publication, we point to the proposition and creation of our system for real-time emotion classification. Our intention was to create a system that would use all three phases of the recognition process, work fast and stable in real time. That’s why we’ve decided to take advantage of existing Affectiva SDKs. By using the classic webcamera we can detect facial landmarks on the image automatically using the Software Development Kit (SDK) from Affectiva. Geometric feature based approach is used for feature extraction. The distance between landmarks is used as a feature, and for selecting an optimal set of features, the brute force method is used. The proposed system uses neural network algorithm for classification. The proposed system recognizes 6 (respectively 7) facial expressions, namely anger, disgust, fear, happiness, sadness, surprise and neutral. We do not want to point only to the percentage of success of our solution. We want to point out the way we have determined this measurements and the results we have achieved and how these results have significantly influenced our future research direction

    Exploiting multimedia in creating and analysing multimedia Web archives

    No full text
    The data contained on the web and the social web are inherently multimedia and consist of a mixture of textual, visual and audio modalities. Community memories embodied on the web and social web contain a rich mixture of data from these modalities. In many ways, the web is the greatest resource ever created by human-kind. However, due to the dynamic and distributed nature of the web, its content changes, appears and disappears on a daily basis. Web archiving provides a way of capturing snapshots of (parts of) the web for preservation and future analysis. This paper provides an overview of techniques we have developed within the context of the EU funded ARCOMEM (ARchiving COmmunity MEMories) project to allow multimedia web content to be leveraged during the archival process and for post-archival analysis. Through a set of use cases, we explore several practical applications of multimedia analytics within the realm of web archiving, web archive analysis and multimedia data on the web in general

    A study of facial expression recognition technologies on deaf adults and their children

    Full text link
    Facial and head movements have important linguistic roles in American Sign Language (ASL) and other sign languages and can often significantly alter the meaning or interpretation of what is being communicated. Technologies that enable accurate recognition of ASL linguistic markers could be a step toward greater independence and empowerment for the Deaf community. This study involved gathering over 2,000 photographs of five hearing subjects, five Deaf subjects, and five Child of Deaf Adults (CODA) subjects. Each subject produced the six universal emotional facial expressions: sad, happy, surprise, anger, fear, and disgust. In addition, each Deaf and CODA subject produced six different ASL linguistic facial expressions. A representative set of 750 photos was submitted to six different emotional facial expression recognition services, and the results were processed and compared across different facial expressions and subject groups (hearing, Deaf, CODA). Key observations from these results are presented. First, poor face detection rates are observed for Deaf subjects as compared to hearing and CODA subjects. Second, emotional facial expression recognition appears to be more accurate for Deaf and CODA subjects than for hearing subjects. Third, ASL linguistic markers, which are distinct from emotional expressions, are often misinterpreted as negative emotions by existing technologies. Possible implications of this misinterpretation are discussed, such as the problems that could arise for the Deaf community with increasing surveillance and use of automated facial analysis tools. Finally, an inclusive approach is suggested for incorporating ASL linguistic markers into existing facial expression recognition tools. Several considerations are given for constructing an unbiased database of the various ASL linguistic markers, including the types of subjects that should be photographed and the importance of including native ASL signers in the photo selection and classification process.2019-06-30T00:00:00

    A system for recognizing human emotions based on speech analysis and facial feature extraction: applications to Human-Robot Interaction

