
 

UNIVERSITY OF UDINE 

Department of Electrical, Management and Mechanical Engineering 

 

PhD in Industrial and Information Engineering 

CYCLE XXVII 

 

PhD THESIS 

A system for recognizing human emotions based on speech analysis and 

facial feature extraction: applications to Human-Robot Interaction 

 

 

Supervisor: 

Professor Alessandro Gasparetto 

 

By: 

Mohammad Rabiei 

 

DEC-2014 

 



A system for recognizing human emotions based on speech 

analysis and facial feature extraction: applications to Human- 

Robot Interaction 

 

 

Foremost, I would like to express my deepest thanks to my Professor Alessandro 

Gasparetto for allowing me to conduct this research under his auspices. I am especially 

grateful for his confidence and the freedom that he gave me to do this work. Without a 

coherent and illuminating instruction, this thesis would not have reached its present form.  

I wish to thank to my family for their encouragement. Without the support of all members of 

my family, I would never finish this thesis and I would never find the courage to overcome all 

these difficulties during this work. My thanks go to my parents for their confidence and their 

love during all these years.  

I extend my sincere thanks to all members of the Department of Electrical, Mechanical and 

Managerial Engineering (DIEGM) of University of Udine, (ITALY) and all those who 

contributed directly or indirectly to the dissertation.  

I am deeply grateful to all members of the jury for agreeing to read the manuscript and to 

participate in the defense of this thesis.   

I also want to thank the all my friends and my colleagues in the laboratory for their kindness 

and help. Finally, I express my sincere gratitude to who kindly agreed to recordings their 

speech and facial emotion in the emotion recognition system. 

 

 

 



 

 

 

To my parents 

For unconditionally providing their love, support, guidance and 

encouragement throughout my education. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CONTENTS   

Abstract  X 

1- 1- Related work in the speech emotion recognition and Facial features extraction  1 

1-1 Speech emotion recognition  2 

1-1-1 Speech processing recognition on basic emotion  3 

1-1-2 Speech recognition research in the past 5 years  8 

1-1-3 Databases on speech emotion recognition system  12 

1-1-4 Modelling and software for classification of speech emotion recognition  14 

1-2 Facial feature expression system  15 

1-2-1 Facial feature expression on basic emotion   16 

1-2-2 Facial feature expression on basic emotion in the past 5 years  24 

1-2-3 Databases for facial feature extraction system  28 

1-2-4 Face detection and facial expression APIs and software  30 

1-3 New hybrids model on emotion recognition system  32 

2- 2. Methodology and scenarios  for emotion recognition system  34 

2-1 Ontology for human robot interaction  35 

2-1-1 Ontology for concepts layer  35 

2-1-2 Ontology for device layer  37 

2-1-3 Ontology for speech recognizer  37 

2-1-4 Ontology for facial detection  39 

2-1-5 Ontology for design layer  39 

2-1-6 Ontology for interaction layer  41 

2-2 Methodology in speech emotion recognition system  44 

2-3 Methodology in facial feature extraction system  46 

2-4 Hybrid algorithm for emotion recognition system  49 

2-5 Basic emotion Theory   50 

2-6 Mathematical Methods for emotion recognition  51 

2-6- Bezier curve  51 

2-6-2 Support Vector Machine (SVM)   57 

2-7 Open-source toolkit for sound recognition  58 

2-7-1 OpenEAR toolkit  58 

2-7-2 PRATT Software  58 

2-8 Programming in C/C++ and open CV  60 

3- Implementation the emotion recognition system  62 

3-1 Speech features extraction  62 

3-1-1 Pitch features extraction  63 

3-1-2 Formant features extraction (speech communication)  71 



3-1-3 Intensity features extraction (speech communication)  74 

3-1-4 Speech rate features extraction  77 

3-2 Facial features extraction  78 

3-1-1 Eyes and Mouth Localization  78 

3-1-2 Eyebrows and Nose Localization  79 

3-3 Speech features classification  82 

3-4 Facial features classification  84 

3-4-1 Bezier curves for facial features classification  84 

3-4-2 Action Units (AUs) for facial features classification  86 

4- Evaluation the human emotion recognition system  92 

4-1 Rules extraction for emotion recognition system  92 

4-1-1 Rules extraction on speech interaction  92 

4-1-2 Facial features rules extraction  93 

4-2 Evaluation and the results of implementation emotion recognition system  96 

4-2-1 Results on speech emotion recognition   96 

4-2-2 Results on emotion recognition facial features expression  102 

4-3 Training of the emotion recognition system  107 

4-4 Evaluation of the results on emotion recognition in hybrid system  109 

5- Conclusion   111 

Bibliography  122 

 

 

 

 

 

 

 

 

 

 



Figure  
   

Figure 1-1 Emotion recognition in two-dimensional  3 

Figure 1-2 Three-dimensional emotion space (activation, potency, and valence) and six basic emotions  4 

Figure 1-3 Feature groups and number of features for speech emotion recognition  8 

Figure 1-4 The role of muscles in facial expression in (FACS)  16 

Figure 1-5 Different source of facial expressions  17 

Figure 1-6 Distinction of feature extraction and representation  18 

Figure 1-7 Outline of the facial point detection method based on Viola–Jones face detector algorithm  20 

Figure 1-8 Overview of the system based on PCA and SVM for detection of Action Units and emotions  20 

Figure 1-9 Outline of the proposed the system for recognition of AUs  21 

Figure 1-10 The main functionalities for facial emotion recognition  22 

Figure 1-11 FDPs used for recognizing facial expression and definition of distances  22 

Figure 1-12 Vikia has a computer generated face and different face robots (Science University of Tokyo)  23 

Figure 1-13 SVM classifier system used for facial expression recognition  25 

Figure 1-14   Example of landmarks, geometric features and texture regions  27 

Figure 1-15 Framework on automatic facial expression system  30 

Figure 2-1 Map of architecture, relationships between the architecture, design and ontology  36 

Figure 2-2 The architecture of a speech emotion recognition engine   37 

Figure 2-3 Automatic speech recognition (ASR) and storage in global context (data base)  38 

Figure 2-4 The HRI system architecture showing task-skill action from top to bottom  40 

Figure 2-5 Behavior controller system to connected action and behavior  42 

Figure 2-6 Example of speech analysis with the PRAAT program  45 

Figure 2-7 Model of the system for emotion recognition  45 

Figure 2-8 Diagram of the proposed methodology for facial features expression  47 

Figure 2-9 Original image (left side) and the binary image (right side)  47 

Figure 2-10 Face detection steps: (a) full frame photo (b) Zoom on face (c) feature candidate areas  48 

Figure 2-11 Diagram of the hybrid system methodology  49 

Figure 2-12 Interaction of the basic emotions with each other  50 

Figure 2-13 The two initial functions base on Bézier curves model  51 

Figure 2-14 The graph of Bézier Curve with four point  53 

Figure 2-15 Result of Bézier curve form five principle facial feature  53 

Figure 2-16 Change non liner space to linear with kernel  57 

Figure 3-1 Example of speech analysis with the PRAAT program  63 

Figure 3-2 Some pitch results from the 15 interviewed persons (Europeans, Americans, and Asians)  64 

Figure 3-3 European pitch contours for Happiness and Surprise  65 



Figure 3-4 Asian pitch contours for Happiness and Surprise  65 

Figure 3-5 American pitch contours for Happiness and Surprise  66 

Figure 3-6 European pitch contours for Anger and Sadness  66 

Figure 3-7 Asian pitch contours for Anger and Sadness  67 

Figure 3-8 American pitch contours for, Anger and Sadness  67 

Figure 3-9 European pitch contours for Anger, Fear and Disgust  68 

Figure 3-10 Asian pitch contours for anger, fear and disgust  69 

Figure 3-11 American pitch contours for Anger, Fear and Disgust  69 

Figure 3-12 European, Asian and American pitch contours for Neutral  70 

Figure 3-13 European speaker typical formant contour of basic emotions  71 

Figure 3-14 Asian speaker typical formant contour of basic emotions  72 

Figure 3-15 American speaker typical formant contour of basic emotions  73 

Figure 3-16 European speaker typical intensity contour of basic emotions  74 

Figure 3-17 Asian speaker typical intensity contour of basic emotions  75 

Figure 3-18 American speaker typical intensity contour of basic emotions  76 

Figure 3-19 Anthropometric of human face for features detection  78 

Figure 3-20 Eyebrows detection and localization boundary  80 

Figure 3-21 Extraction main facial features from image  81 

Figure 3-22 Model of the system for speech emotion classification and recognition  82 

Figure 3-23 Result of Bézier curves for five principal facial features  84 

Figure 3-24 Mutual interaction between facial features and Action Units (AUs) in the proposed system  87 

Figure 3-25 Interaction between facial features, basic emotions and Action Units (AUs)  88 

Figure 3-26 Facial matrix and 52 landmark points (eyebrows 16, eyes 16, nose 4, lips 16)  89 

Figure 4-1 The location of the pitch (range, peak and value) graph for six basic emotions  99 

Figure 4-2 Bar chart of the six basic emotions  99 

Figure 4-3 The location of the emotions in the three-dimensional graph: pitch (range, peak and value)  100 

Figure 4-4 The location of the basic emotions in: total pitch score, intensity and speech rate  100 

Figure 4-5 Accuracy in detection of facial features for Europeans, Asians and Americans  102 

Figure 5-1 speech recognition database for the participants to experiment  113 

Figure 5-2 Graphical interface of speech emotion recognition program  114 

Figure 5-3 Extract the facial distances based on universal basic emotions  115 

Figure 5-4 Facial feature database (Access) for 32 Action Units  116 

Figure 5-5 Interaction between Facial feature database and person emotion  117 

Figure 5-6 Fusion of database for emotion recognition system in hybrid system  118 

Figure 5-7 Sample of database for play audio file in emotion recognition system  119 

Figure 5-8 Software package with hybrid algorithm on emotion recognition system  119 

 



Table    

Table 1-1 English Speech Databases for speech recognition  13 

Table 1-2 Divided methods that used in facial expression analysis  18 

Table 1-3 Action Units included in the facial features detection  19 

Table 1-4 Summary of some of the facial expression databases   29 

Table 3-1 Speech rate on emotions (average of the 30 experimental tests  77 

Table 3-2 Summarizes the procedure for localization of the face features  80 

Table 3-3 Basic emotion with different features for recognizing facial expression  85 

Table 3-4 Basic emotions and 32 Action Units resulting from feature extraction  86 

Table 3-5 Facial features distance measurements  for basic emotion expression (15 codes)  90 

Table 3-6 Shows the average distances from the corresponding values and neutral.  91 

Table 4-1 Rules for emotion classification based sound signal  93 

Table 4-2 Basic emotion recognition base on extracted facial Action Units  93 

Table 4-3 Set of rules for emotion recognition on hybrid system  95 

Table 4-4 Likert type scale for emotion recognition  97 

Table 4-5 Percentage of emotions recognized correctly in speech analysis phase-Part (a)  98 

Table 4-6 Percentage of emotions recognized correctly  98 

Table 4-7 The accuracy recognition of the basic emotions  101 

Table 4-8 Facial detection accuracy for (European, Asian and American)  103 

Table 4-9 Facial expression detection accuracy in the proposed system  104 

Table 4-10 Facial expression recognition accuracy for Europeans, Asians and Americans  105 

Table 4-11 Emotion recognition rate (average) for Europeans, Asians and Americans  106 

Table 4-12 Facial expression recognition accuracy using the Cohn-Kanade database  108 

Table 4-13 Emotion recognition accuracy in hybrid system  109 

Table 5-1 Evaluation of proposed system with another literature report  120 

 

 

 

 

 



Abstract 

With the advance in Artificial Intelligence, humanoid robots start to interact with ordinary people 

based on the growing understanding of psychological processes. Accumulating evidences in Human 

Robot Interaction (HRI) suggest that researches are focusing on making an emotional communication 

between human and robot for creating a social perception, cognition, desired interaction and sensation. 

Furthermore, robots need to receive human emotion and optimize their behavior to help and interact 

with a human being in various environments.  

The most natural way to recognize basic emotions is extracting sets of features from human speech, 

facial expression and body gesture. A system for recognition of emotions based on speech analysis and 

facial features extraction can have interesting applications in Human-Robot Interaction. Thus, the 

Human-Robot Interaction ontology explains how the knowledge of these fundamental sciences is 

applied in physics (sound analyses), mathematics (face detection and perception), philosophy theory 

(behavior) and robotic science context.    

In this project, we carry out a study to recognize basic emotions (sadness, surprise, happiness, anger, 

fear and disgust). Also, we propose a methodology and a software program for classification of 

emotions based on speech analysis and facial features extraction.  

The speech analysis phase attempted to investigate the appropriateness of using acoustic (pitch 

value, pitch peak, pitch range, intensity and formant), phonetic (speech rate) properties of emotive 

speech with the freeware program PRAAT, and consists of generating and analyzing a graph of speech 

signals. The proposed architecture investigated the appropriateness of analyzing emotive speech with 

the minimal use of signal processing algorithms. 30 participants to the experiment had to repeat five 

sentences in English (with durations typically between 0.40 s and 2.5 s) in order to extract data relative 

to pitch (value, range and peak) and rising-falling intonation. Pitch alignments (peak, value and range) 

have been evaluated and the results have been compared with intensity and speech rate.  

The facial feature extraction phase uses the mathematical formulation (Bézier curves) and the 

geometric analysis of the facial image, based on measurements of a set of Action Units (AUs) for 

classifying the emotion. The proposed technique consists of three steps: (i) detecting the facial region 

within the image, (ii) extracting and classifying the facial features, (iii) recognizing the emotion. Then, 

the new data have been merged with reference data in order to recognize the basic emotion.  



Finally, we combined the two proposed algorithms (speech analysis and facial expression), in order 

to design a hybrid technique for emotion recognition. Such technique have been implemented in a 

software program, which can be employed in Human-Robot Interaction.  

The efficiency of the methodology was evaluated by experimental tests on 30 individuals (15 female 

and 15 male, 20 to 48 years old) form different ethnic groups, namely: (i) Ten adult European, (ii) Ten 

Asian (Middle East) adult and (iii) Ten adult American.  

Eventually, the proposed technique made possible to recognize the basic emotion in most of the 

cases.  

  

Keywords: Action Units (AUs), Emotion recognition, Facial expression, Human-robot Interaction, 

Speech analysis. 
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Human-robot interaction has been a topic of science fantasy stories even before any robots existed. 

Currently uses of human-robot are increasing, costs are going down and sales are growing up. In 

addition capabilities have been improved specially, in the safest physical communication. However, 

emotion is fundamental for human’s communication and perception in everyday activities. Although, 

we are still far from to have an effective emotional interaction between human and robot.  

The system for emotion detection refers to the quantitative analysis of verbal and non-verbal 

communication; focus on behavior, gestures and facial expressions. The researchers in human robot 

interaction filed have been proposed the new freeware to increase accuracy emotional communication 

(verbal and non-verbal) between human and Robot.  

The core part of this work, introduce the new methodology and program that uses for analysis of 

emotional states in speech communication, facial features extraction, emotion classification and 

evaluating the quality of emotion recognition system. By means of designing the new model for 

emotion recognition system we have been mixed the theory of sound signals and facial features 

recognition system. We have controlled the implementation of system with new results to create 

highly optimized emotion states.  

In the emotion recognition system have been bused two experiments for classification of emotion 

stats. Experiment 1 proposed the algorithms for speech emotion recognition. The model have been 

used (pitch, formant, intensity, speech rate and voice quality) plots. Also, in Experiment 2 the 

proposed algorithm increases the accuracy of facial emotion detection and recognition system. Then, 

for improvement the accuracy of classification, the results with fusion of pairwise (speech emotion 

recognition and facial features extraction).  

Finally, the proposed system have been developed on emotion recognition for different ethnic groups 

with new hybrid emotion recognition software.  

In this work the capture 1 divided in three sections. Section 1 gives a brief overview of the previous 

work on speech emotion recognition, section 2 describes some of the related work on facial features 

extraction and section 3 gives a short overview of the hybrids model on emotion recognition system. 
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1.1. Speech emotion recognition  

With the advance in human-robots interaction robot have been used in society such as toys , service, 

security guards, teachers, e-learning, diagnostic tool for therapists, search and rescue [1]. Speech 

emotion recognition has also been used in call center applications and mobile communication [2]. 

Some works tried to incorporate spoken dialogue system technology and service robots. Psychologists 

believe that faces to face communication and analysis of speech sounds (words and sentences) are 

considered as one of the prompt methods for human emotional interaction.  

We are still far from having an emotional interaction between human and robot because the machine 

does not have sufficient intelligent to understand human voice, speech and basic emotional state of the 

speaker. In human–human communication process, determination of a speaker’s states is more easier 

than to assessment of communication in human machine interaction, because partner’s in speech 

process constantly adapt their manner of speaking, based on the culture, mood, gender, mother- tongue 

age and pre emotion. 

Emotion is conveying significantly by verbal and non-verbal signals (body posture, gestures and 

facial expressions) expressed for determining the conversation. Psychologists believe that for 

emotional interaction between human and machine, a system must be developed to understand the 

human emotions in various environments. 

However in Encyclopedia emotion means “A mental positive or negative state that present in the life 

and consistent responses to internal or external events”. Although, the definition of ‘emotion’ in 

psychologist article is “what is present in most of life but absent when people are emotionless”; this is 

the concept of pervasive emotion [3].  

The human to human interaction consists of two channels, the implicit and explicit channel. The task 

of speech emotion recognition is very challenging, because it is not clear which speech features are the 

most suitable, in different cultures and manner to distinguish basic emotions. It is very difficult to 

determine the boundaries between these portions of basic emotions, sometimes they have slightly 

overlap with each other. nevertheless, beside the emotional states, the voice and speech signal can 

conveys a rich source of information about a speaker’s such as; physiological state, age, sex/gender 

and regional background.  

The speech signal is the fastest, efficient and natural method of communication between humans and 

robot for this reasons numerous studies have been done on speech emotion recognition, for various 

purposes [4]–[7].  
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1.1.1. Speech processing recognition for basic emotion 

Psychiatrists in the 20th century started the empirical investigation of the effect of emotion on the 

voice signals. The most important works done on emotion recognition through speech analysis are the 

famous Ekman’s and Fox’s models. In the early 1990s, Ekman and his colleagues have performed 

extensive work, which led to categorization of emotions into seven basic emotion models (sadness, 

surprise, happiness, anger, fear, disgust and neutral) and more emotions can be defined by mixtures of 

the basic emotions [8]. While Fox’s is a multi-level emotional model and involving stimulus 

evaluation subsequent steps in the generation of emotion [9]. 

Davidson et al. in 1979 for increases the emotion recognition time, proposed new model to 

categorize emotions. In this method emotions specified in two axes (arousal and valence). As shown in 

Figure. 1-1 in vertical axis the arousal represents the quantitative activation and the valence in 

horizontal axis refers to the quality of basic emotion (positive and negative valence) [10]. 

 

 

Fig. 1-1. Emotion recognition in two-dimensional. 

 

In different comprehensive research Schlosberg proposed a three dimensional emotion space: 

activation (arousal), potency (power), and valence (pleasure, evaluation). Figure. 1-2 shows the 

locations of six common basic emotions in the three dimensional emotion space [11]. 
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Fig. 1-2 Three-dimensional emotion space (activation, potency, and valence) and six basic emotions. 

Accordingly, a lot of researches have been done on speech emotion recognition, which is defined as 

extracting the emotional states of a speaker from his or her speech. It is believed that speech emotion 

recognition can be used to extract useful semantics from speech [12]. Hence, improves the 

performance of speech recognition systems. 

Several reviews on emotional speech analysis have been done with focused on content of speech 

signals and classification techniques for recognition of emotions. The most extensive work about 

automatic emotion recognition from speech signals was done by Yang and Lugger. They had proposed 

a new set of harmony features for automatic emotion recognition based on the psychoacoustic 

harmony perception [13]. They had estimated pitch contour of an utterance. Then, calculated the 

circular autocorrelation of the pitch histogram on the logarithmic semitone scale. In more 

comprehensive research, several approaches have been proposed to identify the emotional content of a 

spoken utterance [14]–[16]. 

Most researchers had reported emotion recognition consists of two major steps, speech feature 

extraction and emotion classification. However the classification theory in emotion recognition from 

sound signals developed well extraction of features from speech signals depends on database, 

algorithm and software design.  

The design of speech emotion classification and recognition system have three main aspects. The 

first one is the choice of suitable features for speech representation. The second issue is the design of 
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an appropriate classification scheme and the third issue is the proper preparation of an emotional 

speech database for an evaluating system performance [17]. 

Another challenging issue that helps technical researchers and social psychologists to better 

recognition of emotions have been designing a model that define culture dependency, regional 

background and environment of speaker [18].  

To date, research on the verbal expression of emotion has demonstrated that many features may be 

involved. Whereas there has tended to be an overwhelming focus on pitch variables, pitch contour, 

speech rate, intensity, pausing structure, accented and unaccented syllables and duration of speech. 

They can provide powerful indications of the speaker’s emotion [19]–[22]. Although researchers tend 

to pitch, spectral and formant are fundamental importance, relatively little is known about the 

interaction of pitch, speech rate, intensity and formant in communication. 

Experimental support for the basic importance of voice quality can be found by Scherer et al. in1984. 

Scherer suggests that tense voice is associated with anger, joy and fear; and that lax voice (at the 

phonation level essentially the same as breathy voice) is associated with sadness [23]. Also, the most 

extensive work about sound analysis was done by Scherer. This research was based on the vocal 

communication of emotion and model the complete process, including both encoding (expression), 

transmission and decoding (impression) of vocal emotion communication. Special emphasis is placed 

on the conceptualization and operationalization of the major elements of the model (i.e., the speaker’s 

emotional state, the listener’s attribution, and the mediating acoustic cues) [24]. 

Some works tried to incorporate feature extraction and analysis the different aspects of emotions in 

voice [25]–[28]. Also, some researches have been improved the analysis of speech signals graph (pitch 

value, pitch rate and pitch range) [29]. In 1986 Scherer further asserts that ‘‘although fundamental 

frequency parameters (related to pitch) are undoubtedly important in the vocal expression of emotion, 

the key to the vocal differentiation of discrete emotions seems to be voice quality and intensity’’[23]. 

Numerous studies have been done on the influence of emotions on intonation patterns (more 

specifically F0/pitch contours) and design a new coding system for the assessment of F0 contours in 

emotion [30]. Nonetheless, few studies on emotions influence from sound signals have attempted to 

describe F0 contours (average F0, F0 level or F0 range) for different emotional expressions [31].  A 

number of authors have claimed that specific intonation patterns (F0/pitch and other vocal aspects) 

reflect specific emotions [32] [33]. However in recent year, very few empirical studies have focused on 
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the tone sequence models. Tone sequences have been used more extensively than pitch movement 

algorithm for the description and analysis of linguistic intonation. 

