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ABSTRACT OF THESIS

A RELIABILITY-BASED ROUTING PROTOCOL FOR VEHICULAR AD-HOC
NETWORKS

Vehicular Ad hoc NETworks (VANETs), an emerging technology, would allow vehi-
cles to form a self-organized network without the aid of a permanent infrastructure.
As a prerequisite to communication in VANETs, an efficient route between commu-
nicating nodes in the network must be established, and the routing protocol must
adapt to the rapidly changing topology of vehicles in motion. This is one of the goals
of VANET routing protocols. In this thesis, we present an efficient routing protocol
for VANETs, called the Reliable Inter-VEhicular Routing (RIVER) protocol. RIVER
utilizes an undirected graph that represents the surrounding street layout where the
vertices of the graph are points at which streets curve or intersect, and the graph
edges represent the street segments between those vertices. Unlike existing protocols,
RIVER performs real-time, active traffic monitoring and uses this data and other
data gathered through passive mechanisms to assign a reliability rating to each street
edge. The protocol then uses these reliability ratings to select the most reliable route.
Control messages are used to identify a node’s neighbors, determine the reliability of
street edges, and to share street edge reliability information with other nodes.

KEYWORDS: VANETs, vehicular ad-hoc networks, routing protocols for VANETs,
vehicle-to-vehicle communication, reliability
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Chapter 1 Introduction

This thesis proposes Reliable Inter-VEhicular Routing (RIVER), a position-based,

greedy, vehicle-to-vehicle routing protocol for Vehicular Ad-hoc Networks (VANETs).

VANETs provide the ability for vehicles to spontaneously and wirelessly network with

other vehicles nearby for the purposes of providing travelers with new features and

applications that have never been previously possible. Within this ever-changing

network, messages must be passed from vehicle to vehicle in order to reach their

intended destination. A VANET routing protocol must direct these message transfers

in an efficient manner to ensure robust data communication.

1.1 What is a VANET?

A VANET is a wireless network that is formed between vehicles on an as-needed basis.

To participate in a VANET, vehicles must be equipped with wireless transceivers and

computerized control modules that allow them to act as network nodes. Each vehicle’s

wireless network range may be limited to a few hundred meters, so providing end-to-

end communication across a larger distance requires messages to hop through several

nodes. Network infrastructure is not required for a VANET to be created, although

permanent network nodes may be used in the form of roadside units. These roadside

units open up a wide variety of services for vehicular networks such as acting as a drop

point for messages on sparsely populated roads, serving up geographically-relevant

data, or serving as a gateway to the Internet.

VANETs are a special class of mobile ad hoc networks (MANETs) with their own

unique characteristics. Most nodes in a VANET are mobile, but because vehicles are

generally constrained to roadways, they have a distinct controlled mobility pattern

that is subject to vehicular traffic regulations. In urban areas, gaps between roads

are often occupied by buildings and other obstacles to radio communication, so com-

munication along roads is sometimes necessary. Vehicles generally move at higher

rates of speed than nodes in other kinds of MANETs. Speeds of vehicles moving

in the same direction are generally similar, and they can therefore remain in radio

contact with one another for much longer periods of time than with vehicles moving

in opposite directions.

Even though several unicast routing protocols have been developed for MANETs [4],

[5], [42],[6], [11], [12], [13], [14], [20], [22], [26], [36], [37], [39], [41], [43], [53], [54],

1



[75], [66], [67], [68], [72], [76], [77], [82], [86], because of the unique characteristics

of VANETs, these protocols cannot be directly used in VANETs efficiently. Hence,

because of the expected potential impact of VANETs, several researchers have de-

veloped unicast routing protocols that are suitable for VANETs. The effect of traffic

patterns and congestion on VANETs are studied in [33], [70], [83], and [84]. Security

issues in VANETs are discussed in [17], [29], [32], [35], and [71]. Simulation and

testing of unicast routing protocols for VANETs presents its own challenges in repro-

ducing realistic vehicular motion on a simulated environment that is representative

of real cities and roadways. These simulation issues unique to VANETs are discussed

in [8], [23], [62], and [73]. Fairness of bandwidth sharing is discussed in [80].

1.2 Popular MANET Routing Protocols Adapted to VANETS

The Dynamic Source Routing Protocol (DSR) [43] and the Optimized Link State

Routing Protocol (OLSR) [78] are well-known unicast routing protocols for MANETs

and have been successfully adapted to VANETs as well. DSR is an on-demand routing

protocol which searches for a route only when needed. Each node maintains the

known routes in its cache. A route consists of the full source route, containing all the

intermediate nodes in the route. New routes are discovered by a source by flooding the

network with route request message. When the destination receives a route request,

it sends a route reply. The route reply sent by the destination accumulates all the

nodes through which the route reply propagates. When the route reply reaches the

source, it gets the source route to the destination from the reply. On the other hand,

OLSR is a proactive routing protocol, which maintains routes between any two nodes

in the network. HELLO messages are used for maintaining the routes. The main

advantage of this is that each node always has a route to every other node in the

network. This advantage comes as a result of large message overhead for maintaining

the routes. DSR has low overhead and is suitable for networks in which not all nodes

need a route to every other node in the network and the user traffic is low.

1.3 VANET Applications

Numerous applications await users of vehicular ad hoc networks, serving the interests

of consumers, businesses, governments, law enforcement agencies, and emergency

services. Many of these applications center on the idea of improving the safety of

motor vehicles. Accident avoidance warnings could quickly notify drivers of numerous

conditions that could cause a collision. When vehicles ahead brake quickly, an audio

2



warning could alert the driver or an onboard computer might automatically apply the

brakes. If vehicles on the road ahead swerve to avoid a road obstruction, the driver

may be advised to change lanes. In a scenario in which a driver fails to observe a traffic

signal, putting it on a collision course with a cross-street vehicle, both drivers may

be alerted or corrective action may be taken by the vehicles’ onboard computers. In

case an accident does occur, trajectory and velocity information exchanged between

vehicles prior to collision may allow the accident to be reconstructed more easily.

Rescue vehicles could instantly receive exact coordinates of the location of an accident

which can help them to reach the scene of the emergency faster.

Several features that enhance the convenience of drivers could be offered through

the use of VANETs. Today, GPS navigation systems can provide detour informa-

tion based on reported accidents downloaded through cellular carriers for a monthly

fee. It may not be possible to obtain such information in real time through cellular

carriers. When VANETs are in widespread use, information about traffic and road

hazards could be acquired in real-time and fed into vehicle navigation systems to pro-

vide alternate driving routes. In such situations, reliability and authenticity of the

information disseminated need to be ensured. Existing research results on ensuring

reliability and authenticity in the context of MANETS need to be explored and care-

fully adopted to VANETs. Current electronic toll road payments are typically made

via RFID tags installed in vehicles, but there are incompatibilities in the hardware

used in different regions. Toll roads could be wirelessly paid without the installation

of additional hardware to a vehicle, and protocol standardization [65] could make the

technology ubiquitous among various regions. By utilizing the positioning informa-

tion provided by GPS, geographically-oriented retrieval of local shopping and service

information could be provided in real-time, just as this information is preloaded in

GPS systems today. Traffic signals equipped with communication equipment could

more accurately control intersection traffic, and by feeding their data into centralized

systems, similar traffic control efficiencies could be applied at a more macroscopic

level such as an entire district or downtown area. Further into the future, VANETs

will provide the communication network required by cooperative driving applications,

which would allow vehicles to navigate without driver intervention by communicating

with other vehicles about velocity, proximity, and other factors.

From radio to television and video players, the possibilities for in-vehicle enter-

tainment have been constantly evolving, and several new applications in this area

could be made possible with VANETs. One doesn’t yet know what the killer applica-

tion would be in this area. Internet access for passengers, communication with other

3



vehicles, multimedia entertainment, and cooperative games are just a few potential

entertainment services that VANETs may provide.

1.4 Contribution of the Thesis

This thesis proposes a reliability-based approach to routing in VANETs. RIVER

performs real-time traffic monitoring using both active and passive mechanisms to

determine the reliability of transmitting a message along a particular route. Ac-

tive traffic monitoring occurs by sending probe messages along streets to determine

whether that street represents a connected edge. Our protocol also detects connected

edges by passively monitoring the routes of messages that it receives from adjacent

vertices. This reliability information is then shared with other nodes in a distributed

manner. The protocol allows routes to be recalculated dynamically during message

transmission, taking full advantage of local information at each forwarding node.

RIVER uses these features to address several problems associated with VANETs.

Primarily, the protocol attempts to solve the general problem of efficiently discovering

and sharing information about network nodes for the purpose of reliably routing

messages in a VANET. Its traffic monitoring components and reliability metrics are

focused on that issue. A more specific problem of route volatility in VANETs is

addressed through the route recovery and recalculation features in RIVER.

1.5 Organization of the Thesis

The remainder of the thesis is organized as follows. We discuss design factors of

routing protocols for VANETs and also present an analysis of existing unicast rout-

ing protocols for VANETs in Chapter 2 [10]. The RIVER protocol for VANETs is

described in Chapter 3. We conclude with a discussion of future work in Chapter 4.

Copyright c© James Bernsen, 2011.
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Chapter 2 Related Work

Less than a century since the automobile was made affordable enough for the general

public, hundreds of millions of vehicles now travel along highways and streets around

the world. Innovations in safety, comfort, and convenience have made vast improve-

ments in automobiles during that time, and now new technologies promise to change

the face of vehicular travel once again. One such new technology is the vehicular ad

hoc network or VANET, which provides the ability for vehicles to spontaneously and

wirelessly network with other vehicles nearby for the purposes of providing travelers

with new features and applications that have never been previously possible.

2.1 Design Factors

There are many factors to consider when designing a VANET. Will the network be

vehicle-to-vehicle only or could roadside units be used for communication? What

forms of communication will be available? Which vehicular systems will be employed

in the network? These and many other aspects will require analysis when determining

the features and capabilities of a VANET.

2.1.1 Vehicle-to-Roadside Communication

New technologies that will allow vehicles to communicate with roadside units are

in progress. The IEEE 802.11 working group continues to actively develop draft

amendment 802.11p [2] in order to provide support for Intelligent Transportation

System (ITS) applications. In the existing infrastructure and ad-hoc modes of the

IEEE 802.11 wireless standard, the time required to authenticate and associate with a

basic service set (BSS) is too long to be employed by VANETs. The 802.11p standard

provides wireless devices with the ability to perform the short-duration exchanges

necessary to communicate between a high-velocity vehicle and a stationary roadside

unit. This mode of operation, called WAVE (wireless access in vehicle environments)

operates in a 5.9 GHz band and support the Dedicated Short Range Communications

(DSRC) standard [81] sponsored by the U.S. Department of Transportation. These

standards support systems that communicate from vehicle-to-roadside, vehicle-to-

vehicle, or both.
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2.1.2 Vehicle-to-Vehicle Communication

Installing fixed infrastructure on roads incurs great expenses, so vehicle-to-vehicle

(V2V) communication is necessary to extend the effective range of networked vehicles.

VANETs require features not provided by cellular network-based systems such as low

data transport times for emergency warnings and robustness due to the network’s

decentralized structure [56]. In an emergency situation, cellular base stations are

often overwhelmed with calls, but distributed communications have the potential for

load balancing traffic to avoid network congestion.

2.1.3 Communication Paradigms

Like other kinds of networks, different communication paradigms can be supported in

VANETs. Unicast communication provides the ability for one node to communicate

with a target node in the network. The target node may be in a precise known

location or an approximate location within a specified range [85]. While unicast is a

useful mode of communication in VANETs, many applications require dissemination

of messages to many different nodes in the network.

Multicast communication allows messages to be sent to multiple destinations using

the most efficient route possible. For instance, when a traffic jam occurs at a particu-

lar location on a roadway, it would be valuable to send messages to vehicles that are

approaching that point so that they can take alternate routes. Sending a multicast

message that reaches vehicles not affected by the traffic jam would waste valuable

network bandwidth. Instead, it is desirable to only target affected vehicles, whose

positions can be determined by analyzing a road map. If each vehicle is equipped

with knowledge of its own global coordinates, then a specialized form of multicast

communication called geocast is possible. In geocasting, a message is sent to all of

the nodes in a particular geographic position, usually relative to the source of the

message. A similar form of communication is anycast, where a node sends a message

to any destination node in a group of nodes. Anycast provides a data acquisition

feature that is the intuitive inverse of geocasting, where a node sends a message to a

certain geographic area to request data from any node found there, called geograph-

ical anycast. Geographic anycasting has the ability to provide “distributed floating

car data” [31]. Another communication paradigm called scan operates like a sonar

echo, sending a message that traverses a certain region once [85]. Much research [3]

[9] [44] [48] [49] [85] has focused on providing these various multicast services in

VANETs.

6



2.1.4 Environmental Constraints

VANETs operate in a very different environment than most computing applications.

The high velocities at which vehicles move sometimes reduces the amount of time

available for message exchanges. Protocols need to take advantage of vehicles moving

in the same direction at relatively similar speeds to maintain connections for longer

periods of time [64]. Protocols must operate well in both city roads and highways.

City streets pose a unique set of geographic constraints as buildings between streets

often form obstacles for radio signals that must be routed around. Road character-

istics such as traffic signals and stop signs affect the flow of traffic in urban areas,

breaking any reliable streams of similar-velocity vehicles that may be found on high-

ways. On highways, low vehicle density must be considered. Traffic density, often

measured in the number of vehicles per unit distance, has a large influence on road

capacity and vehicle velocity. In low traffic densities, vehicles tend to move at faster

rates, but as traffic density increases, vehicles slow down. Very high traffic density

(in the case of a serious road block, for example) also causes both relative speed and

distance between vehicles to become stable [64].

2.2 Timeline and Classification

In this section, we present a timeline of unicast routing protocols for VANETs and a

qualitative comparison of them. For the reader’s reference, publication dates for each

protocol surveyed were used to build the timeline shown in Figure 2.1. In addition,

where a paper cited another protocol as a reference point for its own improvements,

Figure 2.1 captures this dependency with an arrow from the predecessor protocol to

the potentially influenced protocol.

In Figure 2.2, we give a qualitative comparison of the existing VANET unicast

routing protocols. We have classified VANET unicast routing protocols based on three

sets of criteria: objectives, characteristics, and assumptions. In the set of objectives

criteria, we categorize based on the design goals of each protocol. Some protocols

are aimed at providing vehicle-to-vehicle services, while others focus on vehicle-to-

roadside communication. Other protocols intend to provide communication in delay

tolerant/sparse networks. In contrast, there are QoS (Quality of Service) oriented

protocols, some of which provide Internet connectivity to vehicles.

In the set of characteristics criteria, we categorize based on the various strate-

gies used by each protocol to achieve its objectives. Nearly all of the protocols are

position-based, using knowledge of vehicles’ positions, and velocities to route mes-
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sages. Many also utilize the greedy forwarding strategy for sending messages to the

farthest neighbor in the intended direction. We also observe several predictive ap-

proaches where some speculation is made about characteristics of the nodes involved

in a route. Some algorithms make predictions on the current locations of nodes based

on the last known position, and velocity of the node. Other algorithms use this same

information to make predictions about the stability or estimated lifetime of a route.

To provide higher rates of delivery in sparse networks, a buffering (carry-and-forward)

strategy is often used. In this strategy, a node may hold a packet in a local buffer

until a forwarding opportunity is available, instead of simply dropping the packet.

We adopt the term street-aware to imply that the protocol builds route paths

along streets, whether an external map is used to perform this function or not (this

is noted independently in the assumptions criteria). We use a similar term, traffic-

aware, to refer to a protocol’s ability to utilize traffic information to select an efficient

route. We divide the traffic-aware algorithms into two groups: 1) traffic-aware (prob-

abilistic), which includes those protocols that make probabilistic assumptions about

traffic density by using static knowledge such as bus routes and lane information,

and 2) traffic-aware (real-time), which includes those that determine traffic density

by real-time measurement. In establishing routes, we can categorize the unicast rout-

ing protocols based on whether hops on the route are node-anchored (by remembering

the exact vehicles used in a route) or position-anchored (remembering approximate

geographic positions used in the route).

The criterion route-repair or recovery refers to protocols which either use a strat-

egy to recover from a greedy local optimum in a position-based route or have a mech-

anism for repairing broken routes. We also denote route caching protocols which

remember routes that have been previously established. We observe that a small

number of protocols include the use of what we call geographic marker messages.

These are messages that are passed from one vehicle to another to proliferate pre-

viously discovered information about a geographic location. They may indicate a

location that is disconnected [74] or they may provide forwarding information for a

relocated node like the “guards” in [63].

In the final set of criteria, assumptions, we identify the external sources of in-

formation that each protocol depends upon for its operation. These sources of in-

formation include external maps, positioning systems (such as GPS), and location

services. Some protocols take advantage of public transport routes and schedules to

approximate the positions of those vehicles. Traffic data from external sources may

be utilized, and one protocol [61] requires the presence of “external gateways”, which

9



are vehicles that have a wireless WAN connection to the Internet.

2.3 Position-based Greedy V2V Protocols

A significant number of unicast routing protocols use a position-based, greedy ap-

proach to provide vehicle-to-vehicle communication. Position-based approaches use

information about the geographic coordinates or relative positions of nodes to gen-

erate an efficient route through the network. Like most VANET unicast routing

approaches, position-based routing allows for unicast communication, but it also al-

lows for delivery of messages to all nodes in a geographic area, called geocasting.

When feasible, position based routing is beneficial in that no global route from

a source node to a destination node needs to be created and maintained: each node

decides where to forward each packet it receives. It has been shown that routing

approaches using position information can adapt to the high mobility of nodes found

in highway situations. [33]

In the greedy forwarding strategy, an intermediate node in a route forwards mes-

sages to the farthest neighbor in the direction of the next anchor or the destination.

This approach requires the intermediate node to have three important data points:

the position of itself, the position of its neighbors, and the position of the destination.

Typically, a node’s own position is acquired through GPS. (All of the protocols in this

category assume a positioning system of some kind.) The node’s neighbors’ positions

are obtained through message exchanges, and the position of the destination node

is usually found through the use of a location service [57]. Location servers may be

periodically placed external to the system, but this offers no guarantee that such a

server is within range. To alleviate this problem, quorum-based location services may

be built into nodes, or fully-distributed location services may be utilized [59].

2.3.1 Geographic Source Routing

The geographic source routing (GSR) algorithm [56] tries to overcome the disadvan-

tages of position-based routing approaches designed for MANETs when applied to

VANETs in urban scenarios. For example, consider the position-based MANET al-

gorithm GPSR [45]. GPSR utilizes the strategy of greedy forwarding of messages

toward a known destination. If, at any hop, there are no nodes in the direction of the

destination, then GPSR has a recovery strategy called perimeter mode that routes

around this void. The perimeter mode has two components. The first component is a

distributed planarization algorithm that makes a local conversion of the connectivity
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graph into a planar graph by eliminating redundant edges. The second component is

an online routing algorithm that operates on planar graphs.

