709 research outputs found

    Evaluation of Optimization Strategies for Incremental Graph Queries

    Get PDF
    The last decade brought considerable improvements in distributed storage and query technologies, known as NoSQL systems. These systems provide quick evaluation of simple retrieval operations and are able to answer certain complex queries in a scalable way, albeit not instantly. Providing scalability and quick response times at the same time for querying large data sets is still a challenging task. Evaluating complex graph queries is particularly difficult, as it requires lots of join, antijoin and filtering operations. This paper presents optimization techniques used in relational database systems and applies them on graph queries. We evaluate various query plans on multiple datasets and discuss the effect of different optimization techniques

    Symbolic model generation for graph properties

    Get PDF
    Graphs are ubiquitous in Computer Science. For this reason, in many areas, it is very important to have the means to express and reason about graph properties. In particular, we want to be able to check automatically if a given graph property is satisfiable. Actually, in most application scenarios it is desirable to be able to explore graphs satisfying the graph property if they exist or even to get a complete and compact overview of the graphs satisfying the graph property. We show that the tableau-based reasoning method for graph properties as introduced by Lambers and Orejas paves the way for a symbolic model generation algorithm for graph properties. Graph properties are formulated in a dedicated logic making use of graphs and graph morphisms, which is equivalent to first-order logic on graphs as introduced by Courcelle. Our parallelizable algorithm gradually generates a finite set of so-called symbolic models, where each symbolic model describes a set of finite graphs (i.e., finite models) satisfying the graph property. The set of symbolic models jointly describes all finite models for the graph property (complete) and does not describe any finite graph violating the graph property (sound). Moreover, no symbolic model is already covered by another one (compact). Finally, the algorithm is able to generate from each symbolic model a minimal finite model immediately and allows for an exploration of further finite models. The algorithm is implemented in the new tool AutoGraph.Peer ReviewedPostprint (author's final draft