The (MSFs) system, described by Siqing et al. (2011). They proposed system (spectral features 

(MSFs)) for the automatic recognition of human emotion and affective information from sound 

signals. The features were extracted from Mel-frequency cepstral coefficients and perceptual linear 

prediction coefficients [34]. The features were extracted from an auditory-inspired long-term spectrum 

temporal representation and proposed algorithm check classification of discrete emotions and 

estimation of continuous emotions (e.g. valence, activation) under the dimensional framework. Also, 

selected features were based on frequency analysis of the temporal envelopes (amplitude modulations) 

of multiple acoustic frequency bins, thus capturing both spectral and temporal properties of the speech 

signal [34] . In the past years, researchers were focused on prosodic features, more specifically on 

pitch, duration and intensity and less frequently on voice quality features as harmonics-to-noise ratio 

(HNR), jitter, or shimmer [3].  

Past researches carried out in the field of automatic recognition of emotion from speech has tended to 

focus on speech feature extraction, classification, robustness, evaluation, implementation and system 

integration. One of the most important questions in emotion recognition is how many and which kind 

of features must be choosing. The answer to this question is important to processing speed of system 

and memory requirements. The feature selection strategies have been used the most common 

techniques, namely; Principal Component Analysis (PCA), Linear or Heteroscedastic Discriminant 

Analysis (LDA), Independent Component Analysis (ICA), Singular Value Decomposition (SVD) and 

Non-negative Matrix Factorization (NMF) [35]. Arguably the most important phase in emotion 

recognition is extraction of a meaningful and reasonably set of features. So far there has not been a 

large-scale Linguistic features. Also, this analyzing and classification depend on the database. The 

feature extraction method requires some kind of division of features into basic emotion classes. 

Principal Component Analysis (PCA) is based on multivariate analyses that use statistical procedure. 

The model have been invented in 1901. Schölkopf in 1997 used integral operator kernel functions and 

proposed a new method for performing a nonlinear form Principal Component Analysis (PCA) in 

speech emotion recognition. By the use of new functions can efficiently compute principal 

components in high dimensional feature spaces, related to input space by some nonlinear map [35]. 

Linear discriminant analysis (LDA) is closely related to regression analysis and used in machine 

learning, pattern recognition and statistics. In emotional speech recognition field researcher used linear 

discriminant analysis by means of combination of sound features. Potamianos et al. in 2003 proposed 
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a new work on modeling of audiovisual speech feature and decision fusion combination with linear 

discriminant analysis (LDA). The proposed algorithm have three main subject, namely; bimodal 

databases, ranging from small- to large-vocabulary recognition tasks, recorded in both visually control 

and challenging environments [36]. The principle component analysis (PCA) method has been used 

for improve the accuracy of feature extraction and emotion classification. Also, linear discriminant 

analysis (LDA) with floating search compares the emotion features extraction. 

Independent component analysis (ICA) is the computational method that use non-Gaussian signals 

for analyses person's that speech in a noisy room. In this system the source of sound signals must be 

independent each other. Attempts to generate sound recognition system have been made using 

Independent component analysis (ICA) by MA Casey in 2001. The proposed system used dimension 

log-spectral features, select robust acoustic features and a minimum entropy with hidden Markov 

model classifier [37]. 

Nonetheless, there have been a number of attempts to recognition of speech and musical instrument 

with Singular Value Decomposition (SVD) and Non-negative Matrix Factorization (NMF) [38]–[40]. 

The work by Cho et al. in 2003 proposed the system for classification of speech features. This 

methods was based on feature extraction from Spectrum-Temporal sounds and using the non-negative 

matrix factorization (NMF) [41].  

A speech emotion recognition system consists of various types of classifiers. However, each 

classifier have its own limitations and advantages. For example in recent year, Hidden Markov Models 

(HMM) and Gaussian Mixture Models (GMM) generally used in the article with solid mathematical 

basis and classifier on emotion classification probably [42]–[44]. 
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1.1.2. Speech recognition research in the past 5 years 

Some of the high quality articles in that issue were dealing with the Automatic Speech Recognition 

(ASR) model, Speaker Recognition and automatic recognition of realistic emotions in speech with 

statistical and mathematical procedures. In more comprehensive research Yung and Lugger in 2010 

proposed the Mel frequency central coefficients (MFCC) models. The system was successful for 

speech emotion recognition. As it shows in Figure. 1-3 all features that they used for classification of 

emotion divided in seven sub branches, namely energy, pitch, duration, formant, statistic, harmony 

and voice quality [45]. 

 

 

Fig. 1-3 Feature groups and number of features for speech emotion recognition. 

 

As described above some works tried to incorporate the emotional speech with Hidden Markov 

Models (HMMs), Neural Networks (NNs), Support Vector Machines (SVMs), Gaussian Mixture 

Models (GMMs) and Meta-Classification by means of extracting certain attributes from speech. 

Popular classifiers for emotion recognition such as K-Nearest Neighbor (KNN) classifiers and Linear 

Discriminant Classifiers (LDCs) have been used since the very first studies. K-Nearest Neighbor 

(KNN) divide the feature space into cells and are sensitive to outliers.  

In the last few years the research in automated speech emotion recognition methods in real time with 

minimum redundancy – maximum relevance was steadily growing. Kukolja et al. proposed the 

comparative analysis of methods for physiology-based emotion estimation and the model was 

combination of mRMR+ KNN for real-time estimator adaptation due to considerably lower combined 

execution and learning time of KNN versus MLP [46]. 
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On the other hand, a natural extension of LDCs is Support Vector Machines (SVM). If the input data 

have not been transformed linearly, maybe have increased or decreased the number of features and if 

the linear classifier obeys a maximum-margin fitting criterion, then we obtain SVM.  

In obviously related work, Support Vector Machine (SVM) was done with Chen et al. in 2012. They 

solved the speaker independent speech recognition with new Support Vector Machine (SVM) model 

for six basic emotions, including happiness, anger, fear, sadness, surprise and disgust. In order to 

evaluate the proposed system, principal component analysis (PCA) for dimension reduction and 

artificial neural network (ANN) for classification were adopted to design four comparative 

experiments, including Fisher + SVM, PCA + SVM, Fisher + ANN, PCA + ANN [47]. 

As noted in the speech emotion recognition research, small data sets are in general, can better handle 

by discriminative classifiers [48]. The most used non-linear discriminative classifiers were likely to be 

Artificial Neural Networks (ANNs) and decision trees. Decision hyper planes learned with Artificial 

Neural Networks might become very complex and depend on the topology of the network (number of 

neurons), on the learning algorithm.  

With the new approach in speech emotion recognition systems Stuhlsatz et al. proposed the new 

model for Generalized Discriminant Analysis (GerDA). This model was based on Deep Neural 

Networks (DNNs) by means of feature extraction and classification [49]. The GerDA was able to 

optimize the acoustic features in real time and used simple linear classification. 

The essence of speech emotion analysis is evaluating the emotional speech in different 

environments. Gao et al. used Hidden Markov Models (HMMs) to evaluate the emotional recognition 

performance [50]. Among dynamic classifiers, HMM have been used widely in speech and speaker 

recognition system. Le and Mower Provost in 2013 proposed the new model to hybrid classifiers 

which used Hidden Markov Models (HMMs) to capture the temporal property of emotion and DBNs 

to estimate the emission probabilities [51].  

Wollmer et al. in 2010 designed the system for sensitive artificial listener (SAL) in human-robot 

communication. The proposed algorithms have been used linguistic and acoustic as well as long range 

contextual. The main system components are hierarchical dynamic Bayesian network (DBN) for 

detecting linguistic keyword features and long/short-term memory (LSTM). Recurrent neural 

networks use for emotional history to predict the affective state of the user [52]. 

The sound signals transmits multiple layers of human information. Most studies related to 

description of emotion in speech. They have been focused on fundamental frequency (f0), speech 
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duration, speech rate and energy ( intensity of the voice and amplitude) distribution [53]–[56]. 

Guzman et al. done a study by means of the influence emotional expression in spectral energy. they 

have been suggested that expression of emotion impacts and the spectral energy distribution. Also, 

they discovered that emotional state by a breathy voice quality (sadness, tenderness and eroticism) 

present a low harmonic energy above 1 kHz, and emotional states (anger, joy and fear) by high 

harmonic energy greater than 1 kHz [57]. 

There are a number of issues in automatically detection on emotional content from human voice. 

Origlia et al. in 2013 attempts to analysis of speech for emotion recognition progresses with extraction 

of acoustic properties in a real time. Feature extraction method built on the basis of a phonetic 

interpretation of the concept of syllables for the emotions transmission [58]. 

Furthermore, in an obviously related way, some researchers have been represented a major advance 

in terms of conceptualizing the neural processes in emotional speech. In doing so, Iredale et al. 

examined the neural characteristics of emotional prosody perception with an exploratory event [59].  

In order to advance the functional model of vocal emotion, they have been examined ERP correlates 

of affective prosodic processing perception. Finally they proposed model of vocal emotion perception 

for (happiness, angry and neutral). 

Some of the high quality articles in the emotion recognition were dealing with the spontaneous 

speech analysis. The most extensive work in this field was done by Cao et al. They research was based 

on ranking approach for emotion recognition. It also incorporates the intuition that each utterance can 

express a mix of possible emotion and that considering the degree to which emotion was expressed 

[60]. The proposed system combined standard SVM classification and multi-class prediction algorithm 

by means of identify the emotion in spontaneous dialog with high accuracy in recognition. In an 

obviously related work they have been used arousal, valance, power and word usage in emotion 

recognition for predicting dimensions in spontaneous interactions. For the analysis of acoustics they 

found that corpus-dependent bag of words approach with mutual information between word and 

emotion dimensions [61]. 

With the development of machine learning, digital signal processing and various computer 

applications in real-world some researchers focused on EEG-based emotion recognition. Wei Wang et 

al. found that classification from EEG data with machine learning have optimal result on emotion 

recognition. They proposed a system for removing the noise in speech signals and used EEG features 

for emotion classification [62]. 
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There have been several researches on emotion classification system in the field of Natural Language 

Processing (NLP) [63]. For instance Li and Xu have done an extensive work on the role of social 

networks on people’s emotion. Finally, they proposed a model for emotion recognition from personal 

sound and music on social networks. 

Influence of culture in speech emotion has been developed in human interaction and speech 

communication system. Human emotion recognition dependent on pre emotion state, culture and 

environment of communication place. Attempts have been made to understand the degree of culture 

dependency were in human interaction. Most of researchers believe that some common acoustical 

characteristics have similar emotion across different culture. Kamaruddin et al. in 2012 used Mel 

Frequency Cepstral Coefficient, (MFCC) method, classified with neural network (Multi-Layer 

Perceptron (MLP)) and fuzzy neural networks (Fuzzy Inference System (ANFIS). They used Generic 

Self-Organizing Fuzzy by means of shown the role of cultural dependency for understanding speech 

emotion [64]. 
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1.1.3. Databases for speech emotion recognition system 

Database is one of the important issues to the training and evaluation of the emotion recognition 

system. Database also can be used to assess the system performance. In some cases used low quality 

database led to incorrect results in conclusion. Moreover, the limitations of the emotional speech and 

design of the database is an important to the classification of basic emotion [65]–[67]. 

According to some studies emotional databases divided into two types, namely; speech scenario and 

type of speakers [68], [69]. The speech scenario cover the emotions in context and connected to 

speakers that produce specific emotions. However, the types of speakers relate to different ethnic 

groups with different culture in intonation and accent when the speakers read the sentences. 

Accordance with past research to use speech database we have two recording collection emotional 

database namely, acted and realistic emotions. Williams and Stevens found that acted emotions tend to 

be more exaggerated than real ones [70]. 

The emotional real voices are usually stimulated and recorded by nonprofessional or professional 

speakers. In fact, nonprofessional speakers are invited to produce emotional speech databases. Also, 

they exaggerated in the specific emotions such as: sadness, happiness, anger and surprise.  

Almost all the existing emotional speech databases do not well enough in the quality of the voice 

analysis. Also, the quality and the size of database is necessary to recognition of the emotion rate [71]. 

Another challenge is the lack of available emotional speech databases for public use among the 

researchers on speech emotion recognition. Thus, there are very few benchmark databases that can be 

shared among researchers [72].  

Table. 1-1 summarizes characteristics of a collection on emotional databases. It is based on the 

human and commonly used in speech emotion recognition. 
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Table. 1-1 English Speech Databases for speech recognition. 

Identifier 
Emotional  

content 
Emotion elicitation 

methods 
Size 

Nature of 

material 
Language 

Reading-Leeds 

database [73] (2001) 

Range of full 

blown emotions 
Interviews on 

radio/television 
Around 4 ½ 

hours 

material 

Interactive 

Unscripted 

Discourse 

English 

France et al.  [72] 

(2000) 

Depression, 

suicidal state, 

neutrality 

Therapy sessions & 

phone Conversations. 
115 subjects: 

48 females 67 

males. 

Interactive 

Unscripted 

Discourse 

English 

Campbell CREST 

database, ongoing  [74] 

(Campbell 2002-2003) 

Wide range of 

emotional states 
Record the social 

spoken interactions 

throughout the day 

Target - 1000 

hrs over 5 

years 

Interactive 

unscripted 

Discourse 

English 
Japanese 
Chinese 

Capital Bank Service 

and Exchange 

Customer Service [75] 

(2004) 

Mainly negative - 

fear, anger, stress 
Call centre 

human-human 

interactions 

Unspecified 

(still being 

labelled) 

Interactive 

Unscripted 

Discourse 

English 

DARPA 

Communicator corpus 

[76] (2002) 

 

Frustration, 

annoyance 
Human machine 

dialogue system 
Recordings 

interactions 

with a call 

centre 

Users Called 

Systems 
English 

KISMET [65] 

(2009) 

Approval, 

attention, 

prohibition, 

soothing, neutral 

Nonprofessional 

actors 

1002 

utterances, 

3 female 

speakers, 

5 emotions 

Interactive 

Unscripted 

American 

English 

FERMUS III [76] 

(2004) 

Anger, disgust, 

joy, neutral, 

sadness, surprise 

Automotive 

environment 

2829 

utterances, 

7 emotions, 

13 actors 

Interactive 

Unscripted 

German, 

English 

MPEG-4 [77] 

(2000-2009) 

Joy, anger, fear, 

disgust, sadness, 

surprise, neutral 

U.S. American 

movies 

2440 

utterances, 

35 speakers 

Interactive 

Unscripted 

German, 

English 

Fernandez et al. [78] 

(2000, 2003) 

Stress Verbal responses to 

maths problems in 

driving context 

Data reported 

from 4 

subjects 

Unscripted   

Numerical 
English 

Mc Gilloway [79] 

(1999) 

Anger, fear, 

happiness, 

sadness, neutrality 

Contextualised 

acting: subjects asked 

to read passages for 

each emotional state 

40 subjects 

reading 5 

passages 

Non interactive 

and scripted 
English 

Belfast structured 

Database [80]  (2000) 

Anger, fear, 

happiness, 

sadness, neutrality 

Occurring emotion in 

the Belfast 

Naturalistic Database 

50 subjects 

reading 20 

passages 

Non interactive 

and scripted 
English 

Pereira [81] 

(2000) 

Anger (hot), anger 

(cold), happiness, 

sadness, neutrality 

Acted 2 subjects 

reading 2 

utterances 

Scripted 

(emotionally 

neutral, 4 digit 

number) 

English 

Yacoub et al. (2003) 

(data from LDC) [82] 

15 emotions 
Neutral, hot 

anger, happy, 

sadness, disgust, 

…,  contempt 

Acted 2433 

utterances 

from 8 actors 

Scripted English 
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1.1.4. Modelling and software for categories of speech emotion recognition 

Speech emotion recognition can have interesting applications in many fields of sciences, such as 

medical areas, psychology and human-robot interaction. Although, technologies have been developed 

to improve the effectiveness of communication system, affective high-level human interaction with 

robots is still far from ideal.  

The psychological and engineering approach has been modelled speech emotional system based on 

categories or dimensions. For example phonetic processing field is strong to focus on categorical 

perception. In the case of dimensions, it is foremost the question how many and which dimensions we 

should assume: Traditionally, arousal and valence are modelled, with or without a third category 

power/dominance/control [3]. Of course, dimensional modelling can be more or less continuous and 

more than one dimension. The performance of automatic systems for recognition of emotions based on 

speech analysis is still weak for spontaneous speech. There is evidence, from human interaction 

experiments, that language models for dialog can be improved by using additional sources of 

information and by improving the modeling of acoustic and prosodic features. 

 Most acoustic features that used in speech recognition can be divided into spectral and prosodic 

categories. Prosodic features have been shown to deliver recognition, including pitch value, pitch 

peak, pitch range, intonation, accent, mute and rate of speech. Spectral features convey the frequency 

content of the speech signal. The spectral features are usually extracting over short frame duration. In 

addition we can express energy features such as low-frequency and high-frequency domain in some 

kinds of verbal interaction. Spectral features convey the frequency content of the speech signals. Also, 

Spectral can express energy features such as low and high frequency domain and improve emotion 

recognition in some kinds of human robot interaction [84]. 

Many speech analyses program are found as well but two open source software packages that 

development in the speech recognition. We used software PRAAT tools for feature extraction and 

Support Victor Machine (SVM) for classification of emotion. Also, the Munich open-source Emotion 

Recognition Toolkit (openEAR) is free platform in emotion recognition from speech and a similar 

initiative. The EmoVoice toolkit is a comprehensive framework for real-time recognition of emotions 

from acoustic properties of speech between speech analysis researchers, but it is not an open source 

program [83]. 

In section 2 we extensively explain about PRAAT and open EAR software for recording speech and 

extraction of features on sound signal graph. 



CHAPTER 1   Related work on speech emotion recognition and facial features extraction 

15 | P a g e  

 

1-2 Facial feature extraction  

Humans belong to various ethnic groups with different attributes of facial features (shape, color and 

size). Also, they have diverse emotion expressions, depending on culture, age and gender.  

Over the last decade, system for facial emotion expression has become an active research filed in 

different areas such as: human robot interaction, marketing analysis, facial nerve grading in medicine, 

social network control and new computer game. Facial expressions reflect of physiological signals and 

mental activities in social interaction.  

Emotion on face to face interaction convey significantly by implicit and non-verbal signals (body 

posture, gestures and facial expressions) expressed for determining the spoken message. 

According to a new study in behavioral, culture is a huge factor in determining the facial 

expressions. For instance, Americans people tend to look to the mouth for emotional cues, whereas 

Japans tend to look to the eyes [85].  

Facial expressions are one of the important ways in humans and animals to conveying social 

information in nonverbal communication. Each emotion expression corresponds to a different motion 

of the facial muscles. Humans can adopt a facial expression and different emotion in each case. There 

are two brain pathways associated with facial expression namely: involuntarily (neural in the brain) or 

voluntarily (socially conditioned in the brain). But in the brain neural mechanisms and muscles are 

responsible for controlling the different expression in each emotion. 

Facial emotion expression have been considering as one of the universal and prompt methods for 

human communication. People view and understand facial expressions in the social situations around 

them. Face Recognition generally involves two stages: firstly, is searched to find any face in the image 

(face Detection) and secondly, is detected, processed face and compared the results to a database of 

known faces (face Recognition). Finally, system decided base on sets of information and rules. 

Facial expressions are generate by contractions of facial muscles such as: eyebrows, eyes, eye lids, 

lips, mouth and wrinkles of the noise. In facial expressions the lips and eyes are often as an important 

component for emotion recognition. Typical changes of muscular activities are brief, lasting for a few 

seconds, but rarely more than 5s or less than 250ms [86].  

The reasons for this interest in facial research and analysis are multiple that namely: face tracking, 

face detection and face recognition in different area of the sciences.  
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In this section we would like to gives a short overview of the previous work in facial expressions and 

introduce the most prominent facial expression analysis methods, facial classification method and 

facial motion and facial recognition software and data base. 

 

1-2-1 Facial feature extraction for basic emotion 

Facial expressions have been studied for more than 150 years. In the 1870s, Charles Darwin wrote a 

first book about emotion and facial expressions [87]. Darwin was particularly interested in the 

functions facial expression as evolutionarily important for survival. He looked at the functions of 

facial expression in terms of the utility of expression in the life on the animal and in terms of specific 

expressions in species. Darwin deduced that animals were communicating feelings of different 

emotional states with specific facial expressions. He further concluded that communication was 

important for the survival of animals in group-dwelling species; the skill to effectively communicate 

or interpret another animal’s feelings and behaviors would be a principal trait [88]. 

A century later, in the early 1970s, Ekman and his colleagues have performed extensive work, which 

led to categorization of facial expressions [89]. Also, Ekman was a pioneer of the Facial Action 

Coding System (FACS) model [90]. In Figure 1-4 have been shown the role of facial muscles on facial 

expression (FACS). 

. 

Fig. 1-4 The role of muscles in facial expression in (FACS). 
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The Ekman system was common standard to systematically categorize the physical expression of 

emotions. It has proven useful to psychologists and game animators. 

In the past 20 years, facial expression analysis has been increasing interest in more comprehensive 

research such as robotic, computer vision and machine learning. As noted in this research, facial 

expression is one of the most important channels of nonverbal communication and human behavior 

(about emotion). This fact motivated researchers to design new algorithm and system in facial features 

detection and expressions. 

The essence of facial features expression analysis is shape or appearance information. They must be 

extracted from an image and normalized. Thus, they used for classification of emotion in data base. 

Finally most of the systems have been used in different training algorithm for detecting human facial 

coder and evaluated accuracy of the system. 

Furthermore, number of sources were useful in learning about the facial features expression and 

connected to non-verbal communication, verbal communication, mental states and psychological 

activity. As you can see in Figure 1-5 emotions are not the only source of facial emotion expression. 

 

Fig. 1-5 Different source of facial expressions. 
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Arguably the first survey of the field facial expression recognition published in 1992 with Samal et. 

al. and has been followed continues with new approach in this field [86], [91]–[97]. 

We can be categorically divided facial features to transient and intransient base on actions of 

muscles. As shown in Figure 1-6 this category can help us for evaluating different model for facial 

features extraction [94]. 

 

Fig. 1-6 Distinction of feature extraction and representation. 

 

Furthermore, in an obviously related way, as you can see in Table 1-2 we overview of methods that 

used in facial expression analysis and computer vision community. In this table we divided the 

methods base on model base and image base.  

Table. 1-2 Methods that used in facial expression analysis. 

Deformation 

extraction 

Local methods Holistic methods 

Model base 

Two view point-based models [98] Active appearance model [99]–[101] 

Geometric face model [102] Point distribution model [103] 

 Label graphs [104]–[106] 

Image base 
PCA + Neural networks  [107], [108] Neural network [109] 

Intensity paroles [110] Gabor wavelets [97] 

High gradient components [112]  
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Accordance with past research, feature extraction methods can be focused on deformation of faces or 

motion the facial muscles. Facial features expression and discreet emotion recognition from an face 

images has been promising approaches in past 10 years, particular in Action Unites (AUs) and Facial 

Action Code System (FACS) fields.   

