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The ability to automatically assess emotional responses via contact-free video recording
taps into a rapidly growing market aimed at predicting consumer choices. If consumer
attention and engagement are measurable in a reliable and accessible manner, relevant
marketing decisions could be informed by objective data. Although significant advances
have been made in automatic affect recognition, several practical and theoretical
issues remain largely unresolved. These concern the lack of cross-system validation,
a historical emphasis of posed over spontaneous expressions, as well as more
fundamental issues regarding the weak association between subjective experience
and facial expressions. To address these limitations, the present paper argues that
extant commercial and free facial expression classifiers should be rigorously validated in
cross-system research. Furthermore, academics and practitioners must better leverage
fine-grained emotional response dynamics, with stronger emphasis on understanding
naturally occurring spontaneous expressions, and in naturalistic choice settings. We
posit that applied consumer research might be better situated to examine facial
behavior in socio-emotional contexts rather than decontextualized, laboratory studies,
and highlight how AHAA can be successfully employed in this context. Also, facial
activity should be considered less as a single outcome variable, and more as a starting
point for further analyses. Implications of this approach and potential obstacles that
need to be overcome are discussed within the context of consumer research.

Keywords: automatic human affect analysis (AHAA), machine learning, facial expression, spontaneous
expressions, dynamic responses, consumer research

INTRODUCTION

Emotions matter profoundly for understanding consumers’ behavior in fast changing economic
markets of modern life (McStay, 2016). While there exist various ways to assess emotions in
the laboratory, most approaches that target bodily signals require sensors to be attached to the
participant that are either less accurate or less practicable when used in the field (Küster and Kappas,
2013). Hence, automated methods of measuring facial emotional responses via contact-free video
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recording tap into a rapidly growing market that presents
opportunities but also risks (e.g., Gupta, 2018; Schwartz, 2019),
and debate about false expectations (Vincent, 2019).

If consumer attention, social engagement, and emotional
responses can be measured reliably and non-invasively, a broad
spectrum of marketing decisions could be readily informed by
objective data. As such, we need to examine how well new
computational methods can predict consumer behavior, thereby
moving away from questions that simply ask whether or not they
can predict choice (Smidts et al., 2014). Further, it will be critical
to measure neurocognitive choice processes in more naturalistic
settings to facilitate the study of a broad spectrum of human
behavior – including also disorders such as addiction and obesity
(Hsu and Yoon, 2015). For example, such settings could include
the elicitation of complex yet distinct mixed emotional states such
as the feeling of being moved that is often described as pleasurable,
but that can also involve crying and tears (Zickfeld et al., 2019).
Viewing another’s tears has been shown to elicit empathy and
a wish to help (e.g., Küster, 2018). In turn, this might result in
increased donations towards advertisements based on the feeling
of being moved. Potentially, it might be possible to even simulate
human-like empathy through affective computing (Picard, 1997),
thereby creating an “empathic artificial intelligence” (McStay,
2018) that fundamentally transforms the future of consumer
research and related fields. On the flipside, certain real-world
applications of automatic human affect analysis (AHAA), such as
the detection of unhappy emotional states of customers in retail
stores (e.g., Anderson, 2017) appear to be vastly premature, if not
downright unethical.

The current paper aims to critically discuss the growing role
of AHAA in consumer research. It also highlights some of the
most pressing barriers the field currently faces. We argue that
automatic classification may provide substantial new leverage to
the study of emotion and cognition in consumer neuroscience
through both primary and subsequent machine analysis. While
the tools available to date may not be as versatile, reliable, and
proven to be valid across domains, they nevertheless represent
an important advance in the area of AHAA with substantial
potential for further development.

ABUNDANT CHOICES: CLASSIFIERS
LACK CROSS-SYSTEM VALIDATION

In the past decades, early automated systems for facial affect
recognition (Tian et al., 2001) were not readily available for
use by the wider research community. In the wake of recent
technical advances in video-based affect sensing, this has changed
(Valstar et al., 2012). Today, researchers face a plethora of
choices for selecting the best machine classifier. Besides covering
a wide range of price tags, commercial systems differ in their
technical features for facial analysis, as well as the ways in
which users engage with the system (e.g., through APIs, SDKs).
Among the “grizzled veterans” in the field of AHAA are the two
software packages FACET (iMotions) and FaceReader (Noldus).
Originally built upon another software called CERT (Littlewort
et al., 2011), FACET was distributed by Emotient, whereas
FaceReader was developed and first presented by VicarVision

