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Little is known on the classification of Heegaard splittings for hyperbolic 3-manifolds.
Although Kobayashi gave a complete classification of Heegaard splittings for the exteriors of
2-bridge knots, our knowledge of other classes is extremely limited. In particular, there are
very few hyperbolic manifolds that are known to have a unique minimal genus splitting.
Here we demonstrate that an infinite class of hyperbolic knot exteriors, namely exteriors
of certain “twisted torus knots” originally studied by Morimoto, Sakuma and Yokota, have
a unique minimal genus Heegaard splitting of genus two. We also conjecture that these
manifolds possess irreducible yet weakly reducible splittings of genus three. There are no
known examples of such Heegaard splittings.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The only class of hyperbolic manifolds for which there is a complete classification is that of the exteriors of 2-bridge
knots. This was done by T. Kobayashi in [5]. In particular there are very few manifolds which are known to have a unique
minimal genus Heegaard splitting. We are interested, for reasons which will become clear later, in the following class of
knots:

Definition 1.1. The knot K ⊂ S3 obtained by taking the non-trivial (p,q)-torus knot K (p,q) ⊂ S3 (embedded on a standard
torus V ⊂ S3), removing a neighborhood of a small unknotted S1 around m adjacent strands, which we denote by C , and
doing a 1

s -Dehn surgery along C will be called a twisted torus knot and setting r = 2s, denoted by T (p,q,m, r). Since we
always will take m = 2 strands we abbreviate to T (p,q, r). (See also [3] and Fig. 5.)

The main theorem we prove is the following:

Theorem 4.9. Let Km = T (p,q, r) be a twisted torus knot with (p,q) = (7,17) and r = 10m − 4, m ∈ Z. Then for sufficiently large
m ∈ Z the knot complement S3 − N(Km) has a unique, up to isotopy, minimal genus Heegaard splitting.

We suspect that the restrictions on the parameters of the knots T (p,q, r) are only a result of the non-trivial proof and
thus conjecture:
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Conjecture 4.16. All knot exteriors E(K ), where K = T (p,q,2, r) and K is not μ-primitive, have a unique (minimal) genus two
Heegaard splitting.

A sub-class of twisted torus knots, including those which are covered in Theorem 4.9, was previously studied by Mo-
rimoto, Sakuma and Yokota in [11] and were shown to be not μ-primitive (see Definition 2.1). A different sub-class was
studied by J. Dean in [3], and contains knots which admit surgeries yielding Seifert fibered spaces over S2 with three
exceptional fibers. This accumulation of information points to twisted torus knots as a very interesting class of knots.

In trying to classify the higher genus Heegaard splittings for these knots one must naturally address the issue of non-
minimal genus non-stabilized Heegaard splittings. One of the more tantalizing problems in the current Heegaard theory of
3-manifolds is that it is not known whether manifolds with fewer than two boundary components can possess non-minimal
genus Heegaard splittings which are weakly reducible and non-stabilized. (In alternate terminology; non-minimal genus
Heegaard splittings which are distance one, where distance is in the sense of Hempel’s distance for Heegaard splittings.)
The basic problem is that there are currently no known techniques to show that a non-minimal genus weakly reducible
Heegaard splitting of a closed manifold is non-stabilized.

In this quest to find such examples it is necessary to find a Heegaard splitting for a knot manifold that is not γ -primitive
(see definition in Section 2 below), since boundary stabilizations of such splittings are always stabilized (see [9, Theo-
rem 4.6]). In [11] Morimoto, Sakuma and Yokota showed that the knots Km = T (7,17,10m − 4) are not μ-primitive, which
is an important special case. Hence the following theorem shows that E(Km) = S3 − N(Km) are candidates for manifolds
which could have the desired splittings as above:

Theorem 4.4. The knots Km = T (7,17,10m − 4) are not γ -primitive for all curves γ ⊂ ∂ S3 − N(K ).

Theorem 4.4 and the theorem of Morimoto, Sakuma and Yokota in [11] provide motivation for the following conjecture:

Conjecture 5.1. The boundary stabilized genus three Heegaard splitting (V ′, W ′) of the unique minimal genus two Heegaard splitting
(V , W ) of E(Km), where Km = T (7,17,2,10m − 4), is non-stabilized.

