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PAPER

Application of Computer Vision and Mobile Systems 
in Education: A Systematic Review

ABSTRACT
The computer vision industry has experienced a significant surge in growth, resulting in 
numerous promising breakthroughs in computer intelligence. The present review paper 
outlines the advantages and potential future implications of utilizing this technology in 
education. A total of 84 research publications have been thoroughly scrutinized and analyzed. 
The study revealed that computer vision technology integrated with a mobile application is 
exceptionally useful in monitoring students’ perceptions and mitigating academic dishonesty. 
Additionally, it facilitates the digitization of handwritten scripts for plagiarism detection and 
automates attendance tracking to optimize valuable classroom time. Furthermore, several 
potential applications of computer vision technology for educational institutions have been 
proposed to enhance students’ learning processes in various faculties, such as engineering, 
medical science, and others. Moreover, the technology can also aid in creating a safer campus 
environment by automatically detecting abnormal activities such as ragging, bullying, and 
harassment.

KEYWORDS
computer vision (CV), mobile system, computer vision and mobile application, education, 
systematic review

1	 INTRODUCTION

Education is vital for shaping society’s structure, impacting employment, health, 
trade, income, family dynamics, and economic and political status. Enhancing 
education can lead to overall progress in a country [1]. Computer vision (CV) tech-
nology plays a significant role in national improvement by enabling humans to 
extract intelligence from their surroundings through computers. In the 21st cen-
tury, CV is increasingly prevalent due to multimedia and image-based interactions 
on the web. It has evolved from a research notion to a widely used technology 
that dominates industries and enhances quality of life [2]. Despite the diverse 
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applications and aspects of CV, it has diverse applications in education, including 
anomaly detection, attendance monitoring, educational robots, facial recognition, 
medical training, online proctoring, perception monitoring, and plagiarism check-
ing. Anomaly detection, particularly in workplace sexual abuse studies, has shown 
significant progress using video sequence intrusion detection [3]. Identifying anom-
alies, such as violence, from surveillance camera streaming video is a common use 
of CV [4]. Convolutional neural networks (CNNs), like Keras (VGG16, DenseNet), and 
Support Vector Machine (SVM) models, are commonly employed for image pro-
cessing and intrusion detection [5]. Another major CV application is monitoring 
student attendance using the face detection and recognition framework [6]. They 
have been widely applied in education to monitor student attendance. Researchers 
have utilized this technology to enhance educational quality through the develop-
ment of attendance monitoring systems. These systems involve creating a database 
with student images linked to identification numbers, detecting students’ faces in 
classroom videos, recognizing them from the database, and generating attendance 
reports. Numerous approaches have been employed to improve the accuracy of 
these systems. Many of the image processing algorithms included in OpenCV are 
now used in Advanced Robotic Systems (ARS) courses to provide support for teach-
ing computer vision concepts using a mobile’s camera and processing power to 
observe real-time effects generated on an image [7]. The integration of robots in 
education has sparked interest in recent years [8]. One notable aspect of educational 
robots is their use of computer vision (CV), particularly in object detection and rec-
ognition. Numerous studies have showcased the incorporation of CV technologies 
in educational settings, with popular methods including OpenCV and CNN. CV pri-
marily focuses on image processing and facial recognition to identify individuals 
in different scenarios. Researchers in this field have made significant progress in 
analyzing facial landmark motions, head pose, face expressions, and eye gazing [9]. 
Advancements in CV are also reshaping traditional medical research. Medical train-
ees now familiarize themselves with medical imaging using machine learning (ML) 
algorithms. Simulation-based environments enable them to develop proficiency 
while ensuring patient safety [10]. With the rise of online learning, the demand 
for proctoring examinations has increased. Researchers have taken an interest in 
using CVs to monitor student activity during online tests, and several studies have 
emerged in this area [11–13] and [14–16]. Additionally, CV can assist in checking 
documents for plagiarism. As CV continues to advance, its applications in various 
disciplines, including education, are expanding. Vision technology is expected to 
become more prevalent in educational settings.