in 2005 (Den Uyl and Van Kuilenburg, 2005). Both systems
have been used in a large number of scientific studies (e.g.,
Skiendziel et al., 2019; for a review see Lewinski et al., 2014a) as
well as in consumer behavior (Garcia-Burgos and Zamora, 2013;
Danner et al., 2014; Yu and Ko, 2017) and marketing research
(Lewinski et al., 2014b; McDuff et al., 2015). Nonetheless, there
are several other promising off-the-shelf classifiers available
today that could be employed for the same purposes. These
include Affdex (Affectiva), FaceVideo (CrowdEmotion), Cognitive
Services: Face (Microsoft), EmotionalTracking (MorphCast),
EmotionRecognition (Neurodata Lab), or FaceAnalysis (Visage
Technologies). Moreover, some classifiers are freely available such
as OpenFace (Baltrusaitis et al., 2016) or OpenCV (Bradski, 2000)
to extract facial feature sets from video recordings.

Given the large and growing number of choices for academics
and practitioners in consumer research, there still exists little
“cross-system” (i.e., between competing products) validation
research that could independently inform about the relative
performance indicators of AHAA (Krumhuber et al., 2019).
Out of the studies available to date, only a few have directly
compared different commercial classifiers (Stöckli et al., 2018).
Likewise, a small number of studies has tested AHAA against
human performance benchmarks on a larger number of databases
(Yitzhak et al., 2017; Krumhuber et al., 2019), thereby calling
the generalizability of findings derived from single stimulus
sets into question.

Ultimately, not only accuracy of AHAA needs to be evaluated,
but also its validity and reliability in a broader sense (cf., Meyer,
2010; Ramsøy, 2019). First, certain concepts may require re-
interpretation: For example, classic test–retest reliability by the
machine classifier on identical stimuli tends to be perfect because
the underlying algorithms remain fixed. Likewise, the issue of
inter-rater reliability, i.e., different experimenters applying the
same AHAA, may be irrelevant if all parameters are shared
between experimenters. More critical, however, are questions
of convergent and external validity. So far, most validation
efforts have focused on the convergence between AHAA and
human ratings, although initial evidence suggests that AHAA
may correlate highly with facial electromyography (EMG; Kappas
et al., 2016; Beringer et al., 2019; Kulke et al., 2020). However,
much more work is still needed to compare AHAA against
both facial EMG and expert annotations to determine its
convergent and discriminant validity. Generalizability of AHAA
study findings may be further limited in other ways. E.g., classifier
performance may be substantially lower for spontaneous affective
behavior (Dupré et al., 2019; Krumhuber et al., 2019). This
issue often ties into the lack of information given about the
stimulus materials originally used to develop or “train” a
given AHAA system to fully evaluate generalizability toward
similar novel stimuli.

Finally, AHAA needs to demonstrate an added value to
predict consumer behavior. A few studies have begun to examine
this question by predicting purchase intent from automatically
detected facial expressions. For example, the FACET classifier
has recently been employed to examine purchase intent toward
vegetable juices, showing that AHAA-based facial expressions
modulated consumer intent in concert with a number of other
factors (Samant et al., 2017; Samant and Seo, 2020). Nevertheless,
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it remains an empirical question to what extent expressions,
as tracked by AHAA, translate to purchase intent and tangible
real-world behavior.

Overall, we still know too little about the various contenders
to choose between classifiers for different purposes. Once a
commercial software package has been purchased, users typically
have few options to reconsider their choice, as the cost of even
a single system is often in the (higher) four- or (lower) five-
digit range. Furthermore, available open-source solutions such as
OpenFace still need to be tested with regards to their potential for
supplementary behavioral analysis.

MISSING THE BEAT OF FINE-GRAINED
EXPRESSION DYNAMICS

In the real world, faces are constantly in motion. As demonstrated
by a growing body of research in cognitive science, the dynamics
of facial movement convey communicative intent and emotion
(for reviews, see Krumhuber et al., 2013; Krumhuber and
Skora, 2016; Sato et al., 2019). While the role of fine-grained
dynamics has been best explored in the context of smiling (e.g.,
Krumhuber et al., 2007, 2009), they are believed to impact
emotion judgments and behavioral responses more generally
(Sato and Yoshikawa, 2007; Recio et al., 2013). This renders
expression dynamics to be of crucial importance for large areas
of consumer research. Since online and TV advertisements
frequently involve dynamic material involving human faces,
their affective credibility depends on whether the content is
perceived as genuine-looking and sincere. However, relatively
little is known about the precise characteristics of expression
dynamics in product evaluation beyond simple analyses of means
(Peace et al., 2006). Teixeira and Stipp (2013) showed an inverted-
U relationship between smile intensity and purchase intents of
people who viewed advertisements – i.e., both very high and very
low levels of humorous entertainment predicted lower purchase
intent. Similarly, joy velocity, i.e., the speed of change in facial
expressions of happiness, has been suggested to affect consumers’
decisions to continue to watch or “zap” advertisements (Teixeira
et al., 2012). Finally, humorous entertainment, as measured by
smile intensity, may increase purchase intent when placed after,
rather than before, brand presentation (Teixeira et al., 2014).