In urban areas, buildings and other radio obstructions restrict effective network

routes to run along streets, so in VANET scenarios, the perimeter mode of GPSR

would be frequently required. In GPSR, if a radio obstruction or void causes the al-

gorithm to enter perimeter mode, then the planar graph routing algorithm begins op-

erating. While attempting to route messages around the obstruction, the planarized

connectivity graph causes messages to be sent to immediate neighbors instead of

sending messages to the farthest node on the street in the perimeter route. Because

this routing method uses immediate neighbors instead of the farthest reachable nodes,

more nodes carry the message, causing increased delays and greater hop counts. In

addition, with the rapid movement of vehicles inherent to VANETs, routing loops can

be introduced while in the perimeter mode of GPSR, causing further inefficiencies.

Even worse, these routing loops can cause messages to be transmitted in the wrong

direction by persistently following the right hand rule. For example, consider five

nodes a, b, c, d, and e arranged clockwise in a semicircular pattern. Node a attempts

to send a message to e, but an obstruction blocks the path. Perimeter mode is en-

tered, following the right-hand rule, and the message travels a → b → c → d, but

during this sequence, d moves within range of b. When link (d, b) forms, b becomes

the next destination by the right-hand rule, and a loop is formed.

Geographic source routing [56] uses a map of the urban area to avoid these prob-

lems. Using a static street map and location information about each node, GSR

computes a route to a destination by forwarding messages along streets. The sender

of a message computes a sequence of intersections that must be traversed in order

to reach the destination. This sequence of intersections can be placed in the packet

header or they can be decided by each forwarding node. The path between the source

and destination is computed using Dijkstra’s shortest-path algorithm.

GSR is a seminal algorithm for position-based VANET unicast routing. However,

the vehicle density on a chosen street is not considered, and the authors acknowledge

that there is potential to improve the algorithm by considering this information. The

algorithm also requires externally-provided static street maps for operation.

2.3.2 Spatially Aware Packet Routing

Similar to GSR, the Spatially-Aware Packet Routing (SAR) protocol [79], attempts

to overcome some of the weaknesses of the recovery strategy used by GPSR. In par-

ticular, when GPSR reaches a local optimum at a network void, its stateless recovery
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strategy causes each packet reaching the void to engage in its recovery strategy as

well. If the network void is a permanent one, then the frequent use of the recovery

strategy degrades the algorithm’s performance. SAR is a position-based unicast rout-

ing protocol that predicts and avoids route recovery caused by permanent network

voids. SAR relies upon the extraction of a static street map from an external service

such as GIS (Geographic Information Systems) to construct a “spatial model” for

unicast routing.

In SAR, a node determines its location on the “spatial model” and uses the street

information to calculate a shortest path to a packet’s destination. When this path is

determined, the set of geographic locations to be traveled is embedded into the header

of the packet. Note that no intermediate nodes are included in the source route; it is

position-anchored: a route based on immobile physical locations. When a node needs

to forward a packet, it inspects the packet header for the next geographic location in

the route. Rather than utilizing a strictly greedy strategy toward the destination, a

neighbor that is located along the route listed in the packet is chosen.

When a forwarding node cannot find a node along the predetermined routing path

in SAR [79] it is suggested that one of the following strategies could be employed.

First, the node can choose to place the packet in a “suspension buffer” where it

remains until a suitable node is located along the routing path. Second, the node can

attempt to greedily forward a packet towards its destination. Finally, the node may

recompute the unicast routing path stored in the packet header. However, none of the

suggested recovery strategies are recommended, nor is it specified how the node might

select one of these strategies. The authors compared SAR with no recovery strategy

and SAR using the suspension buffer approach (SARB) in their simulations and noted

that SARB provides a higher packet delivery ratio at the expense of message delay

in the presence of sparse networks.

2.3.3 Anchor-Based Street and Traffic Aware Routing

Unlike other greedy position-based unicast routing protocols, Anchor-Based Street

and Traffic Aware Routing (A-STAR) [74] utilizes city bus routes as a strategy to

find routes with a high probability for delivery. A-STAR also aims to remedy the

problem where the perimeter mode of GPSR utilizes next-neighbor hops along a

street instead of selecting the farthest neighbor along a street for a next hop. In

addition, the authors of A-STAR note that the use of the right-hand rule at a local

optimum is inefficiently biased toward one direction while going in the opposite di-
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rection (following a left-hand rule instead) sometimes results in a shorter route to a

destination.

The A-STAR algorithm uses “anchor-based” unicast routing, which involves in-

serting a sequence of geographic forwarding points into a packet, through which the

packet must travel on its route to the destination. Like GSR, A-STAR also utilizes

a static street map to route messages around potential radio obstacles such as city

buildings. In order to take advantage of the fact that some streets contain denser

traffic than others, the A-STAR algorithm also utilizes bus route information. The

assumption here is that buses typically follow major streets, and major streets are

more likely to contain vehicle traffic in greater densities. A weight inversely propor-

tional to the number of bus routes that serve that street is assigned to each street.

This information is used to compute an anchor path using Dijkstra’s least-weight

path algorithm.

When reaching a local optimum, the recovery mode of A-STAR works differently

than that of its predecessors. In recovery mode, A-STAR computes a new route along

an anchor path from the node at which the local optimum was reached and rewrites

the path stored in the packet header. To prevent other packets from reaching the

same local optimum, A-STAR uses geographic marker messages. The street that led

to the local optimum is temporarily marked as “out of service” by piggy-backing this

information along with the message that reached the local optimum. Any node that

receives a message that contains the “out of service” information updates its local

map so that “out of service” routes are not used for computing anchor paths. These

routes remain inoperative until a timeout duration threshold is met.

In their simulations of A-STAR, the authors assume that buses are equipped to act

as communicating nodes; a noteworthy assumption since this would insure that a city

would have additional vehicular nodes traveling along regular paths. The addition

of bus schedules into the algorithm is noted as potential future work. The authors

observe that estimating the traffic density of a street based on bus route information

is less optimal than more dynamic approaches that utilize latest traffic condition

information, and they leave the details of this for future work also.

2.3.4 Spatial and Traffic Aware Routing

In designing the Spatial and Traffic Aware Routing (STAR) algorithm [34], the draw-

backs of the SAR algorithm were observed. The SAR algorithm had the advantage of

its underlying spatial model, allowing it to forward packets along streets. However,

SAR did not have knowledge of whether any vehicles were actually positioned along
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the streets it selected. The STAR algorithm is designed to overcome this problem by

forwarding packets only along streets that are occupied by vehicles. Under STAR,

the source node computes its route more lazily than SAR by providing a partial route

in the packet header and then relying on intermediate nodes to determine additional

segments of the route. This provides the advantages of a fixed packet header length

and a route that can be adjusted dynamically to accommodate accurate local traffic

information and the movement of the destination.

The traffic monitoring component of STAR is interested in determining two pri-

mary conditions: streets that contain dense traffic and streets that contain sparse or

non-existent traffic. Beacon messages are utilized to observe “node neighborhoods”

and this information is maintained in a neighbors-table stored at each node. The

neighbors-table contains the position of each neighboring node. The neighbors-table

and two dependent data structures called the “presence vector” and the “persistence

vector” are used to determine sparse and dense traffic conditions relative to each

node. The presence vector counts the number of neighboring nodes in each of the

cardinal directions, and when a value in this vector reaches a low or high threshold,

this event causes an update to the persistence vector. The persistence vector is used

to capture sparse and dense traffic situations that have persisted for a substantial

amount of time while ignoring temporary abnormal conditions. When the persis-

tence vector shows that traffic is significantly sparse or dense in any direction for a

considerable period of time, this observation is recorded in the node’s traffic-table.

Each node periodically sends a beacon message that includes its ID, its position, and

information from its traffic-table.

The routing and forwarding component of STAR computes routes on-demand,

utilizing information from the node’s traffic-table. Each node dynamically maintains

a weighted graph of street map and traffic information. Streets with dense traffic are

represented by edges with lesser weights, making them preferred for routing. When a

source node s wishes to send a message to a destination node d, it computes part of

the route toward d using its weighted graph. When the end of that route is reached,

the node where the route ends computes another route toward d, stores this in the

packet header, and continues forwarding the packet. If a route fails (due to sparse

traffic or other reasons), it is handled as if the end of the route was reached, and

the node at which the route failed computes a new route to the destination from its

weighted graph.

The STAR algorithm’s reliance on beacon messages may introduce scalability and

wasted bandwidth problems since there appear to be no heuristics for adapting the
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beacon to conditions such as high node density or network congestion. Furthermore,

the authors show that the size of beacon messages in STAR are approximately six

times the size of beacons in GPSR and SAR. It is also unclear how STAR maintains

its presence vector when moving at high speed in one direction for an extended period

of time, such as on a freeway. For example, if a node is moving east at a high velocity,

it appears that over time the presence vector may become skewed such that it appears

that traffic is sparse to the east and dense to the west. It is true that a node’s traffic

table is updated via beacon message exchanges in STAR, but a node moving at high

velocity has less time to exchange large messages, thus exacerbating the possibility

of a skewed presence vector.

2.3.5 Greedy Perimeter Coordinator Routing

Like GSR, the Greedy Perimeter Coordinator Routing (GPCR) algorithm [57] takes

advantage of the fact that city streets form a “natural planar graph”. This algorithm

improves upon GSR by eliminating the requirement of an external static street map

for its operation. GPCR consists of two components: a restricted greedy forward-

ing procedure and a repair strategy for routing along streets towards a destination

when the greedy strategy reaches a local optimum. Both algorithms avoid graph

planarization by utilizing the innately planar graph of city streets.

To avoid potential radio obstacles such as buildings, in GPCR, the typical destination-

based greedy forwarding strategy is modified such that it only routes messages along

streets. In this way, routing decisions are only made at street intersections. As such,

the goal is to forward messages to nodes at an intersection, rather than forwarding

them to a node that is already past the intersection. (Contrast this to the traditional

greedy strategy that always forwards to the farthest node in the direction of the desti-

nation.) However, since this algorithm does not require an external static street map,

there is a problem in determining which nodes are located at intersections. GPCR

solves this problem by defining two heuristic methods for determining whether nodes

are in an intersection, and it designates those nodes as “coordinators”. A coordina-

tor has the responsibility of making routing decisions, and it periodically broadcasts

its role along with its position information. Nodes can determine whether they are

coordinators in one of the following two ways.

The first approach for coordinator determination is known as the neighbor table

approach. In this approach, nodes periodically transmit beacon messages which con-

tain their position information and the last-known position information of all of their

neighbors. By listening to these beacon messages, a node has information about its
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own position, the position of its neighbors, and the positions of its neighbors’ neigh-

bors. Using this information, a node x considers itself to be within an intersection

if it has two neighbors y and z that are within transmission range of each other but

neither of them lists the other as its neighbor. Such a situation implies that y and

z are separated by an obstacle and that node x can forward messages around this

obstacle.

The second approach (the correlation coefficient approach) for coordinator de-

termination does not use beacon messages. Instead, each node uses its position

information and the position information of its immediate neighbors to calculate the

correlation coefficient, ρxy, of its position with respect to its neighbors. A correlation

coefficient indicates the strength and direction of a linear relationship between two

independent variables. A strong linear correlation between the positions of the node’s

neighbors (i.e., ρxy is close to 1) indicates that the node is on a street. If there is

no linear correlation among the positions of the node’s neighbors (i.e., ρxy is close to

0), this indicates that the node is within an intersection. Through adjustment of a

threshold ε, a node can evaluate the correlation coefficient and assume that ρxy ≥ ε

indicates the node is on a street and ρxy < ε indicates the node is at an intersection.

Performance studies show that this correlation coefficient approach performs better

than the neighbor table approach, therefore GPCR utilizes this strategy solely.

When a forwarding node that is not a coordinator forwards a message from its

predecessor, it considers only those neighbors whose paths are approximate extensions

of the line between the forwarding node’s predecessor and the forwarding node itself.

If none of the considered nodes are coordinators, then the farthest of these nodes is

chosen as the next hop. If however, some of the considered nodes are coordinators,

then one of the coordinators is chosen at random to be the next hop. Since GPCR

avoids radio obstacles by only sending messages along streets, once a packet reaches a

coordinator, a routing decision can be made. The decision about which street should

be followed is performed using a greedy strategy once again. The street occupied by

the neighboring node that is closest to the destination is selected.

By using the correlation coefficient approach for coordinator determination, the

algorithm can avoid any dependency on an external street map. However, despite the

improvements of using calculated street information for the greedy strategy, scenarios

still occur where the greedy strategy reaches a dead-end in a local optimum. This

is where the repair strategy is exercised. Like the forwarding procedure, the repair

strategy makes routing decisions at coordinator nodes in intersections, but it continues

to use greedy forwarding between coordinators (to eliminate the extra hops noted in
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GPSR above). To determine which street to follow at an intersection, the repair

strategy uses the well-known right-hand rule. Using this rule, the coordinator node

chooses the street that is the next one counter-clockwise from the street that the

packet arrived on. Since streets do not move, the problems that plagued GPSR in

VANET scenarios (creating routing loops and sending packets in the wrong direction)

are avoided. When a node is reached whose distance to the destination is less than

the distance from the destination to the node where the repair strategy began, the

greedy strategy is resumed.

The authors acknowledge that, like GPSR, GPCR does not account for low node

density on selected streets, and they plan to augment the algorithm with “a very low

overhead proactive probing scheme” for determining whether a selected street allows

another intersection to be reached.

2.3.6 Connectivity-Aware Routing Protocol

Like other position-based vehicular routing protocols, the Connectivity-Aware Rout-

ing (CAR) protocol [63] finds a route to a destination, but a unique characteristic

of CAR is its ability to maintain a cache of successful routes between various source

and destination pairs. This characteristic was prompted by observations of other

position-based routing protocols and their inability to utilize information gathered

about disconnected paths (due to unoccupied streets, for instance) after those dis-

connections are detected. CAR also predicts positions of destination vehicles, repairs

routes as those positions change, and employs geographic marker messages.

Nodes using the CAR protocol send periodic HELLO beacons that contain their

“velocity vector” information (heading and speed). Upon receiving a HELLO beacon,

a node records the sender in its neighbor table and calculates its own velocity vector

and the velocity vectors of its neighbors. Entries expire from the neighbor table

when distance between nodes exceeds a threshold or after two HELLO intervals. The

beaconing interval adapts to traffic density by increasing in frequency when there

are few neighbors (to maintain contact in sparse traffic) and decreasing in frequency

when neighbors are abundant (to reduce unnecessary message overhead). Beacons

can also be piggybacked on forwarded data packets. These measures help to reduce

wasted bandwidth and network congestion.

The CAR protocol establishes the notion of a “guard”, a geographic marker mes-

sage that is buffered and passed from one vehicle to another to proliferate forwarding

information about a node that has moved to a new location. A guard is a tempo-

rary message that has an ID, a TTL (time-to-live) counter, a radius, and some state
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information (usually about the velocity vector of a node, but other types of informa-

tion could be stored). CAR provides two different forms of guards: the “standing

guard” and the “traveling guard”. A standing guard is tied to specific geographic co-

ordinates, while a traveling guard has initial coordinates, initial time, and a velocity

vector. A guard, which is kept alive by nodes in its geographic area, is transmitted

as part of the nodes’ HELLO beacons, and is stored in a Guards-Table by any node

that receives such a beacon. To maintain traveling guards, nodes use the guard’s ini-

tial coordinates, time, and velocity vector to compute the guard’s current geographic

area. A node that is aware of a guard can use the information to ensure delivery of

messages to destination nodes that have moved.

Velocity vectors are considered parallel if the smallest angle between them is less

than a predetermined value and non-parallel otherwise. Since CAR does not use

external maps, this information is useful to determine when a message travels around

a curve or changes course in an intersection. When an intermediate node’s velocity

vector is not parallel to the previous message-bearer’s velocity vector, an “anchor”

is added to the path discovery (PD) message to indicate that the message changes

direction in this location. The anchor contains the coordinates and velocity vectors

of the current and previous nodes. When the PD message reaches the destination, it

contains a series of anchors to mark the path from the source.

After receiving one or more PD messages, the destination chooses a path with high

connectivity and low delay. It then sends a route reply (RREP) back to the source

node, containing its coordinates, its velocity vector, and information from the original

PD message. Advanced Greedy Forwarding (AGF) is used to send the RREP back

to the source. When it reaches the source, the route is recorded by the source node,

and communication begins. Communication over the established path also utilizes

a slightly modified AGF strategy. Instead of always choosing the farthest neighbor

in the direction of the destination, the farthest neighbor in the direction of the next

anchor point is chosen.

To maintain the established routing paths as the vehicles in the network change

positions, guards are utilized to avoid the repetition of the costly discovery phase.

If a node at a route endpoint changes its direction, then the node activates a guard

that contains its old and new velocity vectors. Depending on the values of the old

and new velocity vectors, the guard may be a standing guard that remains at the

point of direction change or a traveling guard that moves in the direction of the old

velocity vector. If a node that is aware of the guard receives a message addressed to

the relocated node, it adds the guard coordinates as an anchor point to the message,

18



calculates a new estimated position for the destination, and forwards the message.

The endpoint also sends a notification message to the other endpoint of the route,

to inform that node of the new anchor points along the route. Notification messages

may also be sent if either endpoint passes an anchor point, crosses the established

routing path, or if the endpoint’s change in velocity may cause a substantial position

shift between its estimated and actual positions.

Routing errors may occur due to communication gaps between anchor points or

due to guards that were not maintained due to low traffic density. When routing

errors occur, CAR has two recovery strategies to cope with the problem. The first

recovery strategy is called “timeout algorithm with active waiting cycle”. In this

mode, the forwarding node places the packet in a suspension buffer and periodically

checks to see if a potential next-hop neighbor has entered into range. To do this,

it sends a “non-propagating next-hop request” to inform other nodes that it has

detected a disconnection and tries to find a next-hop node. Upon receiving this

request, which contains the forwarder’s coordinates and the next anchor point in the

route, a node may identify itself as being between those locations and reply with a

HELLO beacon. The second recovery strategy is called “walk around error recovery”.

In this mode, the forwarding node informs the source node of the disconnection and

initiates a local path discovery process. The node also initiates a guard to declare

that it is a buffering node, and it receives and buffers all messages on this route. If

the local path discovery fails, this information is sent back to the source node, the

buffered messages are either dropped or returned to the source, and the source starts

a new path discovery. However, if the buffering node’s path discovery was successful,

then the new path is sent to the source node and the buffered messages are delivered.

The CAR protocol’s ability to generate a virtual infrastructure in the form of

guards give it a distinct advantage over other protocols. It provides street awareness,

performs basic traffic awareness during path discovery, maintains routes, adapts well

in low traffic densities, and it does not require map or location services.