In more comprehensive researches to approach the facial expression recognition and emotion 

detection, researcher proposed the Action Unites (AUs) for classification and detection of the basic 

emotions [113]. For Example Table 1-4 lists an Action Unites for definition of each facial feature to 

synthesize emotional facial expressions through systematic manipulation of facial action units. 

 

Table. 1-4 Action Units included in the facial features detection. 

AUs Description 

1 Inner brow raiser 

2 Outer brow raiser 

4 Brow lower 

6 Cheek raiser 

7 Lid tightener 

10 Upper lip raiser 

12 Lip corner puller 

15 Lip corner depressor 

17 Chin raiser 

18 Lip pucker 

25 Lips part 

26 Jaw drop 

 

During the past decades, various methods have been proposed for facial emotion recognition 

algorithm. Significant fundamental work on facial features detection was done by Hefenbrock et. al in 

2011. They proposed the Standard Viola & Jones face detection and recognition algorithm [114]. 

Numerous methods have been developed on face detection. Most of these techniques emphasize 

statistical learning. As you can see in Figure 1-7 the Viola–Jones face detector used facial point 

detection method. 
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Fig. 1-7 Outline of the facial point detection method based on Viola–Jones face detector algorithm. 

The essence of this approach was nearest with our idea. In this method the features are using 

Principal Component Analysis (PCA) for patterns appearance descriptors. As classifier they employ 

standard Support Vector Machines (SVMs) basis function kernel. Figure 1-8 have been given an 

overview of the baseline system’s approach [115]. 

 

Fig. 1-8 Overview of the system based on PCA and SVM for detection of Action Units and emotions. 
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Furthermore, in an obviously related way, Maalej et al. completed this model and used the geometric 

features. They defined on the landmark points around the facial features (eyes, eye-brow and mouth) to 

represent the face images and then conducted the emotion recognition with various classifiers [115].  

In more comprehensive research Zheng et al. used landmark points to represent the facial images 

based on Bayes error [116]. 

As mention above two main streams in the current research on analysis of facial expressions affect 

(emotion) consider facial muscle action detection and measurements Facial Action Code System 

[117][118]. 

Facial Action Code System associates facial expression changes with movement of the muscles. 

Additionally, as Cohen et al. shown in the Figure 1-9 , their program defines action descriptors and 

belonging to the upper or the lower face [119]. Facial Action Code system also provides the rules for 

the recognition of different Action Unites for classification of the results. In particular, Action Unites 

and Action Code System attracted the interest of computer vision and robotic researchers. 

 

Fig. 1-9 Outline of the upper or the lower face system for recognition of AUs. 
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Exceptions from this overall state of the art in the facial analysis field include studies on 3D facial 

features expression and real time emotion recognition with hidden Markov models (HMMs), neural 

network (NN), Fuzzy Logic, Discrete Cosine Transform, Dynamic Bayesian networks and others 

[120]–[122]. 

For instance, Hoang Thai et al. proposed a solution for Facial Expression Classification using 

Principal Component Analysis (PCA) and Artificial Neural Network (ANN). For example Figure 1-10 

show the main functionalities on Facial Action Coding System, Neural Network and Robot vision for 

facial emotion recognition [123]. 

 

Fig. 1-10 The main functionalities for facial emotion recognition. 

A number of related researches which identified the mapping between Action Units and emotional 

facial behaviors were also well established. Facial Action Coding System Affect Interpretation 

Dictionary, consider only emotion-related facial actions [124]. Ekman proposed the new method in 

(Facial Action Coding System techniques) for measurement the muscles movement and facial emotion 

detection. Figure 1-11 show the point and measurement the definition of distances principal points in 

the face.  

 

Fig. 1-11 FDPs used for recognizing facial expression and definition of distances. 
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An important functionality of user friendly interface robot will be the capacity to perceive and 

understand the human emotions as communicated emotionally with human by facial expressions. In 

more comprehensive research has been done on recognition and generation of emotions for social and 

humanoid robots [125]. 

The expressive behavior of robotic faces is generally connected to human robot interaction. In more 

comprehensive research instead of using mechanical actuation, another approach to facial expression 

is mechanical movement, computer graphics and animation techniques (see Fig 1-12) [126].  

Vikia, for example, has a 3D rendered face of a woman based on different code of facial expressions 

[127]. Vikia’s face is graphically rendered with many degrees of freedom and are available for 

generating facial expressions. 

 

    

    

Fig. 1-12 Vikia computer generator face (first in the second row) and different face robots (University of Tokyo). 

 

Obviously in a new filed of researches on human robot interaction, Zhang and Shrkay examined how 

the surrounding emotional context (congruent or incongruent) influenced users’ perception of a robot’s 

emotion. They founded when there is a surrounding emotional context, people will be better at 

recognizing robot emotions and they suggested that the recognition of robot emotions can be strongly 

affected by a surrounding context [128]. 
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1-2-2 Facial feature extraction on basic emotion in the past 5 years 

In recent years many researches have been done on emotions recognition in the laboratory such as 

facial expressions [129] , texts emotion recognition [130], slides emotion recognition [131], movies 

actors emotion recognition [132] and music signal emotion recognition [133] [134]. Among this filed, 

facial emotion recognition is the most important topic for researchers. 

In more comprehensive research for extracted emotion from facial image, Majumder et al was using 

the geometric facial features for emotion recognition. They used Kohonen Self-Organizing Map 

(KSOM) to classify the features data into six basic facial expressions. The features data first of all 

clustered with KSOM, then the cluster centers used to train the data for recognition of the basic 

different emotions [135]. 

Wan and Aggarwal in 2014 did more comprehensive research on metric learning. They focused on 

issues that were still under addressed in the spontaneous facial expression recognition field. In 

comparative experiments they showed spontaneous facial expressions tend to have overlapping 

geometric and appearance features, making it difficult to find effective spontaneous expression 

recognition [136]. 

Zhang et al. inspired many researchers by proposing Hidden Markov Models and a new 

methodology for automatically recognize emotions based on analysis of human faces from video clip 

[118]. 

Significant fundamental work on facial features detection with Neural Network was done by 

Caridakis et al. They proposed an extension of a Neural Network adaptation procedure, for emotion 

recognition and training from different emotions. Their results shown that emotion recognition 

accuracy is improved by using Neural Network. After training and testing on a particular subject, the 

best-performing network is adapted using prominent samples from discourse with another subject, so 

as to adapt and improve its ability to generalize [137]. 

Action Units (AUs) represent the movements of individual facial muscles. Therefore, the 

combination of AUs produce facial appearance changes and meaningful facial expression [138]. 

Numerous studies have been done on emotion recognition by extracting Action Units (AUs) for frontal 

facial images extracted from video clip frames [118]. 

When an image sequence is presented to a facial expression recognition system, it is necessary to 

detect the facial regions as a preliminary pre-processing step. There are several methods which can be 
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used to achieve this task. Valstar et al. employed probabilistic and statistical techniques, that used face 

image sequences for automatic classification of AUs [139]. 

The most extensive work about facial expression was done by Kharat and Dudul. Their research 

exploited and combined various feature extraction techniques such as Discrete Cosine Transform 

(DCT), Fast Fourier Transform (FFT) and Singular Value Decomposition (SVD) to extract facial 

features [140]. 

However, some researchers had reported geometrical facial feature point positions in 3D facial. Also, 

few studies uses Support Vector Machine (SVM) for classifies expressions in six basic emotional 

categories. Yurtkan and Demirel proposed a feature selection procedure base on Support Vector 

Machine (SVM) for improved facial expression recognition utilizing 3-Dimensional (3D) [141]. The 

system designed based on classifiers in two classes with 15 couple of emotion. As shown in Figure 1-

13 linear kernel function and Support Vector Machine (SVM) have been used for classifiers basic 

emotion. 

 

 

Fig. 1-13 SVM classifier system used for facial expression recognition. 

 

Khan and Bhuiyan worked on the facial feature expressions, especially eyes and lips, which were 

extracted and approximated using Bézier curves. They defined the relationship between the motion of 
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features and the change of expression. In this research, pictures of 200 individuals have been analyzed 

and classified into neutral and four basic emotions [142]. 

Gomathi et al. used Multiple Adaptive Neuron Fuzzy Inference System (MANFIS) [143]. They used 

Fuzzy logic system for classification of basic emotion. Crosier et al. proposed a method to segment the 

facial image into three regions. They first used a Local Binary Pattern (LBP), then extracted texture 

features and finally, they built a histogram descriptor [143]. McDuff et al. introduce an open-source 

tool that analyzed naturalistic combinations of dynamic face and head movement across large groups 

of people [144]. 

There have been many advances reported towards automatic facial expression recognition from 2D 

static images or 3D in real time [145]–[147].  

Recent work on facial expression analysis in video was done by Sebe et al. They proposed a method 

that measured the distances between frames in 2D image. In image sequence, landmark facial features 

such as the eye and mouth corners are selected interactively and put mesh for each one [148]. Finally, 

the shape of the mesh can be changed by changing the locations of the control points and with data in 

database system can control the basic emotion in real time. 

In most of this research, after the algorithm has detected the face, facial feature expressions are 

extracted and classified into a set of facial actions [149], [150]. 

Many techniques for facial expression recognition have been proposed, Wang et al. in 2009 extracted 

trajectories of the feature points contain both rigid head motion components and non-rigid facial 

expression motion components. The proposed system used the combination of hidden Markov models 

(HMMs), Facial Action Coding System (FACS) and Action Units (AUs) [151].  

Ahmed Khan et al. propose a generalized automatic recognition of emotion in facial expressions for 

low spatial resolution in facial images and extended the results in human–computer interactions 

applications [152]. Chia-Te Liao et al. proposed a new technique based on graphical representation of 

face for emotion detection [153].  

Some researchers had reported the system that uses the dynamic information of the facial features 

extracted from video sequences and outperforms techniques based on recorded static images. Hui Fang 

proposed a method for facial features extraction based on existing work are reliant on extracting 

information from video sequences and employ either some form of subjective threshold of dynamic 

information.  
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The innovation of this system was attempt to identify the particular individual frames for behavior 

[154]. Also, they proposed to warp the landmarks defined in Figure 1-14 to each face image after 

dense correspondences between sets of images are built. 

 

Fig. 1-14 Example of landmarks, geometric features and texture regions. 

Attempts to facial emotion recognition have also been investigated the possibility to detect the three 

emotions happy, angry and sadness in video sequences by applying a tracking algorithm by Besinger 

et al. in 2010. They results shown that the used point tracking algorithm separately applied to the five 

facial image regions can detect emotions in image sequences [155]. 
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1-2-3 Databases for facial feature extraction system 

One of the most important aspects of developing any new recognition or detection system is the 

choice of the database that will be used for testing the new system. If a common database is used by 

all the researchers, then testing the new system, comparing it with the other state of the art systems and 

benchmarking the performance becomes a very easy and straightforward job. Researchers often do 

report on the accuracy of their proposed approaches using their training database or number of popular 

facial expression databases. 

However, building such a ‘common’ database that can satisfy the various requirements of the 

problem domain and become a standard for future research is a difficult and challenging task. 

Therefore, the problem of a standardized database for face expression recognition is still an open 

problem. But as duplicated in Table 3 we compare different data base for choosing one of them for 

evaluating the new hybrid system. 

When have been compared the face recognition system, face expression recognition poses a very 

unique challenge in terms of building a standardized database. There was a lot of facial recognition 

data base in internet library now such as: UMB database of 3D occluded faces, Vims Appearance 

Dataset (VADANA) for facial Analysis, MORPH Database (Craniofacial Longitudinal Morphological 

Face Database), Long Distance Heterogeneous Face Database (LDHF-DB), Photo Face for face 

recognition using photometric stereo, YouTube Faces Database, YMU (YouTube Makeup) Dataset, 

VMU (Virtual Makeup) Dataset, MIW (Makeup in the "wild") Dataset, 3D Mask Attack Database 

(3DMAD), McGill Real-world Face Video Database and Siblings DB Database. But the human 

machine interaction environment sometimes needs to define new database for recognition an emotion. 

From the above discussion it is quite apparent that the creation of a database that will serve 

everyone’s is a very difficult job. However, there have been new databases created that contain 

spontaneous expressions, frontal and profile view data, 3D data, data under varying conditions of 

occlusion, lighting [156]. 

 

 

 

 

 

http://www.ivl.disco.unimib.it/umbdb/
http://vims.cis.udel.edu/vadana.html
http://vims.cis.udel.edu/vadana.html
http://faceaginggroup.com/projects.html#morph
http://faceaginggroup.com/projects.html#morph
http://biolab.korea.ac.kr/database
http://www.uwe.ac.uk/research/photoface
http://www.uwe.ac.uk/research/photoface
http://www.cs.tau.ac.il/~wolf/ytfaces/
http://www.antitza.com/makeup-datasets.html
http://www.antitza.com/makeup-datasets.html
http://www.antitza.com/makeup-datasets.html
https://www.idiap.ch/dataset/3dmad
https://www.idiap.ch/dataset/3dmad
http://www.cim.mcgill.ca/~rfvdb
http://www.polito.it/cgvg/siblingsDB.html
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Table 1-5 Summaries of some of the facial expression databases that have been used in the past few years 

Identifier 
Emotional  

content 

Emotion 

elicitation 

methods 

Size Nature of material 

The AR Face 

Database [157] 
The Ohio State 

University, USA 

Smile, anger, 

scream neutral 
Posed 

154 subjects ( 70 

male, 56 female) 

26 pictures per 

person 

1 : Neutral, 2 Smile, 3 : Anger, 4 : Scream , 

5 : left light on, 6 : right light on, 7 : all side 

lights on, 8 : wearing sun glasses, 9 : 

wearing scarf,  

The Psychological 

Image Collection at 

Stirling [158] 

Smile, surprise, 

disgust 
Posed 

116 subjects 

Nottingham scans: 

100 

Nott-faces-

original: 100 

Contains 7 face databases of which 4 largest 

are: Aberdeen , Nottingham scans, Nott-

faces-original, Stirling faces 

 

The Japanese 

Female Facial 

Expression  

(JAFFE) [159] 

Sadness, 

happiness, 

surprise, anger, 

disgust, fear, 

neutral 

Posed 

10 subjects 

7 pictures per 

subject 

6 emotion expressions + 1 neutral posed by 

10 Japanese female models 

CMU PIE 

Database (CMU 

Pose, Illumination, 

and Expression 

(PIE) 

database)  [160] 

Neutral, smile, 

blinking and 

talking 

Posed for 

neutral, smile 

and blinking 

 

68 subjects 

13 different poses, 43 different illumination 

conditions, and with 4 different expressions.  

Indian Institute of 

Technology [161] 

Kanpur Database 

Sad, scream, 

anger, 

expanded 

cheeks and 

exclamation. 

Posed 20 subjects 

Varying facial expressions, orientation and 

occlusions. All of these images are taken 

with and without glasses in constant 

background; for occlusions some portion of 

face is kept hidden and lightning variations 

are considered. 

The Yale Face 

Database [162] 

Sad, happy, 

sleepy, 

surprised 

Posed 15 subjects 

One picture per different facial expression 

or configuration: centre-light, w/glasses, 

happy, left-light, w/no glasses, normal, 

right-light, sad, sleepy, surprised, and wink 

Facial Expression 

Database 

(Cohn-

Kanade) [163] 

Joy, surprise, 

anger, fear, 

disgust, and 

sadness. 

Posed 200 subjects 

Subjects were instructed by an experimenter 

to perform a series of 23 facial displays that 

included single action units (e.g., AU 12, or 

lip corners pulled obliquely). 

The EURECOM 

Kinect Face 

Dataset 

(EURECOM KFD) 

[164] 

neutral, smile, 

open mouth, 

left profile, 

right profile, 

occluded eyes, 

occluded 

mouth 

Posed 

facial images of 52 

people (14 

females, 38 males) 

facial expressions, lighting and occlusion 

and associated 3D data  

AT&T   (formerly 

called ORL 

database) [164] 

 

Smiling / not 

smiling 
Posed 40 subjects 

10 images for each subject which vary 

lighting, glasses/no glasses, and aspects of 

facial expression broadly relevant to 

emotion –open/closed eyes, smiling/not 

smiling 

 

 

http://www2.ece.ohio-state.edu/~aleix/ARdatabase.html
http://www2.ece.ohio-state.edu/~aleix/ARdatabase.html
http://rgb-d.eurecom.fr/
http://rgb-d.eurecom.fr/
http://rgb-d.eurecom.fr/
http://rgb-d.eurecom.fr/
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1-2-4 Face detection and facial expression APIs and software 

There are many systems currently implemented aiming to improve the robustness and reliability of 

the facial emotion recognition procedure. However, current research in facial emotion expression 

focuses on computer vision and machine learning approaches to improve analysis of dynamics facial 

detection and recognition performance. But we decided to extend the aforementioned work by 

extracting and labeling precise feature boundaries on a frontal image. 

There have been a lot of Face Recognition program and software namely: Skybiometry Face 

Detection and Recognition, Face++, Face and scene recognition, OpenCV Face Recognizer, OpenBR, 

FaceReader, Betaface API, Hunter TrueID and Bob [165]. 

In recent literature about affective image classification in computer vision, most of the researcher 

used the same strategy. As you can see in Figure 1-15 we duplicated to the different stages on 

automatic facial expression analysis system [86]. Base on the Figure 1-15 we decided to write our 

program with C++ language by means of cover all aspect of facial emotion recognition. 

 

 

Fig. 1-15 Framework on automatic facial expression system. 
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Face tracking is a core component to enable the computer to "see" the computer user in a Human-

Computer Interface (HCI) system. Also, Face tracking can serve as a front end to further analysis 

modules, such as: face detection, face expression analysis, face recognition and analyze human 

emotions from facial expressions. Chun Peng et al. used face tracking for affective image 

classification in computer vision. In the proposed system each emotion category independently and 

predict hard labels, ignoring the correlation between emotion categories. 

The “Emotient” is software on emotion detection and accurate facial expression detection and 

analysis technologies. Two of the advisor of this system was the most prominent leaders in facial 

behavior Paul Ekman and Sejnowski. They system sets the industry standard for accuracy, with the 

highly precise ability to detect single-frame facial expressions of emotions [166]. 

The results of collaboration between Ekman and Sejnowski lead to propose a new technique for 

Computer Facial Expression Recognition Toolbox. CERT was an automated system for fully facial 

expression recognition that operates in real-time [167]. Thus, CERT automatically detects frontal faces 

in the video stream and codes each frame for recognition six basic emotions.  

Computer Expression Recognition system was employed in pioneering experiments on spontaneous 

behavior, including Facial Action Coding System and 30 facial action units (AU’s) [168]. 

nViso is an industrial software analyze human emotions in Lausanne, Switzerland that developed a 

technology on facial expression [169]. The company explains that their technology can measure 

emotions based on automated facial expression recognition and eyes tracking. nViso's sophisticated 

artificial intelligence algorithms automated capture hundreds of measurement geometric of the face 

points and facial muscles tracking in real-time. The proposed system precisely decodes facial 

movements based on Ekman's Facial Action Coding System into the underlying expressed emotions. 

Deploy nViso technology offline or online and provides API’s for tablet, smartphone and computers 

for human emotion recognition. This program was named a winner of a 2013 IBM Beacon Award for 

Smarter Computing. 
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1-3 New hybrids model on emotion recognition system 

With the advance in computer vision and sound analysis, robots with human shape and perception 

enter everyday life and start to help a human being, receive human orders and optimize their behavior. 

Emotion makes a proper mutual communication between human sensation and robot interaction. The 

most natural way to recognize basic emotions is extracting set of features from human speech, facial 

expression and body gesture.  

Mehrabian as phycologist in 2009 proposed a new method about human emotion. In that research 

they found when people have communication with each other, 55% of the message is conveyed 

through facial expression alone, vocal cues provide 38% and the remaining 7% is via verbal cues 

[170].   

Thus, the most new method for recognize human emotions is design a new hybrid model to 

extracting features in speech communication (pitch, intensity and formant), facial features extraction 

and attention the movement of the facial muscles. As noted in most of researches the essence of hybrid 

emotion recognition system is based on feature-level fusion of acoustic and visual cues.   

Considering Audio-Visual modalities are already widely used portable devices designing of the 

accurate software on emotional communication between human and machine is more important. 

Several research have been done on speech analysis and facial expression that focus on describing 

the feature extraction methods in classification techniques for recognition of emotions [171][172], 

[173]. 

Koda investigated a new method for human facial emotion recognition by using both thermal image 

processing and speech [174]. Accordingly, a lot of researches have been validated the model and 

software for combining speech recognition , facial expression and body gesture [175] [156]. 

Numerous studies have been done on emotion recognition by extracting speech analysis, Action 

Units (AUs) and facial appearance changes for frontal view face images extracted from video clip 

frames [176]. 

Accordance with past research we decided to extend the aforementioned work by using acoustic and 

phonetic properties of emotive speech with the minimal use of signal processing algorithms and 

extracting precise feature boundaries on a frontal image. Then, have been measured the discrepancy 

between the extracted features in the given image and the features extracted from a reference image, 

which contain the “neutral” expression of the same face. This step is based on Action Units (AUs) and 
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Action Code system (ACS). For each AU, an Action Code (AC) is defined; in this way, faster 

processing and reduction of computation time can be achieved. Finally, the emotion will recognize by 

using a hybrid algorithm that combining speech graph and facial features extraction. 

This thesis is organized as follows: we first summarize the related studies and general description in 

this field. In chapter 2 we give a general description of the methodology and the hybrid algorithm. 

Chapter 3, we focus on the sound and facial feature extraction from the experimental tests. Then we 

suggest a set of rules for classification of the emotions. 

Finally, experimental results of the application in the methodology are presented and discussed and 

suggest how we can implementation this project in the real uncertainty world. 
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Humans belong to various ethnic groups with different accent and attributes of facial features (shape, 

color and size). Also, members in the same society have diverse behavior and emotion expressions, 

depending on culture, age and gender. Understanding the mechanism of emotion in natural scenes 

must be developed for a machine to understand the human emotions in various environments. 

Especially for human-machine interaction, we combined simple speech understanding and standard 

dialogue management functions with facial features expression for recognition the basic emotion in 

service robot. On the other hand, it is very difficult to determine the boundaries between the basic 

emotions (happiness, anger, fear, sadness, surprise and disgust) in human behavior. 

In this work, a framework is proposed to architect human-robot interaction for a service robot based 

on an interactive decision making system, psychological processes underlying social perception, 

evaluating (sound signals) plots, mathematical formulation, cognition and action unites controlling in 

realistic settings (in laboratory). 

Five core steps for the design of new methodology in human robot interaction was;  

 Focus on ontology on human robot social interaction by means of building a hybrid model, 

 Analyzing natural human communicative signals (verbal), 

 Analyzing human facial expression signals (non-verbal), 

 Combination of two proposed model on a robot software platform, 

 Extending the new model to manage testing, learning, training and evaluation of the system 

accuracy. 

As mentioned above and the goal of this research, the new method for recognize human emotions is 

extracting features in speech communication (pitch, intensity and formant) and movement of the facial 

muscles Action Unit System (AUs). 