One reason for this comparative neglect of the dynamics of
facial movement lies in its complexity. In traditional laboratory
research, a limited number of factors can be manipulated
simultaneously. Higher ecological validity of evoked facial
activity, and more natural recording situations, typically make
it more difficult to adequately control for possible confounds,
as well as ensure sufficient statistical power. As shown in
prior research (Ambadar et al., 2005), the impact of dynamic
expressions is likely to be more than the sum of still images.
While temporal information improves emotion recognition
(Krumhuber et al., 2013), it is less clear how multi-peaked
dynamic expression trajectories are weighted in the mind of
the human perceiver. Also, it remains largely unknown how
rich socio-emotional knowledge about the context of dynamic
expressions shapes their perception (Maringer et al., 2011).
Such applied questions are of imminent relevance for consumer

research given that AHAA can provide per-frame classifications
of large amounts of video data of human observers. For example,
based on an analysis of more than 120,000 frames, Lewinski et al.
(2014b) found context-specific features of facial expressions of
happiness to be major indicators of happiness. Unfortunately,
however, no well-established standards yet exist in terms of how
best to pre-process and aggregate raw per-frame probabilities of
machine classification.

Until now, many validation approaches consider only the
peak response intensities or overall mean response envelopes
of a perceiver’s facial activity. From our perspective, this calls
for more advanced and systematic ways of generating and
testing hypotheses relating to short- to medium term expression
dynamics. Such challenges may require the use of metrics that
do not simply reduce complex facial movements to a single
image, i.e., one that is representative of the prototypical peak
expression. Instead, temporal segments of facial activity need to
be weighted relative to other simultaneously present channels,
without discarding nuanced expressions (Pantic and Patras, 2006;
Valstar and Pantic, 2006; Dente et al., 2017).

While AHAA provides new avenues for more fine-grained
and subtle expression analysis, certain use cases might fail to
translate to future research. For example, it is unlikely that micro-
expressions (Ekman, 2009; Matsumoto and Hwang, 2011) offer
a promising theoretical approach toward a better understanding
of expression dynamics in consumer research. Micro-expressions
refer to brief displays (20–500 ms) argued to “leak” an individual’s
true emotional state before the expression can be actively
controlled (Ekman and Friesen, 1969). While micro-expression
analysis still enjoys substantial attention (see Shen et al., 2019),
the concept is questionable and lacks empirical support as a
validated theory, partly because micro-expressions are extremely
rare (Porter et al., 2012) and of little practical relevance in
understanding the multiple functions of emotions. As such, they
could simply represent briefer and weaker versions of normal
emotional expressions (Durán et al., 2017). In consequence,
it seems worthwhile to focus future research efforts on other
aspects, such as those that concern dynamic and spontaneous
emotional behavior beyond the level of the individual frame.

FROM POSED STEREOTYPES TO
SPONTANEOUS EXPRESSIONS “IN THE
WILD”

Video-based affect classification can only be a useful tool for
consumer research if patterns of naturally occurring responses
can be reliably detected. Historically, AHAA has primarily
been designed to achieve high accuracy in recognizing intense
and stereotypical expressions provided by carefully instructed
actors (Pantic and Bartlett, 2007). However, the narrow focus
on individual posed emotions throughout psychology has been
increasingly criticized because it has not been very helpful to
understand the evolutionary functions of emotional expressions
themselves (Shariff and Tracy, 2011). While promising methods
for analyzing spontaneous behavior have been proposed, fewer
efforts target the automatic analysis of spontaneous displays
(Masip et al., 2014). This could be due to the rather limited
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number of available databases with naturalistic and spontaneous
expressions used to train and test machine classifiers. Often,
these databases are also of lower recording quality which hinders
objective measurement and analysis (Krumhuber et al., 2017).

Recent findings regarding the classification performance of
posed expressions have been encouraging. For example, Stöckli
et al. (2018) demonstrated acceptable accuracy in classifying basic
emotions using the software packages FACET and Affdex. The
authors calculated recognition accuracy for maximum intensity
expressions extracted from two posed databases. However, when
participants were asked to spontaneously respond to emotionally
evocative pictures, accuracy for emotional valence (see Yik et al.,
2011) was barely above chance level. Similar results have been
reported by Yitzhak et al. (2017) using videos. Depending on
the emotion in question, recognition performance of prototypical
posed expressions typically ranged between 70 and 90%, with
happiness being recognized most accurately. By contrast, the
same classifier performed “very poorly” (Yitzhak et al., 2017,
p. 1) on subtle and non-prototypical expressions. Overall,
machine learning for spontaneous expressions is a difficult
task, with performance rates varying as a function of classifier,
emotion, and database (Dupré et al., 2019). Furthermore, the
notion of what constitutes spontaneous facial behavior varies
between the databases.