2.4 Delay Tolerant Protocols

In urban daytime scenarios where vehicles are densely packed, locating a node to

carry a message is not typically a problem. But in rural highway situations or even in

cities at night, fewer vehicles are running, and establishing end-to-end routes may not

be possible. Even in densely-populated urban scenarios, sparse sub-networks can be

prevalent. Law enforcement, military, and financial armored vehicles may each wish
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to exchange data privately within their own vehicular networks due to the sensitivity

of the information exchanged. One existing application is observed in the VMesh

Demand-Response project [21] where utility pricing information is exchanged from

roaming utility vehicles for utility usage information from consumer homes.

In such cases, some consideration needs to be given to routing in sparse networks.

In particular, in the early stages of vehicular networks, when few vehicles are equipped

with wireless transceivers, networks will frequently be sparse. In these situations,

delay-tolerant routing algorithms are needed. Delay-tolerant networks are sometimes

also known as disruption-tolerant networks.

2.4.1 Motion Vector Routing Algorithm

In routing a message from a vehicle to a roadside unit in a fixed location, the Mo-

tion Vector (MOVE) routing algorithm [51] uses knowledge of neighboring vehicles’

velocities and trajectories to predict which vehicle will physically travel closest to

the destination. This algorithm assumes a sparser network where rare opportunistic

routing decisions must be made predictively.

The MOVE algorithm is an algorithm for specialized sparse VANET scenarios.

In these scenarios, vehicles act as mobile routers that have intermittent connectivity

with other vehicles or stations in their network. The network is so sparsely populated

that there is seldom, if ever, a completely connected path from source to the static

destination (a fixed data collection point or roadside unit). A carry-and-forward

approach is used for vehicles to store data for long periods between connections.

Connection opportunities must be scrutinized carefully since they occur infrequently

and the global topology is unknown and rapidly changing. At each opportunity,

the algorithm must predict whether forwarding a message at that instant provides

progress toward the intended destination.

Under the MOVE algorithm, it is assumed that each node has knowledge of its

own position and heading, and it is assumed that the message destination D is a

fixed location that is known globally. From that information, the current node C

can calculate dC , the closest distance between the vehicle and the message destina-

tion, D, along its current trajectory. The current node periodically sends a HELLO

beacon. If a neighbor vehicle N in the network receives the beacon, it replies with

a RESPONSE message to make itself known. Given the direction that the neighbor

vehicle N is heading, the current vehicle C determines the shortest distance dN to the

destination D along the neighbor vehicle’s trajectory. The current vehicle then makes

a forwarding decision based on this information, each vehicle’s current distance from
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the destination, and rules about each vehicle’s trajectory relative to each other and

to the destination. (One example rule: if the current vehicle is moving away from the

destination and the neighbor vehicle is moving toward it, forward the message.)

In sparse networks, data delivery rates were higher for the MOVE algorithm

than a greedy, position-based routing algorithm. The MOVE algorithm also used

less system-wide buffer space. However, the authors noted that, in a preliminary

performance evaluation where vehicle routes were consistent and uniform (bus routes),

a greedy, position-based routing algorithm performed better than MOVE. Further

work is planned in this area to take advantage of knowledge of the bus routes and

schedules to optimize the algorithm’s performance. The MOVE algorithm is designed

for sparse networks and for vehicles that transfer data from sensor networks to a base

station.

2.4.2 Scalable Knowledge-Based Routing

Observing that knowledge-based schemes such as MOVE can improve the effectiveness

of a vehicular network, the Scalable Knowledge-Based Routing (SKVR) algorithm [1]

utilizes the relatively predictable nature of public transport routes and schedules.

In particular, bus routes are used. Position knowledge of each bus is not required.

SKVR assumes that bus routes are not looped routes; they have a start and an end

between which they travel forward and then backward.

SKVR divides the network into domains such that each bus route is a separate

domain. The algorithm works on two hierarchical levels: the top level is inter-domain

routing where a source and destination are on different bus routes, while the bottom

level consists of intra-domain routing within a bus route. Even the most dependable

public transport system is not completely predictable, as vehicles are prone to delays

due to traffic, mechanical failures, driver habits, road conditions, or other factors that

may cause them to deviate from their routes and schedules. Because of this, SKVR

makes use of two types of knowledge: static knowledge that does not change over

time and dynamic knowledge that changes often. For inter-domain routing (among

bus routes), SKVR relies on static knowledge only, namely the bus routes themselves

and their intersections, which are fixed and do not change often. For intra-domain

routing (when the source and destination are in the same bus route), SKVR uses

both static and dynamic knowledge. The dynamic knowledge used in intra-domain

routing is the schedule of the bus time tables, which may often be prone to variations

due to the aforementioned circumstances.
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For intra-domain routing, when a source node wants to send a message to a

destination node that is within the same physical route, there are only two directions

in which to send the message, forward or backward. To determine the destination

node’s position without location information, a simple method is used: each vehicle

maintains a list of other vehicles it has encountered that are also traveling along the

same route, clearing the list when it reaches the end of the route. Each vehicle also

transmits its direction (a single Boolean value) along the route as it travels. If the

destination is in this previous-contact list, then it must be in the backward direction,

and so the message’s direction flag is marked accordingly. When vehicles along the

same route encounter one another, a node carrying a message must decide whether to

continue buffering the message or to forward it based on the direction information of

the other vehicle. In this way, messages are passed to vehicles traveling along the route

in the direction of their direction flag until the destination is reached. Eventually,

each vehicle along the current route reaches the end of the route, at which time

it continues back down the route in the reverse direction. This ensures that even

when nodes are temporarily disconnected, their buffered messages will eventually be

delivered when they cross paths with another vehicle in their route.

For inter-domain routing, SKVR forwards a message to a vehicle traveling in

the destination domain, or to a vehicle that will eventually make contact with that

domain. When the destination’s domain is reached, the intra-domain behavior can

complete the delivery. If the sending vehicle’s contact list does not contain any vehicle

in the destination’s domain, then copies of the message are sent to other vehicles in

the contact list.

2.4.3 Vehicle-Assisted Data Delivery

The Vehicle-Assisted Data Delivery (VADD) protocol [87] uses a “carry-and-forward”

strategy to allow packets to be carried by vehicles in sparse networks for eventual for-

warding when another appropriate node enters the broadcast range, thereby allowing

packets to be forwarded by relay in case of sparse networks. VADD requires each

vehicle to know its own position and also requires an external static street map that

includes traffic statistics.

With the VADD protocol, when wireless channels are not available, the carry-and-

forward strategy is used by transferring packets along vehicles on the fastest roads

available. Since vehicles may deviate from predicted paths, the routing path should

be recomputed continuously during the forwarding process. To aid in this process,

VADD uses a street graph weighted with expected packet delivery delays.
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Each packet has three modes: Intersection, StraightWay, and Destination, where

each mode is based on the location of the node carrying the packet. Appropriately,

the Intersection mode is used when the packet has reached an intersection, at which

routing decisions can be made for the packet to be forwarded to a vehicle along any

of the available directions of the intersection. In StraightWay mode, the current node

is on a road, and there are only two possible directions for the packet to travel: in

the direction of the current node or in the opposite direction. Both directions are

considered using a simplified version of the algorithm found in Intersection mode, and

when the optimal direction is chosen, packet forwarding occurs in a greedy manner.

Destination mode is briefly entered when the packet is close to its final destination.

The most complex mode is the Intersection mode because of the many decisions

that are made while in this mode. Within an intersection, the forwarding node

prioritizes the available streets (based on distance to destination, expected packet

delivery delay, and probability of packet delivery) and chooses the next intersection

in the highest prioritized direction as the “target intersection”. It then attempts to

select a candidate node for that intersection. If no candidate node can be found for

the current target intersection, the forwarding node chooses the next best direction,

chooses a target intersection in that direction, and resumes the strategy of finding a

candidate node for that intersection. If no nodes are found in any suitable direction,

the forwarding node carries the packet.

When choosing a candidate node to which a message will be forwarded, there are

several variations of VADD with different selection criteria. Location First Probe

VADD (L-VADD) selects nodes that are located closely to the target intersection,

regardless of the direction the node is traveling. In this way, L-VADD is similar to

the position-based greedy strategy: choose the farthest node in the routing direction.

Because the selection of the next hop node is based solely on proximity to the target

intersection, as nodes approach an intersection, L-VADD has the potential for caus-

ing routing loops. For instance, consider node A that selects north as the highest

prioritized direction for its packet. There are no nodes to the north of A, and east

is chosen as the next best direction, so as A approaches an intersection to the east,

it may forward its packet to another node B that is southeast of A and closer to

the eastern intersection. However, when B receives the packet, it determines that

north is the best direction, and A is further north than B, so it sends the packet

back to A. These simple loops can be avoided by recording the previous hop and not

returning a packet to that node, but this method is not scalable for larger loops, and

results in making many valid forwarding paths unusable in order to prevent loops.
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Another variation of the protocol, Direction First Probe VADD (D-VADD), prefers

nodes that are moving in the same direction as the highest priority route direction.

This strategy eliminates the possibility of routing loops because all nodes agree that

a carrying node should always be a vehicle traveling in the direction with highest

priority. However, due to the possibility that a node may not encounter the most

optimal transfer node immediately upon entering an intersection, the authors intro-

duced Multi-Path Direction First Probe VADD (MD-VADD), which is a multi-path

variant of D-VADD. MD-VADD is more likely to find the most optimal routes, but

it also wastes bandwidth by duplicating packets among multiple receivers.

Hybrid Probe VADD (H-VADD) is a hybrid protocol that harnesses the strengths

of L-VADD, D-VADD and MD-VADD. Upon entering an intersection, H-VADD op-

erates in the greedy manner of L-VADD. However, if a routing loop is detected,

D-VADD or MD-VADD is used in the current intersection instead. The source paper

is not clear on how D-VADD or MD-VADD is selected in the presence of a routing

loop. In simulations, H-VADD shows the best performance in terms of delivery ratio,

message delay, and packet loss.

VADD makes an interesting assumption that vehicles with GPS capability are

generally programmed with long-range trajectory information (for example, to map

driving directions to a destination for the driver). VADD proposes that this trajectory

be sent along with a packet so that when a return packet is sent, the intermediate

nodes can continually update the predicted location of the packet’s destination. The

authors leave the details for this idea as future work.

2.4.4 Static-Node Assisted Adaptive Routing Protocol

The Static-Node Assisted Adaptive Routing Protocol in Vehicular Networks (SADV) [28]

aims at reducing message delivery delay in sparse networks. In experiments using

VADD, the authors observed that the network became unstable as vehicle density

decreased because optimal paths were not available and because VADD relies upon

probabilistic traffic density information. To remedy this, the authors proposed the

idea that static nodes could be placed at intersections to assist with packet deliv-

ery. Each static node has the capability to store a message until it can forward the

message to a node traveling on the optimal path. SADV also dynamically adapts

to varying traffic densities by allowing each node to measure the amount of time for

message delivery. SADV assumes that each vehicle knows its own position through

GPS and that each vehicle has access to an external static street map.

24



SADV has three different modules: “Static Node Assisted Routing” (SNAR),

“Link Delay Update” (LDU), and “Multi-Path Data Dissemination” (MPDD). SNAR

attempts to deliver messages on a path with the shortest expected delay to the des-

tination, using both vehicular nodes and static nodes. It operates in two modes: the

“in-road mode” and the “intersection mode” (similar to VADD’s StraightWay and

Intersection modes). The in-road mode operates while a vehicular node carries a

message in a road. In this mode, greedy geographic forwarding is used to transport a

message toward a static node at an intersection. When the static node is reached, the

intersection mode assumes control. In intersection mode, the static node calculates

the optimal next intersection for the message based on its “delay matrix”, explained

below. The packet is stored at the static node until it can be forwarded to a vehi-

cle traveling toward the optimal next intersection. If multiple vehicles traveling in

that direction are immediately available, the static node forwards the message to the

farthest of those vehicles.

As with any store-and-forward communication, buffer management is an impor-

tant issue in SADV. When the buffer at a static node becomes full, packets are

eliminated from the buffer by forwarding them along the best available path. The

strategy used for determining which messages are eliminated from the buffer is called

“least delay increase”, which attempts to send packets along paths which will not

significantly increase their delivery delay. Under this strategy, the static node checks

which paths are currently available, and eliminates packets that will be least affected

by traveling along the available paths.

As described above, SNAR makes extensive use of optimal paths. Optimal paths

are determined based on a graph abstracted from a static road map and weighted

with “expected path forwarding delays” from a delay matrix. SADV generates these

expected path forwarding delays based on real-time traffic density information. The

LDU module maintains the delay matrix dynamically by measuring the delay of

message delivery between static nodes. When a static node si receives a message,

it places a timestamp in the message header and proceeds to forward the message.

When that message reaches the next static node sj, the elapsed time is calculated, and

the timestamp in the message header is updated again. The elapsed time is retained

by sj , and in this way, a static node sj can obtain the delay for packets arriving from

all incoming directions. Each static node calculates the mean delay for each incoming

direction over a specified time interval and propagates this information to neighboring

static nodes in a periodic “delay update message” distributed by vehicles.

When traffic is low, the MPDD module of SADV takes advantage of the situation
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by utilizing multi-path routing. To reduce the impact on the protocol stack of vehicles,

only static nodes may deliver messages on multiple paths. In the MPDD module,

each static node chooses the best two paths for each message and attempts to forward

the message along both of those paths. To avoid excessive routing overhead caused

by loops, each static node maintains a record of the messages it has sent during a

time interval and ignores any duplicate packets received during that time.

The simulations used in the performance analysis did not include any one-way

streets. Since one-way streets are not effective for sending data in the opposite direc-

tion of traffic flow, a scenario that includes one-way traffic may have an impact on

the performance results of SADV.

2.4.5 Geographical Opportunistic Routing

Like other routing algorithms designed for delay-tolerant networks, the Geograph-

ical Opportunistic (GeOpps) routing algorithm [52] uses opportunistic routing and

a carry-and-forward approach to route messages in sparse networks. Its unique-

ness derives from its utilization of navigation information to route packets efficiently.

GeOpps assumes that each vehicle has knowledge of its position through GPS and

a navigation system that provides a suggested route to a traveling destination. It is

also assumed that each vehicle’s navigation system can provide the location of static

roadside units.

When a message is being sent from a source node to a destination using GeOpps,

intermediate nodes use the following method to select the next hop. Each neighbor

vehicle that is following a navigation-suggested route calculates its future nearest

point to the message destination. It also uses a “utility function” built into its

navigation system to calculate the amount of time required to reach that point. The

vehicle that can deliver the packet fastest or closest to the destination is chosen as

the next hop for the message.

GeOpps also considers some special cases. If drivers cease to follow their navigation-

suggested routes, then the algorithm forwards the message to any neighbor. If a ve-

hicle remains stopped for a certain amount of time, or if the engine is switched off,

then all messages carried by the vehicle are forwarded to the next available vehicle.

The algorithm does not require all vehicles to be equipped with navigation systems.

In these situations, a greedy algorithm is used to route messages instead.

GeOpps performs well in sparse networks and with delay-tolerant applications.

The differences in navigation systems that are available to consumers may create

challenges for GeOpps. For instance, there may be some difficulties in the differences
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between “utility functions” for time calculations, depending on the factors (speed

limit, traffic conditions, road types, average driver speed) that each navigation system

considers.

2.4.6 MaxProp

Another algorithm in the delay-tolerant network category, MaxProp [18] utilizes

carry-and-forward and packet prioritization techniques to maximize message delivery

in a network with limited transfer opportunities between nodes. MaxProp is imple-

mented in a real network called UMass DieselNet where it is deployed on buses, al-

lowing each bus to communicate its location and performance information to wireless

access points or other buses as they are encountered. The algorithm is an extension

of a previous routing protocol called MV [19], and it assumes that each node in the

network has knowledge of its position through GPS.

MaxProp operates in three basic stages: the neighbor discovery stage in which

nodes discover each other before packet transfers can begin, the data transfer stage

in which a limited amount of data can be transferred between nodes, and the storage

management stage in which each node manages its local storage buffer by selecting

packets to delete according to a prioritization algorithm.

By default, a node carries a message until the next neighbor discovery phase

occurs. The node continues to forward this message at each node meeting until the

message’s timeout is met, the delivery of the message is confirmed by an ACK in a

data transfer stage, or until the message is dropped in the storage management stage

due to a full buffer.

In the data transfer stage, messages are transferred based on a highest-priority-

first scheme. In the storage management stage, MaxProp deletes messages based on a

lowest-priority-first scheme. Each message stored at a node is prioritized based on the

estimated cost to deliver that message to its destination. To determine the estimated

delivery cost, each node in MaxProp maintains a probability of meeting every other

node in the network. MaxProp uses incremental averaging to modify these proba-

bilities at each meeting between nodes, and at each meeting, these probabilities are

exchanged between the nodes. With these values, each node calculates the estimated

cost to deliver a message for each possible path to that message’s destination. This is

done by summing the probabilities that each connection on the path will not occur.

The estimated cost for that message to reach its destination is the least costly path

among all of those calculated.
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When the data transfer stage begins, information exchange occurs in a predeter-

mined order. First, messages destined for the neighbor node are transferred. Secondly,

the aforementioned meeting probability information is exchanged between the nodes.

Third, delivery acknowledgements are exchanged. This allows delivered messages re-

maining in the node’s buffer to be safely deleted. Fourth, messages with low hop

count are transferred, regardless of estimated delivery cost. Finally, the remaining

messages that have not yet been transmitted are sent according to their priority,

based on estimated delivery cost.

Prioritizing based on two different factors (delivery cost and hop count) is done

in the following manner. The priority-sorted buffer at each node is divided into two

groups according to whether messages in the buffer have a hop count of less than a

threshold t hops. Messages with a hop count below this dynamically set threshold t

are sorted by their hop count (newer messages have higher priority), while messages

with larger hop counts are prioritized by the aforementioned estimated delivery cost

criterion.

The storage management stage handles the maintenance of each node’s finite

buffer. Messages are deleted when the buffer is full. First, messages that have been ac-

knowledged as delivered are deleted. These acknowledgements are distributed across

the entire network (not just to the source) to clean up message copies that might

otherwise remain in each node’s buffers for an extended period of time. Secondly,

messages that have a hop count of greater than t hops are deleted in the order of the

highest estimated delivery cost first. Finally, if the buffer is still full, messages with

hop counts below t are deleted in the order of the largest hop counts first.

MaxProp offers novel ideas about message prioritization, buffer management, and

routing messages based on probability of node meetings. System-wide acknowledge-

ments and tracking the probability of meeting every other node in the network are

practical techniques in a network of 30 buses, but these approaches may not scale

well to larger populations.

2.5 Quality of Service Protocols

Using the term Quality of Service (QoS) to describe current protocols in this category

is a trifle misleading. In the strictest sense, a QoS protocol should provide guarantees

about the level of performance provided. This is often achieved through resource

reservation and sufficient infrastructure. However, in an ad-hoc wireless network,

this is a difficult task. With the exception of the potential for roadside units, there
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is no infrastructure to be relied upon for guaranteed bandwidth. The dynamic and

cooperative nature of an ad-hoc network does not lend itself to resource reservation.