    Evaluation of Optimization Strategies for Incremental Graph Queries

    Full text link

    Operationalizing fairness for responsible machine learning

    Get PDF
    As machine learning (ML) is increasingly used for decision making in scenarios that impact humans, there is a growing awareness of its potential for unfairness. A large body of recent work has focused on proposing formal notions of fairness in ML, as well as approaches to mitigate unfairness. However, there is a growing disconnect between the ML fairness literature and the needs to operationalize fairness in practice. This thesis addresses the need for responsible ML by developing new models and methods to address challenges in operationalizing fairness in practice. Specifically, it makes the following contributions. First, we tackle a key assumption in the group fairness literature that sensitive demographic attributes such as race and gender are known upfront, and can be readily used in model training to mitigate unfairness. In practice, factors like privacy and regulation often prohibit ML models from collecting or using protected attributes in decision making. To address this challenge we introduce the novel notion of computationally-identifiable errors and propose Adversarially Reweighted Learning (ARL), an optimization method that seeks to improve the worst-case performance over unobserved groups, without requiring access to the protected attributes in the dataset. Second, we argue that while group fairness notions are a desirable fairness criterion, they are fundamentally limited as they reduce fairness to an average statistic over pre-identified protected groups. In practice, automated decisions are made at an individual level, and can adversely impact individual people irrespective of the group statistic. We advance the paradigm of individual fairness by proposing iFair (individually fair representations), an optimization approach for learning a low dimensional latent representation of the data with two goals: to encode the data as well as possible, while removing any information about protected attributes in the transformed representation. Third, we advance the individual fairness paradigm, which requires that similar individuals receive similar outcomes. However, similarity metrics computed over observed feature space can be brittle, and inherently limited in their ability to accurately capture similarity between individuals. To address this, we introduce a novel notion of fairness graphs, wherein pairs of individuals can be identified as deemed similar with respect to the ML objective. We cast the problem of individual fairness into graph embedding, and propose PFR (pairwise fair representations), a method to learn a unified pairwise fair representation of the data. Fourth, we tackle the challenge that production data after model deployment is constantly evolving. As a consequence, in spite of the best efforts in training a fair model, ML systems can be prone to failure risks due to a variety of unforeseen reasons. To ensure responsible model deployment, potential failure risks need to be predicted, and mitigation actions need to be devised, for example, deferring to a human expert when uncertain or collecting additional data to address model’s blind-spots. We propose Risk Advisor, a model-agnostic meta-learner to predict potential failure risks and to give guidance on the sources of uncertainty inducing the risks, by leveraging information theoretic notions of aleatoric and epistemic uncertainty. This dissertation brings ML fairness closer to real-world applications by developing methods that address key practical challenges. Extensive experiments on a variety of real-world and synthetic datasets show that our proposed methods are viable in practice.Mit der zunehmenden Verwendung von Maschinellem Lernen (ML) in Situationen, die Auswirkungen auf Menschen haben, nimmt das Bewusstsein über das Potenzial für Unfair- ness zu. Ein großer Teil der jüngeren Forschung hat den Fokus auf das formale Verständnis von Fairness im Zusammenhang mit ML sowie auf Ansätze zur Überwindung von Unfairness gelegt. Jedoch driften die Literatur zu Fairness in ML und die Anforderungen zur Implementierung in der Praxis zunehmend auseinander. Diese Arbeit beschäftigt sich mit der Notwendigkeit für verantwortungsvolles ML, wofür neue Modelle und Methoden entwickelt werden, um die Herausforderungen im Fairness-Bereich in der Praxis zu bewältigen. Ihr wissenschaftlicher Beitrag ist im Folgenden dargestellt. In Kapitel 3 behandeln wir die Schlüsselprämisse in der Gruppenfairnessliteratur, dass sensible demografische Merkmale wie etwa die ethnische Zugehörigkeit oder das Geschlecht im Vorhinein bekannt sind und während des Trainings eines Modells zur Reduzierung der Unfairness genutzt werden können. In der Praxis hindern häufig Einschränkungen zum Schutz der Privatsphäre oder gesetzliche Regelungen ML-Modelle daran, geschützte Merkmale für die Entscheidungsfindung zu sammeln oder zu verwenden. Um diese Herausforderung zu überwinden, führen wir das Konzept der Komputational-identifizierbaren Fehler ein und stellen Adversarially Reweighted Learning (ARL) vor, ein Optimierungsverfahren, das die Worst-Case-Performance bei unbekannter Gruppenzugehörigkeit ohne Wissen über die geschützten Merkmale verbessert. In Kapitel 4 stellen wir dar, dass Konzepte für Gruppenfairness trotz ihrer Eignung als Fairnesskriterium grundsätzlich beschränkt sind, da Fairness auf eine gemittelte statistische Größe für zuvor identifizierte geschützte Gruppen reduziert wird. In der Praxis werden automatisierte Entscheidungen auf einer individuellen Ebene gefällt, und können unabhängig von der gruppenbezogenen Statistik Nachteile für Individuen haben. Wir erweitern das Konzept der individuellen Fairness um unsere Methode iFair (individually fair representations), ein Optimierungsverfahren zum Erlernen einer niedrigdimensionalen Darstellung der Daten mit zwei Zielen: die Daten so akkurat wie möglich zu enkodieren und gleichzeitig jegliche Information über die geschützten Merkmale in der transformierten Darstellung zu entfernen. In Kapitel 5 entwickeln wir das Paradigma der individuellen Fairness weiter, das ein ähnliches Ergebnis für ähnliche Individuen erfordert. Ähnlichkeitsmetriken im beobachteten Featureraum können jedoch unzuverlässig und inhärent beschränkt darin sein, Ähnlichkeit zwischen Individuen korrekt abzubilden. Um diese Herausforderung anzugehen, führen wir den neue Konzept der Fairnessgraphen ein, in denen Paare (oder Sets) von Individuen als ähnlich im Bezug auf die ML-Aufgabe identifiziert werden. Wir übersetzen das Problem der individuellen Fairness in eine Grapheinbindung und stellen PFR (pairwise fair representations) vor, eine Methode zum Erlernen einer vereinheitlichten paarweisen fairen Abbildung der Daten. In Kapitel 6 gehen wir die Herausforderung an, dass sich die Daten im Feld nach der Inbetriebnahme des Modells fortlaufend ändern. In der Konsequenz können ML-Systeme trotz größter Bemühungen, ein faires Modell zu trainieren, aufgrund einer Vielzahl an unvorhergesehenen Gründen scheitern. Um eine verantwortungsvolle Implementierung sicherzustellen, gilt es, Risiken für ein potenzielles Versagen vorherzusehen und Gegenmaßnahmen zu entwickeln,z.B. die Übertragung der Entscheidung an einen menschlichen Experten bei Unsicherheit oder das Sammeln weiterer Daten, um die blinden Flecken des Modells abzudecken. Wir stellen mit Risk Advisor einen modell-agnostischen Meta-Learner vor, der Risiken für potenzielles Versagen vorhersagt und Anhaltspunkte für die Ursache der zugrundeliegenden Unsicherheit basierend auf informationstheoretischen Konzepten der aleatorischen und epistemischen Unsicherheit liefert. Diese Dissertation bringt Fairness für verantwortungsvolles ML durch die Entwicklung von Ansätzen für die Lösung von praktischen Kernproblemen näher an die Anwendungen im Feld. Umfassende Experimente mit einer Vielzahl von synthetischen und realen Datensätzen zeigen, dass unsere Ansätze in der Praxis umsetzbar sind.The International Max Planck Research School for Computer Science (IMPRS-CS