However, there is a big gap in the research that looks at how computer vision and 
mobile systems affect student learning outcomes, teaching methods, and accessibil-
ity when used together. This is because the use of these technologies in education 
has gotten a lot of attention and grown a lot in recent years. Although there are a 
plethora of studies highlighting the potential benefits of these technologies in iso-
lation, there is a paucity of research that systematically investigates the synergistic 
effects and challenges that arise from their integration in educational settings. This 
research gap necessitates a thorough review that not only synthesizes the existing 
knowledge but also identifies areas where computer vision and mobile systems can 
be effectively harnessed in tandem to revolutionize the education landscape and, 
conversely, where potential pitfalls and limitations may impede their successful 
implementation. Such an analysis is crucial for educators, policymakers, and tech-
nology developers aiming to optimize the use of these tools for enhancing teaching 
and learning in diverse educational contexts.

https://online-journals.org/index.php/i-jim
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2	 LITERATURE	REVIEW

2.1	 Attendance	monitoring

CV-based attendance monitoring is gaining popularity due to its affordability, 
efficiency, and accuracy. Singh et al. [17] developed a system that captures and stores 
student images for a CNN-based model. A recent study utilized the Haar Cascade 
algorithm for face detection and the LBPH model for recognition, with CNN and 
Microsoft Face APIs [18] also suggested as alternatives. Another study used the 
HAAR classifier for face detection and developed a server-based module, addressing 
the challenge of natural changes in faces by storing detected faces for model train-
ing [10]. The study [12] applied Linear Discriminant Analysis (LDA) and Principal 
Component Analysis (PCA) using Fisherfaces and Eigenfaces projection, with PCA 
demonstrating faster execution time and LDAs achieving higher recognition rates. 
Mothwa et al. found that combining LDA and PCA yielded higher accuracy than 
other methods [13]. In a comparison study, the Mahalanobis distance-based sys-
tem outperformed traditional Euclidean and Manhattan distances [19]. Another 
approach involved converting grayscale student images for attendance using LBPH 
and achieving high accuracy [20]. While many object detection systems rely on a 
CNN backbone network predefined for ImageNet, researchers [21] highlighted lim-
itations in image classification and object detection using ImageNet alone. ImageNet’s 
spatial resolution hampers the detection of large and small objects. To address this, 
the author of [22] proposed DetNet as a backbone for object detection, combined 
with FPN for feature extraction. Considering the importance of image quality, Bah, 
Serign [23] employed advanced image processing techniques such as light condi-
tion and contrast modification, bilateral filtering, linear image blend, and histogram 
equalizer to enhance image quality. An article shows a smart attendance monitor-
ing system relying on facial recognition to track the attendance of students during 
classes, while another describes the same system using barcodes [24] and [25]. 
Table 1 summarizes CV and mobile system attendance monitoring.

Table 1. A summary of CV and mobile system attendance monitoring

Ref. Functionality Observed  
Features

Algorithms/ 
Methods/Tools Results

[11] Detects and records attendance and track facial 
changes over time

” HAAR-Cascades N/A

[13] Implemented an attendance system and 
compared with others

” LDA, PCA 83.57% (LDA), PCA (66.07%)

[18] Track attendance, calculate present and absent 
percentages per subject/course, and provide 
results on a document/spreadsheet.

Backbone  
(DetNet)

CNN, HAAR-Cascades, 
LBPH, KNN, MFA

96% (LBPH), 97.35% (KNN),  
99% (MFA)

[19] Face recognition in real time with periodic 
attendance updates on register

” LDA, LBP, PCA 90%

[20] Detects and records attendance and track facial 
changes over time

” HAAR-Cascades, 
Eigenface recognizer

80%

[22] Identification of objects ” CNN (DetNet, FPN) N/A

[23] Handle noisy image & detect faces for 
attendance monitoring

” LBP+SVM+PS, Original, 
LBP, DCP+LBP+SVM

97.50% (DCP+LBP+SVM)

[24] Face recognition for attendance monitoring ” PCA, LDA, LBP 90%

[25] Barcode system for attendance monitoring ” AIDC, RFID N/A

https://online-journals.org/index.php/i-jim


iJIM | Vol. 18 No. 1 (2024) International Journal of Interactive Mobile Technologies (iJIM) 171

Application of Computer Vision and Mobile Systems in Education: A Systematic Review