What variables can we adjust in order to provide guarantees about service?

These QoS routing strategies attempt to provide a robust route among vehicles.

Factors such as link delay, node velocity and trajectory, node position, distance be-

tween nodes, and reliability of links all contribute to the stability of a particular route.

Some performance guarantees can be made in vehicular routing, and we survey the

algorithms that can estimate the duration for which a route will remain connected,

and minimize the amount of time required to rebuild the connection if it is broken.

With those exceptions, the current suite of QoS VANET routing protocols is most

aptly described as a set of “best effort” protocols.

2.5.1 Multi-Hop Routing Protocol for Urban VANETs

Merging position-based and QoS factors, the Multi-Hop Routing Protocol for Urban

VANETs (MURU) [60] balances hop minimization with the ability to provide a ro-

bust route connection. In doing so, a new metric called the “expected disconnection

degree” (EDD), is introduced to estimate the quality of a route based on factors such

as vehicle position, speed, and trajectory. MURU requires each vehicle to know its

own position and to have an external static street map available. The presence of an

efficient location service is also assumed.

EDD, the expected disconnection degree, is an estimation of the probability that

a given route might break during a given time period. Using this measure, a low

EDD is preferred. Given knowledge of vehicle positions, speeds, and trajectories,

one can make some guesses about the stability of a route along a sequence of nodes.

Intuitively, nodes moving in similar directions at similar speeds are more likely to

maintain a stable route. The authors also show that, given certain assumptions

about vehicle traffic, routes with very small and very large routes have higher packet

error rates. The formula for calculating EDD takes these factors into account to make

a prediction about the breakability of a route. In MURU, each RREQ message stores

the cumulative EDD for the path that message traveled.

To find a route to a destination, a source node calculates the shortest trajectory to

the destination, based on their locations and the static street map. It then initiates a

RREQ message, broadcasting it in a rectangular “broadcast area” that encloses the

shortest trajectory and is bounded by the positions of the source and destination.

The shortest trajectory is stored in the packet and is used as a directional guideline

for the RREQ message. Nodes outside of the “broadcast area” will drop the packet.
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A node ni, upon receiving a RREQ message from node ni−1, calculates the EDD

of the link from node ni−1 to node ni using the formula

EDDi−1,i = α∗|D(i−1, i)−D0|
l +β ∗f(L(i), T (0, d))+γ ∗g(M(i−1), M(i), T (0, d)).

Here, α, β and γ are predefined tuning parameters, l is the path loss exponent which

is determined by the signal propagation model used in the urban areas. Di−1,i is

the geographic distance from node ni−1 to node ni, D0 being a correction factor.

L(i) is the current location of node ni, M(i) is ni’s predicted movement information

including expected velocity during the time period T . T0,d is the shortest trajectory

from source n0 to destination nd. g(M(i− 1), M(i), T (0, d)) returns 0 if ni and ni−1

are expected to be within the transmission range of each other for a period longer

than T , and 1 otherwise. f(L(i), T (0, d)) returns 0 if ni is on the shortest trajectory

towards the destination for a time period longer than T , and 1 otherwise. RREQ

message has a field to carry EDDpath(0, i) which is the EDD of the path from source

n0 to the current node ni through which the RREQ has propagated. When RREQ

is received by node ni from node ni−1, it calculates EDDpath(0, i) using the following

formula and includes it in the RREQ before rebroadcasting it.

EDDpath(0, i) =







0 if i = 0

EDDpath(0, i− 1) + EDDpath(i− 1, i) otherwise

If every node receiving the RREQ message immediately re-broadcast it, the mes-

sage overhead would quickly become not scalable. To avoid this, the MURU protocol

provides a pruning mechanism for route requests which allows each node to delay

forwarding a RREQ message. A node receiving the RREQ waits for a calculated

backoff delay (milliseconds) that is directly proportional to the EDD between the

previous forwarder of the RREQ and the current node. (If the EDD is large, then the

current node’s forwarding delay is also large to allow for the possibility that a path

with a smaller EDD may be found.) During this backoff delay, the node listens for

RREQ messages at other nodes. If during that window of time, the node overhears

a counterpart to this RREQ (from the same source with the same sequence number)

whose EDD is smaller than its own EDD to the source, then it drops the RREQ. (This

causes RREQ messages received along the path to be dropped by nodes whose links

are more likely to be broken.) If the node has not dropped the RREQ during this

time, then it rebroadcasts the RREQ into a rectangular area defined by its position

and the position of the destination. Thus, each time the RREQ is re-broadcast, the

broadcast area becomes an iteratively smaller rectangular area. When the destination
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finally receives some RREQ messages from different routes, it selects the route with

the smallest EDD.

In the paper, the authors show that MURU is loop-free and that MURU always

chooses a path from source to destination with the smallest EDD, both initially and

when repairing a route. Due to the rectangular broadcast areas used in MURU, it

may be susceptible to local optimums. If the rectangular broadcast area is strictly

bounded by the forwarding node and the destination node, this problem could occur

in cases where the only available next hop node is located outside of the broadcast

rectangle. MURU aims to provide a quality route that delivers a high percentage of

packets while controlling overhead and delay.

2.5.2 Prediction-Based Routing

While many algorithms have concentrated on vehicle-to-vehicle communication in

VANETs, the Prediction-Based Routing (PBR) algorithm [61] is focused on provid-

ing Internet connectivity to vehicles. Building an infrastructure of roadside static

gateways is costly, especially outside of urban areas. Instead, PBR explores the pos-

sibility of mobile gateways with wireless WAN connections that can act as Internet

gateways for other vehicles, focusing specifically on highway scenarios. The PBR

algorithm assumes that each vehicle has knowledge of its own position through GPS

or other means. The algorithm takes advantage of the less erratic vehicle movement

patterns on highways to predict the duration and expiration of a route from a client

vehicle to a mobile gateway vehicle. Just before a route failure is predicted, PBR

preemptively seeks a new route to avoid loss of service.

To communicate to a location on the Internet, a node checks its routing table for

an existing route. Like many reactive MANET protocols, if the node finds no existing

route, the node broadcasts a RREQ message with a limited number of hops. When

the RREQ reaches a mobile gateway, a RREP message is returned to the source

node through the sequence of nodes stored in the RREQ. (Note that due to the

low lifetime of vehicular routes, intermediate nodes with cached gateway routes do

not send RREP messages.) If multiple gateways are found, the source node chooses

the route with the shortest number of hops where the most hops are moving in the

same direction as the source node. If multiple routes to the same gateway are found,

then the route with the longest predicted lifetime is chosen. Once the route to the

gateway is established, communication begins. If this route remains active over time,

then just before the route is predicted to fail, PBR attempts to establish a new route

to a gateway.
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The RREP message is used to predict the lifetime of the route. When the gateway

receives the RREQ message, it writes its position and velocity information and a

maximum lifetime value in the RREP message that it returns to the source node. As

each intermediate node handles the RREP message it estimates the lifetime of the link

between its predecessor and itself, based on wireless communication range, direction

of travel, velocities of nodes, and distance between the nodes. If that lifetime is less

than the lifetime stored in the RREP message, then it updates the message with the

lesser lifetime. When the source node receives the RREP message, it contains the

estimated lifetime of the route.

Regardless of the effectiveness of the PBR algorithm in the mobile gateway situ-

ation, it is unknown how realistic the situation itself is. It is unclear how a vehicle

would be motivated to share its wireless Internet connection with others when that

connection is likely to be costly, although the integration of micropayments may be a

possible area for exploration. The prospect of Internet providers charging for the use

of their roaming WAN-connected vehicles may be economically feasible, but further

analysis would be required to determine this. In addition, the bandwidths of the

mobile gateway’s wireless WAN connections would need to be significant enough to

support the bandwidth demand of numerous client vehicles.

Copyright c© James Bernsen, 2011.
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Chapter 3 RIVER: Reliable Inter-VEhicular Routing

Reliable Inter-VEhicular Routing (RIVER) is a position-based, greedy, vehicle-to-

vehicle routing protocol for vehicular ad-hoc networks. This protocol prefers trans-

mitting messages using routes along paths it deems to be reliable through its traffic

monitoring components. This traffic monitoring happens in real-time by actively

sending probe messages along streets and by passively monitoring messages that

are transmitted between adjacent intersections. Furthermore, RIVER takes traffic

monitoring a step further by propagating reliability information within the network

without the use of broadcast, network flooding, or other means that have been shown

to cause network congestion. Instead, street reliability data is distributed in a more

localized manner by piggybacking the information on routing messages, probes, and

beacons. To take full advantage of this localized information throughout the life of

a routing message that may travel outside of its sender’s limited zone of knowledge,

our protocol allows routes to be recalculated dynamically at any anchor point during

message transmission. This route recalculation is also used as part of the protocol’s

route recovery mechanism when no neighboring nodes can be found along the current

route.

Based on our classifications in Chapter 2, our protocol would fit best in the

position-based, greedy, vehicle-to-vehicle category. Like its peers in that group,

RIVER is a geographic protocol that identifies neighboring nodes with beacon mes-

sages, has street-awareness, utilizes position-based routes, and forwards greedily. A

node can identify neighboring nodes and their locations via beacon messages. RIVER

uses these coordinates to choose appropriate forwarding nodes for the purpose of

transmitting a message toward its current anchor point. Our protocol is street-aware

in the sense that it attempts to route messages through vehicles along streets. VANET

protocols typically route along streets because this is where vehicles are likely to be

located. In urban areas, buildings located alongside streets can often block radio

transmissions. Street-awareness requires a basic knowledge of the physical location

of streets and their intersections, which RIVER acquires from static pre-loaded data.

Based on this street-awareness, the protocol generates routes that are anchored at

specific geographic positions, typically street intersections, as opposed to defining

route hops using transient network nodes in motion. Although the protocol is not

strictly greedy from source to destination, it greedily forwards a message between

each of the anchor points it sets in its routes.
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However, RIVER also differs in some significant ways from its peers. While the

seminal VANET protocols such as GPSR [56] and SAR [79] did not take traffic factors

into account at all, A-STAR [74] utilized static traffic information from bus schedules.

The creators of A-STAR hypothesized that buses travel on major thoroughfares that

are more likely to have dense vehicular traffic. A-STAR was therefore programmed to

prefer these roads for forwarding. The real-time, active traffic monitoring component

of the RIVER protocol allows it to avoid routes along streets containing gaps in node

coverage that would prevent message transmission.

A fundamental mechanism of its active traffic monitoring component is also a

unique aspect of RIVER: probe messages. Unlike a unicast message, a probe mes-

sage is sent to an unknown network node along a particular street edge to determine

the connectivity of that particular street edge. Some VANET protocols have made

limited use of real-time traffic information within their protocols. STAR [34] monitors

the number of nodes it encounters in each of the cardinal and intercardinal directions

relative to each node to aid in routing decisions. Each node in CAR [63] adapts its

beaconing interval to the number of neighboring nodes it has detected so that beacons

do not saturate network bandwidth in dense traffic conditions. SADV [28] measures

message delivery delays to estimate traffic densities. RIVER’s probe messages differ-

entiate it from its peers because of the real-time feedback they provide.

Also singular to our protocol is its method for using the traffic monitoring in-

formation to calculate the reliability of a path. This reliability information is based

on first-hand observation by each node and by second-hand information that is dis-

tributed between nodes. The reliability data allows RIVER to route messages around

network voids that a simpler shortest-path algorithm cannot detect. Finally, while

the protocol has a route recovery mechanism like other VANET routing protocols,

its dynamic route recalculation may prevent the need for recovery prior to a route

failure. We will expand on these differentiating aspects of the RIVER protocol in

Section 3.2, Section 3.3, and Section 3.4.

3.1 Network Stack and Topology

As a VANET routing protocol, RIVER depends on lower layers of the network stack

to manage physical network hardware, establish data links with other nodes, identify

nodes by unique network addresses, manage packet hop counts, etc. Likewise, the

protocol provides a VANET routing service to higher network layers while maintaining

a loose coupling with those layers.
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In Figure 3.1 a typical (TCP/IP) RIVER network stack is depicted. At its left

are the corresponding layers of the Internet Protocol Suite [15] [16]. At its right are

the corresponding layers of the OSI reference model [40]. Since the overwhelming

majority of network protocols rely on the Internet protocol, we make these same

assumptions with our protocol, and an IP layer is assumed beneath it. RIVER also

may optionally utilize a connection to the link layer for a dropped-link detection

feature and to provide eavesdropping capabilities for passive monitoring of network

traffic. These features will be described in detail in Section 3.1.1, Section 3.2.5, and

Section 3.4. Note that Figure 3.1 depicts this direct connection between the RIVER

layer and the link layer, which includes the Media Access Control protocol (MAC) [38]

in this diagram.

Application

Transport

Internet

Link
802.11

MAC

RIVER

Physical

Data Link

Network

Transport

Session

Presentation

Application

IP

Internet Protocol Suite OSI ModelRIVER Stack

TCP, UDP, etc.

Chat, Voice, 

Traffic, POI, etc.

Figure 3.1: Typical RIVER Network Stack

The network topology of a VANET lacks a great deal of determinism when com-

pared to a physical network such as the Internet. Internet nodes are connected to

one another through intermediate network devices, and they have a fixed network

topology. The intermediate network devices can route messages efficiently because

each network node can be reached through a path that is assigned to a particular port

on that device. Typically, a hierarchical addressing and subnetworking scheme (as is

used in Internet protocol) aids in the routing process. However, nodes in a VANET

do not have these same means of routing messages to one another. Network nodes

are in motion, so their unique addresses do not follow any hierarchical pattern based

on their physical location or the network to which they belong. Their connection to

the network is maintained wirelessly, and because of their frequent movement, each
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node’s neighbors are changing as the nodes move in and out of each others’ radio

ranges.

For example, in a physical network, a message might be routed from source S to

destination D by forwarding through network nodes Nx as follows:

(S → N1 → N2 → N3 → D)

Unless some node Nx in that path is physically removed from the network, that

path can be reliably repeated to send a message to node D in the future.

However, in a VANET, the network topology is highly dynamic. A source node S

cannot reliably assume that any previous neighbor node Nx will still be within wireless

range when S sends its next message. Each node in the network must establish a list

of its neighbors and maintain that list as those neighbor nodes move out of range and

as new nodes become neighbors by moving within range. This is achieved through

a mechanism called beaconing. Furthermore, each node Nx in the path from S to

D is also likely to be in motion, so node S cannot guarantee these same nodes will

continue to form a wirelessly connected path to node D. Because of this, nodes do

not define their routes by specifying intermediate node addresses. Instead, anchor

points are coupled to geographical locations between the sender and receiver.

3.1.1 Beaconing

Like several other VANET protocols, RIVER uses a beaconing system for identifying

neighboring nodes. Each node Nx intermittently broadcasts a one-hop beacon mes-

sage to other nodes within its transmission range. At a minimum, the beacon message

contains the sending node’s geographical location, obtained via GPS. By doing this,

nodes receiving the beacon message can identify node N as a neighboring node within

their receiving range, and they can associate node N with a last-known geographical

location. This allows a sending node S to determine whether node N is physically

located along a path to a given destination node D. The information about node

N is recorded in a data structure commonly known as a neighbors-table. Beacons

are sent at a semi-regular interval, but as in GPSR [56], it is randomly adjusted

with a “jitter” duration between beacon intervals in order to help prevent collision of

beacons from different nodes if their beacon intervals became synchronized.

The neighbors-table must be updated as nodes move out of range of each other.

In our protocol, this function is accomplished with a predefined timeout value and

by information received from the link layer of the network. The timeout is called the

dead-neighbor-timeout. If node Nx has not received a message from one of its

neighbor nodes within the number of seconds defined in the dead-neighbor-timeout,
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that neighbor node is assumed to be out of range and is deleted from the neighbors-

table. There may be cases where a node Nx removes node Ny from its neighbors-table

because it has not received a beacon from that node, but the node Ny is still within

range of Nx and simply has not broadcast a beacon (or that beacon was not received

for some other reason). If a beacon is subsequently received from node Ny, it will

be reinserted into the neighbors-table of Nx. Conversely, it is possible for a node Nx

to contain an entry for Ny in its neighbors-table, but node Ny has, in fact, moved

out of range. In this case, if Nx should attempt to send a message to Ny, the link

layer (for 802.11 networks, this occurs at the MAC sublayer [38]) would be unable to

establish a link. When this occurs, the RIVER protocol intercepts this MAC layer

information, directs node Nx to remove node Ny from its neighbors-table, and then

directs Nx to choose another neighbor node in order to retry the transmission.

In addition to sending explicit beacon messages, the RIVER protocol’s other kinds

of messages may also be used as implicit beacons by setting an implicit beacon

bit in the packet. When this is enabled, each forwarding node Nx for the message

modifies the packet’s beacon origin geolocation and beacon origin address

blocks with their own information. All nodes that overhear the message over the

wireless network may treat it as a beacon for the forwarding node Nx. Another

unique aspect of the beaconing scheme in our protocol is that beacons also carry a

timestamp and a known-edge list for distributing reliability information within the

network. Wireless eavesdropping and the known-edge list are discussed further in

Section 3.2.3. For a full diagram of RIVER’s explicit beacon packet, see Section A.1.

3.1.2 Street Graph

Because vehicles are generally restricted to roadways, network voids are very likely to

occur unless communication is similarly constrained along these roadways. In urban

areas, gaps between roads are often occupied by buildings and other obstacles to radio

communication, so establishing routes along roads is made even more necessary. To

avoid these problems, RIVER employs a method that originated with GPSR [56]

and SAR [79] and other VANET protocols have also utilized: a geographic map of

streets and their intersections. Due to the fact that roadways change infrequently,

the presence of a street map becomes a convenient substitute for a network topology.

For our protocol’s street graph implementation, each street is represented as a

series of geographical coordinates of locations where the road intersects with another

roadway or where the road curves. These geographical coordinates represent the

vertices of the graph, and the edges between these vertices represent (relatively)
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straight roadways between those coordinates. The graph is an undirected graph since

communication can take place in both directions along roadways (even on one-way

streets). The street graph, then, is defined as G = (V, E) where G is an undirected,

connected graph of street vertices V and their respective street edges E. A vertex

v ∈ V is defined v = {i, x, y} where i represents its internal identifier i and (x, y)

represents its geographical coordinates. An edge e ∈ E is a set e = {u, v, w}, where

u, v ∈ V and u 6= v and w is the weight of the edge, as used in Dijkstra’s shortest-path

algorithm.

3.1.3 Practical Considerations

To meet these requirements, a simple source of external data that provides two el-

ements is needed. First, the geographical coordinates for the vertices of the street

graph are needed. Secondly, an indication of how these vertices are connected to form

street edges is also required. The existence of map data is generally considered to be

a reasonable assumption in the literature since modern vehicles commonly have on-

board navigation systems. Map data can also be extracted from available Geographic

Information Systems (GIS) sources.