This capture is organized as follows: first we summarized the ontology of robotic and general 

description in this field. Then, designed the methodology and the algorithm on speech emotion 

recognition system and facial features extraction. Also, we focused on the new hybrid algorithm to 

recognize the emotion in communication. Finally, extracted rules by means of design a new software 

program from the experimental tests. 

With respect to other works in the scientific literature, the methodology we proposed was very 

suitable for implementation in real-time systems, since the computational load is very low indeed. 
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2-1 Ontology for human robot interaction 

The structure in the presented ontology for human-robot interaction consists of emotion recognition 

model. The human-robot interaction ontology explains how the knowledge of these fundamental 

sciences is applied in physics (sound analyses), mathematics (facial features extraction, detection and 

classification), philosophy theory (human behavior) and robotic science context. For instance ontology 

makes possible much greater inter-operability between sensing and architecture for robotic system 

[177]. Ontology typically serves two purposes: 

1. They provide agreed unambiguous terminology for a domain, with that goal of human               

expression and transform their knowledge more effectively and accurately. 

2. Ontology’s allows developers use t background of the knowledge. 

Robot needs to establish appropriate correspondences between behavior and actions in the prototypes 

and their counterparts. In this way the robot can perceive and categorize. 

Ontological knowledge would also be used for design of robotics systems when selecting and 

matching components and distinguishing properties of a particular robotic system or application.  

In other words, it encodes the semantics of meta-level concepts and domains of human-robot 

interaction. Figure 2-1 shows an architecture design of human-robot 3 in columns. The first column 

shows the aspect of the interaction-robot architecture, second column shows the context of the design 

and third column on the right shows the system-level of the architecture. 

 

2-1-1 Ontology for concepts layer 

Visual perception and information fusion is one important capability of a humanoid robot to sense 

concepts of its environment. Concepts are the basic mechanism for using the ontology. Implemented 

in complex autonomous systems in (M3= meta-meta model), and their empirical evaluations are key 

techniques to understand and validate concepts of intelligence. Meta-meta model represents the 

knowledge of the properties and relationships in the model with terminology and syntactical constructs 

[178]. At this level we have highest level of abstraction and contain representations of devices, 

environment and tasks. Beside a description of the general concepts, we will focus on aspects of 

perception, behavior architecture, and reinforcement learning. 
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Fig. 2-1 Map of architecture, relationships between the architecture, design and ontology. 
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2-1-2 Ontology for device layer 

New technologies in material and computer science emerged in the past few decades and enabled 

robotics researchers to develop realistic looking humanoid robots [179]. They underestand face to face 

conversations amongst humans is the most natural way of communication and recognition the 

emotional states. 

A common theme in M2 (Meta model) implementation as device and discussion of social robot 

designs, their success as applications refers to the “human like” characteristics (motivation, emotions 

and personality) and skills (speech communication, facial expression and gestures) of the robot. 

Calculation and configuration of contexts define values of the properties, risk cost, number of 

component and relationship between the devices. 

 

2-1-3 Ontology on speech recognizer 

The speech signal is the fastest and the most natural method of communication between humans and 

robot. Figure 2-2 shows the speech emotion recognition architecture that combines the linguistic and 

acoustic models by means of checking the most probable word sequences.  

 

Fig. 2-2 The architecture of a speech emotion recognition engine combining acoustic features and behavior. 
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For the speech recognition system, a commercial engine uses a Semantic Context-Free Grammar 

(CFG) that specifies two types of information: 

• Regular expressions that define the words and the syntactic rules that combine these words into a 

set of sentences called Regular language. This language specifies the utterance that the robot is able to 

recognize. This part of the grammar is called literal. 

• Semantic attributes. This is the semantic part of the grammar. 

In other words, it is possible to modify more regular expressions, that is, more recognizable words 

and syntactic rules, and to modify and add more semantic attributes with their values and this will 

allow to label new built skills. 

The human speech communication consists of two channels, the explicit channel carrying the 

linguistic content of the conversation (‘‘what was said’’) and the implicit channel containing the so-

called paralinguistic information about the speaker [180]. 

Our ambition is to establish a general model for the symbol-level dialogue and behavior controller of 

robots/agents that can engage in analyzed dialogue with humans to understand their requests and give 

useful information as well as perform desired emotional behaviors.  

 

Fig. 2-3 Automatic speech recognition (ASR) and storage in global context (data base). 
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In case of the robot utilization, the speech and human body activity recognition as well as speech 

synthesis and overall robot posture considers important parameters. Figure 2-3 shows that the speech 

recognition system is realized by using an onboard microphone speech recognition engine, modified to 

deliver discrete probability distributions. 

Each expert hold information on the progress of the primitive task. They classified into task type 

independent information. Task type independent information includes information such as which 

action in this primitive task is being performed, and whether the previous robot action selected, 

information and action storage in data base to reuse this data for future. 

 

2-1-4 Ontology for facial detection 

Face detection for different ethnic group is a fundamental problem in many computer vision 

applications. The challenge of detecting human faces from an image mostly comes from the variation 

of human faces such as races, illumination, facial expressions, face scales, head poses (off-plane 

rotations), face tilting (in-plane rotations), occlusions [181]. Also, environment issues such as lighting 

conditions, image quality, and cluttered backgrounds may cause great difficulties. 

The positive and negative feature patterns are important features to face detection. However, it has 

some limitations. First, if an image is too blurred or lack of important facial features, we may not be 

able to extract the features to recognition an emotion. Another limitation is that the feature patterns 

may change if the poses of faces are largely changed. We proposed method to use not only facial 

components in terms of edges but other information (movement of muscles) to detect or recognize 

human faces will be considered. 

 

2-1-5 Ontology for design layer 

Design layer as (M1=Model) describe computational concepts of cognition that were successfully 

implemented in the domain of human- robots. Design layer development the interactions between 

cognitive concepts, software engineering and system implementation.  

As it can be shown in Figure 2-4, some details are relevant concerning the capabilities of respective 

skill-activity and task-activity. Robot architecture system in this layer divided to; decision making, 
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features extraction for classification of emotion. In this layer system must be check top to bottom 

algorithm to exchange tasks to skill. 

 

Fig. 2-4 The HRI system architecture exchange task to skill action from top to bottom. 

 

One central property of cognitive systems is the ability to learn and improve the system continually. 

Also, beside a description of the general concepts of perception, behavior architecture and 

reinforcement learning are to be focused. 

Human robot interaction system combines programming and training in order to learn constantly  

and make learning executable in the normal robot program [182]. Additionally, human robot 

interaction system needs prediction models on human’s behavior and acting in the real-time 

environment. 
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Robot has to understand the human features and transfer this information to its own control system, 

based on a learning methodology. The domain knowledge in the current learning algorithm was 

formalized by two simple constraints: a range of a parameter (features behavior), and relative 

relationships between different parameters (different behavior) and action.  

Learning consists of; abstract, semantic descriptions of manipulations, design program and algorithm 

extracted by a robot. In the learning part we must answers to these questions: 

• How can robots realize “Human emotions”?  

• How can robots perceive the speech, facial features and behavior?  

• How do we model, specify, classify and control (behavior and action)? 

• How can coordinate robots intelligent and human emotion in communication together? 

The proposed system in behavior phase show one of the basic emotion (happiness, surprise, anger, 

fear, sadness, disgust and neutral). Also in different behavior phase just shows this emotion is 

unknown and then we can insert information about this emotion manually. 

 

2-1-6 Ontology on interaction layer 

For human-robot interaction, M0 level (implementation layer) used as concrete robotic system-level. 

All the knowledge and details are relevant concerning the capabilities of perceptive compounds and 

actuators. 

Interaction layer makes contribution toward identifying and formalizing the relationship between 

domains of the system-levels and ontology in human-robot interaction. 

The intensity of the coupling between device and environment is necessary to accomplish the task 

and degree of interaction. In other words, the action of the devices changes the environment and 

increases the interaction. As it can be seen in Figure 2-5, behavior controller receives output from 

sensor interpreters such as: speech recognizer, responsible for selecting utterances and facial features 

expression to perform.  

On the other hand in human robot emotion recognition system algorithm must be developed an 

advanced in social communication that includes emotional behavioral and cognitive interaction. 
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An ontology of robotic enabling humanoid robot to used clear map and decision making in mission 

scenarios within uncertain environments. Also, the emotional activations and cognitive events of 

human-robots have important role for decision-making and long-term deliberative process planning 

with humans. The perceived emotion is subjective and highly dependent on pre-emotional state, 

environment and culture of utterances. 

 

Fig. 2-5 Behavior controller system to connected the action and behavior. 

 

Classical models of emotion recognition system consider the interaction aspect of emotions (for 

instance the emotions conveyed by the speech signals and facial expressions), but in centralist theory 

scientists believe that emotion is the result of a brain process. 

The Model and computational architectures of emotional systems are categorized into two different 

families: firstly, the models devoted to expression of an emotional state and generally to the control of 

expressiveness. On the other side, the models devoted to the autonomous learning and Meta control. 

Emotional recognition system core is discrete state-space transitions from all part of the human body 

that combine and express emotional state. The training of cognitive systems for such advanced 
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applications in human robot interaction requires the development of mixed real virtual training 

environments. 

Finally, we investigate creating large knowledge bases of model build blocks, including transition 

from observing human behavior by using studies coupled to programming by demonstration and 

future learning from observation, larger dialog and interaction methodologies. As mentioned above 

Real-world usually cannot be more or less hospitable to the emotional interaction between human and 

robot. Hence social robots are most often evaluated in the laboratory environment. Any 

implementation of an architecture human-robot interaction requires at least, two important choices to 

be made, at design time: 

Which representation use to store the data and information? 

Which software to use to support humans and computer to work with the stored knowledge? 

Both choices come on the real hard part of the architecture process and relationship between 

algorithm, software program and control mechanism. We suggest that an effective and the only way 

these emergent capabilities can be evaluated is to take the robots in the real word with new algorithm 

and the proposed system did not connected directly to environment. 

The system for recognition of emotion in human-robot interaction must be learned and updated 

continually individual skills (speech recognition and facial features extraction) and behavior (pre 

emotional state and non-verbal action). 
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2-2 Methodology on speech emotion recognition system 

Emotion recognition can have interesting applications in human-robot interaction. Human-robot 

interaction will normally take place in the real world. 

When a speaker expresses an emotion while adhering to an inconspicuous intonation pattern, human 

listeners can nevertheless perceive the emotional information through the pitch and intensity of 

speech. On the other hand, our aim is to capture the diverse acoustic cues that are in the speech signal 

and to analyze their mutual relationship to the speaker’s several basic emotions, namely sadness 

(SAD), anger (ANG), surprise (SUR), fear (FEA), happiness (HAP) and disgust (DIS), based on the 

analysis of phonetic and acoustic properties.  

An experimental methodology was set up, consisting of three different databases that built from 

speakers of different areas of the world. The first database includes ten European adults in the age 

group from 25 to 35 years (5 women and 5 men; mean age 29) from different countries of the 

European Union (Spain, Italy, Belgium, Romania, and France), the second group contains ten Asian 

(Middle East) adult speakers in the age group from 19 to 45 years (5 women and 5 men; mean age 31) 

and the third database contains recordings from ten American English speakers in the age group from 

21 to 38 years (4 women and 6 men; mean age 28). 

Six simple sentences of everyday life were chosen in learning phase, namely: “What are you doing 

here?”- “Are you ready?”-“Come in”-“Thank you”-“You are welcome”-“Where are you?” The 

participants to the experiment had to repeat these six sentences for three times with a neutral (NEU) 

intonation, with 1 second of interval between each sentence, in order to distinguish rising-falling 

intonations and pitch movements. Also, five simple sentences of everyday life were chosen for testing 

phase, namely: “Hello”- “Good noon”-“It’s a sunny say”-“Where do you live, sir?”-“What are you 

doing in the street?” 

Then, every participant had to repeat again three times the same six sentences, but with each one of 

the emotions listed above. All the sentences were recorded, thus obtaining 630 files, which were input 

to a dedicated program for speech analysis (Figure 2-6), which could provide the intensity, pitch 

(peak, range, values) alignment and speech rate for all the sentences. 

The program used for speech analysis is the standard PRAAT program. In sub section 2-7-2 explain 

about this software completely. PRAAT is an open-source software that is extensively used by 

researchers in the field of speech analysis [183]. 
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The technique for emotion recognition proposed in the speech emotion recognition system is based 

on two steps; namely: 1) feature extraction and 2) rules definition.  

 

 

 Fig. 2-6 Example of speech analysis with the PRAAT program. 

 

A block diagram that proposed for automatic multi-level emotion recognition system can be seen in 

Figure 2-7.  

 

Fig. 2-7 Model of the system for speech emotion recognition. 
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The input of the system is the file obtained from the PRAAT software. The algorithm described in 

the foregoing analyzes the plots of pitch, intensity, formant and speech rate, thus recognizing if the 

emotion belongs to the category of “high intensity or low intensity”. If the speech falls into the “high 

intensity” category, it is further analyzed in order to distinguish between fear, anger, surprise and 

happiness. In the same way, if the speech falls into the “low intensity” emotion, it is further analyzed 

in order to distinguish between neutral and sad. We can use speech rate and the graphs of pitch signals 

in low intensity categories to distinguish between neutral and sadness emotion. 

The novelty of methodology that we propose is makes minimal use of signal processing algorithms 

for features extraction and emotions classification. It was possible to successfully recognize the basic 

emotions in most of the cases. 

 

2-3 Methodology on facial feature extraction system 

Facial emotion recognition can have interesting applications in Human-Robot Interaction. Initially, 

researchers classified human emotions into two categories; pose-based and spontaneous expressions 

[184]. Pose-based expressions are artificially made by people, when they are asked to show some 

special emotion; on the other hand, spontaneous expression are made by people spontaneously, such as 

during conversations. The proposed methodology on facial features extraction consists of three steps 

in facial emotion recognition, namely: (i) detecting the facial region within the image; (ii) extracting 

the facial features (such as: the eyes, eyebrows, nose, mouth, lips, head position and etc.); and (iii) 

classifying the features alignment.  

The proposed emotion detection algorithm is based on Action Units (AUs) and mathematical 

techniques that are relevant to geometrical features of the face parts. An overview of the methodology 

for extracting and classifying the facial emotions is shown in Figure 2-8.  

In this work, in order to achieving the fully automated system for facial detection and expression 

needs various pose-based of 2D emotional facial images in the recording, training and evaluating 

phases. 

By means of implementation of the proposed algorithm firstly, we used a webcam and a storage 

memory device for acquisition of pose-based human images. Then, the system distinguished region 

between facial and non-facial. By means of detecting the facial, the system used skin texture 

segmentation and different filter for determined border between two reigns. 
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Fig. 2-8 Diagram of the proposed methodology for facial features expression. 

 

The methodology for detection of the skin color that have been used in this project transformed the 

image from the RGB into black and-white pixels (skin pixels are set to white and the rest of them is set 

to black pixels). The next step was to extract facial features from the binary image. This could be done 

by histogram and facial geometric analysis, or by filtering the binary image (there are many different 

edge detection filter such as: Sobel, Canny edge detector, Scharr, Laplacian filters, etc) [185], [186]. 

For instance, in the proposed algorithm hairs are detected as a set of black continuous pixels and the 

skin appears when the color of the pixels changes (black to white).  

In Figure 2-9, the original image is shown on the left side and the generated binary image, with 

Sobel filter and edge mask, is shown on the right side. 

 

Fig 2-9 Original image (left side) and the binary image (right side) 
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Secondly, we focused on facial Principal Component Detection (PCD) such as: eye left/right, 

eyebrow left/right, mouth, lips and nose. For each of these components we determined the 

approximate position by framing it into a rectangular boundary. Figure 2-10 shows the results of PCD.  

 

Fig 2-10 Face detection steps: (a) full frame photo (b) Zoom on face (c) feature candidate areas 

Then, we interpolated the extracted facial features by means of Bézier curves and we defined the 

Action Code System (ACs) corresponding to each facial feature [188]. The last step of the algorithm 

was to recognize the emotion by analyzing the ACs and the Bézier curves. In section 2-6 we 

extensively explain about the Bézier curves and Support Victor Machine (SVM) for classification of 

the emotion in proposed system. 

The facial expressions have been recognized form static image. We made a database with a set of 

840 images with various basic facial emotions, and we used it as a training database. For the 

experimental tests like speech analysis. We used 30 individuals (15 female and 15 male, 20 to 48 years 

old) from different ethnic groups, namely: (i) European, (ii) Asian (Middle East) and (iii) American. 

This work, includes ten European adults in the age group from 25 to 35 years (5 women and 5 men; 

mean age 29) from different countries of the European Union (Spain, Italy, Belgium, Romania, and 

France), the second group contains ten Asian (Middle East) adult in the age group from 19 to 45 years 

(5 women and 5 men; mean age 31) and the third database contains ten American in the age group 

from 21 to 38 years (4 women and 6 men; mean age 28). 

The efficiency of the methodology was evaluated by comparison of the results with those obtained 

by using the Cohn-Kanade AU-Coded Expression standard Facial database. 
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2-4 Hybrid algorithm on emotion recognition system 

In emotion recognition field most of the researcher believe that with hybrid algorithm we can yield 

better result in human robot interaction. This section shows how the algorithm can be extended and 

decreases the time for recognition of emotion. 

The proposed hybrid methodology consists of five steps in human emotion recognition, namely:  

(i) analyzing human communicative signals (pitch, intensity, formant, speech rate and voice quality), 

(ii) detecting the facial region and extracting facial features (such as: eyes, eyebrows, nose, mouth), 

(iii) extending the rules to manage learning, (iv) recognizing the emotion, (v) training and learning the 

new emotional data in the database system. 

The proposed emotion detection algorithm is based on pitch (peak, value and range) graph analysis, 

intensity and speech rate calculation, Action Units (AUs) and mathematical techniques that are 

relevant to action codes distance and geometrical features of the face parts. The algorithm described in 

the foregoing speech analyzes the emotion that belongs to the category of “high and low" intensity.   

An overview of the methodology for extracting and classifying the emotions is shown in Figure 2-11. 

 

Fig. 2-11 Diagram of the hybrid system methodology. 
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2-5 Basic emotion Theory  

However in many disciplines researchers on emotion imply different processes and meanings about 

emotion, they cannot agree on the same definition. The most important debate in this filed is the 

processes to activate emotion and the role of emotion in our daily activities and pursuits. This section 

describes the emotion theory behind the proposed algorithm for speech recognition and facial features 

extraction that used in this project.  

Humans belong to various ethnic groups with different attributes of sound signals (intensity, accent 

and speech rate) and facial features (shape, color and size). Also, they have diverse emotion 

expressions, depending on culture, age and gender. 

The evidence reviewed suggests that a theory that builds on concepts of basic emotions, the 

continual basic emotion is as a factor that influence on mind and behavior [187]. Base of this reason 

firstly, we have been described that each emotion expression corresponds to the different motion of the 

muscles. However, it is very difficult to determine the boundaries between the basic emotions muscles 

movement. The “neutral” emotion is used like an intermediate state when switching between two 

different emotions and it is core of the emotion recognition system. 

Moreover, humans do not normally have two basic facial emotion at the same time, although in some 

cases (like fear and sadness), they can slightly overlap. Figure 2-12 shows how all the emotions have a 

connection with the neutral emotion, and in some cases (like fear and sadness), they can be slightly 

connected together.  

 

Fig. 2-12 Interaction of the basic emotions with each other. 
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2-6 Mathematical Methods for emotion recognition 

A wide range of mathematical methods and algorithms are currently used to solve emotion 

recognition in human robot interaction. They recognize and import different patterns in huge data. 

Also, they have been used in different sciences namely; image analysis, speech analysis, person 

identification and character recognition. In this section we give a brief overview of the Bézier curves 

model and Support Victor Machine (SVM) in order to detection and classification of the basic 

emotions. 

 

2-6-1 Beizer curve 

The Bézier curves model is a powerful mathematical tool for constructing curves in different 

surfaces [188]. As mentioned above we want to convert the eyebrows, eyes and mouth features to 

fitted curves is the next step before recognition of the emotions. Bézier curves could approximately 

represented 2D facial shapes. For applying the Bézier curves, we need to generate some contour points 

for control information.  

Zhang et al. in 1998 used (u 0,1 (t) = 1-t  and u 1,1 (t) = t) as the two initial functions, by means of 

define the Bézier curve basis [188]. As it can be shown in Equation (1-7) and Figure 2-13, Zheng 

extended the model for two and four pointed. 

 

Fig. 2-13 The two initial functions bais on Bézier curves model. 

u 0,1 (t) = sin (α-t)/sin α, 

u 0,1 (t) = sin t/sin α, 

Where t ∈ [0, α] and  α ∈ [0,t] 
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δ 0,1 = 

 

Equation (1) 

Then  

u 0,2 (t) = 1- 

 

Equation (2) 

u 1,2 (t) = 

 

Equation (3) 

 

u 2,2 (t) =  

 

Equation (4) 

 

In the same way for n >2 we define the Bézier Curve method; 

 

u 0,n (t) = 1- 

 

Equation (5) 

u i,n (t) = 

 

Equation (6) 

u n,n (t) = 

 

Equation (7) 

 

 

Figure 2-14 shows the result of this formulation with four points.  
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Fig 2-14 The graph of Bézier Curve with four point 

 

 In the propose system we used Zheng Bézier Curve method that lie inside its control polygon. For 

example, in this work we chose eight neighbor points for each facial region (left/right eye, left/right 

eyebrow, upper /lower). The aim of the Bézier Curve method is to interpolate a sequence of points 

[189]. Equation (8) represents the formula of a Bézier curve. 

 

  (t)  
=

  
pi

n

i


0

[n !/((i ! * (n-1) !)](1-t)) 
n­𝑖

× t
𝑖
 Equation (8)

 

 

As shown in Figure 2-15, the system generates Bézier curves which can represent the principal facial 

regions. The Bezier curve has two anchor points (begin and end) for each of 8 points in facial features 

and also four control points that determine its shape of surface. 

 

Fig. 2-15 Result of Bézier curve form five principal facial feature. 



CHAPTER 2     Ontology, Methodology and scenarios for emotion recognition system 

54 | P a g e  

 

The Bézier representation of the curves can then be employed to determine the distances between the 

points of interest. For instance, the formula in Equation (9) can be used to calculate the distance 

between left and right eye (we used Hi " Eq. (8) " for right and Hj for left eye) and the formula in 

Equation (10) can be used to calculate the distance between the two extreme points of the mouth.   

 

Z = 


n

i i

6

2

( eH𝑖  SinW𝑖  –  eH𝑗  CosW𝑖  ) Z = feature point distance 

 

Equation (9) 

Z = 


n

i i

2

1

( eH𝑖  SinW𝑖/2  –  eH𝑗  CosW𝑖 /2 ) 

n = number of feature points 

Equation (10) 

 

Then the system save all the computed values into a database. Finally the proposed system found the 

nearest matching pattern with related emotion.  