2.2	 Educational	robots

 CVs in robots are used as educational tools and for assisting teachers in lessons. 
In a survey of 46 12-year-old students [26], one group was taught vocabulary using 
robotics-assisted language learning (RALL) by a teacher, which resulted in better 
performance compared to the traditionally taught group. The teaching activity was 
carried out by the social robot NAO [27], [28]. Jiménez et al. [29] conducted a study 
using NAO robots to teach children with Down syndrome to recognize colors through 
CV techniques. Esteban et al. [30] developed a smartphone-dependent educational 
robot by integrating CV algorithms into the smartphone’s operating system (Android 
and iOS). The system utilized OpenCV code for ArUco marker detection, basic CV 
operations for lane detection, and a CNN model based on TensorFlow MobileNetv3 
for object identification. Focusing a particular attention on the hands-on training 
sessions with Rovio mobile robots, another work outlines the most pertinent aspects 
of the module content and assessment methodology [31]. The authors of [32] pro-
posed a CV-based system for teaching children the alphabet. Kusumota et al. [33] 
designed an educational robot that produces sounds, draws geometric shapes, 
displays mathematical questions on a screen, interacts with people by asking for 
answers, and expresses emotions through body movements and LCD screen emojis. 
For a summary of CV and mobile system educational robots, refer to Table 2.

Table 2. A summary of CV and mobile system educational robots

Ref. Functionality Observed Features Algorithms/ 
Methods/Tools Results

[27]
[28]

To teach children with Down 
syndrome to recognize colors

microphone, sonar, 
speaker, pressure sensor, 
touch sensor

NAOqi N/A

[30] Real-time object identification, ArUcO 
marker detection, and lane detection

a smartphone-dependent 
educational robot

OpenCV, CNN N/A

[31] Hands-on training sessions, class 
lectures, and assessment

a mobile robot (Rovio) OpenCV N/A

[32] For teaching children alphabet 
through robot

Robot SVD N/A

[33] Works on real-time actions Google Cloud Vision API, 
Real-time robot

CV N/A

2.3	 Medical	training

 Scientists are striving to enhance the applicability of computer vision (CV) in 
medical technology, as per research [34] that evaluated two common algorithms. 
CNN extracts feature vectors from images, while RCNN integrates CNN and region 
features for object detection. Selective search is employed to extract 2000 proposed 
regions, and each region undergoes CNN processing to calculate features. The study 
concludes that trained CNN and RCNN can replace many outdated classification 
methods in medical technology. Prior to actual surgeries, doctors acquire the nec-
essary skills through CV-assisted Virtual Reality (VR). CV algorithms can analyze 
pre-recorded surgical videos to evaluate operation quality by assessing parameters 
such as speed, acceleration, needle rotation, and duration. Hisi, Rebecca et al. [35]  

https://online-journals.org/index.php/i-jim
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introduced a method for real-time detection and feedback during central venous 
catheterization training. Nugent et al. [36] developed a simulation-based lapa-
roscopic training system called ProMIS, which combines haptic feedback and VR 
modules. Camera tracking systems capture equipment motion, instrument path 
length, acceleration, and movement uniformity from three different angles at a rate 
of 30 frames per second. Law, Hei, et al. [37] proposed a CV-based video analysis 
system for robotic surgery that reviewed information on the motion of the robotic 
device. They employed crowdsourcing on Amazon Mechanical Turk (AMT) to anno-
tate robotic needles in the video. The annotated data was then used to train Stacked 
Hourglass Networks, and an SVM was trained using video recordings from 12 sur-
geries. Kil, Irfan, et al. [38] presented a method to assess surgeons’ suturing skills by 
extracting relevant metrics from videos. With the help of a customized lens attached 
to the mobile’s camera, a mobile app is now constantly updated with heart rate, 
blood pressure, and oxygen levels collected by sensors on the patient’s wrist, and 
patients can use assistive technologies using mobile devices [39][40] (see Table 3).