Within a heterogeneous real-world environment, it would be impractical to assume

that all vehicular nodes would have the same map data source available. To allow

for this possibility, the vertices and edges in a RIVER street graph do not require

any common labels or naming conventions among nodes, nor do they require any

identification beyond their geographical coordinates since nodes communicate with

each other simply by describing their geographical positions; the internal identifiers

of vertices are not communicated. Edges are also devoid of names or labels, as they

are identified by the vertices on which they are incident.

In addition, to accommodate any potential imperfections that may be present in

the position data of different map data sources, the coordinates of a particular vertex

need not be exactly identical between all nodes in the network. For example, suppose

we have two nodes a and b with street graphs Ga and Gb, respectively, that identify

some real-world street vertex u with different geographic positions ua and ub and

node a sends position ua in a message to node b. Node b considers ua ≡ ub if ∃ no

other vertex v ∈ Gb with coordinates nearer to ua than ub.
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3.2 Traffic Monitoring

A fundamental aspect of the success of any VANET is the presence of a sufficient

number of network nodes to allow forwarding of messages in the network. As we

have discussed, messages in a VANET are forwarded along streets due to the unique

constraints of this kind of network. However, due to various factors in a real-world

situation, there is no guarantee that network-participating vehicles are present on

any particular street at a given time. A lack of networked vehicles may occur due to

factors such as date and time, road construction, detours, community events, traffic

laws, bad weather, etc. Some of these factors affect all streets in a particular area,

while other factors may cause only a few selected streets to be void of network nodes.

As discussed previously, A-STAR utilized static traffic information from bus sched-

ules. Other static methods of traffic monitoring could include caching “typical” traf-

fic data and potentially supplementing that data with updates about less-frequently

scheduled traffic conditions. For example, nodes might store data about typical traffic

patterns such as rush-hour commuter traffic on weekdays, and then they might also

receive periodic updates about road construction or community events that disrupt

these typical patterns.

While these kinds of typical traffic patterns have potential to persist for a signif-

icant amount of time, it is quite probable that temporary gaps in network coverage

are common on most streets at frequent intervals. Any distance between two nodes

that is greater than both nodes’ transmission ranges causes a communication gap.

These kinds of gaps may occur frequently because of traffic signals that stop vehic-

ular traffic, for example. They may also be caused even when the road is full of

vehicles if many of the vehicles are not network-equipped. These temporary gaps can

be extremely disruptive because they often happen in a non-deterministic manner.

A typical network gap is depicted in Figure 3.2 where vehicular traffic on a street is

moving away from each other, thus partitioning the network.

Traffic monitoring in our protocol consists of both active and passive components

that operate in real-time. For active traffic monitoring, the primary mechanism

is the probe message: a RIVER protocol packet that is periodically sent by each

node in the network. Probes perform dual functions of traffic detection and traffic

information distribution. In addition, each node performs passive traffic monitoring

by gathering data from each packet that it receives. Beyond the implicit beacon

markers discussed in Section 3.1.1, probe and routing packets carry two other forms

of traffic information: the known edge list and weighted routes.
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Radio ranges are reduced 

for purposes of illustration.

Figure 3.2: Formation of a Network Gap

3.2.1 Active Monitoring

In vehicular ad-hoc networking, network topology is constrained by the physical net-

work of roadways because vehicular nodes are constrained to these roadways, and

(especially in urban scenarios) there are often obstacles to radio communication along

each side of the street. Therefore, like the edges of a graph, the road segments be-

tween intersections are one-dimensional in terms of communication: messages can be

sent either to vehicles ahead of the current node or to vehicles behind it. As such, the

majority of routing decisions are made at intersections. These decisions are crucial:

sending a message down a street that contains a network gap causes the message to

either be dropped, buffered, or to backtrack. With these factors in mind, it becomes

clear that the shortest path between a sender and receiver is not always the most

successful path. Instead, a VANET routing protocol must have a method to deter-

mine which street edges are most likely to result in delivery of a packet to the next

intersection.

In VANETs, beacon messages primarily function as a mechanism for a node to

advertise its existence to its neighbors. In a sense, this is a form of traffic awareness.

Beacon-oriented traffic monitoring is employed by some of the routing protocols that

have made limited use of real-time traffic monitoring, such as STAR and CAR. How-

ever, a node can detect beacons only within its radio range, and frequently, the reliable

range of a radio may be less than the distance between street intersections. Consider

city blocks as one example. City block sizes differ between cities (and also within
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the same city), but a standard Manhattan city block is 270 m on its longest side.

Superblocks are used to accommodate larger buildings in downtown settings or to

form perimeters of neighborhoods in suburban settings. They create even longer dis-

tances between intersections along well-populated thoroughfares, where surrounding

streets are often 1 km in length. However, typical 802.11b and 802.11g wireless range

is about 100 m outdoors in the best case. For this reason, beacon-oriented traffic

monitoring is insufficient to determine whether a street edge is reliable for message

delivery to the next intersection.

3.2.2 Probe Messages

To determine if a message can be delivered along a particular street edge to the next

intersection, RIVER uses a probe message. A probe is best described as an anycast

message: it is sent to any node in a group of nodes defined by a particular geographic

area. Its content is similar to a beacon message in that it does not carry a data

payload. However, probe messages are not a one-hop broadcast.

Each node maintains a copy of the surrounding street layout in its street graph

(Section 3.1.2) where each road segment is represented by an edge in the graph,

incident on two vertices. A probe message is sent by a node that is located near

a street vertex, and it is forwarded greedily to intended next-hop recipients along

the street that is incident to that vertex. The destination node of a probe message

is not known to its sender; the probe traverses a street edge and is finally received

by any node within range of the opposite street vertex. If there is a gap in the

network coverage along the street edge, the probe is dropped. However, if the probe

is delivered to its destination vertex, any nodes at that vertex become aware that the

vertex is traversable at that moment. When a departing probe is received, a return

probe is generated back to its original sender so that the sender will also be aware of

the connectivity of the probed street edge. (For pseudocode describing the receiving

of packets and the processing of probes, see Section B.1 and Section B.3.)

Our protocol’s probe messages act as implicit beacons for each forwarding node

by including each forwarder’s geographic position and address. They also carry the

address and geographic position of their original sender, and the position of their

destination vertex. Finally, each probe message also contains a known edge list, to

be discussed further in Section 3.2.3. For a full diagram of a RIVER probe packet,

see Section A.2.
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3.2.3 Passive Monitoring

Each node also monitors traffic passively by monitoring messages that are sent within

the network. Each message contains, either implicitly or explicitly, reliability infor-

mation about edges in the network. These monitored messages may be messages that

are sent directly to a node as a next-hop or destination. However, each node also

taps into the link layer of its network stack and listens for RIVER packets that are

addressed to another node. The learned reliability information is then shared within

the network in a distributed manner.

In the RIVER model, routing is aided by gathering and distributing knowledge

regarding the connectivity of edges in the street graph. This is partially enabled

through passive monitoring. Whenever a node near a street vertex Vx receives a packet

that has traversed an edge that is incident on Vx, this implies that the traversed edge is

currently connected. (By connected, we mean that sufficient nodes are present along

the edge to transmit a message along that edge.) Similar to the probe mechanism

described earlier, our routing packets also contain information that allow a node to

determine what edges the packet has traversed. Therefore, when node Nx near street

vertex Vx receives a probe or routing packet that has traversed an edge incident to

Vx, node Nx resets the weight of that edge in its street graph to the minimum value,

which indicates that the traversed edge is connected.

Passive monitoring also enables a node to learn about edges of the street graph

that may be far away from the node. As depicted in Figure 3.3, suppose a node

receives a routing packet from a distant node, either for the purpose of receiving the

packet or forwarding it on. (Alternatively, the node may also simply overhear such

a packet, as we will describe in Section 3.2.6.) The node is already aware of the

reliability of edges near it because it sends and receives probe packets along those

edges (marked with an “x” in the figure). In addition, every edge in the routing

packet’s route (marked with a “y” in the figure) will be represented with an edge

weight in the packet. Finally, any edges incident on the route will likely also have

their reliability captured because the nodes that forward the packet from the source

to the destination may add into the packet any reliability weights known to them also

(marked with a “z” in the figure) within the known edge list. These features will be

described further in this section.
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Figure 3.3: Data Gained from Passive Monitoring of a Routing Packet

3.2.4 Weighted Routes

Every RIVER routing packet contains a list of anchor points for the route, identified

by their geolocation. Any consecutive pair of these route anchor points represents an

edge in the street graph of the sender node and has an edge weight associated with

it. When constructing the routing packet, the sender includes this edge weight in the

packet, along with a timestamp of when that reliability value was last updated.

When a routing packet is received at a node, the node analyzes the route and

processes the reliability information associated with it. If the node is not the final

recipient for this routing packet, it also updates the reliability information within the

route prior to forwarding it on. The rules in Section 3.3.2 govern the processing of

incoming reliability information and updating of outgoing reliability information. For

a full diagram of a RIVER routing packet, see Section A.3.
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3.2.5 Known Edge List

Each node using our protocol monitors beacon, probe, and routing messages, each

of which contain a known-edge list (KEL). The known-edge list identifies edges

by their endpoint geolocations and communicates reliability information about each

edge. Upon sending a RIVER packet, the sending node selects edges from its street

graph to share with other nodes, and places them in the known edge list with their

reliability values and the time when each reliability value was last updated. Likewise,

whenever a RIVER packet is received at a node, the node reads the known edge list

and processes any edge reliability values found there. If the packet is a probe or

routing packet that the node will forward on, the node selects edges to share from

its street graph (which now includes the information contained in the received KEL)

and updates the known-edge list in the packet before sending it on.

The known-edge list does provide benefits of improved throughput, as shown in

Section 3.5. It is imperative however, that the protocol does not allow the list to

grow too long. As the packet size grows longer, each node must transmit for a longer

period of time, and this increases the probability that another node will attempt to

transmit simultaneously. In a congested network, these simultaneous transmissions

degrade network performance, which has a negative impact on throughput. In our

simulations, we only encountered this problem when we artificially increased packet

size to determine these effects. Routing packets are more likely to be affected by this

problem because they also carry a route and data payload, so their known-edge list

sizes should be limited appropriately. Maximum lengths can be set independently for

known-edge lists in beacon, probe, and routing packets.

To minimize the packet size, edges are carefully selected for sharing from a known

edge list. Each edge in a node’s street graph is timestamped with the last time it

was selected for sharing. Likewise, each update to an edge’s reliability rating is also

tracked. Only an edge whose reliability has been updated since the last time it was

shared is eligible for sharing again. Edges whose reliability is unknown (and set to

a default value) are not eligible for sharing. Furthermore, the selection algorithm

prefers edges that have been updated recently, and it further prefers edges whose

updates originate from first-hand knowledge, as opposed to an edge whose reliability

is updated because of its inclusion in a known edge list from some other node. These

differences are further discussed in Section 3.3.2.

Known edge lists exist on all types of RIVER messages: beacons, probes, and

routing packets. The information on a beacon travels only a single hop, so recipients

are likely to have similar information already, either from first-hand knowledge (since
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they are located near the same edges as the sender) or from other nodes’ beacons.

However, beacons are the most frequently transmitted message type in the protocol,

so they can spread updates more quickly than other message types. Probes travel

along edges, and therefore they distribute the edge information farther from the sender

than beacons, increasing their likelihood of sharing useful information. Probes are

only sent when a node is near a street vertex, and they are transmitted less frequently.

Routes generally carry their known edge lists the farthest distance, benefiting many

nodes who may not otherwise travel near the sender’s location to learn about traffic

there first-hand.

3.2.6 Eavesdropping

Since beacon packets are broadcast to every node within one-hop radius of the sender,

every node in radio range processes the beacon information. However, probe and

routing packets are forwarded to a specific recipient at each hop. By default, other

nodes within radio range of the packet transmission discard the packet at the link

layer of their protocol stack. However, information contained within these probe

and routing packets carries value for other nodes in the area besides their intended

recipients. If these other nodes received the packets also, they could use the implicit

beacon information in the packet to update their neighbor tables, process the known

edge list in the packet to update their street edge reliability data, and (for routing

packets) process the reliability information of edges within the route itself. In order

to perform passive traffic monitoring, each node running our protocol taps into the

link layer of its network stack. By eavesdropping at this level, any RIVER probe

and routing packets that are not addressed to the current node can be pushed up

the protocol stack for processing. Figure 3.4 depicts a sender at left transmitting a

packet to its intended receiver at right. Any other nodes within radio range of the

sender (such as the middle node in the diagram) may overhear this packet. Using this

approach, each node gains useful information that would otherwise require additional

packet transmissions, consuming valuable network bandwidth.

3.3 Edge Reliability

A crucial component of our protocol is its ability to estimate the reliability of a

particular street edge. RIVER uses this reliability data as the primary factor in

determining a successful routing path from a sender node to a receiver node. As

mentioned in Section 3.2, temporary, non-deterministic traffic gaps pose a particularly
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Figure 3.4: Link Layer Eavesdropping

challenging problem for any VANET protocol that relies on static data to detect

traffic anomalies. These kinds of gaps occur suddenly, often without predictability.

There are cases when sparse traffic may persist for long periods of time (eg. road-

closed conditions), but these cases happen infrequently, and their presence is still

captured by real-time monitoring. Vehicular nodes move quickly and frequently, so it

is infeasible for each node to track the movement of all other nodes across a particular

area to determine usable routes. Instead, we hypothesize that it is more efficient to

determine if a particular street edge was recently reliable and share this information

with others.
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3.3.1 Determining Reliable Paths

Each node in the RIVER model assigns a weight to every edge in its street graph.

To determine reliable paths, the protocol assigns these weights using both first-hand

observation and second-hand knowledge. First-hand observations include the infor-

mation that each node gains when it receives a packet or when it attempts to send

a probe or routing message to another node. Second-hand observations include the

passive monitoring of known edge lists stored in beacons, probes, and routing packets,

and the monitoring of edge weights contained within routing messages.

In shortest-path routing algorithms, each edge weight would be based on the

length of the street segment represented by the edge. Our protocol is not a shortest-

path routing algorithm in this sense; its edges are weighted with their reliability

rating. A small weight (the minimum weight is zero) indicates greater reliability; a

large weight indicates an unreliable edge, and the maximum weight indicates an edge

that is known to be not traversable.

With these weights assigned to each edge, our protocol uses Dijkstra’s least weight

path algorithm [27] to calculate what it considers the most reliable routing path.

This calculation is performed at the originating sender of a routing packet and may

be performed again later. The route, along with each reliability rating used in the

calculation, is written into the packet.

Note that when using reliability as a path metric, distance is still taken into

account. Dijkstra’s least weight path algorithm finds the least-weighted path based

on the sum of the path weights. If two paths Px and Py have equal weights on each

edge but Px has more edges (is a longer path) than Py, then Py is chosen because its

total weight is less. The shorter of the two paths is chosen.

An example of this is demonstrated in Figure 3.5. In this figure, all edge weights

(shown as w) except for Vs → Vd are of equal weight. The shortest path Vs → Vd

represents an unreliable path where packets would be dropped if transmission were

attempted along this path. The other two paths from Vs to Vd have equal edge weights

along each edge but the paths are different lengths. For path

(Vs → V1 → V3 → Vd)

the total weight is 3. Each edge of the other remaining path

(Vs → V1 → V2 → V3 → V4 → Vd)

is equally reliable, but the total weight is 5, so RIVER chooses the shorter path.
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Figure 3.5: Three Potential Paths

3.3.2 Reliability Distribution

When a node sends a beacon, probe, or routing packet that contains a known edge

list, that node distributes its street graph reliability information within the packet.

For clarity here, we define an edge’s reliability rating as shared when a node writes

the edge’s reliability rating into a packet’s known-edge list for distribution. We define

an edge’s reliability rating as declared when a node reads this rating from a known

edge list in a packet that it has received.

In addition to the reliability rating, each node also tracks other values relative

to each edge in its street graph, as shown in Table 3.1, while other important data

points are calculated, as shown in Table 3.2. These values are used to make a number

of decisions about edges, calculate the reliability of each edge, and to determine when

a declared value should be used or discarded.

In an effort to conserve network bandwidth, a node running our protocol does not

simply write all of its known edge information into every packet it sends. Instead,

it selects an edge for sharing based on several criteria: whether it has been updated

since the last time it was shared, how recent the update was, and whether the update

originated from first-hand observation or a second-hand declared value. The most

selective factor is whether the edge has been updated since the last time it was
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Table 3.1: Edge Data Fields

Field Description
Packet Received Stores a timestamp of the last time when this node re-

ceived a packet that had traversed this edge.
Last Marked Stores a timestamp of the last time when this node last

marked an edge as disconnected.
Last Declared When this node accepts a declared reliability value, this

field stores the timestamp associated with the declared
value.

Last Shared Stores a timestamp of the last time when this node
shared this edge’s reliability by writing it into a packet.

Last Probe Sent Stores a timestamp of the last time when this node sent
a departing probe along this edge.

First Probe Sent Stores a timestamp of the first time when this node first
sent a probe along this edge.

Static Value When a static reliability rating is in effect, it is stored
here.

Table 3.2: Calculated Edge Data

Data Description
Reliability Based on the data known about the edge, this may be

a calculated value (Section 3.3.3) or equal to the static
reliability value above.

Shareability A ranking that dictates how worthy an edge reliability
value is to be shared, based on several factors, discussed
below.

Last Updated Equal to the most recent of the edge’s packet received,
last marked, and last declared timestamps.

shared: an edge is only shared if this condition is true. Beyond that factor, edges

are ranked relative to one another for “shareability”. An edge that was updated

more recently is favored over an edge that was updated less recently, so a relative

shareability ranking is given to each edge based on the time that has elapsed since

its last update. Then, the algorithm further increases the ranking of any edge whose

reliability rating is not based solely on a declared value. When a limited number of

edges may be written into a known-edge list, these rankings are used to select the

most eligible edges, and the others are excluded from the packet.

When a node receives declared information about the reliability of an edge, it

must decide whether to accept or reject the declared value based on the timestamp

associated with the declared value and the timestamp information the node associates
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with its current edge rating. If the node has no reliability information for the edge

from any source (receiving a packet over the edge, marking the edge unreliable in

the past, or from a prior declaration of the edge), then it accepts the declared value.

If the node does already have reliability information for the edge, then it compares

the declared timestamp information to its own last updated timestamp and accepts

the declared rating if the declared timestamp is more recent. In either case that the

declared value is accepted, the node sets the edge’s last declared timestamp to the

timestamp recorded in the packet (not to the current time when the value is accepted)

and sets the static reliability value for the edge to the declared value.