    Get PDF
    With the advance in Artificial Intelligence, humanoid robots start to interact with ordinary people based on the growing understanding of psychological processes. Accumulating evidences in Human Robot Interaction (HRI) suggest that researches are focusing on making an emotional communication between human and robot for creating a social perception, cognition, desired interaction and sensation. Furthermore, robots need to receive human emotion and optimize their behavior to help and interact with a human being in various environments. The most natural way to recognize basic emotions is extracting sets of features from human speech, facial expression and body gesture. A system for recognition of emotions based on speech analysis and facial features extraction can have interesting applications in Human-Robot Interaction. Thus, the Human-Robot Interaction ontology explains how the knowledge of these fundamental sciences is applied in physics (sound analyses), mathematics (face detection and perception), philosophy theory (behavior) and robotic science context. In this project, we carry out a study to recognize basic emotions (sadness, surprise, happiness, anger, fear and disgust). Also, we propose a methodology and a software program for classification of emotions based on speech analysis and facial features extraction. The speech analysis phase attempted to investigate the appropriateness of using acoustic (pitch value, pitch peak, pitch range, intensity and formant), phonetic (speech rate) properties of emotive speech with the freeware program PRAAT, and consists of generating and analyzing a graph of speech signals. The proposed architecture investigated the appropriateness of analyzing emotive speech with the minimal use of signal processing algorithms. 30 participants to the experiment had to repeat five sentences in English (with durations typically between 0.40 s and 2.5 s) in order to extract data relative to pitch (value, range and peak) and rising-falling intonation. Pitch alignments (peak, value and range) have been evaluated and the results have been compared with intensity and speech rate. The facial feature extraction phase uses the mathematical formulation (B\ue9zier curves) and the geometric analysis of the facial image, based on measurements of a set of Action Units (AUs) for classifying the emotion. The proposed technique consists of three steps: (i) detecting the facial region within the image, (ii) extracting and classifying the facial features, (iii) recognizing the emotion. Then, the new data have been merged with reference data in order to recognize the basic emotion. Finally, we combined the two proposed algorithms (speech analysis and facial expression), in order to design a hybrid technique for emotion recognition. Such technique have been implemented in a software program, which can be employed in Human-Robot Interaction. The efficiency of the methodology was evaluated by experimental tests on 30 individuals (15 female and 15 male, 20 to 48 years old) form different ethnic groups, namely: (i) Ten adult European, (ii) Ten Asian (Middle East) adult and (iii) Ten adult American. Eventually, the proposed technique made possible to recognize the basic emotion in most of the cases

    Opportunities and challenges for using automatic human affect analysis in consumer research

    Get PDF
    The ability to automatically assess emotional responses via contact-free video recording taps into a rapidly growing market aimed at predicting consumer choices. If consumer attention and engagement are measurable in a reliable and accessible manner, relevant marketing decisions could be informed by objective data. Although significant advances have been made in automatic affect recognition, several practical and theoretical issues remain largely unresolved. These concern the lack of cross-system validation, a historical emphasis of posed over spontaneous expressions, as well as more fundamental issues regarding the weak association between subjective experience and facial expressions. To address these limitations, the present paper argues that extant commercial and free facial expression classifiers should be rigorously validated in cross-system research. Furthermore, academics and practitioners must better leverage fine-grained emotional response dynamics, with stronger emphasis on understanding naturally occurring spontaneous expressions, and in naturalistic choice settings. We posit that applied consumer research might be better situated to examine facial behavior in socio-emotional contexts rather than decontextualized, laboratory studies, and highlight how AHAA can be successfully employed in this context. Also, facial activity should be considered less as a single outcome variable, and more as a starting point for further analyses. Implications of this approach and potential obstacles that need to be overcome are discussed within the context of consumer research

    Application of Computer Vision and Mobile Systems in Education: A Systematic Review

    Get PDF
    The computer vision industry has experienced a significant surge in growth, resulting in numerous promising breakthroughs in computer intelligence. The present review paper outlines the advantages and potential future implications of utilizing this technology in education. A total of 84 research publications have been thoroughly scrutinized and analyzed. The study revealed that computer vision technology integrated with a mobile application is exceptionally useful in monitoring students’ perceptions and mitigating academic dishonesty. Additionally, it facilitates the digitization of handwritten scripts for plagiarism detection and automates attendance tracking to optimize valuable classroom time. Furthermore, several potential applications of computer vision technology for educational institutions have been proposed to enhance students’ learning processes in various faculties, such as engineering, medical science, and others. Moreover, the technology can also aid in creating a safer campus environment by automatically detecting abnormal activities such as ragging, bullying, and harassment

    CGAMES'2009

    Get PDF
    corecore