Table 3. A summary of CV and mobile system medical training

Ref. Functionality Observed Features Algorithms/ 
Methods/Tools Results

[34] Detects the workflow where a webcam complex surgical video recordings, an 
electromagnetic tracking device

OpenCV N/A

[35] Investigation of medical images classification and detection CNN, RCNN N/A

[36] Collects equipment motion a simulation-based laparoscopic 
training system

OpenCV N/A

[37] Track movement of two robotic 
needles from the video

Amazon Mechanical Truck (AMT) ConvNet, SVM 91.67%

[38] To assess suturing skill of surgeons relevant metrics from video footage OpenCV N/A

[39] Keep track of heart rate, blood 
pressure, and blood oxygen data

customized lens attached to a 
phone’s camera

CNN, RNN, SVM 95%

[40] Assistive techniques for 
patient’s treatment

assist patient about their disorder 
through mobile application

CV, SLAM (self-localization 
and mapping)

N/A

2.4	 Online	proctoring

Surveillance of student activity during online activities is necessary due to the 
absence of physical invigilators. Sarthak et al. [41] proposed an automated system 
to monitor students’ activity during online examinations. The system uses functions 
such as eye gaze tracking, facial movement, object detection, face detection, and 
audio-to-text conversion. It leverages the OpenCV Python package for computer 
vision, using the Dlib model for face detection and the YOLOV3 model for object 
detection. Similar work was done in another paper [42], which evaluated head pose, 
eye gaze, audio detection, and fraudulent activity prediction using the RealHePoNet 
CNN model. The study used the XGBoost and MLP classifiers, achieving 94% and 
0.059% accuracy, respectively, in predicting cheating behavior. Another study sug-
gested using a machine learning-based system [43] that was 96.04% accurate to help 
examiners spot cheating and malpractice in e-exams. An image-hashing-based proc-
toring system was proposed [44] to address privacy concerns in online proctoring. 
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The system protects student privacy by blurring faces or using masks. Real-time 
assessment during online testing is challenging, and a video summarization process 
can aid post-test review [45]. The proposed method involves detecting head pose, 
using the Hidden Markov Model (HMM) for behavioral modeling, and generating 
summaries for evaluation. The OpenCV algorithm is used for head tracking. Some 
works have described an online remote examination proctoring system for mobile 
devices that monitors the candidate’s surroundings using a number of approaches, 
such as live video and audio streaming [46] and [47]. Table 4 provides a summary of 
CV and mobile system online proctoring.

Table 4. A summary of CV and mobile system medical training

Ref. Functionality Observed Features Algorithms/Methods Results

[42] Automated 
online proctor

eye gaze tracking, mouth movement, 
object identification, face recognition, 
audio to text conversion

OpenCV, YOLOV3, Dlib 99.91% (person detection), 
97.08% (object detection)

[43] Automated online 
exam proctor

head pose, estimating eye gaze, detecting 
audio from a video, and predicting 
students’ cheating behavior

CNN (RealHePoNet, 
OpenCV, Dlib)

94% (cheating behavior)

[44] Privacy-preserving 
online proctor

image hashing, detecting face and 
body movement

MediaPipe, Dlib N/A

[45] Post-review video 
summarizer

head tracking, pose estimation OpenCV (Hidden 
Markov Model)

79.8% (pose acc.), 79.3% 
(abnormal behavior recognition)

[46] Remote examination 
proctoring system

real live audio, video streaming OpenCV N/A

[47] Automated 
proctoring system

eye gazing, face detection, facial 
landmarks, head pose estimation, object 
and open mouth detection

OpenCV, Speech to text N/A

2.5	 Perception	monitoring

 The attention level of students in class has a significant impact on their academic 
success, as positive learning outcomes are strongly associated with student engage-
ment [48]. Ngoc Anh et al. [49] proposed a system to monitor students’ behavior in 
the classroom using CV methods like face identification, face embedding, gaze esti-
mation, facial landmark identification, and face classification. However, their study 
did not track facial expressions, emotions, or head/body posing estimation, which 
are crucial factors in monitoring human behavior. Canedo et al. [50] addressed these 
limitations by introducing an agent to monitor students’ attention, while Van der 
Har and Dustin [51] focused on recognizing students’ emotions for the same pur-
pose. The dynamic switch of a smartphone and gesture recognition allowed students 
to quickly engage with virtual content [52]. In another study [53], classroom involve-
ment was evaluated using a semi-automated process that combined CV techniques 
with human observations. This model successfully recognized students’ attention 
levels based on eye gestures but faced challenges in determining attention based on 
emotions. Savov, Teodor et al. [54] investigated how integrating IoT technology (e.g., 
PIR sensors, noise sensors) with CV enhances the accuracy of facial recognition for 
monitoring students’ moods and assessing attention levels. In addition to students’ 
perceptions, considering the teacher’s point of view is crucial, although it is often 
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overlooked by researchers. The authors [55] proposed a model that evaluates teacher 
perception in the classroom by integrating gaze data from a mobile eye tracker with 
egocentric vision. By using an eye tracking glass worn by the teacher, all students’ 
faces can be recognized, and the model can also detect nonverbal activities that keep 
students engaged, such as moving around, gesturing, and making eye contact [56]. 
This model aims to automatically detect such teacher activities and establish their 
relationship with students’ self-reported attention. Table 5 provides a summary of 
CV and mobile system perception monitoring.