The proposed algorithm for facial emotion recognition is divided into two steps. The first step 

included Bézier curve analysis and measurement of each input image base on graphic curve. In the 

second step, extracted facial Action Units (AUs) and calculated the distance parameters between facial 

feature on input face image and normal face image. 

The source code that has been used on emotion recognition system to generate the shape of eight 

points continuously put in the below program. The proposed shapes is not optimal. We calculated 

some points and stored each set of point as specific emotion in database. The system database contains 

index of seven kinds of emotion with different features, which are extracted based on the rules. The 

program have been repeated for six facial features (two eyebrows-right/left, two eyes-right/left, two 

lips upper/lower). If the input graphic curve did not match with the emotion in database, we added this 

emotion data manually in to the database when program started the training phase.   

// Number of intermediate points between two source ones,  

  // points between (x1,y1), (x2,y2), (x3,y3) and (x4,y4), 

 // Then x0,y0 - the previous vertex, 

// x5,y5 - the next one. 

#define NUM_STEPS  

void curve4(Polygon* p), 

 

            double x0, double y0,   //Anchor1 

            double x1, double y1,   //Control1 

            double x2, double y2,   //Control2 

            double x3, double y3,   //Control3 

            double x4, double y4)   //Control4 

            double x5, double y5)   //Anchor2 
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{ 

    double dx1 = x2 - x1; 

    double dy1 = y2 - y1; 

    double dx2 = x3 - x2; 

    double dy2 = y3 - y2; 

    double dx3 = x4 - x3; 

    double dy3 = y4 - y3; 

    double dx3 = x5 - x4; 

    double dy3 = y5 - y4; 

   

  double subdiv_step  = 1.0 / (NUM_STEPS + 1); 

    double subdiv_step2 = subdiv_step*subdiv_step; 

    double subdiv_step3 = subdiv_step*subdiv_step*subdiv_step; 

    double subdiv_step4 = subdiv_step*subdiv_step*subdiv_step*subdiv_step; 

    double subdiv_step5 = subdiv_step*subdiv_step*subdiv_step*subdiv_step*subdiv_step; 

 

    double tmp1x = x2 - x1 * 2.0 + x3; 

    double tmp1y = y2 - y1 * 2.0 + y3; 

    double tmp2x = (x3 - x2)*3.0 - x1 + x4; 

    double tmp2y = (y3 - y2)*3.0 - y1 + y4; 

    double tmp2x = (x4 - x3)*6.0 - x2 + x5; 

    double tmp2y = (y4 - y3)*6.0 - y2 + y5; 

 

    double fx = x1; 

    double fy = y1; 

 

    double dfx = (x2 - x1)*pre1 + tmp1x*pre2 + tmp2x*subdiv_step3; 

    double dfy = (y2 - y1)*pre1 + tmp1y*pre2 + tmp2y*subdiv_step3; 

 

    double ddfx = tmp1x*pre4 + tmp2x*pre5; 

    double ddfy = tmp1y*pre4 + tmp2y*pre5; 

 

    double dddfx = tmp2x*pre5; 

    double dddfy = tmp2y*pre5; 

 

int step = NUM_STEPS; 

 

    double xc1 = (x0 + x1) / 2.0; 

    double yc1 = (y0 + y1) / 2.0; 

    double xc2 = (x1 + x2) / 2.0; 

    double yc2 = (y1 + y2) / 2.0; 

    double xc3 = (x2 + x3) / 2.0; 

    double yc3 = (y2 + y3) / 2.0; 

    double xc4 = (x3 + x4) / 2.0; 

    double yc4 = (y3 + y4) / 2.0; 

    double xc5 = (x4 + x5) / 2.0; 

    double yc5 = (y4 + y5) / 2.0; 

 

    double len1 = sqrt((x1-x0) * (x1-x0) + (y1-y0) * (y1-y0)); 

    double len2 = sqrt((x2-x1) * (x2-x1) + (y2-y1) * (y2-y1)); 

    double len3 = sqrt((x3-x2) * (x3-x2) + (y3-y2) * (y3-y2)); 

    double len4 = sqrt((x4-x3) * (x4-x3) + (y4-y3) * (y4-y3)); 

    double len5 = sqrt((x5-x4) * (x5-x4) + (y5-y4) * (y5-y4)); 

 

    double k1 = len1 / (len1 + len2); 

    double k2 = len2 / (len2 + len3); 

    double k3 = len3 / (len3 + len4); 

    double k4 = len4 / (len4 + len5); 

 

    double xm1 = xc1 + (xc2 - xc1) * k1; 
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    double ym1 = yc1 + (yc2 - yc1) * k1; 

 

    double xm2 = xc2 + (xc3 - xc2) * k2; 

    double ym2 = yc2 + (yc3 - yc2) * k2; 

 

    double xm3 = xc3 + (xc4 - xc3) * k2; 

    double ym3 = yc3 + (yc4 - yc3) * k2; 

    double xm4 = xc4 + (xc5 - xc4) * k2; 

    double ym4 = yc4 + (yc5 - yc4) * k2; 

 

   // Resulting control four points. 

 

    ctrl1_x = xm1 + (xc2 - xm1) * smooth_value + x1 - xm1; 

    ctrl1_y = ym1 + (yc2 - ym1) * smooth_value + y1 - ym1; 

 

    ctrl2_x = xm2 + (xc2 - xm2) * smooth_value + x2 - xm2; 

    ctrl2_y = ym2 + (yc2 - ym2) * smooth_value + y2 - ym2; 

 

    ctrl3_x = xm3 + (xc3 - xm3) * smooth_value + x3 - xm3; 

    ctrl3_y = ym3 + (yc3 - ym3) * smooth_value + y3 - ym3; 

 

    ctrl4_x = xm4 + (xc4 - xm4) * smooth_value + x4 - xm4; 

    ctrl4_y = ym4 + (yc4 - ym4) * smooth_value + y4 - ym4; 

 

    while(step--) 

    { 

        fx   += dfx; 

        fy   += dfy; 

        dfx  += ddfx; 

        dfy  += ddfy; 

        ddfx += dddfx; 

        ddfy += dddfy; 

        p->AddVertex(fx, fy); 

    } 

} 
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2-6-2 Support Vector Machine (SVM)  

Support Vector Machine (SVM) algorithm used in the analysis and classification some of original 

input features. Support vector machine constructs the set of points for classification [190]. The main 

goal to use Support Vector Machine is to find a decision boundary between seven emotion classes that 

is maximally far from any point in the training data. Furthermore, SVMs generalize well even when 

few training data are provided. 

However, note that classification performance decreases when the dimensionality of the feature set is 

far greater than the number of samples available in the training set. The Support Vector Machine can 

efficiently perform a non-linear classification and separates between a set of objects having different 

class memberships. Moreover, we extended the linear SVM for set of non-linear data for recognition 

emotion. In the case, we used the SVM model that optimally separate data into seven categories (seven 

basic emotion classes). The proposed system implemented the Support Vector Machine for increases 

the emotion classification accuracy. The features sound and facial features are too complex to compute 

the space. 

The function that performs this mapping is to transform the original training nonlinear data into a 

higher dimension linear mapping is the linear kernel function, because the number of features in sound 

signals is large [190]. The most frequently used SVM kernel function in the domain of emotion 

recognition in speech is the radial basis function (RBF) kernel. We used the linear kernel and RBF 

kernels because the training speed in speech recognition and classification of the emotion decreases. 

Also, the SVM parameters were determined independently of the test data. Figure.2-16 shown how the 

system change nonlinear surface to the linear space.  

 

Fig. 2-16 change non liner space to linear with kernel. 

 

a) Separation is provided by a non-linear surface b) non-linear surface to a linear surface in a feature space 
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2-7 Open-source toolkits for sound recognition 

In recent year various open-source toolkits on speech processing field have been improved with high 

accuracy and performance. Also, this kind of system is able to hold whole conversations with the user 

(audio recording), audio file reading, features extraction, classification data, train, and improve the 

general acoustic models. Additionally, they can be used with a variety of Window and operating 

system applications. However the main window of this open-source program such as; (open EAR, 

PRAAT, WEKA, Simon, SPRAAK, XVoice, Speech Filling System (SFS), Open Mind Speech, 

EmoVoice and Babel Technologies) have been reorganized to bring the most important options 

together in one screen [104]. Moreover, between all open-source toolkits on speech emotion 

recognition only PRAAT and HTK freely available to anybody and include certain classifiers. In this 

work we proposed to use PRAAT for speech graph analysis. 

 

2-7-1 Open EAR 

The Munich open Affect Recognition Toolkit (openEAR) is one of the first tools on open-source 

speech recognition toolkits. OpenEAR is introduced as an emotion recognition and feature extraction 

algorithms that implemented in C++. OpenEAR, is a stable and efficient set of tools for researchers 

and those developing emotional aware applications, providing the elementary functionality for 

emotion recognition [192]. Also, openEAR freely available to anybody and can be used as an out-of-

the-box emotion live affect recognizer for various domains, using pre-trained models which are 

included in the distribution.  

Open EAR program can extracted a set of feature like (Low-Level Descriptors (LLD) and various 

statistical functional. In addition, we can use other information namely; signal energy, FFT-Spectrum, 

Mel-Spectrum, voice Quality, pitch, LPC Coefficients, formants, Spectral and time Signal for emotion 

recognition with Open EAR. 

 

2-7-2 PRATT Soft ware 

In order to implement features extraction, a standard computer system program, “PRAAT” used for 

speech analysis. PRAAT software is an open-source and flexible tool for voice sampling in the field of 

pitch, formant, spectrograms and intensity analysis by academic researchers [193]. PRAAT is a 

wonderful software package written and maintained by Paul Boersma and David Weenink of the 
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University of Amsterdam [194]. It can run on a wide range of operating systems, including various 

versions of Unix, Linux, Mac and Microsoft Windows (95, 98, NT4, ME, 2000, XP, Vista, 7, 8) [195]. 

PRAAT freeware computes four pitch values in one frame length. The PRAAT is an efficient and 

flexible tool that combines many of the recent advancements in automatic speech recognition. On the 

other hand this program have simple interface. The PRAAT software organizes sound file into 

‘‘frames’’ for analysis, computing four pitch values within one frame length. The segmented wave 

files were analyzed one at a time and the pitch contours were saved in separate files. To record sound 

using PRAAT, pull up a recording menu which allows to choose a sampling frequency (the default, 

44100 Hz, is fine for most purposes), a microphone or other sound source, and whether to record a 

mono or stereo sound [196]. 

Voice characteristics at the prosodic level, including intonation and intensity patterns, carry 

important features for emotional states. Hence, prosody clues such as pitch and speech intensity can be 

used to model different emotions and the fundamental frequency pitch contours, pitch values, pitch 

range, as well as the average intensity can enable one to build a classification of various emotion 

types. For example, high values of pitch are correlated with happiness and anger, whereas sadness and 

boredom are associated with low pitch values [118]. 

Three types of features were considered: pitch (range, value and peak), intensity (energy) and rate 

speech; hence, the graphs of formant, pitch and intensity were analyzed.  

Pitch features are often made perceptually more adequate by logarithmic/semitone function, or 

normalization with respect to some (speaker specific) baseline. Pitch is a fundamental acoustic feature 

of speech and needs to be determined during the process of speech analysis [197]. The modulation of 

pitch plays a prominent role in everyday communication. Pitch extraction can influence the 

performance of emotion recognition. 

The Pitch value of a sound is the length of the time interval when the sound signal is higher than the 

average. The pitch peak of a sound is the maximum intensity (peak) of the signal. The pitch range is 

defined as the ratio between the highest and lowest values of intensity of the sound signal. 

Intensity features usually represent the loudness (energy) of a sound as perceived by the human ears, 

based on the amplitude in different intervals [198]. 

Energy is the square of the amplitude multiplied by the duration of the sound. 
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Voice quality is a complicated issue in itself, since there are many different measures of voice 

quality, mostly clinical in origin and mostly evaluated for constant vowels only, though once again 

standardization in this area is lacking [198]. 

The spectrum is characterized by formants (spectral maxima) modeling spoken content. Higher 

formants amplitude also represents speaker position and characteristics [199]. 

Non-linguistic vocalizations are non-verbal phenomena, such as breathing, mute and laughter [194].  

The speech rate specifies the speaking rate in words per minute, a rate that varies somewhat by 

language, but is nonetheless widely supported by speech synthesizers [194].  

 

2-5 Programming in C/C++ and open CV 

In order to detect various basic emotional states, we implemented our program with Visual C# in the 

Visual Studio 2012 software. For connection of the webcam to the proposed hybrid algorithm, we 

used an open CV library and the Sobel filter. The Open CV (Open Source Computer Vision Library) is 

a machine learning software library [200]. This library can take advantage of multi-core processing. 

Also, it enables computers and robots to see and make decisions based on the input data. We used the 

Open CV and storage devices for loading facial image files (JPEG, PNG, GIF, TIFF, BMP …)  

In this project in speech emotion recognition phase we decided to produces privet data base in 

training section. We used five simple sentences of everyday life. The participants to the experiment 

had to repeat these six sentences for three times with a neutral (NEU) intonation, with 1 second of 

interval between each sentence. Then, every participant had to repeat again three times the same five 

sentences, but with each one of the emotions listed above. All the sentences were recorded, thus 

obtaining 630 files, which were input to a dedicated program for speech analysis which could provide 

the intensity, pitch (peak, range, values) alignment and speech rate of all the sentences. 

Also, in facial feature extraction we used two databases. The first database consists of 840 sequences 

of 30 participants, 15 female and 15 male (from 20 to 48 years old), used for training the algorithm. 

The neutral face and the corresponding Facial Action were manually identified in each of these 

sequences. All images are colorful and taken against a white homogenous background in an upright 

frontal position. In each sequence, the human subject displays a mimic facial expression (happiness, 

sadness, disgust, surprise, fear, anger and neutral). 
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Finally, in order to evaluate the hybrid algorithm and checking the accuracy of our method we used a 

comprehensive and rich emotional image database named Cohn-Kanade AU-Coded Facial Expression 

Database. 

 

 

 

 

 

 

 

https://www.ri.cmu.edu/research_project_detail.html?project_id=421&menu_id=261
https://www.ri.cmu.edu/research_project_detail.html?project_id=421&menu_id=261
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The previous chapter gave a description of proposed algorithm, mathematical formulation and 

theoretical ideas for emotion recognition on speech and facial feature extraction. This chapter discuss, 

how the proposed methodology is applied in practice to create a high accuracy emotion recognition 

software. 

Extraction of features is an essential pre-processing and fundamental step in recognition of basic 

emotion. One of the important questions in the field of human robot interaction and emotion 

recognition is how many and which features must chose for automatic recognition of emotions? The 

answer of this question have main role to improve performance and reliability the system. Also, to 

obtain more efficient classification system, we must configure the processing speed emotion 

recognition and memory requirements. 

Ideally, feature selection methods should not only reveal single or most relevant attributes. Features 

such as; pitch, intensity, duration, formant, voice quality, speech rate (SR), facial extraction, action 

unite codes (AUCs) were consist of extracted from human robot communication. The essence of 

speech emotion analysis is control and compare sound plots. Also, facial features emotion expression 

is effectively connected to movement of the facial muscles as well as to deformations of the face. An 

automated facial recognition system has solve two basic problems: facial feature localization and 

feature extraction. This task is the most complicated and time consuming on emotion recognition 

system.  

Thus, have been proposed new method to decrees the recognition rate. Current capture discuss two 

sections to extract features from human robot interaction namely; speech and facial features extraction 

and features classification. 

 

3-1 Speech features extraction 

The speech signal is the fastest and the most natural method of communication between humans and 

robot. Each emotion corresponds to a different portion of the spoken utterance. However, it is very 

difficult to determine the boundaries between these portions. In this project we proposed an algorithm 

based on classification meaningful and informative set of features, such as pitch (peak, value and 

range), intensity, duration speech time, formant, voice quality and speech rate (SR). In Figure 3-1 we 

decided to analyses simple sentences with PRAAT program by means of provide the intensity, pitch 

(peak, range, values) alignment and speech rate in one windows. 
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Voice characteristics at the prosodic level, including intonation and intensity patterns, carry 

important features for emotional states. Hence, prosody clues such as pitch and speech intensity can be 

used to model different emotions. Also, the fundamental frequency pitch contours, pitch values, pitch 

range, as well as the average intensity can enable one to build a classification of various emotion 

types. As depicted in Figure 3-1, three types of features were considered: pitch (range, value and 

peak), intensity (energy) and rate speech; hence, the graphs of formant, pitch and intensity were 

analyzed.  

 

Fig. 3-1 Example of speech analysis with the PRAAT program. 

 

In the proposed system, before started to speech analyses we know, high values of pitch are 

correlated with happiness and anger, whereas sadness, disgust and boredom are associated with low 

pitch values [31]. 

 

3-1-1 Pitch features extraction 

Pitch features are often made perceptually more adequate by logarithmic/semitone function, or 

normalization with respect to some (speaker specific) baseline. Pitch is a fundamental acoustic feature 

of speech and needs to be determined during the process of speech analysis. The modulation of pitch 

plays a prominent role in everyday communication fulfilling very different functions, like contributing 

to the segmentation of speech into syntactic and informational units, specifying the modality of the 

sentence, regulating the speaker–listener interaction, expressing the attitudinal and emotional state of 

the speaker, and many others. Automatic pitch stylization is an important resource for researchers that 

working both on prosody and speech technologies [201].  
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Pitch range was considered as a necessary feature for emotion recognition. Pitch contour 

extraction was done using the PRAAT software. Figure 3-2 shows some pitch plots for the sentences 

spoken by the participants to the experiment (the clearest results were chosen, among the three 

repetitions made by each participant). 

 

 

Fig. 3-2 Some pitch results from the 30 interviewed persons (Europeans, Americans, and Asians). 

As depicted in Figure 3-3, 3-4, 3-5, the pitch contours under positive valence emotions (such as 

surprise and happiness) are similar. The value of the pitch at the end of the sentence is lower than the 

value at the beginning, but surprise has a bigger pitch value. We can see that the highest pitch value 

is for surprise and the lowest corresponds to disgust.  

Also, we can see that the pitch peak under positive valence emotions is sharper among Asian 

speakers, while European and American speakers more or less have similar pitch contours under 

positive valence emotions. Happiness and anger have the highest average pitch peak for European 

speakers (see Figure 3-6) while sadness has the lowest pitch peak. In our experiment, we can also see 
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that surprise and anger for Asian and American speakers have the highest average pitch peak (see 

Figure 3-4, 3-5, 3-7 and 3-8). 

 Pitch Graph 

Happiness 

 
 

Typical pitch contour of Happiness (HAP) emotion 

Surprise 

 
 

Typical pitch contour of Surprise (SUR) emotion 

Fig. 3-3 European pitch contours for Happiness and Surprise.  

 

 
Pitch Graph 

Happiness 

  

Typical pitch contour of Happiness (HAP) emotion 

Surprise 

 
 

Typical pitch contour of Surprise (SUR) emotion 

Fig. 3-4 Asian pitch contours for Happiness and Surprise.  
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 Pitch Graph 

Happiness 

 
 

Typical pitch contour of Happiness (HAP) emotion 

Surprise 

 
 

Typical pitch contour of Surprise (SUR) emotion 

Fig. 3-5 American pitch contours for Happiness and Surprise.  

Among the negative valence emotions, anger has the highest pitch peak (see Figure 3-6, 3-7 

and 3-8). Sadness decreases sharply for Asian and American speakers, but sadness slop decreases 

slowly.  

 Pitch Graph 

Anger 

  

Typical pitch contour of Anger (ANG) emotion 

Sadness  

 
 

Typical pitch contour of Sadness (SAD) emotion 

Fig. 3-6 European pitch contours for Anger and Sadness. 
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 Pitch Graph 

Anger 

 
 

Typical pitch contour of Anger (ANG) emotion 

Sadness 

  

Typical pitch contour of Sadness (SAD) emotion 

Fig. 3-7 Asian pitch contours for Anger and Sadness.  

 

If we compare sadness and neutral for all groups of speaker (Figure 3-6, 3-7, 3-8 and 3-12) the 

neutral emotion does not have a distinct peak and is similar to sadness. However, sadness has 

lower ending pitch signals. 

 

 Pitch Graph 

Anger 

 
 

Typical pitch contour of Anger (ANG) emotion 

Sadness  

  

Typical pitch contour of Sadness (SAD) emotion 

Fig. 3-8 American pitch contours for, Anger and Sadness. 
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Asian speakers were more sensitive to sad emotion, while the pitch graphs of Americans and 

Europeans were similar. Anger is associated with the highest energy for Asian and American 

speakers but for Asian speakers the anger slope decreases slowly, while sadness is associated with 

the lowest energy for Asian and European speakers.  

 

 Pitch Graph 

Anger 

 
 

Typical pitch contour of Anger (ANG) emotion 

Fear 

 
 

Typical pitch contour of Fear (FEA) emotion 

Disgust 

 
 

Typical pitch contour of Disgust (DIS) emotion 

Fig. 3-9 European pitch contours for Anger, Fear and Disgust. 

Even though no universal similarities are observed among negative valence emotions, similarities 

are noted between certain utterances under anger and fear. In Figure 3-9, 3-10 and 3-11 anger is 

characterized by a rising peak followed by either decrease or a leveling out of the pitch values and 

the utterance duration is observed to be small.  

In almost all utterances under anger and fear, the pitch increases to a peak and then decreases 

slightly left-skewed. European and American speakers more or less have similar pitch contours 

under fear emotion. 
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 Pitch Graph 

Anger 

  

Typical pitch contour of Anger (ANG) emotion 

Fear 

  

Typical pitch contour of Fear (FEA) emotion 

Disgust 

  

Typical pitch contour of Disgust (DIS) emotion 

Fig. 3-10 Asian pitch contours for anger, fear and disgust. 

 Pitch Graph 

Anger 

  

Typical pitch contour of Anger (ANG) emotion 

Fear 

  

Typical pitch contour of Fear (FEA) emotion 

Disgust 

  

Typical pitch contour of Disgust (DIS) emotion 

Fig. 3-11 American pitch contours for Anger, Fear and Disgust. 
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In Figures 3-10 and 3-11 it can be seen that the highest mean pitch values are for American 

speakers, while Asians have sharper pitch peaks. Pitch values and speech rate are connected 

together. We can see that usually the speech rate of American speakers is higher than Asian and 

European speakers.  

As depicted in Figure 3-12, the beginning and ending of pitches in neutral emotion for 

Americans after rising and falling have similar frequencies. This is probably due to the fact that 

the mother language of American speakers was English, while Europeans and Asians (whose 

mother language was not English) show a bit of stress in neutral speech. 