3.3.3 Reliability Calculation

Network gaps frequently emerge and dissolve, so the RIVER protocol discards notions

of persistent, static traffic models in favor of a more dynamic model. Traffic density

metrics (typically the number of vehicles per unit distance) are irrelevant if they are

inconsistent across the length of a street edge because dense traffic on one area of

a street followed by sparse traffic in another area can still result in a disconnected

edge. Traffic patterns change frequently and persistent models may often lag actual

conditions. Real-time information ensures that the network can adapt to sudden

changes. The transmission of a packet from sender to receiver happens on a much

shorter time scale than traffic movements, so even a network gap that has only formed

for a few seconds can cause many packets to be dropped or delayed. To ensure

fewer packet delays, up-to-date information is preferable. The freshness of a node’s

reliability information is important to take into account. Older information is less

likely to reflect reality than recent information.

In order to give preference to recent information, when first-hand observed infor-

mation is available, our protocol calculates the reliability of an edge as the number

of milliseconds since the edge was last known to be traversed by a packet. With this

model, a low reliability value represents a recently-traversed edge. These low values

are preferred over high values when generating a route.

At the moment that a node receives a packet that has traversed some edge e,

the node sets the reliability value of e to zero (most reliable). As time elapses from

that event, the reliability value for the edge decays in a linear fashion to a higher

(less reliable) value until another packet traverses the edge. To accelerate the decay

of an edge that appears to be unreliable, a constant waiting multiplier is used in

the calculation. When a node attempts to send a probe along an edge but does not

receive a response, the waiting multiplier is used in the calculation to discourage the
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use of that edge for routing. The waiting multiplier remains in effect for that edge

until the edge weight is updated with new information. Another constant never-

received multiplier is used in cases where no packet has ever been received along

the edge.

In addition to the calculated value, there are some static values used in RIVER

reliability ratings. When no packets are received along an edge (and the node has

not sent a probe along this edge to test it), a time period known as the reliability

default eventually elapses. This value, also measured in milliseconds, acts as a

default value for any edge whose reliability is undetermined. If the reliability data

about a particular edge is not updated within this period, its reliability reverts to

this default value. Furthermore, if a node on some edge attempts to forward a packet

along that edge but can find no neighbor to whom the packet can be sent, the node

instantly marks that edge as unreliable by setting it to∞ (represented by the largest

value that can be stored in the data range). This unreliable rating is distributed to

other nodes through the known edge list of the packet.

The complete set of ordered cases for evaluating the reliability of an edge are

shown in Table 3.3.

As modeled, the reliability ratings in our protocol have a number of notable char-

acteristics. Reliable edges have a relatively small range of values when compared to

unreliable edges. This design point is coupled with the use of Dijkstra’s least weight

path algorithm. The intention here is to prevent Dijkstra’s algorithm from prefer-

ring a single unreliable edge over several reliable edges. By increasing the reliability

value for unreliable edges, we make this less feasible. That is, the values are set up

in such a way that the sum weight of many reliable edges tends to be less than the

weight of a single unreliable edge. Another notable trait of reliability values is that

a reliable edge eventually “times out” and returns to a state of unknown reliability

when the reliability default time elapses. Inversely, an unreliable edge remains in an

unreliable state until it is observed to be more reliable. These characteristics reflect

the transitory nature of the network connectivity of street edges, and our desire to

prefer routing along edges known to be reliable. One final characteristic of note is

that an unreliable edge’s reliability rating stabilizes when a node can no longer test

the edge by sending probes along it.
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Table 3.3: Evaluating Reliability

Condition Reliability Result
X This node marked the edge as “unreli-

able” within the reliability default du-
ration and this is still the most up-to-
date data

“unreliable” rating

0 This node accepted another node’s de-
clared rating and the declared times-
tamp is within the reliability default
duration and this is still the most up-
to-date data

declared reliability rating

1 This node received a packet along this
edge within the reliability default dura-
tion and this is still the most up-to-date
data

time elapsed since packet re-
ceived

2 This node has neither received nor sent
any packets along this edge.

reliability default

3 This node received a packet along the
edge but the reliability default elapsed
since that event and the node has never
sent a probe along the edge

reliability default

4 This node received a packet along the
edge but the reliability default elapsed
since that event and the last probe this
node sent along the edge was before
that.

reliability default

5 This node received a packet along the
edge but the reliability default elapsed
since that event and the last probe this
node sent along the edge was after that.

reliability default + ((time
elapsed between last packet
received and last probe
sent) ∗ waiting multiplier)

6 This node has sent a probe along this
edge but has never received a packet
along the edge.

reliability default + ((time
elapsed between first and
last probe sent) ∗ waiting
multiplier ∗ 2)
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3.4 Routing

At its most basic level, the routing algorithm in RIVER is not unlike other geo-

graphic routing algorithms; our protocol identifies a path that connects a number of

geographic locations and attempts to forward the message along that path. Because

RIVER is a VANET routing protocol, the geographic locations are vertices of its

street graph (typically road intersections) and the edges that connect those vertices

are roadways. The reliability features of the protocol cause it to select these street

edges based on their estimated reliability.

When a node originates a new message, it must first identify the geographic loca-

tion of the message destination. In reality, the node may have cached this information

from a previous message exchange with the destination, or it may need to inquire

about the location. The design of an efficient location service is outside the scope

of this routing protocol and is a separate area of research [7] [25] [46] [47] [55] [58].

For our simulations of RIVER, the sending node identifies the initial geographic lo-

cation of its message destination using an external location database. This is the

only instance during a message transmission when an external location database is

consulted.

After identifying the geographic location of the destination, the distance to the

destination is computed. If this distance is small (for example, if the sender and

receiver are already within radio range of each other or they are located on the same

street edge), then the sending node simply forwards the packet greedily toward the

destination. Otherwise, the sending node consults its reliability-weighted street graph

and uses Dijkstra’s least weight path algorithm to calculate the most reliable path

to the destination. The geographic locations of the vertices of the street graph that

make up the routing path are known as anchor points, and we often refer to the

route itself as an anchor path. A RIVER routing header is generated around the

data packet, and the anchor path is written into that routing header.

The process of identifying a next-hop node begins at the sender node and repeats

at each forwarding node. The node in possession of the routing packet consults the

anchor path for the current anchor point. Then, it refers to its neighbors-table to

identify the node that it believes is within radio range and is nearest to the current

anchor point. The node sets the next-hop address in the routing packet’s encapsulat-

ing header (eg. IP header destination address [69]) and attempts to send the packet.

At this point, our protocol takes advantage of a link-level transmission failure detec-

tion feature, as is described in GPSR [45]. If this feature is enabled and the link layer
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cannot recognize that a link was established with the next hop (eg. no link-layer

acknowledgement from the next hop), then the forwarding node repeats this process

and attempts to send the packet again.

As the packet is received at each hop (for pseudocode, see Section B.1 and Section B.2),

the node performs its passive monitoring functions: conditionally updating its edge

weights with values declared in the known edge list and in the weighted route of

the packet (Section 3.3.2). Then, the node examines the current anchor point in the

packet. When an anchor point has been reached or passed (Section 3.4.8), then a

pointer is incremented to set a new “current anchor point”. If only one anchor point

remains in the route, the node checks whether it is between the last anchor point

and the destination and increments the anchor pointer if that is the case. Finally,

the algorithm chooses its next hop. If anchor points remain, the next hop is chosen

based on the current anchor point, otherwise the next hop is chosen greedily toward

the destination geolocation stored in the route header. If a next hop is found in the

neighbor table, the packet is forwarded to that node.

If no neighbor can be found closer to the current anchor point, then the node tries

to find a neighbor closer to the subsequent anchor point instead (explained further

in Section 3.4.9).

Figure 3.6 shows an example where the two intersections shown represent the

anchor points of the route. Each node greedily forwards to the farthest node within

its radio range that is also in the direction of the next anchor point.

3.4.1 Route Recovery

When a node attempts to find a next-hop for routing a packet as described above, if

no suitable next-hop neighbor can be found, RIVER’s recovery function is engaged.

First, the failed anchor path is examined. The edge where the failure occurred is

determined by its vertices, which consist of the last anchor point that was successfully

reached and the current anchor point in the route. (If the route has failed at the first

anchor in the route, our protocol cannot recover and drops the packet.) This failed

edge is marked in the street graph by giving it the maximum weight possible, which

we will refer to as the disconnected edge weight. With the disconnected edge

weight in place, Dijkstra’s least weight path algorithm is run on the graph again. If

the algorithm finds a route whose mean weight is less than the current route’s mean

weight by a significant threshold, then the routing header’s remaining anchor path is

overwritten with the proposed anchor path. The significant threshold is defined as

50% of the reliability default value.
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Figure 3.6: Routing Example

Once the new anchor path is established in the routing header, the next edge

in the proposed route is examined. If the path’s next edge weight is less than the

disconnected edge weight, the process of searching for a next-hop neighbor resumes

by a recursive call. If no next hop can be found, the recovery process may be engaged

again. The routing process drops the packet and exits out of the recursive call if the

weight of the proposed routing path’s next edge is equal to the disconnected edge

weight. This indicates that Dijkstra’s algorithm found that the least weight path is

a path whose leading edge is already marked as a failed edge.

3.4.2 Route Recalculation

Our protocol also has a route recalculation feature that is similar to the recovery

feature described above. This feature has the potential to prevent a route recovery

scenario before a failure occurs in selecting a next-hop neighbor. For this reason, the

recalculation feature can be considered a proactive version of the recovery feature,

while recovery only occurs as a reaction to a failed next-hop neighbor selection.
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If this feature is enabled, the opportunity for recalculating a route is evaluated at

a forwarding node when the current anchor point in the route has been reached or

passed at that node. When this occurs, the node runs Dijkstra’s algorithm to propose

a new anchor path. If the proposed path’s mean weight is less than the current

path’s mean weight by a significant threshold, then the remaining anchor path in

the packet is overwritten with the proposed anchor path. As in route recovery, the

significant threshold is defined as 50% of the reliability default value. This threshold

was introduced specifically for the route recalculation feature. In early versions of our

protocol, it was sometimes the case that two or more nodes performing recalculation

along a route would have a slight discrepancy about the weight of one or more edges in

that route and send the packet back and forth to each other in a loop. The threshold

reduces the possibility of this occurrence.

3.4.3 Routing Loops

One common problem for routing algorithms is the occurrence of loops within the

route of a packet. Unnecessary forwarding of packets along a loop increases net-

work congestion. Packets may be dropped when their time-to-live (TTL) values are

exceeded prematurely or because excessive network congestion prevents delivery.

We categorize routing loops in three inclusive groupings. A repeat-node loop

occurs when a node receives a packet that it previously forwarded. Similarly, we

define a repeat-vertex loop as the condition of a route that traverses a particular

street vertex more than once. Finally, we define a repeat-edge loop as the condition

of a route that traverses a particular street edge in the same direction more than once.

The distinction about edge direction for a repeated edge loop is important since it

permits backtracking to be outside the definition of a repeat-edge loop. Note that a

repeat-edge loop implies a repeat-vertex loop. Due to the movement of nodes, it is

possible to encounter a repeat-vertex or repeat-edge loop without a repeat-node loop.

Dijkstra’s algorithm finds a least-weight path between two vertices in a graph. It

does this by generating a shortest path tree: a set of paths with the lowest weight

between the destination vertex and every other vertex in the graph. Since a path

containing a repeat-vertex or repeat-edge loop produces a path with a greater sum

weight than the same path without the loop, we observe that the path found by

Dijkstra’s algorithm must be free of these kinds of loops. However, our protocol

allows anchor paths to be recomputed when a failure occurs (if recovery mode is

enabled) or at each anchor point (if route-recalculation mode is enabled). When a

route is recomputed, the edge weights recorded in the street graphs of different nodes
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may provide contradictory least-weight-paths, and repeat-vertex or repeat-edge loops

may result.

3.4.4 Repeat-Node Loops

The most trivial example of a repeat-node loop occurs due to the movement of nodes

between beacon intervals. Consider two nodes, Nx and Ny traveling on parallel paths

toward each other and within radio range of each other. Suppose Ny beacons its

position and Nx notes this position in its neighbors-table. Suppose also that before

Ny can beacon its position again, the nodes travel past each other. Next, Nx forwards

a packet that is destined in the same direction as Nx, and based on its neighbor-

table information, Nx considers Ny to be the farthest neighbor in that direction.

Nx forwards the packet to Ny, and the packet contains an implicit beacon with the

position of Nx. Ny adds the new position information for Nx into its neighbors-table.

Ny now determines that the received packet needs to be forwarded, and it identifies

Nx as the farthest neighbor in the direction of the packet’s destination. Ny then

forwards the packet to Nx, and the packet experiences a repeat-node loop.

Without accurate position information at all times, such repeat-node loops may

occur. Increasing the frequency at which beacons are sent by each node may reduce

the occurrence of this kind of loop, but it would also increase network traffic and may

lead to dropped packets due to congestion. A more acceptable strategy for reducing

repeat-node loops of this kind would be to require each node to estimate the current

position of its neighbors based on their last-known velocity and heading, such as

in the velocity vectors used in CAR [63]. If velocity and heading were calculated

based on consecutive beacons from a neighbor node, such information would not

be available during the time interval between the first and second beacons from

a particular neighbor. Furthermore, if the nodes were moving rapidly in opposite

directions, only one beacon may be possible before they move out of radio range of

each other. For this reason, it may be beneficial to include velocity and heading

information in each beacon if this position-prediction strategy were to be used. Note

also that position estimates cannot entirely prevent repeat-node loops of this kind

since the estimates will be inaccurate when a vehicle changes its velocity or heading

after its beacon is sent.
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3.4.5 Repeat-Vertex Loops

For a repeat-vertex loop example, refer to the street graphs in Figure 3.7 with vertices

Vs, V1, V2, V3, and Vd, each containing a node (not depicted) that we will refer to with

a corresponding subscript (Ns, N1, N2, N3, and Nd) and each edge weight marked as

w.

W=1

W=1

W=5

W=1

W=5

Vs

Vd

V2

V1

V3

W=1

W=1

W=5

W=∞
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V2
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V3

Street Graph at Ns and N2 Street Graph at N1

Figure 3.7: Repeat-Vertex Loop

Suppose Ns sends a message to Nd and its street graph contains edge weights as

marked in the left side of the figure. Then, Ns will choose the following least-weight

path for routing the message: (Vs → V2 → V1 → Vd)

However, suppose also that route recovery is enabled and when the message

reaches N1 at vertex V1, N1 attempts to send the message to Vd but can find no

neighbor along the edge. N1 marks that edge as disconnected and evaluates its edge

weights (as shown on the right side of the figure) to calculate a new least-weight path

for the remainder of the route, which overwrites the unused portion of the route in

the routing header with: (V1 → V2 → V3 → Vd)
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Then when the message reaches vertex V1, the full anchor path traversed by the

packet would have traversed vertex V2 twice: (Vs → V2 → V1 → V2)

Although a repeat-vertex loop has occurred, the alternative would be to drop or

queue the packet at N2. Despite the repeat-vertex loop, backtracking is the desired

outcome in this scenario.

3.4.6 Repeat-Edge Loops

For a repeat-edge loop example, refer to the street graphs in Figure 3.8 with vertices

Vs, V1, V2, V3, V4, and Vd, each containing a node (not depicted) marked with a

corresponding subscript (Ns, N1, N2, N3, N4, and Nd) and each edge weight marked

as w.

Suppose Ns sends a message to Nd and its street graph contains edge weights as

marked in the top graph of the figure. Then, Ns will choose the following least-weight

path for routing the message: (Vs → V4 → V2 → V3 → Vd)

However, suppose also that route recovery is enabled and when the message

reaches N3 at vertex V3, N3 attempts to send the message to Vd but can find no

neighbor along the edge. N3 marks that edge as disconnected and evaluates its edge

weights (as shown in the middle graph of the figure) to calculate a new least-weight

path for the remainder of the route, which overwrites the unused portion of the route

in the routing header with: (V3 → V2 → V4 → Vd)

Then when the message reaches vertex V2, node N2 attempts to forward the

message to V4 but can find no neighbor along the edge. N2 marks that edge as

disconnected and calculates a new path (as shown in the bottom graph of the figure),

overwriting the unused portion of the existing route with this new path in the routing

header: (V2 → V1 → Vs → V4 → Vd)

Then when the message reaches vertex V4 for the second time, the full anchor

path traversed by the packet would have traversed edge Vs → V4 twice:

(Vs → V4 → V2 → V3 → V2 → V1 → Vs → V4 → Vd)

Although a repeat-edge loop has occurred, the alternative would be to drop or

queue the packet at N3 or N2. Despite the repeat-edge loop, backtracking is the

desired outcome in this scenario.

3.4.7 Reducing Loop Occurrences

Due to the non-deterministic nature of vehicular movements, we have shown how

sudden network gaps can force our protocol into a scenario where a routing loop
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Figure 3.8: Repeat-Edge Loop
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must occur for packet delivery to continue. We choose not to eliminate routing loops

entirely because doing so reduces throughput (by dropping packets) or delays delivery

(by queuing them until the network gap is reconnected). Instead, RIVER adopts a

perseverance strategy for packet delivery.

To reduce the occurrence of routing loops, each packet header contains the last-

known weight for each edge in its anchor route. This ensures that when a route

recalculation occurs, the node performing the recalculation is provided with the most

up-to-date traffic information possible for each edge in the already-traversed anchor

route. In addition, the packet header contains a known-edge list for adjacent edges

encountered during the packet’s lifetime. If the packet has attempted to traverse an

edge and found it failing, then it includes the weight of the failed edge in the packet’s

known-edge list. Therefore, if another node later along the anchor route’s path must

recalculate the anchor route (e.g. to recover from another edge failure), it will have the

most recent traffic information possible about edges that the packet has attempted to

traverse. Unless the node has more recent information (indicating reliability) about

an edge that the packet has already failed to traverse, it will not attempt to send the

packet down that previously-failed edge again. Finally, each packet is expected to

have a TTL field in its network-layer header (for example, this is present in the IP

datagram [69]) that will eventually cause the packet to be discarded when the TTL

expires.

Even with the level of throughput that our protocol provides, some packets are

dropped due to loops and other unavoidable factors. In a typical TCP/IP network

stack, it is the responsibility of the transport layer to detect these problems and resend

dropped packets if an application requires 100% delivery of packets. In VANET

applications, there are many use-cases where some delivery failures are acceptable.

Likewise, an appropriate transport protocol is necessary for applications that expect

delivery of all packets in a VANET.

3.4.8 Past Anchor Point, Outside Zone

In the strictest sense, forwarding packets along an anchor route involves greedily

forwarding toward each anchor point until the packet arrives at a node that is within

some predefined range of the anchor point, called the vertex range. However, during

this process, complexities arise due to the differences between the vertex range and

each node’s radio range and the density of traffic.

Consider Figure 3.9 where node Na is forwarding a packet toward the anchor point

at the depicted intersection. The subsequent anchor point for this packet is along the
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street edge in the direction beyond node Nb. The vertex range for the current anchor

point is shown as a circle, and node Nb is the closest node to the anchor point but is

still outside the vertex range within which the anchor point is considered “reached”.