To make significant progress in the future, more work is
still needed to create and validate large and diverse datasets
of spontaneous expressions (Zeng et al., 2009). For example,
efforts such as AffectNet (Mollahosseini et al., 2019) or Aff-Wild
(Kollias et al., 2019) might help to close the gap toward predicting
affective responses in the wild. Ideally, new databases should
be publicly accessible to allow for independent verification of
the results or modification of the computer models. Dedicated
large scale efforts to obtain high quality “in-the-wild” dynamic
facial response data will allow researchers to consistently address
ethical challenges that require substantial consideration. E.g.,
the partial deception required to ensure unbiased responses
can be ameliorated through standardized debriefing procedures.
Further, spontaneous databases can be (re-)used for multiple
cross-system validation studies, as well as for more specific
consumer response analyses. By doing so, AHAA of spontaneous
expressions may contribute to increasingly better predictions of
real-world consumer responses while minimizing the burden on
ethical data collection in the field. Finally, such an approach
would also provide a benchmark for comparisons between the
different algorithms. For example, although a large amount of
online video data used for the training of Affdex has been one its
major selling points (Zijderveld, 2017), this and similar systems
still function like a “black box” that cannot be directly validated
by other parties.

THEORETICAL ISSUES: A LACK OF
COHERENCE

While some of the most pressing issues of AHAA concern
practical limitations, theoretical issues equally need to be
addressed. Importantly, the notion of a direct and hard-wired
or “universal” link between facial expressions and subjective

experience has been challenged in recent years. As argued by
multiple researchers (Reisenzein et al., 2013; Hollenstein and
Lanteigne, 2014; Durán et al., 2017), coherence between emotions
and facial expressions may at best be moderate in strength, and
sometimes even non-existent. Further, similar configurations of
facial actions [i.e., Action Units (AUs)] may express more than
one emotion or communicative intent (Barrett et al., 2019).
This contrasts with existing views such as those proposed by
Basic Emotion Theory (Ekman, 1992, 1999). In consequence, any
facial activity, whether it is measured manually or automatically,
cannot be assumed to directly reflect a person’s emotional
experience. Facial expressions are not the sole readout of
underlying emotional states (Kappas, 2003; Crivelli and Fridlund,
2018). As a result, AHAA is essentially about the recognition of
patterns and regularities in the data (Mehta et al., 2018).

Nevertheless, there are reasons to be optimistic when
attempting to interpret facial expressions. First, spontaneous
consumer responses might be more predictive of affective
behavior than abstract and decontextualized situations as
typically examined in the laboratory (Küster and Kappas, 2014).
Such applied contexts could be more informative about the
emotional experience of respondents, thereby increasing the
magnitude and coherence of the response. Second, recent
improvements in efficiency rendered by AHAA allows the
processing of larger amounts of data than has previously
been possible. This should increase overall robustness in
study findings across domains, including larger-scale studies
(Garcia et al., 2016). Third, results obtained via frame-
based classification could be used as a starting point for
further analyses based on machine learning despite low
overall levels of emotion-expression coherence. For example,
for the prediction of consumption choices between several
products, it might not matter whether a given smile or
frown reflects a full-blown emotion or something else (i.e.,
concentration, politeness) – provided the consumer’s decision is
predicted correctly.

Overall, we therefore propose to consider the wider context
of emotional expressions rather than to limit investigations to
a blind use of emotion labels provided by commercial machine
classifiers without considering the wider context. Instead, it is
commendable to think of these technologies as a means to “pre-
process” large amounts of facial activity data at low cost. These
pre-processed facial activity data can then itself be used as input
features for machine learning methods to learn and predict
human emotional behavior in context.

CONCLUSION

AHAA promises to revolutionize research in consumer
neuroscience. However, even apart from general theoretical
limitations, its validity and usefulness are likely to vary between
different types of studies. Testing hypotheses about specific
consumer responses may often depend on relatively small
datasets of facial responses, rendering the decision of which
software to use even more difficult. In many cases, freely available
tools such as OpenFace may be a good entry point. However,
there presently appears to be no single software tool on the
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market that clearly outperforms all other machine classifiers.
Hence, additional research is still needed to examine the
reliability and predictive value of AHAA. Although the future of
automatic affect sensing in consumer research looks promising,
it is important to remain aware of its potential limitations. Social
scientists can play an active role here to contribute to further
development of this technology.
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