 

 Pitch Graph 

Neutral 

  

Typical pitch contour of Neutral (NEU)  emotion European 

Neutral 

  

Typical pitch contour of Neutral (NEU)  emotion Asian 

Neutral 

  

Typical pitch contour of Neutral (NEU) emotion American 

Fig. 3-12 European, Asian and American pitch contours for Neutral. 
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3-1-2 Formant features extraction (speech communication) 

Formants are the meaningful frequency components of human speech and contents of the vowel 

sounds. Formant used to be important in determining the phonetic content of speech signals. Further 

empirical results discussed formant used to be important in determining the phonetic content of speech 

signals. Also, used as identifying silence in speech recognition. We can change the position of the 

formants by moving around the tongue and the lip muscles so as to show the emotion in speech. In the 

PRAAT software the maximum value of the formant should be set to about 5000Hz for a male 

speaker, 5500Hz for a female speaker and even higher for children. In Figure 3-13, 3-14 and 3-15, we 

extracted of formant features from spectral feature vectors with PRAAT program.  

Formant 

  

(a) Typical formant contour of Happiness (HAP) emotion (b) Typical formant contour of Surprise (SUR) emotion 

  

(c) Typical formant contour of Anger (ANG) emotion (d) Typical formant contour of Fear (FEA) emotion 

  

(e) Typical formant contour of Sadness (SAD) emotion (f) Typical formant contour of Disgust (DIS) emotion 

Fig. 3-13 European speaker typical formant contour of basic emotions. 
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The plot of the formant displays the amplitude of the frequency components of the signal over 

time. It is generally agreed that formants are perceptually important features. It is also often 

acknowledged that spectral peaks (formants) should be more robust to additive noise since the 

formant regions will generally exhibit a large signal-to-noise ratio [202]. For most analyses of 

human speech, we may want to extract 5 formants per frame. 

 

Formant 

  

(a) Typical formant contour of Happiness (HAP) emotion (b) Typical formant contour of Surprise (SUR) emotion 

  

(c) Typical formant contour of Anger (ANG) emotion (d) Typical formant contour of Fear (FEA) emotion 

  

(e) Typical formant contour of Sadness (SAD) emotion (f) Typical formant contour of Neutral (NU) emotion 

Fig. 3-14 Asian speaker typical formant contour of basic emotions. 
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As depicted in Figure 3-13, 3-14 and 3-15, the formant contour in anger and happiness for European 

speakers has the highest power, while we have the lowest spectral power in fear. Formant contour in 

Figure 3-14, 3-15 explain that anger, fear and happiness have the highest power for Asians and 

Americans, while we have a lot of wave and formant dots the fear plot. Asians and Europeans have the 

lowest spectral power in sadness, while Americans have the lowest spectral power in neutral emotion. 

.Formant 

  

(a) Typical formant contour of Happiness (HAP) emotion (b) Typical formant contour of Surprise (SUR) emotion 

  

(c) Typical formant contour of Anger (ANG) emotion (d) Typical formant contour of Fear (FEA) emotion 

  

(e) Typical formant contour of Sadness (SAD) emotion (f) Typical formant contour of Neutral (NU) emotion 

Fig. 3-15 American speaker typical formant contour of basic emotions. 

Finally, experiments for all ethnic groups of speakers described, formant graph information yielded 

significant results in the noisy conditions performance. This result show that the formant plots 

increases the recognition on; happiness, surprise, anger and fear emotion in real time in various 

environment. 
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3-1-3 Intensity features extraction (speech communication) 

Sound or acoustic intensity is defined as the sound power and is measured in dB. The typical context 

in this field is the listener's location for the measurement of sound intensity. Sound intensity is a 

specifically defined quantity and is very sensitive to the location of the microphone. In our 

experiments using the PRAAT software, we put the microphone at a distance of 30cm form each 

participant. As expected and further shown later, this approach indeed resulted in the extraction of 

some meaningful intensity information that we used on emotion recognition program. In terms of 

intensity, as it can be seen in Figure 3-16, 3-17 and 3-18, when we have strong power on the source of 

sound signals, the energy and the intensity of the sound increase.  

Intensity 

  

(a) Typical intensity contour of Happiness (HAP) emotion (b) Typical intensity contour of Surprise (SUR) emotion 

 

 

(c) Typical intensity contour of Anger (ANG) emotion (d) Typical intensity contour of Fear (FEA) emotion 

 

 

(e) Typical intensity contour of Sadness (SAD) emotion (f) Typical intensity contour of Disgust (DIS) emotion 

Fig. 3-16 European speaker typical intensity contour of basic emotions. 

http://en.wikipedia.org/wiki/Sound_power
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Anger and surprise for European speakers have the highest energy and intensity, while neutral and 

sadness have the lowest intensity. For Asian speakers, as it can be seen in Figure 3-17, anger and 

happiness have the highest energy and intensity, while fear has the lowest intensity. 

Intensity 

  

(a) Typical intensity contour of Happiness (HAP) emotion (b) Typical intensity contour of Surprise (SUR) emotion 

  
(c) Typical intensity contour of Anger (ANG) emotion (d) Typical intensity contour of Fear (FEA) emotion 

  
(e) Typical intensity contour of Sadness (SAD) emotion (f) Typical intensity contour of Disgust (DIS) emotion 

Fig. 3-17 Asian speaker typical intensity contour of basic emotions. 

 

Further empirical results discussed, for American speakers, as it can be seen in Figure 3-18, anger, 

surprise and happiness have the highest energy and intensity, while fear has the lowest intensity.  

It is straightforward to infer that the difference between results is due to the difference between the 

cultures to which the speakers belong. Categorizing the emotions into “high intensity” or “low 

intensity” can be of great help to increase and design algorithms for emotion recognition. 
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Intensity 

  
(a) Typical formant contour of Happiness (HAP) emotion (b) Typical formant contour of Surprise (SUR) emotion 

  

(c) Typical formant contour of Anger (ANG) emotion (d) Typical formant contour of Fear (FEA) emotion 

  
(e) Typical formant contour of Sadness (SAD) emotion (f) Typical formant contour of Disgust (DIS) emotion 

Fig. 3-18 American speaker typical intensity contour of basic emotions. 
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3-1-4 speech rate features extraction 

Human listeners are able to understand soft, loud, fast and slow speech. The speech rate determines 

the speaking rate in syllables per minute (SPM). Speech rate recognizers will have implemented for 

Human-Robot interaction. Speech rate is typically defined as the number of words spoken divided by 

the time of speech. For emotion recognition in sound signals, speech rate is an important factor as 

well. Human listeners are able to understand both fast and slow speech. Fast speech have been used in 

angry and fear emotional communications. The PRAAT software expresses speech rate in seconds, 

which means the time taken to pronounce the analyzed sentence. A notable result (see Table 3-1) is 

that anger and fear have the lowest speech rate for European speakers, meaning that the sentences 

pronounced with anger or fear are pronounced faster, while happiness has the lowest speech rate.  

Table. 3-1 Speech rate on emotions (average of the 30 experimental tests) for European, Asian and American. 

Emotion 

Quality 

Speech rate for 

European speakers 

Speech rate for 

Asian speakers 

Speech rate for 

American speakers 

Happiness (HAP) 2.0921 s 1.9457 s 1.9931 s 

Surprise (SUR) 1.6439 s 1.7001 s 1.6128 s 

Anger (ANG) 1.3176 s 1.8832 s 1.2204 s 

Fear (FEA) 1.4863 s 1.7121 s 1.6585 s 

Disgust (DIS) 1.5521 s 1.4401 s 1.5736 s 

Sadness (SAD) 1.7071 s 1.3764 s 1.4750 s 

Neutral (NU) 1.6889 s 1.5343 s 1.5158 s 

SUM RATE 11.489 S 11.616 S 10.482 S 

Sadness and disgust have the lowest speech rate for Asian speakers, while anger and happiness have 

the highest speech rate: this results is probably due to the fact that Asian people have bigger emotional 

reaction to happiness and anger. For American speakers anger and disgust have the lowest speech rate, 

while happiness and fear have the highest speech rate. In general, happiness and surprise have the 

highest speech rate, while anger and sadness have the lowest speech rate. Moreover, Americans have 

the highest speech rate. The proposed system used speech rate with standard binderies for each 

sentences with different emotion. Therefore, we must attention to that average speech rate for different 

ethnics group of speakers. For example for Asian speakers speech rate is lower than European and 

American. Also, speech rate change for different ages. Speech rate is one of the important factor that 

decrees the time and increases the accuracy of the algorithm for recognition of emotion in speech. 
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3-2 Facial features extraction 

The proposed system for facial feature localization is based on a set of facial geometries and a set of 

rules for features localization. While facial feature detection is based on definition of Active Facial 

Shape Models (AFSMs) and Bézier curves, we defined the Facial Action Code System (FACS) 

corresponding to each facial feature.   

Active Facial Shape Models define the shape of statistically facial features such as the eyebrows, 

eyes, nose, mouth and eyebrows in an image [203].  

 

3-1-1 Eyes and Mouth Localization 

Eyes and mouth localization is a very important issue for emotion recognition. This directly 

influences the localization of eyebrows and nose. The geometry of the eye is simple, so an effective 

method for eye localization can be quite easily defined. In order to find the middle position of the eye, 

we proposed the matrix to divide the face into a 9*6 matrix, so that the face is divided into 54 equal 

cells, each one made of 20*20 pixels (see Figure 3-19). The position of the right eye is generally 

estimated in the cell of index (4, 2). We calculated the standard distances between two eyes and the 

anthropometric position of the eyes, so that due to symmetry, the position of the left eye can be found 

easily. Then, a rectangular boundaries containing the two eyes can be generated. 

 

Fig. 3-19 Anthropometric of human face for features detection. 



CHAPTER 3     Implementation the emotion recognition system 

79 | P a g e  

 

We used skin texture techniques in order to evaluate the amount of eye opening under different 

emotions (happiness, surprise, anger and sadness): eyelids usually are darker than skin, so they are 

converted into black pixels, while skin is converted into white pixels.  

Mouth is another very important feature for emotion expression. Also, localization of the lips region 

is very important for recognizing happiness, surprise, anger, fear and sadness. The mouth area has six 

regions: (whole mouth, lower lip, upper lip, between lips, mouth cavity and teeth) [204]. As shown in 

Figure 3-19, the mouth occupies in the lower third of the face image. For estimation of mouth position, 

a rectangular boundary of 80*40 pixels containing the mouth is created.  

Lip localization is similar to eye localization, but the system must eliminate the false lip edge and 

shadow. If the mouth is closed, the task is relatively easy task, but if the mouth is open, edge detection 

techniques (Sobel filtering) are needed.  

The maximum distances between the two lips are reported as the mouth opening value. When the 

mouth is open teeth detecting techniques must be used. In the first step for teeth detection, we must 

find the center of the mouth. Then, have been counted the number of white pixels at the center of the 

mouth boundary, and if the number of the white pixels was equal or higher than one-third of all pixels, 

the system found the position of the teeth in the image. 

In happiness emotion the length of the mouth stretches, while in surprise the length of the mouth 

decreases and instead the mouth width increases. For calculating the mouth length, the system 

computes the horizontal distance between the lip corners, which have the darkest color pixels in the 

mouth region. 

 

3-1-2 Eyebrows and Nose Localization 

Eyebrows and nose generally are detected by using facial geometries and Active Facial Shape 

Models (AFSMs). Inner and outer parts of the eyebrows are especially important for recognizing 

surprise, happiness, anger and sadness. 

Eyebrows location is based on the forehead detection and is quite easy because eyebrows have a 

simple shape. The most important part in the algorithm is to accurately localize the eyebrows 

boundaries. As shown in Figure 3-20, the eyebrows rectangular boundaries have the same size and are 

located above of eye boundaries. They lie inside two 60*20 pixels frames. 
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However, in eyebrows localization shadows near the eyebrows, as well as thin or light-colored 

eyebrow hairs can decrease the accuracy of the system. 

 

Fig. 3-20 Eyebrows detection and localization boundary. 

The nose is a fixed element in the center of the face. The system detected the nose based on its 

geometry. For detecting the nose and the nose side wrinkles, we must select the window that contains 

the nose. The nose rectangular boundary lies above the upper lip and has a size of 40*40 pixels.  

Table. 3-2 summarizes the procedure for localization of the face features. 

Area Location Width Height 

Eyebrows 
Top left and right part of the 

face below forehead 
Right and Left 60 pixels Second area from top 20 pixels 

Eyes 
Top left and right part of the 

face below eyebrows 
Right and Left 60 pixels Second area from top 20 pixels 

Nose 
Center part of the face upper 

lip 
In Center 40 pixels In Center 40 pixels 

Mouth Bottom part of the face In Center 80 pixels First area from bottom 40 pixels 
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After that, the next step of the algorithm is to extract the facial feature. As it can be seen in Figure 3-

21, finally five types of features can be recognized with some accuracy. 

 

 

Fig. 3-21 Extraction main facial features from image. 
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3-3 Speech features classification system 

Extraction rules for classification of emotion can extract form speech signals. In this section we 

wants to developing the classifier sound system. Then in capture 4, have been evaluated and tested 

these extracted rules and proposed system.  

As mentioned above the algorithm in methodology described in the foregoing analyzes the emotion 

that belongs to the category of “high and low" intensity. An overview of the block diagram for 

extracting and classifying the multi-level emotion is shown in Figure 3-22. If the algorithm compare 

PRAAT plat and distinguish the speech falls into the “high intensity” category, it is further analyzed to 

recognition emotion between happiness, surprise, anger and fear.  

 

 

Fig. 3-22 Model of the system for speech emotion classification and recognition. 

 

In the same way, the system check intensity graph in order to distinguish “low intensity” for control 

between neutral and sadness emotion. Also, we can be used the graphs of pitch and speech rate. The 
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proposed model for distinguish between neutral and sadness control ending pitch (sadness emotion has 

lower ending pitch). 

If the shape of signal is “left skewed” and the ending of the signal is higher than the beginning, the 

emotion must be fear or anger emotion. Base on rule extraction In order to distinguish between fear 

and anger, the algorithm must compare the intensity: anger emotion has the highest intensity, thus it is 

easily distinguishable. If the shape of the signal is “right skewed”, it must further analyzed in order to 

distinguish between surprise and happiness.  

To this aim, the algorithm must check the pitch value and intensity: happiness has the highest pitch 

range and pitch peak while surprise has the highest pitch value. If the speech does not belong to any of 

the aforementioned emotions, it is classified as disgust. 
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3-4 Facial features classification system 

Researchers in facial features expression, mostly focus on defining a universal set of features that 

convey emotional clues and try to develop classifiers that efficiently model these features. The system 

for recognition of emotion needed to present methods for discovering emotions, modeling and 

evaluating the results. In this section we used the mathematical formulation (Bézier curves) and the 

geometric analysis of the facial image, based on measurements a set of Action Units (AUs) and Facial 

Action Code System for classify emotion. 

3-4-1 Bézier curves for facial features classification 

Converting the eyebrows, eyes and mouth features to fitted curves is the next step before detecting 

emotions. Bézier curves can approximately represent 2D facial shapes. To apply the Bézier curves, we 

need to generate some contour points for control information. For example, in this paper we chose 

eight neighbor points for each facial region (left/right eyes, left/right eyebrows, upper /lower lips). The 

aim of the Bézier curve method is to interpolate a sequence of 8 proposed points. 

As it can be seen in Figure 3-23, the system generates Bézier curves which can represent the 

principal facial regions. 

 

 

Fig. 3-23 Result of Bézier curves for five principal facial features. 
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The Bézier representation of the curves can then be employed to determine the distances between the 

points of interest. Then the system saves all the computed values into a database and finally finds the 

nearest matching pattern with related emotion. The system database contains index of seven kinds of 

emotion with different features, which are extracted based on the rules in Table 3-3. If the input 

graphic curve did not match with the emotion in database, we added this emotion manually to the 

database in the training phase.  

As mentioned above the proposed algorithm for facial emotion recognition is divided into two steps. 

The first step included Bézier curve analysis and measurement of each input image base on graphic 

curve. In the second step, the algorithm extracted facial Action Units (AUs) and calculated the 

distance parameters between facial feature on input face image and normal face image. When the 

algorithm starts the second step, automatically the system begins the training section after checking 

the Facial Action Codes System (FACS).  

Table. 3-3 Basic emotion with different features for recognizing facial expression. 

EMOTION Eyebrows Eyes Nose Mouth Lips Teeth Other 

Happiness 

Outer 

eyebrows 

corners 

Stretch 

- Widen 

Increases 

length 

horizontally 

Movement 

muscle that 

orbits the 

eye 

Show 50% 

teeth 

Cheeks 

Pushed up 

– Chin 

Rise up 

Surprise 
Completely 

raised up 
Widen - 

Increases 

length 

vertically 

Both open 

with high 

slope 

Show 10% 

teeth 
 

Anger 

Down, Inner 

eyebrows 

corners go 

together 

Glare - Compress Narrow - 
Nostril 

Compress 

Fear 

Raised and 

pulled 

together 

Raised 

upper of 

the eyes 

- - 

Slightly 

stretched 

horizontally 

Show 30% 

teeth 
 

Disgust   
Side 

wrinkling 
- 

Supper lip 

raised 
- 

Nostril 

deeper 

Sadness 

Inner corner 

of the 

eyebrows 

rises up 

Losing 

focus in 

eyes 

- 

Lower 

mouth 

Corner 

Slight 

pulling 

down of lip 

corners 

- 

Drooping 

upper 

eyelids 
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3-4-1 Action Units (AUs) for facial features classification 

One of the most important way to approach facial emotion classification and recognition is use facial 

muscle movements. The specific application on facial coding system is to describe the motion of 

muscles and the combination of different components.  

In this research we chose a set of 32 facial Action Units (AUs) that was useful for basic emotion 

expression. They are shown and described in Tables 3-4. 

Table. 3-4 Basic emotions and 32 Action Units resulting from feature extraction. 

Action Units 

(AUs) 
Feature Description Measurement name 

0 Neutral 

1 

Eyebrows 

Inner eyebrows corners Slope 
Inner Eyebrow Raiser 

2 Inner Eyebrow Depressor 

3 
Outer eyebrows corners Slope 

Outer Eyebrow Raiser 

4 Outer Eyebrow Depressor 

5 
center eyebrows 

center Eyebrow Raiser 

6 Eyebrow Lower 

7 

Eye 
Eye shape 

Outer Eye Raiser 

8 Outer Eye Depressor 

9 Squint 

10 Eyes Tightened 

11 Eyes opening Eyes open 

12 

Nose 

Nose shape 
Nose wrinkling 

13 Nose width 

14 
Nostril 

Nasolabial Deepener 

15 Nostril Compress 

16 

Mouth 

Mouth shape 

Mouth open 

17 Mouth close 

18 Mouth Stretch 

19 

Lower Lip 

Lower Lip Corner Depressor 

20 Lower Lip Corner Puller 

21 Lower lip to chin 

22 

Upper Lip 

Upper Lip Corner Depressor 

23 Upper Lip Corner Puller 

24 Upper lip to nose 
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25 

Lips shape 

Lip stretcher 

26 Lip Tightener 

27 Lip Suck 

28 

Head 
Rotatio head 

Head up 

29 Head down 

30 Head tilt  

31 Head turn (left\ right) 

32 Forehead Forehead wrinkling 

 

As mentioned above, we compared the relationship among AUs, on the basis of a nearest neighbor 

on the current and input image. After extracting the facial features correctly, we employed the 32 

Action Units suitably represented and divided into: neutral with references (AU0), upper face AUs 

(AU1_AU15), lower face AUs (AU16_AU27) and head position (AU28_AU32).  

As it can be shown in the bar diagram in Figure 3-24, we grouped the 32 AUs into five categories 

that contribute toward the facial emotion expression. 

 

 

Fig. 3-24 Mutual interaction between facial features and Action Units (AUs) in the proposed system. 
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Figure 3-25 (a) shows the number of action unites for principel component of facial features and 

Figure 3-25 (b) shows the role of mouth and eyebrows expressions in different emotions; namely, the 

mouth with 20 and the eyebrows with 12 checks on each image. In the second place, the proposed 

system used nose and eyes Action Units (AUs). Additionally, we also used the head motion to increase 

the accuracy of the system. Head position can have significant variations between different ethnic 

groups. 

 

(a) Number of Action Unites for principel component of facial features 

 

(b) The roles of Action Unites for diffrent basic emotion 

 

Fig. 3-25 Interaction between facial features, basic emotions and Action Units (AUs). 
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By increasing the performance of the algorithm, based on the role of AUs in each emotion we added 

a weight to each feature Action Code. Action Codes describe the same facial expression category and 

can be used to compare facial repertoires. 

In the proposed system, the Action Codes are classified into four categories. The mouth Action 

Codes with “50 percent” weight, eyebrows Action Codes with “25 percent” weight, eyes Action Codes 

with “12.5 percent” weight and the remaining “12.5 percent” weight for nose and head position. 

As illustrated in Figure 3-26, we connected AUs to extract facial features with a group of landmark 

points. We chose the facial matrix to determine the position of Action Codes. The facial matrix has a 

size of 1800*1200 pixels with 52 points on the Facial Action Codes. Also, have been selected a subset 

of 52 landmark points. The facial matrix has four regions: (eyebrows 16 point, eyes 16 point, nose 4 

point and lips 16 point). But some of this landmarks are very close to each other. 

By computing the AUs distance between the input image and normal image, we developed an 

algorithm with the mathematical concepts for measurement of the distance between the Action Codes. 

 

 

Fig. 3-26 Facial matrix and 52 landmark points (eyebrows 16, eyes 16, nose 4, lips 16). 
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As it can be seen in Table 3-5, the emotions are associated with the distance extracted from facial 

codes points. 

 

Table. 3-5 Facial features distance measurements (15 codes) for basic emotion expression. 

 

Code Validation distances Distances 

D1 Distance of eyebrows top to forehead V1-V2 

D2 Eye height V3-V4 

D3 Distance of nose top to eyebrow’s middle V5 

D4 Distance of Upper Lip to nose V6 

D5 Upper Lip height V7 

D6 Distance of Upper Lip to Lower Lip V8 

D7 Lower Lip height V9 

D8 Mouth height V10 

D9 Eyebrow width H1-H2 

D10 Eye width H3-H4 

D11 Distance of inner eyebrow left corner to inner eyebrow right corner H5 

D12 Nose width H6 

D13 Upper Lip width (corner of lip position) H7 

D14 Mouth length H8 

D15 Lower Lip width (corner of lip position) H9 

 

In order to compute the distance between the 15 Action Codes, the Mahalanobis algorithm and the 

facial geometry was used in the software program [200]. Mahalanobis distance used in facial 

expression classification techniques and computed of the appropriate dimension of the facial code 

points. The algorithm automatically measures 15 distances, respectively: D14, D8, D6, D13, D15, D7, D5, 

D11, D1, D4, D9, D2, D10 and D3. 

Different distances between the emotional facial images and normal facial image were extracted 

Facial Action Points (FAP). Table 3-6 shows the average distances from the corresponding values and 

neutral. Parameters displayed negative deviation, positive deviation or no substantial deviation from 

the neutral value (Table 3-6). The trend of variation of different parameters with respect to neutral 

values for different expressions helps in the effective emotion recognition.  



CHAPTER 3     Implementation the emotion recognition system 

91 | P a g e  

 

 

Table. 3-6 shows the average distances from the corresponding values and neutral. 