Na

Nb

Figure 3.9: Past Anchor Point, Outside Zone

According to greedy forwarding, node Na forwards the packet to the closer node

Nb. When Nb receives the packet, there is still no node closer to the anchor point

than node Nb, and Nb is still outside the vertex range. Since the anchor point has not

yet been reached, this is technically a local maximum. Strict greedy routing would

dictate that node Nb should drop the packet.

However, since node Nb is on the street edge that leads to the subsequent anchor

point in this anchor route, it is premature to drop the packet at this point. Our

protocol contains an optimization to handle this scenario. When a node receives a

routing packet with multiple anchor points remaining, it retrieves the current anchor

point and the subsequent anchor point (or the final destination if no more anchor

points exist) for the anchor route. If the node determines that it is located between

those two points, it increments the AP pointer in the packet. Thus, RIVER detects
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when a packet has passed an anchor point, even if the packet never actually reached

it.

3.4.9 Outside Zone, No Closer Neighbor

A similar scenario happens when node Na is closer to the anchor point than node Nb.

Consider Figure 3.10 where node Na is forwarding a packet toward the anchor point

at the depicted intersection. The subsequent anchor point for this packet is along the

street edge in the direction beyond node Nb. The vertex range for the current anchor

point is shown as a circle, and node Na is the closest node to the anchor point but is

still outside the vertex range within which the anchor point is considered “reached”.

The packet has technically reached a local maximum at node Na, prompting it to be

dropped in a typical greedy algorithm.

Na

Nb

Figure 3.10: Outside Zone, No Closer Neighbor

Since node Nb is within radio range of node Na, and node Nb is in the direction of

the subsequent anchor point, dropping the packet is a poor choice in this case. Our

protocol contains an optimization to handle this scenario. If a node fails to find a
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neighbor closer to the current anchor point than itself and the current anchor point

is not the final anchor point in the route, then it may instead look for a neighbor

nearest to the subsequent anchor point such that the neighbor is located on the street

edge between the current anchor point and the subsequent anchor point. Instead of

dropping the packet when node Na encounters a local maximum for the current anchor

point, node Na finds node Nb and forward to that node. As described in Section 3.4.8,

node Nb detects that the packet has passed the anchor point and increments the AP

pointer appropriately.

3.5 Performance Evaluation

To evaluate RIVER, we simulated the protocol with the ns-2 simulator [30] at version

2.33 using the CMU wireless extension. The simulations were performed with various

parameter settings to test different scenarios and feature sets of our protocol. The

protocol was also compared against some of its peers: the STAR routing protocol [34],

the GPSR routing protocol [45], and a shortest-path VANET routing algorithm. For

all results, each simulation configuration was repeated for 20 iterations with a different

random number generator (RNG) seed at each iteration, and the statistical mean of

these iterations was calculated. For RIVER throughput measurements, standard

deviation was about 7.3% of throughput. As expected, 95% of throughput values

were within two standard deviations of the mean.

We used the following metrics to evaluate performance through our simulations.

Data throughput represents the mean percentage of routed data packets that were

successfully delivered. Route header size measures the average size of a routing packet,

excluding the data portion of the packet. Forwards per route represents the average

hop count of a routing packet. Route transit time represents the number of seconds

required to deliver a routing packet from its original sender to its final destination.

3.5.1 Simulation Setup

For these simulations, an urban “Manhattan” street grid was used with 5 streets

running in the horizontal and vertical directions spaced approximately 400 m apart

for a total area of approximately 6.05 km2. This simulation area was populated with

varying traffic densities of 100 to 300 vehicular network nodes. Vehicles traveled in

both directions along each street, and vehicles may turn at intersections. To simulate

urban conditions, vehicle speeds range from 11 km/h to 51 km/h, with an average

speed of 36 km/h. Each simulation iteration used the same movement pattern.
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The connection pattern consisted of 5 sender/receiver pairs using constant bit rate

(CBR) data flows of 512 Kbps. That is, each sender transmitted a 512 byte packet

every 8 seconds, and each sender sent 21 packets, for a total of 105 packets sent

during each simulation. Each packet sent was offset by at least one second from the

previous send to ensure that no senders transmitted simultaneously. Each simulation

ran for 20 seconds prior to any routing packet transmissions, and the simulation ran

for 15 seconds following the final send, for a total of 200 seconds of simulation time

(consistent with the simulation times for STAR [34]). For each simulation iteration,

the sender/receiver node pairs were randomly selected.

3.5.2 RIVER Feature Analysis

To analyze the effectiveness of various features of our protocol, we simulated RIVER

performance under a multitude of feature combinations and studied the results.

3.5.3 Route Recalculation and Recovery

We evaluated several RIVER protocol options for preventing and/or recovering from

network gap routing failures as discussed in Section 3.4. The recovery option is a

reactive mechanism that engages when a forwarding node on a route encounters

a network gap in the direction it intended to forward the data packet. When this

happens, a new route is calculated and compared to the existing one. If the new route

is estimated to be more reliable, then the data packet’s route header is rewritten, and

the packet is forwarded along the new route. The recalculation option is a proactive

mechanism that evaluates a data packet’s route when it is received by a forwarding

node that is within range of a vertex. If the forwarding node determines that a

significantly more reliable route is available, the route in the packet is overwritten, and

the packet is forwarded along the new route. In addition, our performance evaluation

also included a combined strategy that proactively recalculates routes and also reacts

with the recovery option if a network gap is encountered. For comparison purposes, a

none option was also evaluated where neither the proactive nor the reactive strategies

were employed. Under this option, data packets are dropped when a network gap is

encountered.

In Figure 3.11, we find that the recovery strategy delivers the best overall through-

put, while the combined strategy performs nearly as well. The recalculation strategy

only yields the best throughput in the sparsest of vehicle traffic conditions.
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Figure 3.11: Data Packet Throughput with Recovery and Recalculation Strategies

In Figure 3.12, we observe that the recalculation strategy offers the smallest rout-

ing header size (excluding the None strategy), and the recovery and combined strate-

gies produce nearly equal results in terms of routing header size.

In Figure 3.13, we find that the recalculation strategy requires the fewest number

of hops per route (excluding the None strategy).

In Figure 3.14, we observe that the recalculation strategy delivers route packets

more quickly than either the recovery or combined strategies.

3.5.4 Reliability Distribution

A significant component of our protocol is each node’s ability to distribute reliability

information about street edges through the use of mechanisms within beacon packets,

probe packets, and routing headers. All of these messages may contain a known edge

list to which the sending node and each forwarding node may contribute. In addition,

routing headers also may include reliability weights for each edge represented in the

encapsulated data packet’s route. We evaluated the impact of these mechanisms on

data packet throughput, routing hop count, and route header size.

In Figure 3.15, we observe that in average to dense traffic scenarios, active dis-

tribution of reliability information via the known edge list and weighted route mech-
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Figure 3.12: Route Header Size with Recovery and Recalculation Strategies
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Figure 3.13: Forwards per Route with Recovery and Recalculation Strategies
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Figure 3.14: Route Header Size with Recovery and Recalculation Strategies

anisms contributes to a positive effect on data packet throughput. In sparse traffic

scenarios, there is a small negative effect.

In Figure 3.16, we find that the number of hops per route increases by a small

amount as active distribution mechanisms are added. We hypothesize two reasons

for this. First, as we observed previously, the active reliability distribution produces

higher data throughput. This means that more routes are reaching completion and

therefore a greater number of hops are observed. Secondly, as streets are identified

as unreliable and that data is distributed, fewer routes follow the shortest path,

preferring reliable paths instead. A longer path requires a greater number of hops to

reach its destination.

In this figure, we also observe that increased traffic density has a proportional

effect on forwards per route. We hypothesize that increased traffic density is the pri-

mary driver here, as it allows for more reliable street edges that permit transmissions

to succeed when the sender and receiver are farther apart.

In Figure 3.17, we observe that the use of known edge lists and weighted routes

on routing packets has a significant effect on routing header size. We also find that

active distribution of reliability information via the beacon and probe known edge list

mechanisms has little effect on the route header size. (Although not observed from

this graph, the beacon and probe known edge list mechanisms do increase beacon and
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Figure 3.15: Effect of Active Reliability Distribution on Data Packet Throughput
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Figure 3.16: Effect of Active Reliability Distribution on Forwards Per Route
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probe header size). We also note that a limit on the number of entries in a known

edge list may be used to prevent the route header size from growing excessively if it

is found to have a detrimental effect on throughput. Since throughput increases only

marginally due to the addition of the known edge list and weighted routes within the

routing packets, these functions could be eliminated from the routing packet with

little apparent impact on throughput.
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Figure 3.17: Effect of Active Reliability Distribution on Route Header Size

3.5.5 Probe Messages

To quantify the benefits of the active traffic monitoring system in RIVER, we have

run four different sets of simulations. We simulate our protocol using two variations

of the recovery strategy described above – without any probe messages transmitted

and then with probes enabled. Then, we simulate the protocol using two variations of

the recalculation strategy described above – without any probe messages transmitted

and then with probes enabled.

In Figure 3.18, we can see that the recovery mechanism nearly nullifies the data

throughput benefits of probe messages. However, a distinct positive effect on through-

put is observed when the recalculation strategy is employed. Although not depicted

in this graph, we have observed similar positive data throughput benefits from probe
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messages in other scenarios, such as when neither the recovery nor recalculation

mechanisms are enabled.
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Figure 3.18: Effect of Probe Messages on Data Packet Throughput

3.5.6 Optimized Greedy Strategy

As described in Section 3.4, if the algorithm forwarded packets toward each anchor

point in a strictly greedy manner, then some packets would be dropped inappro-

priately if no nodes were located within the zone of the anchor point but nodes

were located around it. Our protocol uses an optimized greedy forwarding strategy

(Section 3.4.8, Section 3.4.9) that detects these scenarios and handles them appro-

priately. We compared RIVER using its strict greedy forwarding strategy and the

optimized strategy for comparison.

In Figure 3.19, we see that the optimized greedy strategy is beneficial to data

throughput in every test, regardless of routing protocol or node density. We observe

that the optimized greedy strategy is not merely useful for the RIVER protocol but

also for a simple shortest-path greedy routing protocol as well.
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Figure 3.19: Effect of Optimized Greedy Strategy on Data Packet Throughput

3.5.7 Protocol Comparison

To determine how our protocol performs against its peers, we simulated RIVER and

several other routing algorithms using the same suite of traffic density scenarios.

We compared RIVER with the STAR routing protocol for VANETs [34], the GPSR

geographic routing protocol [45], and a generic routing algorithm called Short-Path.

GPSR operates as described in Section 2.3.1 and Section 2.3.2. STAR is described

in detail in Section 2.3.4. Both protocols use greedy forwarding and MAC layer link

failure detection. STAR is designed specifically for VANETs, creates routes along

streets, and contains a traffic monitoring component.

Short-Path generates greedy routes along streets using a pre-populated street map

like RIVER, but it chooses its routes based on the shortest path available instead of

reliability. Short-Path utilizes the optimized greedy strategy described in RIVER

and also utilizes MAC layer link failure detection. Short-Path uses beacons and a

neighbor-table to identify nearby nodes but has no traffic monitoring or data distri-

bution components.

From Figure 3.20, we find that RIVER delivers data packet throughput up to

75% better than Short-Path (45% better on average), up to 157% better than GPSR

(103% better on average), and up to 39% better than STAR (9% better on average).

Copyright c© James Bernsen, 2011.
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Figure 3.20: Peer Protocol Data Packet Throughput Comparison
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Chapter 4 Conclusions and Future Work

In this thesis, we have proposed “Reliable Inter-Vehicular Routing” (RIVER), a

VANET protocol for routing based on estimated network reliability. We presented

the advantages of real-time traffic monitoring using active and passive methods. We

submitted a metric for estimating the network reliability of streets and demonstrated

how reliability-based traffic data can be effectively distributed throughout a VANET

using known edge lists and weighted routes. We compared strategies of route recal-

culation and route recovery in RIVER and outlined their strengths and weaknesses.

In our simulation environment, we found that RIVER provides the highest through-

put in most traffic density scenarios when using its recovery strategy, but the recal-

culation strategy yields higher throughput in low traffic density with less overhead

in terms of hop count, routing header size, and transit time. We also found that

RIVER’s reliability distribution components perform best in average to high density

scenarios. We observed that these components cause a significant increase in routing

header size, and this cost can be effectively negated by only performing reliability dis-

tribution via beacon and probe packets. We compared the beneficial effect of probe

messages on the recovery and recalculation versions of RIVER. We also learned that

RIVER’s optimized greedy forwarding strategy at anchor points can produce a signif-

icant increase in packet throughput with no known negative effects, and this strategy

can be successfully applied to other routing protocols that do not share RIVER’s

reliable-path routing approach. Finally, simulations showed that RIVER performs

well against peer protocols – especially in average to high-density traffic.

Additional improvements to RIVER may yield further benefits. At the time of

writing, RIVER had never previously been tested on low-density traffic scenarios.

Low-density traffic performance was not a focus point during its design, so this is an

area where its performance could be enhanced. Additionally, performance evaluation

revealed that routing header size could be greatly reduced without much loss of

throughput by eliminating traffic distribution via routing packets. This should be

investigated further as routing packets do disseminate information farther than other

types of packets, and seeking a balance between range of distribution and network

congestion seems wise.

Elimination of the need for a static street map could be added to the protocol.

As discussed in Section 3.1.3, RIVER does not require common identifiers for street

edges or vertices because it communicates in terms of geographical positions. This
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design choice increases the potential for the elimination of the protocol’s static street

map without massive changes to the messaging scheme. The GPCR [57] protocol

uses a neighbor-table approach and a correlation-coefficient approach for detecting

street intersections. CAR [63] uses a velocity-vector approach to detect changes in

a packet’s direction during its route. These are promising approaches, and the use

of probe messages in RIVER may provide another method for detecting streets and

intersections. However, as vehicular navigation systems become more ever-present,

an external static map seems to be a reasonable requirement.

While in the current implementation, a probe message traverses only a single edge

of the street graph, they could conceivably traverse multiple edges for the purpose

of retrieving information from (and distributing data to) a greater area. Note that

messages must return in a relatively short amount of time in order to return to their

original sender before that vehicle moves too far away from its original position. To

ensure this, a distance or time limit could be imposed on the probe. Also in the case

of a multi-edge probe, if a node that is forwarding that probe has no neighbors in

the specified direction (local maximum) and the probe has already traversed at least

one edge, the node could simply return the probe instead of dropping it, and useful

information would still be gained from the probe on its return trip.

Some security issues could be explored, although these are outside the scope of

a particular routing protocol and should be investigated in a more generalized form.

When a RIVER node accepts a beacon, probe, or routing message, it does so with

the assumption that all other nodes are trustworthy and no packet tampering has

occurred. Instead, the protocol could be made more secure if some form of validation

was performed before accepting declared edge data.

Other miscellaneous enhancements could be evaluated in future work. First, the

recovery strategy in RIVER has been shown to yield great benefits in throughput.

When recovery fails, the protocol might be improved by sending a failure message back

to the packet’s sender to allow their street graph reliability information to be adjusted

accordingly. Second, the addition of velocity and heading information in RIVER

beacon messages should be considered. This information would allow each node to

predict the location of its neighbors between beacon intervals. These predictions could

lead to better next-hop selections and the reduction of repeat-node loops. Third,

dynamic adjustment of beacon frequency based on each node’s number of known

neighbors as suggested in CAR may help reduce network congestion in high traffic

scenarios. Finally, a sending RIVER node currently assumes that the nearest vertex

is a suitable place to begin an anchor route, but this is not always true. It may be
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beneficial for each node to also track whether the vertices at either end of the current

street edge are reachable. Then if one of these vertices was unreachable, the node

could recalculate the anchor route from the opposite vertex.

A generalized MANET packet/message format has been recently proposed to the

Internet Engineering Task Force (IETF) [24]. Among its features are a mechanism for

defining variable-sized packet fields (as required for supporting both IPv4 and IPv6

address fields). It also provides a feature that could allow several RIVER messages

to be transported in a single packet. This could be useful, for example, when a node

is forwarding several RIVER messages to the same node. Conforming the RIVER

message formats into this generalized format would make an interesting exercise.

Further simulations for RIVER would provide additional information into the pro-

tocol’s performance. It would be interesting to learn how the protocol handles varied

street topologies. Simulations currently assume an urban scenario, but suburban and

highway scenarios will also be encountered. Simulations using a map of a real location

and actual vehicle traffic data would likely yield additional insights.

While VANETs are an exciting area of research, they are not yet a practical

reality. RIVER provides a glimpse into the potential of reliability-based metrics for

routing packets within a VANET and demonstrates convincing performance for high

throughput within the VANET paradigm.
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Appendix A RIVER Protocol Messages

A.1 Explicit Beacon Message Diagram
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Explicit Beacon Message Packet

In the RIVER beacon packet, note that the known-edge blocks are not preceded

by a known-edge list length because there are no other fields that follow the known-

edge list in this packet. Therefore, the list ends when the packet ends. Also, note

that no explicit beacon origin address is provided because that would be redundant

with information stored in the Internet layer encapsulating packet.
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A.2 Probe Message Diagrams
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Departing Probe Message Packet

The Probe Origin Geolocation field represents the vertex nearest to the probe

origin; this is the starting vertex of the probed edge.
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Timestamp (continued)
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Return Probe Message Packet

Note that return probes have two additional fields, the Destination Node Geoloca-

tion and Destination Node Address. These fields provide the endpoint of the probed

edge and are required for return probes only since departing probes are not destined

for a specific target node. Note also that the destination geolocation is different from

the destination vertex geolocation because the former field represents the last-known

position of the node to receive this returning probe while the latter represents the

vertex endpoint for the probed edge. The former position may change as forwarding

nodes update the packet with the destination node’s current location. In the case

that the receiving node gets closer to some other vertex than it was originally located

at, the Destination Vertex Geolocation field preserves the original vertex location.
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A.3 Routing Header Diagram
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Data Packet (variable length)
...

Routing Header / Data Packet
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A.4 Data Blocks and Fields

This section describes in detail the data blocks and fields that appear in the packet

diagrams above.

A.4.1 Mode

The mode field indicates the kind of RIVER packet that will follow.

Mode Field (Mode)

Mode Meaning
0 Explicit Beacon
1 Departing Probe
2 Returning Probe
3 Routing

A.4.2 Implicit Beacon Flag (I)

When the implicit beacon flag is set to 0, no implicit beacon information is included

in the packet. For a beacon packet (ie. mode = 0), the implicit beacon flag is always

set to 0 because the packet itself is a beacon.

When the implicit beacon flag is set to 1 (on probe packets and/or routing pack-

ets), the beacon origin geolocation and beacon origin address blocks are included in

the packet in the positions specified in the packet diagrams above.

Implicit Beacon Flag (I)

I Meaning
0 No implicit beacon information is included in the packet.
1 The “Beacon Origin Geolocation” and “Beacon Origin

Address” blocks are included in the packet.