Table 5. A summary of CV and mobile system perception monitoring

Ref. Functionality Observed Features Algorithms/ 
Methods/Tools Results

[49] Student’s classroom 
behavior monitoring

face identification, embedding, gaze estimation, landmark 
identification & classification

SSH, O-Net, L-Net, MTCNN, 
Hopenet, SVM, RF, DT, GB

N/A

[50] Monitoring perception by 
detecting facial expression

facial expression, emotions, head or body posing 
estimation

MTCNN, OpenCV, Dilb, 
OpenPose, RestNet-101

N/A

[53] Classroom involvement 
identification

facial expressions, note-taking devices, audio devices that 
allow students to connect with the teacher, eye posture 
towards the teacher or board, body motions, etc.

Not mentioned N/A

[54] Integration of IoT & CV to 
enhance perception

noise, fidgeting level, images of each student OpenCV, LBPH, 
Fisher algorithm

N/A

2.6	 Plagiarism	checking	of	the	handwritten	document

Plagiarism, the act of stealing someone’s work without proper credit, has become 
widespread in recent years. In a paper [57], a technique for extracting texture fea-
tures and an enhanced SVM method are presented, utilizing four feature vectors 
to express features like Energy, Entropy, Moment of inertia, and Correlation. The 
classification method used is DAG_SVM (Directed Acyclic Graph SVM), with Minimal 
Hypersphere and achieves the highest accuracy at 93.32%. In a similar study by 
Yunyan Wang et al. [58], transfer learning-based convolutional neural networks 
were employed to classify images. The approach involved extracting features 
using the Histogram of Oriented Gradient (HOG) method from training data, which 
were then fed into SVM for pre-classification. By utilizing a transfer network in CNN, 
the results were compared to typical classifier algorithms, achieving an accuracy 
of 95%. Authors of article [59] aimed to determine the similarity of text images by 
calculating a similarity score based on text reuse patterns, slight differences in word 
morphology, word order, and content interpretation. The suggested CNN feature 
technique outperformed conventional hand-held design feature extraction when 
comparing similar images. However, this technique has a limitation as it only rec-
ognizes similarities in written texts, potentially overlooking graphs or diagrams 
present in documents. In a study [60], both OCR (Optical Character Recognition) 
and CNN were employed to convert images to text. OCR was used to convert dig-
ital images into machine-encoded text, and CNN provided additional refinement 
to the OCR output. It was observed that OCR alone produced satisfactory results 
compared to CNN. Oleg et al. [61] conducted a challenging task of checking for pla-
giarism in handwritten texts or documents. They demonstrated a process of recog-
nizing such papers and determining if they are comparable to another document, 
known as a near-duplicate document. Dynamic time warping (DTW) was utilized as 
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a function to compare similar documents. One drawback of the studies [60],[61] can 
be addressed by employing the strategy presented in the study [62]. Jithin S Kuruvila 
et al. [54] showcased a strategy to identify similarly shaped flowcharts in two doc-
uments. The operation consists of four modules: the first module applies the Canny 
edge detection (CED) algorithm to transform the image into binary form. The second 
module utilizes area detection algorithms to recognize various shapes present in the 
flowchart. A directed graph is formed to determine the orientation of the generated 
shapes. The final module compares the resulting graph with previously generated 
graphs in the repository to determine flowchart similarity. Moreover, detecting pla-
giarism in sentences using GLSA (Generalized Latent Semantic Analysis) has become 
noticeable in mobile learning [63]. Table 6 provides a summary of CV and mobile 
system plagiarism checking of a handwritten document.