Validation distances 
Emotion 

NEU HAP SUR ANG FEAR SAD DIS 

Distance of eyebrows top to forehead 0.00 -2.45 -7.20 5.35 -1.55 -0.75 -1.35 

Eye height 0.00 -2.30 4.83 -1.95 -1.12 -2.43 -2.25 

Distance of nose top to eyebrow’s middle 0.00 -2.10 3.24 -3.56 -0.52 -0.79 1.34 

Distance of Upper Lip to nose 0.00 -1.84 1.53 -1.23 -1.00 10.76 -0.32 

Upper Lip height 0.00 -0.61 -0.42 -0.85 0.34 0.64 0.12 

Distance of Upper Lip to Lower Lip 0.00 4.22 7.48 -0.38 1.14 -0.53 0.62 

Lower Lip height 0.00 -0.43 -0.45 -0.87 0.30 0.69 0.14 

Mouth height 0.00 6.85 12.38 -1.53 2.56 -1.73 1.53 

Eyebrow width 0.00 2.12 -4.28 -1.85 1.26 1.64 0.52 

Eye width 0.00 5.33 -7.54 -3.42 2.11 3.27 1.17 

Distance of inner eyebrow left and right corner 0.00 0.72 0.50 -0.52 0.42 -0.23 0.21 

Nose width 0.00 2.29 -1.14 1.37 0.74 0.54 4.58 

Upper Lip width (corner of lip position) 0.00 18.55 -11.30 4.50 -3.37 5.56 3.42 

Mouth length 0.00 15.33 -13.25 4.35 -4.23 5.10 3.19 

Lower Lip width (corner of lip position) 0.00 17.42 -11.28 4.48 -3.47 6.25 3.56 

 

Finally, when calculating the Action Codes distance, we solved slight overlapping between sets of 

very close points.  
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4-1 Rules extraction for emotion recognition system 

Accordance with past research there is great opportunity for rules extraction in complex system. We 

explain that, by means of to have large impact in rules extraction algorithm the system must be extract 

high level of generality in sound and facial observation.  

Most of the rules extraction system has been used data only within narrow class (like seven basic 

emotion class). Researchers mostly focus on defining a universal set of rules that convey emotional 

clues and try to develop that efficiently of this rule on emotion recognition program.  

The most important issues in rules extraction is discovering of applicable and general rules in order 

to transfer the optimal results on emotion recognition system or training method. The system for 

recognition of basic emotion needed rules from pitch, formant, intensity, speech rate, AUs and Facial 

features Action Code System. The proposed algorithm has led to develop an applicable rules in order 

to provide portable speech and facial source code to use in the emotion recognition system. 

4-1-1 Rules extraction in sound signals and facial feature extraction  

In this section the most important issues is discovering and developing the emotional speech and 

facial feature rules. For practical purposes, the important goals are discovery of which feature rules are 

the most informative and meaningful for recognition of emotions. 

 In order to use rules extraction system first we defined universal set of rules for emotion recognition 

and classification based on human facial features and human sound signals. Secondly we evaluated 

and tested these rules. Extraction rules for recognition of emotion base on speech signals (verbal 

interaction) can extract form pitch peak, pitch value, pitch range, intensity, formant, and speech rate. 

Table 4-1 summarizes group of this rules. The importance results of this section is distinguish 

emotions between the different ethnic groups.  

For example one of these rules is: positive valence emotion (happiness and surprise) have right-

skewed pitch contours, while negative valence ones (anger and fear) have slightly left-skewed pitch 

contours and the ending of the signal is higher than the beginning. Neutral and sadness have the lowest 

ending pitch contours. 
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Table. 4-1 Rules for emotion classification based sound signal. 

Observation Set Of Rules 

Observation 1 Happiness has highest average pitch peak and intensity, while has lowest speech rate 

Observation 2 Anger has the highest pitch peak, pitch values, speech rate, intensity 

Observation 3 Fear and sadness are associated with the lowest energy 

Observation 4 Disgust has the lowest pitch value and decreases sharply 

Observation 5 Positive valence emotion (happiness and surprise) have right- skewed pitch contours 

Observation 6 Negative valence emotion (anger and fear) have slightly left-skewed pitch contours 

Observation 7 Sadness and neutral have the lowest ending pitch contours 

 

Also, we focused on defining a universal set of AUs that convey facial expression clues. Based on 

each Action Unit, a set of rules are generated in terms of the feature representation, as well as a few 

simple combination relationships among Action Units (see Table 4-2). As mentioned in capture 3 we 

used motion of muscles and the combination of different components (Table 3-3 and Table 3-4) with 

defining the new action unite for proposed system.  

In emotion detection system, using more Action Units makes the recognition system more accurate. 

 

Table. 4-2 Basic emotion recognition base on extracted facial Action Units. 

EMOTION Action Units (AUs) 

Happiness AU1+ AU3+ AU7+ AU13+ AU16+ AU18+ AU20+ AU23+ AU25+ AU28 

Surprise AU2+ AU4+ AU5+ AU11+ AU13+ AU16+ AU21+ AU24+ AU28 

Anger AU2+ AU3+ AU10+ AU15+ AU17+ AU26+ AU27+ AU29+ AU32 

Fear AU2+ AU4+ AU6+ AU11+ AU13+ AU15+ AU17+ AU18+ AU25+ AU26+ AU28 

Disgust AU4+ AU9+ AU12+ AU15+ AU19+ AU23+ AU30+ AU31 

Sadness  AU2+ AU4+ AU6+ AU8+ AU17+ AU14+ AU15+ AU19+ AU22+ AU29 
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For implementation of the facial features rule extraction have been used Action Units (Table 4-2), 

we employed the 32 Action Units suitably represented and divided into: neutral with references (AU0), 

upper face AUs (AU1_AU15), lower face AUs (AU16_AU27) and head position (AU28_AU32).  

The proposed algorithm starts with the “Mouth Action Codes” step. The mouth region is divided into 

upper lip and lower lip part. They are especially important for recognizing surprise, happiness, anger 

and sadness. Accuracy of the system depends on the mouth center positions and lips corner. The most 

important issues in this section were the different between human ethnic groups. For example, Asian 

lips are thicker than European ones. 

If the Action Code of the lips corner is “upper” or “higher” than the normal, the system recognizes 

happiness. 

If the Action Code of the lips is “open” or “tighter than the normal”, the system recognizes surprise 

or anger.  

In the same way, the algorithm runs the “Eyebrows Action Codes” step. This step is important for 

recognizing sadness, anger, surprise and fear. The eyebrows’ inner and outer corner is important for 

sadness and anger. The shape of eyebrows is also important for anger and fear emotion. 

In the third step, the algorithm considers the “Eyes Action Codes”. It is especially important for 

recognizing sadness, anger, surprise and happiness. If we compare happiness and surprise, eyes 

opening are the most important parameter. The eye shrink is useful for recognizing anger and fear 

emotion.  

We can use the nose and head position for recognizing disgust and anger. The head landmark points 

are particularly helpful for describing anger and disgust. For this purpose, the algorithm must check 

the nose wrinkling and position of the head. 

Finally, we defined a set of universal observations for emotion recognition based on the procedure of 

speech signals and facial feature rules extraction on emotion recognition in hybrid system.  

Some examples of these observations are shown in the Table 4-3. For example one of these rules is: 

Anger emotion. It has the highest pitch peak, pitch values, speech rate and intensity, slightly left-

skewed pitch contours (the ending of the signal is higher than the beginning), eyes gaze, Inner 

eyebrows corners go together, mouth compress and lips thickness. 
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Table. 4-3 Set of rules for emotion recognition. 

Observation Set Of Rules 

Observation 1 
Happiness has highest average pitch peak and intensity, while has lowest 

speech rate, right- skewed pitch contours, open mouth and teeth is visible. 

Observation 2 

Surprise has the highest pitch range and high pitch peak, right- skewed pitch 

contours, size of the eye is wider than normal, mouth length decreases and 

the mouth height increases. 

Observation 3 

Anger has the highest pitch peak, pitch values, speech rate and intensity, 

slightly left-skewed pitch contours, eyes gaze, Inner eyebrows corners go 

together, mouth compress and lips thickness.  

Observation 4 
Fear has the lowest energy, slightly left-skewed pitch contours, eyebrows 

raised and pulled together, mouth Slightly stretch. 

Observation 5 
Sadness has the lowest ending pitch contours, eyes tightening, inner 

eyebrows corner rises up, obliquely lowering of the lip corners. 

Observation 6 
Disgust has the lowest pitch value and pitch graph decreases sharply, nose 

side have wrinkles. 

Observation 7 Neutral has lower end pitch and facial is in normal position. 
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4-2 Evaluation of the results of implementation system 

By means of implementation and validation of the algorithm for recognition basic emotion 

(happiness, sadness, disgust, surprise, fear, anger and neutral) we used two databases. The system was 

evaluated by actor and actress under audio, visual and audio-visual conditions in the laboratory  

The experimental tests for the first database consists of 630 sound file and 840 sequences 2D image 

on 30 individuals (15 female and 15 male, 20 to 48 years old) participant form different ethnic groups 

(Europeans, Middle East Asians and Americans).  

Also, in order to evaluate the hybrid algorithm and checking the accuracy of our method in speech 

recognition and facial emotion expression phase have been used another data base. The proposed data 

base consists of recorded sound file with different sentences and speakers. Also, in facial emotion 

recognition have been used comprehensive and rich emotional image database named Cohn-Kanade 

facial expression database [205].  

The Cohn-Kanade AU-Coded facial expression database have been used for research in facial image 

analysis and synthesis and for perceptual studies. Version 1, Cohn-Kanade data base includes six 

prototypic emotions (i.e. happiness, surprise, anger, fear, disgust, and sadness), and includes 486 

sequences from 97 posers. 

 

4-2-1 Results on speech emotion recognition system 

In almost any category of emotion we have successfully identified certain characteristic features and 

these formed the basis for classification of different emotions. The typical pitch and intensity contours 

characterizing each of the basic emotions. Happiness and surprise have the highest pitch range and 

pitch peak. In pitch peak and intensity analysis, happiness and anger are distinguished faster than other 

emotions for European speakers, while in order to distinguish fear and disgust, the algorithm must 

check all the acoustic features.  

In pitch value analysis, surprise, happiness and fear can be distinguished quicker than other 

emotions. For Asian speakers in pitch peak, happiness and anger are distinguished faster than other 

emotions. Also, anger has the highest and sadness has the lowest range of intensity for Asian speakers.  

The procedure for emotion recognition from speech can be implemented using a Likert type 

scale (see Table 4-4), which categorizes the basic emotions based on discrete values of pitch peak, 
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pitch range, pitch value, intensity and speech rate. Perceptual listening tests had been conducted to 

verify the correctness of emotional content in the recordings under each of the seven categories of 

emotion.  

Human experts (3 persons) listened to the sample sentences and indicated the perceived emotion 

from a list of six emotions (apart from the neutral). The listeners rated the sound files for each 

emotion on a five point scale ranging from excellent to bad through very good, good and fair. 

Table. 4-4 Likert type scale for emotion recognition. 

MOTION 

QUALITY 

Difference 

between 

highest and 

lowest of 

signals 

Top of the 

signal shape 

For long time is 

higher than the 

average 

sound 

power 

Model 

Result 
Total quality distinguish 

Total 

Results 

Pitch range Pitch peak Pitch values 
intensity 

(Energy) 
SUM Likert type scale SUM 

Happiness 

European 7 European 7 European 6 6 

925 

EX VG G F B 

EX Asian 6 Asian 6 Asian 4 6 EX VG G F B 

American 6 American 5 American 5 5 EX VG G F B 

Surprise 

 

European 6 European 7 European 5 7 

835 

EX VG G F B 

EX Asian 5 Asian 5 Asian 6 3 EX VG G F B 

American 5 American 6 American 6 6 EX VG G F B 

Anger 

European 4 European 6 European 2 7 

931 

EX VG G F B 

VG Asian 7 Asian 7 Asian 2 7 EX VG G F B 

American 7 American 7 American 3 7 EX VG G F B 

Fear 

European 5 European 3 European 5 3 

732 

EX VG G F B 

G Asian 4 Asian 4 Asian 7 5 EX VG G F B 

American 3 American 4 American 5 2 EX VG G F B 

Disgust 

European 2 European 4 European 1 4 

670 

EX VG G F B 

F Asian 3 Asian 3 Asian 1 1 EX VG G F B 

American 4 American 3 American 1 1 EX VG G F B 

Sadness 

European 1 European 1 European 4 2 

635 

EX VG G F B 

G Asian 2 Asian 2 Asian 3 4 EX VG G F B 

American 2 American 1 American 2 4 EX VG G F B 

Neutral 

European 3 European 2 European 3 1 

710 

EX VG G F B 

G Asian 1 Asian 1 Asian 5 2 EX VG G F B 

American 1 American 2 American 7 3 EX VG G F B 

http://en.wikipedia.org/wiki/Sound_power
http://en.wikipedia.org/wiki/Sound_power
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For validation of the algorithm we intend to compare the accuracy and recognition rate of the basic 

emotions in speech analysis phase. Table 4-5 show that the anger and happiness have the highest 

emotion detection rate and recognition accuracy of these emotions is higher than 80%. Fear, disgust 

and sadness have the lowest emotion recognition rate. It appears that sadness, disgust and fear are not 

so easy to distinguish from speech signals; however, this is also true for humans. 

Table. 4-5 Percentage of emotions recognized correctly in speech analysis phase-Part (a). 

Emotion quality Results of the algorithm part (A) Emotion recognition rate 

Happiness 92.5% 1.5393 s 

Surprise 83.5% 2.0812 s 

Anger 93% 1.2054 s 

Fear 73% 1.5736 s 

Disgust 67% 2.5434 s 

Sadness 63.5% 1.7798 s 

Neutral 71% 1.8901 s 

 

As it can be seen in Table 4-6, in order to check and validate the results it appears that sadness, 

disgust and fear are not so easy to distinguish from speech signals; however, this is also true for 

humans. 

 Table. 4-6 Percentage of emotions recognized correctly. 

Emotion quality Results of model Human expert 

Happiness 92.5% Excellent 

Surprise 83.5% Excellent 

Anger 93% Very good 

Fear 73% Good 

Disgust 67% Fair 

Sadness 63.5% Fair 

Neutral 71% Good 
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Figure 4-1 shows the pitch characteristics of the six basic emotions in a diagram that extracted from 

PRAAT and used it codes in the software program. This representation is complementary to those 

described above. We performed experimental tests to assess the effectiveness of the algorithm. System 

used graph of the pitch (peak, range and value), intensity and speech rate. 

 

 

Fig. 4-1 The location of the pitch (range, peak and value) graph for six basic emotions. 

 

Figure 4-2 Shows the characteristics of the seven basic emotions in a bar diagram. This 

representation is complementary to those described above.  

 

Fig. 4-2 Results of the seven basic emotions in the pitch and intensity plots. 
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Base on the results of chart and the environment of conversation we can filter the sound alignment in 

order to increases the accuracy of the system and decries the time that need for recognition of emotion. 

Figures 4-3 and 4-4 show the results arranged in three-dimensional graphs using a discrete approach 

for the classification of emotions. For instance, Figure 4-3 shows the location of the six basic emotions 

in the three-dimensional graph whose axes are: the pitch peak, the pitch range and the pitch value.  

 

Fig. 4-3 The location of the emotions in the three-dimensional graph with axes: pitch (range, peak and value) 

 

Figure 4-4 shows the location of the six basic emotions in the three-dimensional graph whose axes 

are: the total pitch score, the intensity and the speech rate. Other three-dimensional graphs can be built 

by selecting a different set of three features. 

 

Fig. 4-4 The location of the basic emotions in the three-dimensional graph with axes: total pitch score, 

intensity and speech rate 
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From the analysis of both Figures (4-3 and 4-4), it results that when pitch range, pitch value and 

pitch peak are considered, happiness, surprise and anger can be distinguished faster than other 

emotions, and with a high degree of accuracy. In order to distinguish other emotions, we can use other 

features such as: intensity and speech rate, as well as the total pitch score (Figure 4-4). 

As it can be shown in Table 4-7, we intend to compare the accuracy of recognition emotions, based 

on the sound analysis. For example happiness and anger can be distinguished faster than with a high 

degree of accuracy between all emotions. 

Table. 4-7 The accuracy recognition of the basic emotions. 

EMOTION HAP SUR ANG FEA DIS SAD NEU 

Happiness 92.23 6.44 0.00 0.00 0.00 0.00 1.33 

Surprise 9.38 83.55 0.00 0.00 4.05 0.00 2.02 

Anger 0.00 2.12 92.76 0.00 4.40 5.22 0.50 

Fear 0.00 0.00 0.00 73.27 0.00 13.12 8.61 

Disgust 0.00 0.00 0.00 10.11 67.02 11.63 11.24 

Sadness 0.00 0.00 0.00 14.38 10.12 63.48 10.02 

 

The software checks the result of PRAAT and rules extracted such as; graph of total pitch score, 

intensity and speech rate for classification of emotions. With this features, we can distinguish all the 

six basic emotions more easily, because the boundary between emotions are very distinct. 
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4-2-2 Results on emotion recognition, facial features expression 

For implementation and validation of the proposed system, have been used 3 different images for 

each basic category of emotion. We performed experimental tests to assess the effectiveness of the 

algorithm. 

All these sets of experiments were performed in the laboratory (offline validation) and used standard 

2D image dataset. After completing each testing stage, we can also manually label the facial emotion 

expression for training the database. We performed three experiments, from these experiments we 

inferred universal observation to test different scenarios. 

The first experiments have been started for facial detection from different groups testing. For 

practical purposes, the important outcome of this section is the localization and detection of 

meaningful facial features. We selected 30 individuals (15 female and 15 male, 20 to 48 years old), 

belonging to different ethnic groups, namely: (i) European, (ii) Asian (Middle East) and (iii) 

American.  

The results of localization of facial features for 15 participants show that Americans have the highest 

and Europeans has the lowest accuracy in localization of facial features. Also, the results of this 

exploratory study in Figure 4-5 show that among all facial features, eyebrows detection and head 

position have the highest accuracy detection rate for Asians and Americans, while Europeans have the 

highest accuracy detection rate for eyes and mouth 

 

Fig. 4-5 Accuracy in detection of facial features for Europeans, Asians and Americans. 
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If we compare nose and head detection for European, Asian and American participants, more or less 

system have similar results (81%-89% accuracy). In our experiment, we can also see that in the 

categorization and classification of the facial features, mouth and eyes detection are two important 

parameters for our proposed system. Also, the accuracy of the emotion detection system directly 

depends on the detection of the areas of the mouth and the eyes. 

As it can be seen in Table 4-8, we intend to compare the accuracy of detection for several facial 

features, namely: head localization, eyebrows, eyes, nose and mouth, based on the analysis of the 

properties of the three ethnic groups. If we compare facial detection for all groups of participants 

(Table 4-8), detection of eyebrows has the lowest accuracy for Europeans. For Asians, the lowest 

accuracy lies in nose detection, while mouth detection has the highest accuracy in all groups. Also, 

universal similarities are observed among head and eyes detection, so detection of mouth and eyes is 

the most important step for any ethnic group. 

 

Table. 4-8 Facial detection accuracy for (European, Asian and American). 

 

 

Ethnic Classification Head localization Eyebrows Eyes Nose Mouth  

European 

Head  100.00 0.00 0.00 0.00 0.00  

Eyebrows 0.00 75.33 15.17 10.50 0.00  

Eyes 0.00 9.16 87.04 3.80 0.00  

Nose 0.00 4.36 5.22 85.24 5.18  

Mouth 0.00 0.00 0.00 9.89 90.11  

        

Asian 

( Middle East ) 

Head  100.00 0.00 0.00 0.00 0.00  

Eyebrows 0.00 84.17 7.25 8.58 0.00  

Eyes 0.00 8.89 86.63 4.38 0.00  

Nose 0.00 3.24 7.59 80.36 8.45  

Mouth 0.00 0.00 0.00 5.72 94.28  

        

American 

Head  100.00 0.00 0.00 0.00 0.00  

Eyebrows 0.00 87.22 0.95 10.83 0.00  

Eyes 0.00 10.99 88.59 3.52 0.00  

Nose 0.00 1.07 5.46 87.54 5.93  

Mouth 0.00 0.00 0.00 6.68 93.32  
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The results of this implementation show that for emotion recognition in facial features, mouth and 

eyes are an important factor as well. As it can be seen in Table 4-9, in order to check and validate the 

results, have been used 1000 facial images in different databases (Cohn-Kanade, The Iranian Face 

Database (IFDB) and internet photo (facebook)). It is straightforward to infer that the head detection 

has the highest result in the proposed system with 100% accuracy. 

 

Table. 4-9 Facial expression detection accuracy in the proposed system. 

 

The mouth and eyes are meaningful facial features components. However, this is also true for 

another features (Mouth (95.4), Eyes (92.7), Eyebrows (91.3) and Nose (90.5)). This was validated by 

preliminary experiments that produced 92.5% accuracy in facial features detection in the proposed 

system.   

The second and third experiments have been implemented for the proposed hybrid algorithm on two 

databases: namely, the training database and the Cohn-Kanade database.  

The system checks the localization and detection of several facial features. As it can be shown in 

Table 4-10, have been intend to compare the accuracy of recognition of the basic emotions, based on 

the analysis of ethnic properties.  

The results show that anger and surprise for Asians have the highest accuracy recognition rate among 

different ethnic groups. Also, it can be seen that for Europeans and Americans, disgust has the highest 

accuracy rate.  

As depicted in Table 4-10, the lowest facial feature expressions accuracy for European participants is 

happiness with 91.2%, for Asians is disgust with 90.1% and Americans is sadness with 89.5%. Also, 

for Asian (Middle East) participants, the facial expression accuracy is higher than for Europeans and 

Americans. 

True/Classification Head localization Eyebrows Eyes Nose Mouth  

Head  100.00 0.00 0.00 0.00 0.00  

Eyebrows 0.00 91.3 3.8 4.9 0.00  

Eyes 0.00 5.5 92.7 1.8 0.00  

Nose 0.00 0.8 4.2 90.5 4.5  

Mouth 0.00 0.00 0.00 4.6 95.4  
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In Table 4-10, it can be seen that, the second phase of algorithm, which used anthropometrics of 

face, Bézier curves and Action Units, reached in average an accuracy of 94.4% without training phase. 

 

Table. 4-10 Facial expression recognition accuracy for Europeans, Asians and Americans. 