A.4.3 Route Reliability Flag (R)

The route reliability flag (R) indicates whether reliability and relative age are included

for each anchor point block in the routing packet. Reliability information applies to

street edges (not street vertices), so the Anchor Point Reliability and Relative Age

fields only occur between two anchor point geolocation blocks. Therefore, if there is
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only one AP present in the route, no reliability or relative age information would be

present in the packet, regardless of the value of the route reliability flag.

This flag was used in simulations for the purpose of quantifying any advantage or

disadvantage to the inclusion of reliability information in routing packets. In a real-

world implementation, it is likely that this flag would be eliminated and reliability

information would always be included.

Route Reliability Flag (R)

R Meaning
0 Anchor Point blocks contain geolocation information

only.
1 Anchor Point blocks contain reliability information and

relative age, in addition to geolocations.

A.4.4 Anchor Point Block

Anchor point blocks form the chain of geographical locations that make up a route in

the RIVER protocol. Reliability information applies to street edges, so the Anchor

Point Reliability and Relative Age fields only occur between two anchor point geolo-

cation blocks. That is, there is always one less reliability/relative age block than the

number of anchor point geolocation blocks.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Anchor Point Geolocation

(The following section is repeated for each subsequent AP.)

Anchor Point Reliability Relative Age RSV

}

iff R=1

Anchor Point Geolocation

...

Anchor Point Block Diagram

A.4.5 AP List Length

The AP List Length field represents the number of anchor points that follow in the

Anchor Point Block. Based on the current size of this field, the maximum number of
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anchor points in the route is 256.

A.4.6 AP List Pointer

The AP List Pointer represents the current position in the anchor point list as the

packet is forwarded from node to node.

A.4.7 Known-Edge Block

The known-edge list identifies edges by their endpoint geolocations and communicates

reliability information about each edge.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reliability Relative Age EVI

Known-Edge “From” Geolocation (depending on EVI)

Known-Edge “To” Geolocation

Known-Edge Block Diagram

A.4.8 Edge Vertex Indicator (EVI)

For the purpose of allowing the known-edge list to be compressed as much as possible,

a 2-bit value known as the Edge Vertex Indicator (EVI) is included in each known-

edge block. For the current edge (e), the EVI indicates which of the vertices of e are

explicitly defined in the next part of the block. Note that since RIVER street graph

edges are undirected, we do not need to consider the “to-side vertex” of e because we

can always arrange the vertices of e so that the vertex in common with the previous

edge is the “from” vertex of e. Also, note that it is redundant to have the same

undirected edge listed twice in the list with “from” and “to” vertices reversed, since

they would both represent the same edge. The meaning of each EVI value is shown

in the table below.

A.4.9 KEL Length

The Known Edge List Length field, marked as KEL Length, represents the number

of known-edges that are represented in the list. Based on the current size of this field,

the maximum number of known-edges per list is 256.
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Edge Vertex Indicator (EVI)

EVI Meaning
0 Both of the vertices of edge e are explicitly defined.
1 The “from” vertex of e is the same as the previous edge’s

“from” vertex, and therefore, the “from” vertex of e is
not present in the block.

2 The “from” vertex of e is the same as the previous edge’s
“to” vertex, and therefore, the “from” vertex of e is not
present in the block.

A reader or implementor should not confuse the value of the Known-Edge List

Length field with the number of geolocation blocks that will follow in the known-edge

list. The Known-Edge List Length is a count of the number of known-edges that are

represented in the list. Since this is a count of edges, the number of reliability/relative

age blocks should match this number exactly. Suppose n represents the value of the

Known-Edge List Length field. The number of geolocation blocks is not necessarily

equal to 2n since we can chain edges with EVI to reduce the packet size.

A.4.10 Timestamp

The Timestamp field contains a positive integer that represents the number of mil-

liseconds since the UNIX epoch (00:00:00 UTC on 1 January 1970). This is an

absolute timestamp to use in conjunction with relative times elsewhere in the packet

for absolute time calculations. The Timestamp field is a 48-bit field to provide a

sufficient range of time, as shown here.

Let m equal the number of milliseconds in a year.

m = 365.24 ∗ 24 ∗ 60 ∗ 60 ∗ 1000 = 3.1557× 1010 ms/year (A.1)

Let rb equal the largest b-bit positive integer to represent the number of millisec-

onds since the epoch and yb equal the range of years allowed by an rb ms size positive

integer.

r40 = 240 − 1 = 1.0995× 1012 (A.2)

y40 = r40/m = 34.8 years (A.3)

r48 = 248 − 1 = 2.8147× 1014 (A.4)

y48 = r48/m = 8, 919.6 years (A.5)
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r56 = 256 − 1 = 7.2057× 1016 (A.6)

y56 = r56/m = 2, 283, 429.9 years (A.7)

r64 = 264 − 1 = 1.8446× 1019 (A.8)

y64 = r64/m = 584, 558, 050.4 years (A.9)

From this, we observe that a 40-bit millisecond timestamp would have already

expired in the year 2004. However, since the continued use of VANET routing pro-

tocols in the year 10089 CE seems unlikely, we deem the 48-bit timestamp sufficient

for our purposes.

Regarding Global Clocks

Readers who are familiar with basic principles of distributed systems may question

the use of timestamps in the RIVER protocol. Much work has been done in the

area of clock synchronization in distributed systems, including the classic paper[50].

While we cannot avoid the facts of clock drift and the absence of a true global clock,

the timing needs of the RIVER protocol can be met as follows.

In the RIVER model, we assume that all vehicles are equipped with a global

positioning system (GPS). GPS systems already depend upon accurate clocks, syn-

chronized via satellite to within 1 microsecond. Indeed, NTP (network time protocol)

considers a GPS clock to be a stratum zero clock. RIVER only requires clock syn-

chronization accuracy within 1 millisecond since that is the most granular unit of a

RIVER timestamp. Therefore, we reason that GPS time is more than sufficient for

our purposes.

A.4.11 Geolocation

Each geolocation block consists of a floating-point number representing latitude

{−90, 90}, and another representing longitude {−180, 180}. Latitude and longitude

are measured in decimal-degrees notation.

Five digits of precision of a degree for latitude and longitude will provide an

accuracy within about one meter of a physical location on Earth, (The exact proximity

depends upon the degree of latitude since lines of longitude are more distant from each

other near the equator than at the poles.) This level of accuracy is probably sufficient
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Latitude

Longitude

Geolocation Block Diagram

for VANET applications, but six digits of precision enters within 10 cm, and seven

digits enters within 1 cm, if further accuracy is needed. Since a typical lane of vehicle

traffic ranges from 3 to 5 meters, having four digits of precision (accuracy within 10

meters) is not sufficient for our purposes, as it would not allow us to distinguish one

vehicle’s position from another if they were adjacent to each other.

The typical 32-bit ”float” yields only seven digits of significance, which leaves only

four digits of precision on longitude n where (n ≤ −100) or (n ≥ 100). (For example,

179.9999 has seven significant digits and four digits of precision.) However, this same

32-bit space can yield up to nine full digits of significance if fixed-point representation

is used. This would provide longitudinal accuracy to within 10cm on Earth, so we

assume that 32 bits for each coordinate in our packet is sufficient. (Note that the

range for latitude −90, 90 uses one less significant digit than the range for longitude

−180, 180.)

Regarding Altitude

The VANET protocols we have studied in the literature assume that the differences in

elevation of neighboring vehicles are negligible, and therefore they do not take altitude

into account. Likewise, RIVER packets do not incorporate altitude into geolocations,

but we have performed some analysis of how altitude might be efficiently stored in a

data packet.

Altitude is measured in meters above or below sea level. It is logical to assume we

would measure altitude (in meters) with the same level of accuracy as our latitude and

longitude coordinates. In that case, a 32-bit space (using fixed-point representation)

would yield:

1. At 1 meter accuracy: a range of about ± 1,000,000 km

2. At 10 cm accuracy: a range of about ± 100,000 km

3. At 1 cm accuracy: a range of about ± 10,000 km
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Since the ceiling altitude of the highest layer of Earth’s atmosphere, the exosphere,

is 10,000 km, and the radius of the earth is less than 7,000 km, we deem a 32-bit

representation sufficient at 1 cm accuracy.

A.4.12 Reliability

The reliability field is a 16-bit positive integer field representing the reliability of an

edge.

A.4.13 Relative Age

The relative age field is a 14-bit positive integer field representing a point in time

relative to the packet’s absolute timestamp. This strategy is used to reduce packet

size. For each edge that we are distributing reliability information, we must also

distribute a timestamp so that consumers of the reliability data can have knowledge

of the “freshness” of that reliability data. An absolute timestamp requires 48 bits,

but we can provide a range of time up to 16.384 seconds with 1 millisecond accuracy

in a 14-bit relative timestamp.

A.4.14 Beacon Origin Address

This field contains the address of a beaconing node for a packet with its implicit

beacon flag on. While RIVER is not coupled to a particular Internet layer, we assume

IPv4 and use a 32-bit address here. However, if IPv6 is used, the address length may

need to be extended. Another possibility would be to use a special field within the

Internet layer protocol to store this information.

In explicit beacon mode, the beacon address can be retrieved from an Internet

layer (eg. IPv4) header because the packet travels only one hop, so the IP header is

never modified. In multi-hop cases such as probe modes or routing mode, the RIVER

packet could be placed inside a different IP header at each hop (and a probe or route

origin address would go in this space), or the beacon origin/address could be updated

by each forwarding node while the IP header remains intact. In these cases, an origin

address needs to be explicitly included.

A.4.15 Destination Node Address

This field contains the address of a return-probe’s or routing packet’s ultimate desti-

nation node. While RIVER is not coupled to a particular Internet layer, we assume

IPv4 and use a 32-bit address here. However, if IPv6 is used, the address length may
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need to be extended. Another possibility would be to use a special field within the

Internet layer protocol to store this information. It is assumed that the destination

address field of the Internet layer packet would be used to store the next-hop node’s

address, and therefore it is already in use.

A.4.16 Reserved (RSV)

This field, marked Reserved or RSV, represents bits that are reserved for potential

future use and to round out a word evenly.
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Appendix B RIVER Pseudocode

B.1 Receiving Packets

Algorithm 1 Receive

⊲ This procedure is called when this node receives a packet on its network interface
from some other node.

1: procedure Receive(pkt)
2: if pkt.type = RIVER then
3: ProcessKnownEdgeList(pkt)
4: ProcessBeaconInfo(pkt) ⊲ Could be explicit or implicit.
5: if pkt.mode ∈ {PROBE-DEPART, PROBE-RETURN} then
6: orgn = pkt.probeOriginLoc
7: dest = pkt.destLoc

⊲ Two street vertices’ ranges can overlap. Don’t consider the destination reached if
we are closer to the origin than the destination.

8: if InRange(dest) ∧ (Distance(dest) < Distance(orgn)) then
9: ProcessIncomingProbe(pkt)

10: return
11: end if
12: else if pkt.mode = ROUTING then
13: ProcessRouteWeights(pkt)
14: nearV tx← NearestStreetVertex

15: if InRange(nearV tx) then ⊲ We are “at” a vertex.
⊲ Our receipt of this packet implies that an incident edge is reliable.

16: TraversedRouteEdge(pkt)
17: end if
18: if AcceptDataPkt(pkt) then
19: return
20: end if
21: end if ⊲ packet must be outgoing at this point
22: ForwardPacket(pkt)
23: end if
24: end procedure
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Algorithm 2 AcceptDataPkt

⊲ This function returns TRUE if the packet should be accepted (consumed) by this
node. Returns FALSE if the packet’s delivery should continue.

1: function AcceptDataPkt(dataPkt)
2: if dataPkt.destAddr = IP-BROADCAST then
3: RecvDataPkt(dataPkt) ⊲ but continue broadcast
4: return FALSE
5: else if dataPkt.destAddr = RIVER-GEOANYCAST then
6: if InRange(destLoc) then
7: RecvDataPkt(dataPkt)
8: return TRUE
9: else ⊲ continue delivery

10: return FALSE
11: end if
12: else if dataPkt.destAddr = MyAddress() then
13: RecvDataPkt(dataPkt)
14: return TRUE
15: end if
16: return FALSE
17: end function
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B.2 Sending Packets

Algorithm 3 PrepareDataPacket

⊲ This procedure is called when this node originates a packet at a higher level (eg.
application layer) for sending on the network interface.

1: function PrepareDataPacket(dataPkt)
2: dataPkt← AddRiverHeader(dataPkt)
3: dataPkt.destPort← RIVER-PORT
4: dataPkt.type← RIVER
5: dataPkt.mode← ROUTING
6: dataPkt.destLoc← LocationLookup(dataPkt.destAddr)
7: if ¬ InRange(dataPkt.destLoc) then ⊲ compute a route
8: path← LeastWeightPath(myLoc, destLoc)
9: dataPkt.SetAnchorRoute(path)

10: end if
11: dataPkt← AddIPHeader(dataPkt)
12: ForwardPacket(dataPkt)
13: end function
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Algorithm 4 ForwardPacket

Require: fwdPkt is a packet that is not destined for this node
1: procedure ForwardPacket(fwdPkt)
2: myLoc← CurrentLocation

3: destLoc← fwdPkt.DestLocation

4: nextHop← ∅ ⊲ Reset the next hop for the packet
5: if fwdPkt.destAddr = IP-BROADCAST then
6: nextHop← IP-BROADCAST ⊲ Beacons are broadcast
7: else if fwdPkt.destAddr = RIVER-GEOANYCAST then ⊲ packet is a probe
8: nextHop← GreedyForwardTo(destLoc)
9: else ⊲ packet is unicast; use RIVER routing

10: nextHop← NextAnchorRouteHop(fwdPkt)
11: end if
12: if nextHop = ∅ then ⊲ no neighbor was found to forward to
13: DropPacket(fwdPkt)
14: return
15: end if
16: fwdPkt.SetNextHop(nextHop)

⊲ Intermediate forwarding nodes update the packet’s destination node’s geolocation
in the packet with their last known location.

17: UpdateDestGeoLoc(pkt)
18: fwdPkt.SetImplicitBeacon(myLoc, MyAddress() )
19: ResetBeaconTimer

20: Transmit(fwdPkt)
21: end procedure
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Algorithm 5 NextAnchorRouteHop

Require: fwdPkt is a packet that is not destined for this node
1: procedure NextAnchorRouteHop(fwdPkt)
2: myLoc← CurrentLocation

3: destLoc← fwdPkt.DestLocation

4: anchor ← fwdPkt.GetAnchor(fwdPkt.ptr)
⊲ Advance to the next unreached AP in the route.

5: while InRange(anchor) ∧ anchor 6= fwdPkt.LastAnchor do
6: ConsiderRouteRecalculation(fwdPkt)
7: anchor ← fwdPkt.AdvanceAnchor

8: end while
⊲ If we are past the current anchor point, advance to the next AP.

9: nextAnchor ← fwdPkt.GetAnchor(fwdPkt.ptr + 1)
10: if (180 - DegOfAngle(anchor, myLoc, nextAnchor)) < 20 then
11: anchor ← fwdPkt.AdvanceAnchor

12: end if
⊲ Choose the next hop based on the current anchor.

13: nextHop← GreedyForwardTo(anchor)
14: if fwdPkt.AnchorsLeft > 0 then

⊲ If that fails, try finding a neighbor between the current anchor and the next.
15: if nextHop = ∅ then
16: nextAnchor ← fwdPkt.GetAnchor(fwdPkt.ptr + 1)
17: nextHop← GreedyForwardOnEdge(anchor, nextAnchor)
18: end if
19: if nextHop = ∅ then ⊲ Next hop still not found. Try recovery.
20: prevAnchor ← fwdPkt.GetAnchor(fwdPkt.ptr− 1)
21: MarkFailedEdge(prevAnchor, anchor)
22: path← LeastWeightPath(myLoc, destLoc)
23: fwdPkt.SetAnchorRoute(path)
24: if LeadingEdgeNotFailed(fwdPkt.route) then
25: nextHop← NextAnchorRouteHop(fwdPkt)
26: end if
27: end if
28: end if

⊲ Last effort: is the destination one of our neighbors and we didn’t find it greedily
because we think we are closer to the destination position?

29: if nextHop = ∅ ∧ IsNodeANeighbor(fwdPkt.destAddr) then
30: nextHop← fwdPkt.destAddr
31: end if
32: return nextHop
33: end procedure
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B.3 Beacons and Probes

Algorithm 6 SendRiverBeacon

⊲ This procedure is called by the beacon timer at a jittered time interval.
1: procedure SendRiverBeacon

2: riverPkt← PrepareBeacon

3: if riverPkt 6= NULL then
4: Transmit(riverPkt)
5: end if
6: end procedure

Algorithm 7 SendRiverProbe

⊲ This procedure is called by the probe timer at a jittered time interval.
1: procedure SendRiverProbe

2: nearV tx← NearestStreetVertex

3: if InRange(nearV tx) then ⊲ We are “at” the vertex.
⊲ Find the adjacent edge whose reliability rating is most out-of-date.

4: oldest← MAX-AGE
5: for all edge e incident to nearV tx do
6: if e.IsOutdated ∧ e.LastUpdated < oldest then
7: oldest← e.LastUpdated

8: probEdge← e
9: end if

10: end for

11: now ← CurrentTime

12: if oldest 6= MAX-AGE then
⊲ If we found an edge that needs updating, send a probe.

13: riverPkt ← PrepareProbe(probEdge.fromVtx, probEdge.toVtx,
RIVER-GEOANYCAST)

14: ForwardPacket(riverPkt)
15: end if
16: end if
17: end procedure
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Algorithm 8 ProcessBeaconInfo

Require: beaconPkt is an explicit beacon
1: procedure ProcessBeaconInfo(beaconPkt)
2: address← beaconPkt.GetBeaconSourceAddress

3: location← beaconPkt.GetBeaconSourceLocation

4: UpdateNeighborTable(address, location)
5: end procedure

Algorithm 9 ProcessIncomingProbe

Require: The current node is within range of the destination of the probe and is
closer to the destination vertex of the probe than to the origin vertex of the
probe. (Vertex range of the endpoints of an edge may overlap, and we don’t want
to consider the current node at the destination if it is closer to the origin vertex
than the destination vertex.

1: procedure ProcessIncomingProbe(probePkt)
2: destV tx← probePkt.GetDestination

3: originV tx← probePkt.GetProbeOrigin

4: probedEdge← streetDb.GetEdgeByEndpoints(originV tx, destV tx)

5: if probePkt.mode = PROBE-DEPART then
⊲ Generate a return probe back to the sender.

6: addr ← probePkt.GetProbeOriginAddress

7: riverPkt← PrepareProbe(destV tx, originV tx, addr)
8: Transmit(riverPkt)
9: streetDb.ProbeSent(probedEdge)

10: end if

⊲ Update street edge with received probe
11: edgRcvd← GetEdgeByVertices(originV tx, destV tx)
12: streetDb.PacketReceived(edgRcvd)
13: end procedure
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