Table 6. A summary of CV and mobile system plagiarism checking of the handwritten document

Ref. Functionality Observed Features Algorithms/ 
Methods/Tools Results

[57] Classify educational images texture feature extraction DAG_SVM, CNN 
(Transfer network)

93.32%, 95%

[59] Identifying near-similar document 
Image-to-text conversion

word segmentation DTW (Dynamic time 
warping), FastDTW

87–96%

[60] Image-to-text conversion digital image into machine-encoded text OCR, CNN N/A

[61] The similarity between images of 
handwritten documents

text reuse pattern, word morphology, 
word order, etc.

CNN N/A

[62] Identifying similar flowchart pre-processing real flowchart, detecting 
shapes, constructing graphs

CED (Canny edge detection) N/A

[63] Detecting plagiarism on 
mobile learning

detect sentences with syntactic error or 
common words

GLSA (Generalized Latent 
Semantic Analysis)

N/A

2.7	 Other	potential	applications

Identifying heritage sites, detecting cracks in concrete [64], and recognizing 
scholars and well-known individuals from images are significant tasks in image 
classification. In a research study [65], the authors employed transfer learning to 
incorporate a preexisting CNN model for heritage data classification. Fabric defect 
identification can also be addressed using computer vision (CV). P.R. Jayaraj et al. 
[66] proposed a multi-scaling deep CNN approach for fabric defect classification, 
examining six different defect classes. Sexual abuse is a serious violation of internal 
and external rights that is increasing in society. A study [67] suggested a CNN-based 
model with 95% accuracy to detect workplace harassment in social media videos. 
Additionally, the Social Force Model [68] has been introduced to detect abnormal 
behavior. For security purposes, a CNN-based helmet detection model linked to an 
Automated Teller Machine (ATM) can detect anomalies with a 95.3% accuracy, as 
demonstrated in [69]. The LRCN, a deep neural network model, was developed to 
detect five intrusion behaviors [70]. An updated version of the Gaussian Mixture 
Model has also been developed for object detection and trackingdynamic video 
sequences to identify intrusion [71]. Moreover, an IDS (Intrusion Detection System) 
implemented in [72] incorporates an object detection method (YOLO) and Real-time 
Tracking algorithm (SORT) with a 97% accuracy and an average frame rate of 30. 
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Another study [73] proposed an efficient framework for violence identification 
from surveillance camera streaming video using Linear SVM, Cubic SVM, Random 
Forest (RF), and Violent Flows (ViF) algorithms. OpenFace is an open-source real-
time platform for facial behavior analysis, including landmark detection, head 
pose tracking, eye gaze, and facial action unit estimation. In OpenFace, CNN is 
trained using randomly distributed landmark positions [74]. OpenFace 2.0, which 
utilizes the SVR-HOG technique, was introduced to increase accuracy from 76.1% 
to 92.9% [75]. Researchers continuously strive to intelligently analyze and detect 
facial motions. A study [76] uses an ASM (Active Shape Model) and SVM classifier to 
identify front-view human faces in real-time with 93% accuracy. Facial Expression 
Recognition (FER) classifies facial features linked to six emotions using Adaboost 
and Haar Cascade classifiers [77]. Some FER investigations used LBP, LDP, and KNN 
classifications to reach 96.83% recognition [78]. STLMBP, SVM, and 3NN were used 
to analyze face expressions in [79]. A hybrid deep convolutional recurrent neural 
network can identify facial expressions based on landmark placements better than 
snipping [80]. Learning management systems (LMS) use CV traits for testing and 
performance assessment because CV is crucial in education [81]. Based on student 
time and features, some algorithms may detect boredom, bewilderment, enthusi-
asm, aggravation, and attentive involvement with 98% accuracy [82]. The Hidden 
Markov Model (HMM) and Independent Bayesian Classifier Combination (IBCC) rec-
ognized hand and finger movements with 96% accuracy for single-hand gestures 
and 94% accuracy for double-hand gestures [83]. Table 7 provides a summary of 
other potential applications for CV.

