5,353 research outputs found

    Sixteen space-filling curves and traversals for d-dimensional cubes and simplices

    Get PDF
    This article describes sixteen different ways to traverse d-dimensional space recursively in a way that is well-defined for any number of dimensions. Each of these traversals has distinct properties that may be beneficial for certain applications. Some of the traversals are novel, some have been known in principle but had not been described adequately for any number of dimensions, some of the traversals have been known. This article is the first to present them all in a consistent notation system. Furthermore, with this article, tools are provided to enumerate points in a regular grid in the order in which they are visited by each traversal. In particular, we cover: five discontinuous traversals based on subdividing cubes into 2^d subcubes: Z-traversal (Morton indexing), U-traversal, Gray-code traversal, Double-Gray-code traversal, and Inside-out traversal; two discontinuous traversals based on subdividing simplices into 2^d subsimplices: the Hill-Z traversal and the Maehara-reflected traversal; five continuous traversals based on subdividing cubes into 2^d subcubes: the Base-camp Hilbert curve, the Harmonious Hilbert curve, the Alfa Hilbert curve, the Beta Hilbert curve, and the Butz-Hilbert curve; four continuous traversals based on subdividing cubes into 3^d subcubes: the Peano curve, the Coil curve, the Half-coil curve, and the Meurthe curve. All of these traversals are self-similar in the sense that the traversal in each of the subcubes or subsimplices of a cube or simplex, on any level of recursive subdivision, can be obtained by scaling, translating, rotating, reflecting and/or reversing the traversal of the complete unit cube or simplex.Comment: 28 pages, 12 figures. v2: fixed a confusing typo on page 12, line

    Scalable Algorithms for Parallel Tree-based Adaptive Mesh Refinement with General Element Types

    Get PDF
    In this thesis, we develop, discuss and implement algorithms for scalable parallel tree-based adaptive mesh refinement (AMR) using space-filling curves (SFCs). We create an AMR software that works independently of the used element type, such as for example lines, triangles, tetrahedra, quadrilaterals, hexahedra, and prisms. For triangular and tetrahedral elements (simplices) with red-refinement (1:4 in 2D, 1:8 in 3D), we develop a new SFC, the tetrahedral Morton space-filling curve (TM-SFC). Its construction is similar to the Morton index for quadrilaterals/hexa- hedra, as it is also based on bitwise interleaving the coordinates of a certain vertex of the simplex, the anchor node. Additionally, we interleave with a new piece of information, the so called type. For these simplices, we develop element local algorithms such as constructing the parent, children, or face-neighbors of a simplex, and show that most of them are constant-time operations independent of the refinement level. With SFC based partitioning it is possible that the mesh elements that are parti- tioned to one process do not form a face-connected domain. We prove the following upper bounds for the number of face-connected components of segments of the TM-SFC: With a maximum refine- ment level of L, the number of face-connected components is bounded by 2(L − 1) in 2D and 2L + 1 in 3D. Additionally, we perform a numerical investigation of the distribution of lengths of SFC segments. Furthermore, we develop a new approach to partition and repartition a coarse (input) mesh among the processes. Compared to previous methods it optimizes for fine mesh load-balance and reduces the parallel communication of coarse mesh data. We discuss the coarse mesh repartitioning algorithm and demonstrate that our method repartitions a coarse mesh of 371e9 trees on 917,504 processes (405,000 trees per process) on the Juqueen supercomputer in 1.2 seconds. We develop an AMR concept that works independently of the element type; achieving this independence by strictly distinguishing between functions that oper- ate on the whole mesh (high-level) and functions that locally operate on a single element or a small set of elements (low-level). We discuss a new approach to generate and manage ghost elements that fits into our element-type independent approach. We define and describe the necessary low-level algorithms. Our main idea is the computation of tree-to-tree face-neighbors of an element via the explicit construction of the element's face as a lower dimensional element. In order to optimize the runtime of this method we enhance the algorithm with a top-down search method from Isaac, Burstedde, Wilcox, and Ghattas, and demonstrate how it speeds up the computation by factors of 10 to 20 achieving runtimes comparable to state-of-the art implementations with fixed element types. With the ghost algorithm we build a straight-forward ripple version of the 2:1 balance algorithm. This is not an optimized version but it serves as a feasibility study for our element-type independent approach. We implement all algorithms that we develop in this thesis in the new AMR library t8code. Our modular approach allows us to reuse existing software, which we demonstrate by using the library p4est for quadrilateral and hexahedral elements. In a concurrent Bachelor's thesis by David Knapp (INS, Bonn) the necessary low-level algorithms for prisms were developed. With t8code we demonstrate that we can create, adapt, (re-)partition, and balance meshes, as well as create and manage a ghost layer. In various tests we show excellent strong and weak scaling behavior of our algorithms on up to 917,504 parallel processes on the Juqueen and Mira supercomputers using up to 858e9 mesh elements. We conclude this thesis by demonstrating how an application can be coupled with the AMR routines. We implement a finite volume based advection solver using t8code and show applications with triangular, quadrilateral, tetrahedral, and hexahedral elements, as well as 2D and 3D hybrid meshes, the latter consisting of tetrahedra, hexahedra, and prisms. Overall, we develop and demonstrate a new simplicial SFC and create a fast and scalable tree-based AMR software that offers a flexibility and generality that was previously not available