    Issue Mapping for an Ageing Europe

    Get PDF
    Issue Mapping for an Ageing Europe is a seminal guide to mapping social and political issues with digital methods. The issue at stake concerns the imminent crisis of an ageing Europe and its impact on the contemporary welfare state. The book brings together three leading approaches to issue mapping: Bruno Latour's social cartography, Ulrich Beck's risk cartography and Jeremy Crampton's critical neo-cartography. These modes of inquiry are put into practice with digital methods for mapping the ageing agenda, including debates surrounding so-called 'old age', cultural philosophies of ageing, itinerant care workers, not to mention European anti-ageing cuisine. Issue Mapping for an Ageing Europe addresses an urgent social issue with new media research tools

    Big Data in Management Research. Exploring New Avenues

    Get PDF

    Big Data in Management Research. Exploring New Avenues

    Get PDF

    Automated reasoning for attributed graph properties

    Get PDF
    Graphs are ubiquitous in computer science. Moreover, in various application fields, graphs are equipped with attributes to express additional information such as names of entities or weights of relationships. Due to the pervasiveness of attributed graphs, it is highly important to have the means to express properties on attributed graphs to strengthen modeling capabilities and to enable analysis. Firstly, we introduce a new logic of attributed graph properties, where the graph part and attribution part are neatly separated. The graph part is equivalent to first-order logic on graphs as introduced by Courcelle. It employs graph morphisms to allow the specification of complex graph patterns. The attribution part is added to this graph part by reverting to the symbolic approach to graph attribution, where attributes are represented symbolically by variables whose possible values are specified by a set of constraints making use of algebraic specifications. Secondly, we extend our refutationally complete tableau-based reasoning method as well as our symbolic model generation approach for graph properties to attributed graph properties. Due to the new logic mentioned above, neatly separating the graph and attribution parts, and the categorical constructions employed only on a more abstract level, we can leave the graph part of the algorithms seemingly unchanged. For the integration of the attribution part into the algorithms, we use an oracle, allowing for flexible adoption of different available SMT solvers in the actual implementation. Finally, our automated reasoning approach for attributed graph properties is implemented in the tool AutoGraph integrating in particular the SMT solver Z3 for the attribute part of the properties. We motivate and illustrate our work with a particular application scenario on graph database query validation.Peer ReviewedPostprint (author's final draft
    • …
    corecore