Ethnic EMOTION Happiness Surprise Anger Fear Disgust Sadness Neutral 

European 

 

Happiness 91.2 8.8 0.00 0.00 0.00 0.00 0.00 

Surprise 3.9 96.1 0.00 0.00 0.00 0.00 0.00 

Anger 0.00 0.00 94.6 0.00 5.4 0.00 0.00 

Fear 0.00 0.00 0.00 93.2 0.00 3.1 3.7 

Disgust 0.00 0.00 0.00 0.00 97.1 1.6 1.3 

Sadness 0.00 0.00 0.00 4.3 1.1 93.4 1.2 

         

Asian 

( Middle 

East ) 

 

Happiness 96.1 3.9 0.00 0.00 0.00 0.00 0.00 

Surprise 1.1 98.9 0.00 0.00 0.00 0.00 0.00 

Anger 0.00 0.00 97.3 0.00 2.7 0.00 0.00 

Fear 0.00 0.00 0.00 92.7 0.00 4.3 3.0 

Disgust 0.00 0.00 0.00 0.00 90.1 5.7 4.2 

Sadness 0.00 0.00 0.00 2.1 2.1 95.4 0.4 

         

American 

Happiness 95.6 4.4 0.00 0.00 0.00 0.00 0.00 

Surprise 3.2 96.8 0.00 0.00 0.00 0.00 0.00 

Anger 0.00 0.00 96.7 0.00 3.3 0.00 0.00 

Fear 0.00 0.00 0.00 93.1 0.00 0.4 6.5 

Disgust 0.00 0.00 0.00 0.00 98.6 0.9 0.5 

Sadness 0.00 0.00 0.00 1.6 1.6 89.5 7.3 

 

In order to evaluate our system and to perform the training phase, have been used the Cohn-Kanade 

database. The results of these experiments in hybrid algorithm are shown in Table 4-13. As mentioned 

above, the accuracy rate of the results of this study in facial detection was 92.2% (Table 4-8). 

The speed of emotion recognition is an important factor in human robot communication. A notable 

result (see Table 4-11) is that disgust and anger have the highest recognition speed for Europeans, 

Asians and Americans. The meaning of this result is that when the proposed algorithm does not check 
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the eyebrows and eyes Action Units and uses just facial Action Shape Models, the speed of emotion 

recognition increases. 

However, Table 4-11 show that the emotion recognition result for disgust is two times faster than 

fear. Moreover, fear and happiness have the lowest emotion detection rate, but recognition accuracy of 

these emotions is higher than 91%. Sadness and fear have the lowest emotion recognition rate in Asian 

individuals. This result is probably due to the fact that Asian people have lower emotional reaction to 

sadness and fear. On the other side, anger and disgust have the highest emotion detection rate for 

Americans and Europeans.  

 

Table. 4-11 Emotion recognition rate (average of the 15 experimental tests) for Europeans, Asians and 

Americans. 

Emotion Quality Emotion recognition average rate for (European, Asian and American) 

Happiness 1.13 s 

Surprise 0.87 s 

Anger 0.75 s 

Fear 1.21 s 

Disgust 0.62 s 

Sadness 0.97 s 

 

Emotion recognition in human interaction normally needs two or three seconds. The proposed 

system can distinguish all the six basic emotions faster and more easily, because the boundaries 

between emotions are more distinct and the features are classified in a set of categories.  
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4-3 training of the emotion recognition system 

The training phase is one of the main challenges of any emotion recognition program. The accuracy 

of the system for emotion recognition depends on precise feature labeling in the training phase.  

The training phase enables the automatic system to detect the emotion with new data. Also, it can be 

used as a learning algorithm to manage and predict facial image database. Training is based on 

classified data in the same emotional subject, extracted from new facial image. 

The project is evaluated from two perspectives. Firstly, calculate the accuracy in quality of detection 

and emotion recognition and secondly, high run-time performance evaluates the training and 

classification system.   

Hence, the training phase produces a facial emotion classification considerably speeding up the 

recognition process. 

The training phase consists of defining emotional features and save the new emotion landmarks data 

in training database. However, sometimes the system has to manually declare and save information in 

the training database.  

The training phase runs similarly to the data. Namely, the proposed algorithm for classification of 

basic emotions first normalizes the facial image. Then the algorithm based on Table 4-2 determines 

position of Bézier Curve points and extracted Facial Action Codes (ACs). Finally, our algorithm 

checks the similarity between new data and references data for basic emotional states (happiness, 

anger, fear, sadness, surprise, disgust and neutral). 

It is noted that when some of the features are not save in the training database maybe system 

detected more than one emotion concluded. In order to have effective and correct training process on 

emotion recognition in proposed system, training process managed 3 facial image data for each basic 

emotion subject.   

Table4-12 shows the accuracy of facial features algorithm with training phase reached 95.6% for all 

six basic emotions. Finally, if we added neutral features as an emotion into Action Units and 

corresponding data in training phase, the accuracy in emotion recognition increases, while the speed of 

the algorithm decreases.  
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Table. 4-12 Facial expression recognition accuracy using the Cohn-Kanade database. 

 

EMOTION Happiness Surprise Anger Fear Disgust Sadness Neutral 

Happiness 95.9 4.1 0.00 0.00 0.00 0.00 0.00 

Surprise 1.6 98.4 0.00 0.00 0.00 0.00 0.00 

Anger 0.00 0.00 97.2 0.6 2.2 0.00 0.00 

Fear 0.00 0.00 0.00 94.7 0.00 1.2 4.1 

Disgust 0.00 0.00 0.00 0.00 95.7 1.5 2.8  

Sadness 0.00 0.00 0.00 2.6 1.9 91.8 3.7 
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4-4 Evaluation of the results on emotion recognition in hybrid system 

In the proposed software, system combined the speech-based algorithm and facial expression 

analysis. Then, with the features in database checks the results of PRAAT (graph of total pitch score, 

intensity and speech rate) and Action codes (ACs). Finally, as you can see in Table 4-13 system can 

distinguish all the six basic emotions more easily, because the boundary between emotions are very 

distinct. 

From the validation results (see Table 4-13) it appears that fear and disgust are not so easy to 

distinguish from hybrid system; however, they are also true for humans.  

 

Table. 4-13 emotion recognition accuracy for Europeans, Asians and Americans with hybrid system. 

Ethnic EMOTION Happiness Surprise Anger Fear Disgust Sadness Neutral 

European 

 

Happiness 92.50 7.40 0.00 0.00 0.00 0.00 0.10 

Surprise 3.35 96.50 0.00 0.00 0.00 0.00 0.15 

Anger 0.00 0.00 95.60 0.20 4.20 0.00 0.00 

Fear 0.00 0.00 0.00 93.00 0.00 3.25 3.75 

Disgust 0.00 0.00 0.00 0.00 91.40 4.00 4.60 

Sadness 0.00 0.00 0.00 5.40 1.15 92.30 1.15 

         

Asian 

( Middle 

East ) 

 

Happiness 97.20 2.80 0.00 0.00 0.00 0.00 0.00 

Surprise 0.90 99.10 0.00 0.00 0.00 0.00 0.00 

Anger 0.00 0.00 98.50 0.00 1.00 0.00 0.50 

Fear 0.00 0.00 0.00 91.60 0.00 4.20 4.20 

Disgust 0.00 0.00 0.00 0.00 90.10 5.70 4.20 

Sadness 0.00 0.00 0.00 2.50 3.50 93.70 0.30 

         

American 

Happiness 96.70 2.30 0.00 0.00 0.00 0.00 1.00 

Surprise 2.50 97.50 0.00 0.00 0.00 0.00 0.00 

Anger 0.00 0.00 96.70 0.00 2.20 0.00 1.10 

Fear 0.00 0.00 0.00 92.10 0.00 1.45 6.45 

Disgust 0.00 0.00 1.40 0.00 95.60 1.90 1.10 

Sadness 0.00 0.00 1.00 2.85 1.30 89.70 5.15 
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The proposed algorithm is very suitable for implementation in real-time systems in outdoor 

environment, since the computational load is very low indeed. However, the results of this 

implementation show that emotions such as: Fear, disgust and sadness could be more easily detected if 

the hybrid algorithm proposed in this work is combined with an emotion recognition algorithm based 

on all of (verbal and non-verbal) features.  

 

 



 

 

CHAPTER 5 

Conclusion  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 5     Conclusion  

111 | P a g e  

 

Human emotions are reflected in body gestures, hand movement, voice and facial expressions. Even 

though there have been many advances in sound analysis and facial expression for emotion 

recognition in last few years, researchers believe that emotion is the result of a brain process. In human 

robot interaction individual skills and human behavior must be learned and updated continually, 

because there is still a long way to achieve high accuracy rates in automatic recognition of emotions. 

Emotion recognition technology is still not robust enough for very demanding applications like 

humanoid robots. The proposed emotion recognition system is as an important tool in behavioral 

communication that facilitating human robot interaction (HRI).  

In this work the proposed algorithm combined sound recognition results with facial expressions 

program. The proposed methodology in facial expressions work base on Facial Action Code System, 

Facial geometric and Action Units (AUs) for feature detection. Finally, we used Support Victor 

Machine and nearest likelihood for classified basic emotions. 

In the speech emotion recognition phase have been proposed a methodology for recognition of 

emotions, based on different speech features, which can be employed for human-robot interaction. The 

features that are taken into account are prosodic features, such as: pitch, intensity, speech rate and 

formant.  

The proposed technique is based on a first analysis of pitch graph contours (namely: pitch peak, pitch 

value, pitch range), followed by a second analysis of the intensity and the speech rate in the dialogue, 

which is considered complementary to the first analysis in order to recognize all types of emotions.  

PRAAT software is an open-source and very flexible tool for voice sampling in the field of pitch 

(peak, range and value), formant, spectrograms and intensity analysis.  

The proposed algorithm combined with open source PRAAT program used for feature detection and 

classified basic emotions.  

When we compered all of the pitch results with PRAAT software it can be seen that the highest pitch 

value is for surprise and the lowest corresponds to disgust. Also, the pitch peak under positive 

valence emotions is sharper among Asian speakers, while European and American speakers more or 

less have similar pitch contours under positive valence emotions.  

Happiness and anger have the highest average pitch peak for European speakers, while sadness has 

the lowest pitch peak. In our experiment, we can also see that surprise and anger for Asian and 

American speakers have the highest average pitch peak.  
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Among the negative valence emotions, anger has the highest pitch peak. Sadness decreases 

sharply for Asian and American speakers, but sadness slop decreases slowly for European speakers. 

If we compare sadness and neutral for all groups of speaker the neutral emotion does not have a 

distinct peak and is similar to sadness; however, sadness has lower ending pitch signals. Asian 

speakers were more sensitive to sadness emotion, while the pitch graphs of Americans and Europeans 

were similar.  

Anger is associated with the highest energy for Asian and American speakers but for Asian speakers 

the anger slope decreases slowly, while sadness is associated with the lowest energy for Asian and 

European speakers. In almost all utterances under anger and fear, the pitch increases to a peak and then 

decreases slightly left-skewed. European and American speakers more or less have similar pitch 

contours under fear emotion. 

When we compered all of the formant results we can see that the contour in anger and happiness for 

European speakers has the highest power, while we have the lowest spectral power in fear. Formant 

contour explain that anger, fear and happiness have the highest power for Asians and Americans, 

while we have a lot of wave and formant dots the fear plot. Asian and European speakers have the 

lowest spectral power in sadness, while Americans have the lowest spectral power in neutral emotion. 

In terms of intensity, anger and surprise for European speakers have the highest energy and intensity, 

while neutral and sadness have the lowest intensity. For Asian and American speakers, anger and 

happiness have the highest energy and intensity, while fear has the lowest intensity. 

A notable result in speech rate analysis is that anger and fear have the lowest speech rate for 

European speakers, meaning that the sentences pronounced with anger or fear are pronounced faster, 

while happiness has the highest speech rate. Sadness and disgust have the lowest speech rate for Asian 

speakers, while anger and happiness have the highest speech rate: this result is probably due to the fact 

that Asian people have bigger emotional reaction to happiness and anger. For American speakers 

anger and disgust have the lowest speech rate, while happiness and fear have the highest speech rate.  

In general, happiness and surprise have the highest speech rate, while anger and sadness have the 

lowest speech rate. Moreover, Americans have the highest speech rate. 

Pitch values and speech rate are connected together for all ethnic groups of speaker. We can see that 

usually the speech rate of American speakers is higher than Asian and European speakers. 
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One of the challenges on speech emotion analysis is the difficulty in creating a worldwide database 

on emotional speech recognition. Thus, we designed a database a new database for recognition on 

emotions, based on the sound analysis. Figure 5-1 summarizes speech recognition database for the 

participants to experiment (three repetitions made by each participant) the accuracy of the system. 

 

 

Fig. 5-1 speech recognition database for the participants to experiment. 

 

In order to implement our algorithms for feature extraction and emotion recognition, have been 

defined rules based on human sound signals. With this rules and features, we can distinguish all the six 

basic emotions and neutral more easily, because the boundaries between emotions are very distinct. 

In the presented model, emotions are first categorized in two main classes; namely high and low 

intensity of emotions, then a more precise distinction is performed within each category.  

An experimental test, with the participation of ten European, ten Asian and ten American 

individuals, was set up, in order to experimentally validate the proposed methodology in the 

laboratory.  

The results of this exploratory study show that it could be feasible to build a technique which is 

effective in recognizing emotions. Figure 5-2 shows the graphic interface of the software (Voice 

Emotion Detection) system. 
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Fig. 5-2 Graphical interface of speech emotion recognition program. 

In order to check and validate the results it appears that happiness and anger can be distinguished 

faster than and with a high degree of accuracy between all emotions in different ethnic groups. 

In this experiment, the accuracy of emotion detection was 78.5%. Also, the recognition rate of the 

proposed system was 0.97 s.  

The novelty in the speech emotion recognition phase is that system work based on phonetic and 

acoustic properties of emotive speech with the minimal use of signal processing algorithms.   

Thus, the results of this study provide a better understanding on the manifestation and production of 

basic emotions and can be useful for the purpose of analysis and synthesis of emotional speech for 

technical researchers, social psychologists and human-robot interaction. 

In the second phase, we have presented an approach for recognition of emotions, based on facial 

expression analysis, for possible implementation results in Human-Robot Interaction systems. 

Even though there have been many advances in facial emotion detection in last few years, there is 

still a long way to achieve high accuracy rates in automatic recognition on emotions. Facial 

recognition technology is still not robust enough for very demanding applications like humanoid 
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robots. Facial emotion recognition systems need to analyze the facial expression regardless of ethnics, 

culture and gender. 

The proposed technique is based on a first analysis of face localization and facial features detection, 

followed by a second stage is features extraction and emotion recognition, which is considered 

complementary to recognize all types of emotions.  

The proposed system is based on a facial feature extraction algorithm, which determines face 

localization, features detection, facial muscle movements (Action Units), Bézier curves and Facial 

Action Codes calculation. The system is implemented by geometric analysis of the facial image, based 

on measurements and classification a set of AUs. We have presented a new method to locate 32 

Action Units, 52 Action points and 15 facial code distances.  

An experimental test, we selected 30 individuals (15 female and 15 male) participant, belonging to 

different ethnic groups, namely: (i) European, (ii) Asian (Middle East) and (iii) American., was set up 

in order to experimentally validate the proposed methodology.  

As it can be shown in Figure 5-3, we extracted the proposed principal points based on Bézier curves 

and Action Units for universal basic emotions from different ethnic group images.  

 

Fig. 5-3 extract the facial distances based on universal basic emotions. 
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The result of localization of facial features for participants shows that Americans have the highest 

and Europeans has the lowest accuracy in localization of facial features. Also among all facial 

features, eyebrows detection and head position have the highest accuracy detection rate for Asians and 

Americans, while Europeans have the highest accuracy detection rate for eyes and mouth detection.  

In our experiment, we can also see that in the categorization and classification of the facial features, 

mouth and eyes detection are two important parameters for our proposed system. Also, the accuracy of 

the emotion detection system directly depends on the detection of the areas of mouth and eyes. 

The results of this implementation show that for emotion recognition in facial features, mouth and 

eyes are an important factor as well. However, this is also true for another feature (Mouth (95.4), Eyes 

(92.7), Nose (90.3) and Eyebrows (91.2)). This was validated by preliminary experiments that 

produced 92.5% accuracy in facial detection in the proposed system.   

For recognizing facial expression in proposed software, have been used two database for 

maintenance facial features, namely: personnel list and facial features position table. 

Facial features Position table holds information of Action Units suitably represented and divided 

into: eyes right/left, eyebrows right/left, nose, lips and head of 30 participants for all of emotional 

states. Figure 5-4 contains the reference number of 32 Action Codes for seven basic emotions. 

 

Fig. 5-4 Facial feature database (Access) for 32 Action Units. 

We defined a set of universal observations for emotion recognition based on evaluation of the 

procedure of facial emotion extraction. 

Emotions like anger, surprise and sadness can be directly recognized, based on the shape of the eyes 

and eyebrows position. Estimation of the lips and mouth is especially important for recognizing 

happiness and surprise emotion. In surprise, the mouth length decreases and the mouth height 

increases. In some situations, the lips thickness in associated to anger (the lips result thinner than 

normal), and sadness is associated with the obliquely lowering of the lip corners. 
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Fear and sadness have similarity in sets of Action Codes. But in most cases the inner eyebrows 

corner rises up in sadness. Also, the outer eyebrows corner in fear is higher than in sadness. The 

location of the eyebrows slope in sadness is usually greater than in fear. 

Fear and disgust have the same value for group of features. While disgust occurs, nose side wrinkles 

appear. Wrinkles up the nose usually express displeasure or disgust and appear along the lateral nose 

boundaries. 

We defined person emotion table based on Facial Features Position table for emotion recognition. As 

specified in Figure 5-5 we recorded the person emotion information for seven basic emotions. The 

proposed software have been used K-nearest neighbor’s technique for comparing the data with the 

training database. This technique was tested in the evaluation of the proposed system. For example, 

number 14 in Figure 5-5 is connected to sadness emotion information for Victor Pernes. As mentioned 

above row 14 Figure 5-4 was explained the position of 32 facial action codes in sadness emotion. 

 

 

Fig. 5-5 Interaction between Facial feature database and person emotion. 

 

In order to evaluate our algorithms for feature extraction and emotion recognition, we have 

performed experiments with the Cohn-Kanade facial image database. In this experiment, the accuracy 

of facial detection rate was 92.2%. Also, the accuracy of the proposed system with training stage was 

94.4%.  

In the proposed model, if we added the neutral emotion in our Action Codes and data in training 

database, the accuracy of the system meaningfully increases, while the time for loading algorithm 

increases. 

The research shows that using the hybrid algorithm can yield better results for emotion recognition. 

Thus, we intend to combine the proposed algorithm with a technique based on speech analysis, in 

order to design a hybrid technique for emotion recognition, to be employed in HRI system. 
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Finally, we make contribution toward design a hybrid technique for emotion recognition. In order to 

design system for emotion recognition. We combined algorithm based on speech analysis with a 

technique for facial features extraction. As it can be shown in Figure 5-6, we intend to fusion the 

database for emotion recognition system in hybrid system. 

 

 

Fig. 5-6 Fusion of database for emotion recognition system in hybrid system. 

 

As depicted in Figure 5-6, the proposed system is done in 2 stages: the first stage is analysis of 

speech signals namely; pitch peak, pitch value, pitch range, intensity and the speech rate (duration). 

The second stage is based on facial expression analysis such as; (Action Units, Facial Action Codes 

and Bézier curves) in order to recognize all types of emotions.  

The hybrid system for selected human emotion, comparing the data base on the minimum difference 

and K-nearest neighbors technique. Available parameters are calculated and compared with the value 

specified in the database. If the algorithm results was equal with database, program show the emotion 

like text file and connected to database for read the emotional states (Figure 5-7). Otherwise system 

cannot be detected the emotion and wrote “Unknown Emotion”. 

 



CHAPTER 5     Conclusion  

119 | P a g e  

 

 

Fig. 5-7 Sample of database for play audio file in emotion recognition system. 

 

However, the challenge of detecting human faces from an image mostly comes from the variation of 

human faces such as races, face scales and environment issues such as lighting conditions, image 

quality, and cluttered backgrounds may cause great difficulties. The proposed algorithm can perform 

well under a large variation of facial image quality in the normal light, for different ethnic groups of 

people. 

In Figure 5-8 we show that the software package with hybrid algorithm for emotion recognition 

system. This applet provides the following options to users: divice for recording a sound, file for 

browsing the sound file and facial image from hard disk, (play- stop) button and two windows for 

show facial image and speech signals emotions.  

 

 

Fig. 5-8 Software package with hybrid algorithm on emotion recognition system. 

 

With respect to other works in the scientific literature, the methodology we propose in this paper 

uses on speech and facial expression by means of emotion recognition. In this experiment, the 
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accuracy of hybrid algorithm for emotion detection rate was 2.53 s. Thus, the proposed algorithm is 

very suitable for implementation in real-time systems, since the computational load is very low indeed. 

Also, the accuracy of the proposed system with 19 subjects (three times six basic emotion with 

neutral) and training stage was 94.30% for all of seven basic emotions. Moreover, evaluating and 

comparing the performance of different software and algorithm on human emotion recognition 

(present system) have been shown in Table 5-1.  

 

 Table 5-1 Evaluation of proposed system with another literature report. 

 

Authors 
Subject tested Speech recognition 

tested 

Images 

tested 

Percentage 

accuracy 

Edwards [206] 22  200 74% 

Kobayashi and Hara 

[207], [208] 

15  90 85% 

Pantic and othkrantz 

[98] 

8  246 94% 

Huang and Huang [209] 15  90 75% 

Hong et al [104] 25  175 81% 

Zhang [106] 10  213 91% 

Lyons et al [210] 10  193 92% 

Picard et al [211] 8 850  81% 

Rani et al [212] 5 480  86% 

Leon et al [213] 7 380  80% 

Kim and Andre [214] 4 560  96% 

Van den Brock [215] 10 860  62% 

Soleymani [216] 3 390  78% 

Present study 19 630 840 94.3% 

 

The present study demonstrated the development and the application of human robot interaction base 

on seven basic emotion types from speech recognition and facial expressions. Emotion recognition in 

human interaction normally needs two or three seconds. In the proposed system, we can distinguish all 
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the basic emotions faster and more easily, because the boundaries between emotions are more distinct 

and the features are classified in a set of categories. 

Even though there have been many advances in sound analysis and facial expression for emotion 

recognition in last few years, scientists believe that emotion is the result of a brain process. 

In future work, we intend to combine the proposed algorithm with a technique based on gesture and 

thermal human body analysis in the noisy environment. 

Recently, Thermal Infrared (TIR) imaging with standard GSR (temperature values of two infrared 

cameras) was used, to examine fear, happiness, sadness and joy emotion. Thus, for the future work, it 

will important to develop a consistent methodology to integrate both facial features image, gesture and 

Thermal Infrared (TIR) image sequences on expression of emotional state system.  

Thermal IR imaging, allows to recording of the cutaneous temperature through the measurement of 

the spontaneous thermal irradiation of the body based on the average heat signature of pixels in a ROI. 

We will use thermal Regions of Interest (t-ROIs) on the facial to be developed in invisible image and 

uncontrolled environment, in order to design a new technique for emotion recognition, to be employed 

in Human-Robot Interaction. The most important features for this technique, namely: nose or nose tip, 

the surrounding the eyes, upper lip, muscle and forehead. This will overcome problems across studies 

related to facial emotion recognition. 
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