Table 7. A summary of CV-based other potential applications

Ref. Functionality Observed Features Algorithms/ 
Methods/Tools Results

[65] Identifying heritage sites transfer learning CNN (VGG16) 95%

[66] Fabric defect identification six different defect classes Multi-scaled CNN 96.55%

[70] Detect intrusion five types of intrusion behaviors LRCN N/A

[72] Intrusion Detection System intrusion from live video stream YOLO, SORT 97%

[73] Identifying violence violence from surveillance camera 
streaming video

Linear SVM, Cubic SVM, 
Random Forest (RF), ViF

N/A

[75] Facial behavior analysis facial landmark detection, head pose tracking, 
eye gaze, and facial action unit estimation

CNN, SVR-HOG 92.9%

[76] Face identification real-time identification based on the front 
view human facial image

SVM 93%

[77] Face identification pleasure, sorrow, disgust, anxiety, anger, 
and surprise

Adaboost, Haar Cascade N/A

[83] Recognizing hand and finger 
gestures with facial expression

single hand gesture, double hand gesture HMM, IBCC 94% (DHG),  
96% (SHG)

3	 DESIGN	AND	METHODS

The main purpose of this article is to identify the most current CV research 
trends in the education sector to fulfill the study objectives, which are listed below 
on the research questions. So, we collected published research papers on this topic 
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from 2010–2021 and categorized them. Literature review sections find answers to 
those questions by analyzing some of the most important research papers. At the 
beginning of all our work, we studied numerous concepts of systematic review 
before proceeding with the popular guidelines provided by Okolio, Chitu et al. [84], 
where each stage is explained in depth and has also acquired popularity among 
researchers in recent years. Here, Figure 1 presents the workflow of our system-
atic review.

Fig. 1. Workflow of this systematic review

3.1	 Research	questions

•	 RQ1: What are the current research trends in CV and mobile systems in the 
educational sector?

•	 RQ2: How are these beneficial to the educational sector?
•	 RQ3: How can different aspects of these be applied in education?
•	 RQ4: How will these benefit from the perspective of future education?

3.2	 Paper	searching	approach

Google Scholar was used to find research publications on this study’s topic 
because of its high-quality relevance ranking. A search query was developed to find 
relevant articles, where the first 10 pages (100 research papers) of each search result 
is considered. See Box A for detailed search queries.

Box A. Search query

Search Query = (‘null’ || ‘Attendance Monitoring’ || ‘Online Proctoring’ || ‘Image Classification’ || 
‘Object Detection’ || ‘Face Identification’ || ‘Educational Robot’ || ‘Training’ || ‘Medical Training’ || 
‘Plagiarism Checking’ || ‘Handwritten Document’ || ‘Perception Monitoring’ || ‘Anomaly Detection’ || 
‘Behavior Monitoring’ || ‘Engagement’ || ‘Handwritten document’) && (‘null’ || ‘Students’ || ‘Classroom’ 
|| ‘Education’ || ‘Educational Institute’ || ‘Application’) && ‘Computer Vision’

3.3	 Screening	of	relevant	paper

Many articles were found using our search criteria, but not all of these publi-
cations addressed our study’s concerns and needs. So, from this list, we selected 
318 papers related to CV applications in education and 30 articles on CV applica-
tions that have not yet been implemented in education but are likely to be used (see 
Table 8). These selection processes are carried out following identification, screen-
ing, eligibility tests, and inclusion-exclusion criteria. To determine current research 
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trends, we graphically presented the year-wise distribution of those publications 
and classified all of those selected papers’ relevant categories.

Table 8. Current research trends in computer vision and mobile system in education

Name of Category Number of Studies Percentages

Attendance Monitoring 100 31.44%

Perception Monitoring 75 23.58%

Handwriting Identification 64 20.12%

Online Proctoring 41 12.89%

Educational Robots 29 9.12%

Medical Training 9 2.83%

a) Inclusion criteria:
•	 CV-related research is aimed and has potential towards the educational sector.
•	 Articles published in the English Language.
•	 Research articles published between 2010 to 2021 (see Figure 2)

b) Exclusion criteria:
•	 CV research is not related to education and is unlikely to be used in the 

education sector.
•	 Short papers, review articles, less popular papers, unpublished research 

articles, Wikipedia content, and online blog.

