1,283 research outputs found

    GSAR: Greedy Stand-Alone Position-Based Routing protocol to avoid hole problem occurance in Mobile Ad Hoc Networks

    Get PDF
    The routing process in a Mobile Ad Hoc Network (MANET) poses critical challenges because of its features such as frequent topology changes and resource limitations. Hence, designing a reliable and dynamic routing protocol that satisfies MANET requirements is highly demanded. The Greedy Forwarding Strategy (GFS) has been the most used strategy in position-based routing protocols. The GFS algorithm was designed as a high-performance protocol that adopts hop count in soliciting shortest path. However, the GFS does not consider MANET needs and is therefore insufficient in computing reliable routes. Hence, this study aims to improve the existing GFS by transforming it into a dynamic stand-alone routing protocol that responds swiftly to MANET needs, and provides reliable routes among the communicating nodes. To achieve the aim, two mechanisms were proposed as extensions to the current GFS, namely the Dynamic Beaconing Updates Mechanism (DBUM) and the Dynamic and Reactive Reliability Estimation with Selective Metrics Mechanism (DRESM). The DBUM algorithm is mainly responsible for providing a node with up-to-date status information about its neighbours. The DRESM algorithm is responsible for making forwarding decisions based on multiple routing metrics. Both mechanisms were integrated into the conventional GFS to form Greedy Stand-Alone Routing (GSAR) protocol. Evaluations of GSAR were performed using network simulator Ns2 based upon a defined set of performance metrics, scenarios and topologies. The results demonstrate that GSAR eliminates recovery mode mechanism in GFS and consequently improve overall network performance. Under various mobility conditions, GSAR avoids hole problem by about 87% and 79% over Greedy Perimeter Stateless Routing and Position-based Opportunistic Routing Protocol respectively. Therefore, the GSAR protocol is a reasonable alternative to position-based unicast routing protocol in MANET

    A Distributed Geo-Routing Algorithm for Wireless Sensor Networks

    Get PDF
    Geographic wireless sensor networks use position information for greedy routing. Greedy routing works well in dense networks, whereas in sparse networks it may fail and require a recovery algorithm. Recovery algorithms help the packet to get out of the communication void. However, these algorithms are generally costly for resource constrained position-based wireless sensor networks (WSNs). In this paper, we propose a void avoidance algorithm (VAA), a novel idea based on upgrading virtual distance. VAA allows wireless sensor nodes to remove all stuck nodes by transforming the routing graph and forwarding packets using only greedy routing. In VAA, the stuck node upgrades distance unless it finds a next hop node that is closer to the destination than it is. VAA guarantees packet delivery if there is a topologically valid path. Further, it is completely distributed, immediately responds to node failure or topology changes and does not require planarization of the network. NS-2 is used to evaluate the performance and correctness of VAA and we compare its performance to other protocols. Simulations show our proposed algorithm consumes less energy, has an efficient path and substantially less control overheads

    An Information Model for Geographic Greedy Forwarding in Wireless Ad-Hoc Sensor Networks

    Get PDF
    In wireless ad-hoc sensor networks, an important issue often faced in geographic greedy forwarding routing is the "local minimum phenomenon" which is caused by deployment holes and blocks the forwarding process. In this paper, we provide a new information model for the geographic greedy forwarding routing that only forwards the packet within the so-called request zone. Under this new information model, the hole and its affected area are identified easily and quickly in an unsafe area with a labeling process. The greedy forwarding will be blocked if and only if a node inside the unsafe area is used. Due to the shape of the request zone, an unsafe area can be estimated as a rectangular region in the local view of unsafe nodes. With such estimate information, the new routing method proposed in this paper will avoid blocking by holes and achieve better performance in routing time while the cost of information construction is greatly reduced compared with the best results known to date.Department of ComputingRefereed conference pape

    A RELIABILITY-BASED ROUTING PROTOCOL FOR VEHICULAR AD-HOC NETWORKS

    Get PDF
    Vehicular Ad hoc NETworks (VANETs), an emerging technology, would allow vehicles to form a self-organized network without the aid of a permanent infrastructure. As a prerequisite to communication in VANETs, an efficient route between communicating nodes in the network must be established, and the routing protocol must adapt to the rapidly changing topology of vehicles in motion. This is one of the goals of VANET routing protocols. In this thesis, we present an efficient routing protocol for VANETs, called the Reliable Inter-VEhicular Routing (RIVER) protocol. RIVER utilizes an undirected graph that represents the surrounding street layout where the vertices of the graph are points at which streets curve or intersect, and the graph edges represent the street segments between those vertices. Unlike existing protocols, RIVER performs real-time, active traffic monitoring and uses this data and other data gathered through passive mechanisms to assign a reliability rating to each street edge. The protocol then uses these reliability ratings to select the most reliable route. Control messages are used to identify a node’s neighbors, determine the reliability of street edges, and to share street edge reliability information with other nodes

    A Survey on Routing Protocols for Large-Scale Wireless Sensor Networks

    Get PDF
    With the advances in micro-electronics, wireless sensor devices have been made much smaller and more integrated, and large-scale wireless sensor networks (WSNs) based the cooperation among the significant amount of nodes have become a hot topic. “Large-scale” means mainly large area or high density of a network. Accordingly the routing protocols must scale well to the network scope extension and node density increases. A sensor node is normally energy-limited and cannot be recharged, and thus its energy consumption has a quite significant effect on the scalability of the protocol. To the best of our knowledge, currently the mainstream methods to solve the energy problem in large-scale WSNs are the hierarchical routing protocols. In a hierarchical routing protocol, all the nodes are divided into several groups with different assignment levels. The nodes within the high level are responsible for data aggregation and management work, and the low level nodes for sensing their surroundings and collecting information. The hierarchical routing protocols are proved to be more energy-efficient than flat ones in which all the nodes play the same role, especially in terms of the data aggregation and the flooding of the control packets. With focus on the hierarchical structure, in this paper we provide an insight into routing protocols designed specifically for large-scale WSNs. According to the different objectives, the protocols are generally classified based on different criteria such as control overhead reduction, energy consumption mitigation and energy balance. In order to gain a comprehensive understanding of each protocol, we highlight their innovative ideas, describe the underlying principles in detail and analyze their advantages and disadvantages. Moreover a comparison of each routing protocol is conducted to demonstrate the differences between the protocols in terms of message complexity, memory requirements, localization, data aggregation, clustering manner and other metrics. Finally some open issues in routing protocol design in large-scale wireless sensor networks and conclusions are proposed
    corecore