25,176 research outputs found

    Improving Simulation Efficiency of MCMC for Inverse Modeling of Hydrologic Systems with a Kalman-Inspired Proposal Distribution

    Full text link
    Bayesian analysis is widely used in science and engineering for real-time forecasting, decision making, and to help unravel the processes that explain the observed data. These data are some deterministic and/or stochastic transformations of the underlying parameters. A key task is then to summarize the posterior distribution of these parameters. When models become too difficult to analyze analytically, Monte Carlo methods can be used to approximate the target distribution. Of these, Markov chain Monte Carlo (MCMC) methods are particularly powerful. Such methods generate a random walk through the parameter space and, under strict conditions of reversibility and ergodicity, will successively visit solutions with frequency proportional to the underlying target density. This requires a proposal distribution that generates candidate solutions starting from an arbitrary initial state. The speed of the sampled chains converging to the target distribution deteriorates rapidly, however, with increasing parameter dimensionality. In this paper, we introduce a new proposal distribution that enhances significantly the efficiency of MCMC simulation for highly parameterized models. This proposal distribution exploits the cross-covariance of model parameters, measurements and model outputs, and generates candidate states much alike the analysis step in the Kalman filter. We embed the Kalman-inspired proposal distribution in the DREAM algorithm during burn-in, and present several numerical experiments with complex, high-dimensional or multi-modal target distributions. Results demonstrate that this new proposal distribution can greatly improve simulation efficiency of MCMC. Specifically, we observe a speed-up on the order of 10-30 times for groundwater models with more than one-hundred parameters

    The CMA Evolution Strategy: A Tutorial

    Full text link
    This tutorial introduces the CMA Evolution Strategy (ES), where CMA stands for Covariance Matrix Adaptation. The CMA-ES is a stochastic, or randomized, method for real-parameter (continuous domain) optimization of non-linear, non-convex functions. We try to motivate and derive the algorithm from intuitive concepts and from requirements of non-linear, non-convex search in continuous domain.Comment: ArXiv e-prints, arXiv:1604.xxxx

    Information-Geometric Optimization Algorithms: A Unifying Picture via Invariance Principles

    Get PDF
    We present a canonical way to turn any smooth parametric family of probability distributions on an arbitrary search space XX into a continuous-time black-box optimization method on XX, the \emph{information-geometric optimization} (IGO) method. Invariance as a design principle minimizes the number of arbitrary choices. The resulting \emph{IGO flow} conducts the natural gradient ascent of an adaptive, time-dependent, quantile-based transformation of the objective function. It makes no assumptions on the objective function to be optimized. The IGO method produces explicit IGO algorithms through time discretization. It naturally recovers versions of known algorithms and offers a systematic way to derive new ones. The cross-entropy method is recovered in a particular case, and can be extended into a smoothed, parametrization-independent maximum likelihood update (IGO-ML). For Gaussian distributions on Rd\mathbb{R}^d, IGO is related to natural evolution strategies (NES) and recovers a version of the CMA-ES algorithm. For Bernoulli distributions on {0,1}d\{0,1\}^d, we recover the PBIL algorithm. From restricted Boltzmann machines, we obtain a novel algorithm for optimization on {0,1}d\{0,1\}^d. All these algorithms are unified under a single information-geometric optimization framework. Thanks to its intrinsic formulation, the IGO method achieves invariance under reparametrization of the search space XX, under a change of parameters of the probability distributions, and under increasing transformations of the objective function. Theory strongly suggests that IGO algorithms have minimal loss in diversity during optimization, provided the initial diversity is high. First experiments using restricted Boltzmann machines confirm this insight. Thus IGO seems to provide, from information theory, an elegant way to spontaneously explore several valleys of a fitness landscape in a single run.Comment: Final published versio

    Two Procedures for Robust Monitoring of Probability Distributions of Economic Data Streams induced by Depth Functions

    Full text link
    Data streams (streaming data) consist of transiently observed, evolving in time, multidimensional data sequences that challenge our computational and/or inferential capabilities. In this paper we propose user friendly approaches for robust monitoring of selected properties of unconditional and conditional distribution of the stream basing on depth functions. Our proposals are robust to a small fraction of outliers and/or inliers but sensitive to a regime change of the stream at the same time. Their implementations are available in our free R package DepthProc.Comment: Operations Research and Decisions, vol. 25, No. 1, 201

    Efficient Sequential Monte-Carlo Samplers for Bayesian Inference

    Full text link
    In many problems, complex non-Gaussian and/or nonlinear models are required to accurately describe a physical system of interest. In such cases, Monte Carlo algorithms are remarkably flexible and extremely powerful approaches to solve such inference problems. However, in the presence of a high-dimensional and/or multimodal posterior distribution, it is widely documented that standard Monte-Carlo techniques could lead to poor performance. In this paper, the study is focused on a Sequential Monte-Carlo (SMC) sampler framework, a more robust and efficient Monte Carlo algorithm. Although this approach presents many advantages over traditional Monte-Carlo methods, the potential of this emergent technique is however largely underexploited in signal processing. In this work, we aim at proposing some novel strategies that will improve the efficiency and facilitate practical implementation of the SMC sampler specifically for signal processing applications. Firstly, we propose an automatic and adaptive strategy that selects the sequence of distributions within the SMC sampler that minimizes the asymptotic variance of the estimator of the posterior normalization constant. This is critical for performing model selection in modelling applications in Bayesian signal processing. The second original contribution we present improves the global efficiency of the SMC sampler by introducing a novel correction mechanism that allows the use of the particles generated through all the iterations of the algorithm (instead of only particles from the last iteration). This is a significant contribution as it removes the need to discard a large portion of the samples obtained, as is standard in standard SMC methods. This will improve estimation performance in practical settings where computational budget is important to consider.Comment: arXiv admin note: text overlap with arXiv:1303.3123 by other author

    Bayesian computation via empirical likelihood

    Full text link
    Approximate Bayesian computation (ABC) has become an essential tool for the analysis of complex stochastic models when the likelihood function is numerically unavailable. However, the well-established statistical method of empirical likelihood provides another route to such settings that bypasses simulations from the model and the choices of the ABC parameters (summary statistics, distance, tolerance), while being convergent in the number of observations. Furthermore, bypassing model simulations may lead to significant time savings in complex models, for instance those found in population genetics. The BCel algorithm we develop in this paper also provides an evaluation of its own performance through an associated effective sample size. The method is illustrated using several examples, including estimation of standard distributions, time series, and population genetics models.Comment: 21 pages, 12 figures, revised version of the previous version with a new titl
    corecore