Fig. 2. Annual distribution of published articles on computer vision and mobile  
system in the education sector

3.4	 Literature	review	execution

After reviewing all of the selected research papers, we independently selected 
some papers for discussion in the literature review section to answer some of the 
research questions raised.
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4	 RESULT	AND	DISCUSSION

4.1	 Trends	of	CV	and	mobile	system	in	the	educational	sector

Figure 3 illustrates the current research trajectory in the education sector 
regarding CVs and mobile systems. The domain of attendance monitoring is the 
most widely studied. Perception monitoring is the second step, followed by hand-
written documents. The prevalence of online proctoring and pedagogical robots 
has decreased. Medical education, in conclusion, is the least researched field within 
education. The potential impact of integrating CVs and mobile systems into the 
education sector is a paradigm shift in the way students engage with and acquire 
knowledge from educational materials. An extensive selection of mobile applica-
tions pertaining to computer vision are presently available for free installation 
from the Google Play Store [7], enabling students to conveniently access them. 
A concentration on a variety of subjects, including attendance tracking, educa-
tional robots, medical training, online proctoring, perception monitoring, and OC, 
has been identified through our investigation of current research trends [8], [10], 
[11–14], [36–38], and [52]. However, it is crucial to acknowledge that the imple-
mentation of CV-assisted teaching may also present obstacles or ethical concerns 
that require attention. We have outlined the most recent developments in CV and 
mobile system research within the educational sector in the present paper. Almost 
certainly, our paper introduces these developments to comprehension by discuss-
ing how computer vision technology is presently being utilized or researched in 
the field of education.

Fig. 3. Current research trends in computer vision and mobile systems in education

4.2	 Benefits	of	CV	with	mobile	system

To address our second research question, computer vision (CV) technology has 
the potential to improve the educational sector in a variety of ways. One of the pri-
mary advantages is the capacity to create tailored learning experiences for each 
student through the use of a small device known as a mobile device [43], [50]. This 
can help ensure that each student receives the necessary assistance and resources. 
Furthermore, CV technology can be used to make education more accessible to stu-
dents with varied needs or abilities by providing images or other sorts of support. 
This can help to create a more inclusive and equitable learning environment. 
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Furthermore, our data imply that CV-assisted mobile teaching has the potential to 
significantly improve efficiency, accessibility, and student participation.

4.3	 Applications	of	CV	and	mobile	system	in	different	avenues

We focused on the applications of CV and mobile systems in various avenues 
to answer our third research question, such as monitoring student attendance, 
engaging students in interactive learning experiences, enabling medical training, 
facilitating remote testing, grading exam papers, tracking student conduct, digitiz-
ing printed texts, object detection, face recognition, eye contact monitoring, emotion 
capturing, gesture recognition, picture categorization, and augmented reality. This 
study reveals that the use of CV and mobile technologies makes these applications 
possible [7], [9], [24–25], [30], [37], [39–40], and [49].

4.4	 Future	prospect

To answer the fourth research question, we found that integrating computer 
vision (CV) and mobile system in education can bring significant changes to how stu-
dents learn and interact with educational material, potentially revolutionizing the 
sector. It is evident that CVs and mobile systems have the potential ability to enhance 
efficiency, accessibility, and student engagement that led to improved educational 
outcomes [51], [53], [78], [85]. It enables personalized learning experiences, immer-
sive environments, improved accessibility for students with disabilities, automated 
assessments, and advanced research. Image classification and object identification 
algorithms can be applied across various fields such as medicine, ecology, civil engi-
neering, and textile engineering. In the future, CV could detect abnormal activities 
like harassment and bullying, as well as identify strangers on educational premises.

5	 CONCLUSION

The rapid growth of the computer vision industry and its integration with mobile 
applications have paved the way for transformative possibilities in education. Our sys-
tematic review of 84 research publications underscores the multifaceted advantages 
of utilizing computer vision technology, shedding light on its potential to revolution-
ize the educational landscape. By enabling the monitoring of students’ perceptions, 
mitigating academic dishonesty, and automating administrative tasks like attendance 
tracking, computer vision and mobile technology offer substantial benefits to edu-
cators and institutions, optimizing the efficient use of classroom time. Moreover, its 
applications extend to diverse educational domains, from engineering to medical sci-
ence, presenting opportunities to enrich the learning process across faculties.

Beyond academic enhancement, the technology’s capacity to create safer cam-
pus environments by detecting and addressing abnormal activities such as ragging, 
bullying, and harassment is a testament to its broader societal impact. As we nav-
igate the ever-evolving landscape of education, the fusion of computer vision and 
mobile systems opens up new horizons for both academic excellence and student 
well-being. These findings provide valuable insights for educational institutions, 
policymakers, and technology developers seeking to harness the full potential of this 
dynamic partnership in shaping the future of education.
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