    A scalable parallel finite element framework for growing geometries. Application to metal additive manufacturing

    Get PDF
    This work introduces an innovative parallel, fully-distributed finite element framework for growing geometries and its application to metal additive manufacturing. It is well-known that virtual part design and qualification in additive manufacturing requires highly-accurate multiscale and multiphysics analyses. Only high performance computing tools are able to handle such complexity in time frames compatible with time-to-market. However, efficiency, without loss of accuracy, has rarely held the centre stage in the numerical community. Here, in contrast, the framework is designed to adequately exploit the resources of high-end distributed-memory machines. It is grounded on three building blocks: (1) Hierarchical adaptive mesh refinement with octree-based meshes; (2) a parallel strategy to model the growth of the geometry; (3) state-of-the-art parallel iterative linear solvers. Computational experiments consider the heat transfer analysis at the part scale of the printing process by powder-bed technologies. After verification against a 3D benchmark, a strong-scaling analysis assesses performance and identifies major sources of parallel overhead. A third numerical example examines the efficiency and robustness of (2) in a curved 3D shape. Unprecedented parallelism and scalability were achieved in this work. Hence, this framework contributes to take on higher complexity and/or accuracy, not only of part-scale simulations of metal or polymer additive manufacturing, but also in welding, sedimentation, atherosclerosis, or any other physical problem where the physical domain of interest grows in time

    Heegaard Splittings of Twisted Torus Knots

    Get PDF
    Little is known on the classification of Heegaard splittings for hyperbolic 3-manifolds. Although Kobayashi gave a complete classification of Heegaard splittings for the exteriors of 2-bridge knots, our knowledge of other classes is extremely limited. In particular, there are very few hyperbolic manifolds that are known to have a unique minimal genus splitting. Here we demonstrate that an infinite class of hyperbolic knot exteriors, namely exteriors of certain "twisted torus knots" originally studied by Morimoto, Sakuma and Yokota, have a unique minimal genus Heegaard splitting of genus two. We also conjecture that these manifolds possess irreducible yet weakly reducible splittings of genus three. There are no known examples of such Heegaard splittings.Comment: 4 pages 8 figure

    The Second Hull of a Knotted Curve

    Full text link
    The convex hull of a set K in space consists of points which are, in a certain sense, "surrounded" by K. When K is a closed curve, we define its higher hulls, consisting of points which are "multiply surrounded" by the curve. Our main theorem shows that if a curve is knotted then it has a nonempty second hull. This provides a new proof of the Fary/Milnor theorem that every knotted curve has total curvature at least 4pi.Comment: 7 pages, 6 figures; final version (only minor changes) to appear in Amer.J.Mat

    Recursive tilings and space-filling curves with little fragmentation

    Full text link
    This paper defines the Arrwwid number of a recursive tiling (or space-filling curve) as the smallest number w such that any ball Q can be covered by w tiles (or curve sections) with total volume O(vol(Q)). Recursive tilings and space-filling curves with low Arrwwid numbers can be applied to optimise disk, memory or server access patterns when processing sets of points in d-dimensional space. This paper presents recursive tilings and space-filling curves with optimal Arrwwid numbers. For d >= 3, we see that regular cube tilings and space-filling curves cannot have optimal Arrwwid number, and we see how to construct alternatives with better Arrwwid numbers.Comment: Manuscript accompanying abstract in EuroCG 2010, including full proofs, 20 figures, references, discussion et
    • …
    corecore