We discuss, in Section 5, some of the issues which arise in the attempt to prove that the above boundary stabilized
Heegaard splittings are indeed non-stabilized (for some background see [9]).

2. Preliminaries

In this section we recall some definitions and notation used in the paper. We then define the notions of primitive and
weakly primitive curves on the boundary of a knot space:

A compression body W of genus g is a compact connected orientable 3-manifold which can be represented as (S ×[0,1])∪
{2-handles}, where S is a genus g closed orientable surface and the 2-handles are attached to S × {0}. We require that all
S2 components in (S × {0}) ∪ {2-handles} be eliminated by attaching 3-balls to them. The connected surface S × {1} will be
denoted by ∂+W and the not necessarily connected surface ∂W � ∂+W will be denoted by ∂−W .

Any compact connected orientable 3-manifold M has a decomposition as M = V ∪ W and V ∩ W = ∂+V = ∂+W = Σ ,
where V and W are compression bodies. Such a decomposition is called a Heegaard splitting and the surface Σ will be
called a Heegaard surface.

Definition 2.1.

(1) A simple closed curve on the boundary of a compression body W will be called primitive if it meets an essential disk
D ⊂ W in a single point. An annulus on the boundary of a compression will be called primitive if its core curve is
primitive.

(2) Let K ⊂ S3 be a knot and (V , W ) a Heegaard splitting of S3 − N(K ) with ∂(S3 − N(K )) ⊂ V . Let γ denote a simple
closed curve on ∂−V . We say that (V , W ) is γ -primitive if there is a vertical annulus A in the compression body V
such that ∂ A = γ ∪ β where β ⊂ ∂+V meets an essential disk D of W in a single point. If γ is a meridian for K we
say that it is μ-primitive (see Fig. 1). An annulus A and a disk D as above will be called an (A, D) reducing pair.

(3) If there is a vertical annulus A ⊂ V as above and an essential disk D ⊂ W so that A ∩ D = ∅ then we say that γ is
weakly primitive.

(4) We say that K ⊂ S3 is γ -primitive (weakly γ -primitive) if S3 − N(K ) has a minimal genus Heegaard splitting with
a primitive γ curve (weakly primitive γ curve). As before if γ is a meridian we will say that K is μ-primitive (weakly
μ-primitive).

3. Heegaard splittings of torus knots

Since a twisted torus knot can be obtained from a torus knot by Dehn surgery in an unknot, we should not be surprised
that their Heegaard splittings are related. Hence we would like to discuss those first. It is well known that the exterior
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Fig. 1. A primitive meridian.

Fig. 2. Tunnel systems for a torus knot: the inner system and the middle system.

E(K ) = S3 − N(K ) of a torus knot K = K (p,q) will have at most three distinct genus two Heegaard surfaces. Generically
E(K ) will have three distinct such surfaces depending on the values of p and q (see [6]). For the purpose of this work we
are interested in what we will call the middle Heegaard surface, defined as follows:

Definition 3.1. Embed the knot K in the standard way into an unknotted torus T ′ in S3. Let T denote this torus after
we have removed a single small disk D which is disjoint from K ⊂ T . Without loss of generality we can think of K as
lying in the middle level surface T0 = T × {0} of a thickened product T × [−1,1]. By removing a neighborhood of K we
obtain a compression body V = (T × [−1,1]) − N(K ). Note that ∂+V is a genus two Heegaard surface. The complementary
handlebody W is the union of two solid tori, W i the inside solid torus and Wo the outside solid torus of the unknotted
torus, T ′ . These solid tori W i and Wo are attached by a 1-handle, D × I to form a genus two handlebody. We will say that
Σ = ∂+(T × [−1,1]) = ∂W is the middle Heegaard surface.

Definition 3.2. The Heegaard surface obtained by taking the boundary of a regular neighborhood of the graph K ∪ ti ∪ wi or
K ∪ to ∪ wo will be called the inner and outer Heegaard surfaces and denoted by Σi and Σo , respectively. Here ti is a small
arc connecting K to the core curve wi of W i and to is a small arc connecting K to the core curve wo of Wo (see Fig. 2).

The remainder of this section will be devoted to proving the theorem below which is of independent interest although
it is not directly used in this paper. With the standard choice of (μ,λ) a meridian-longitude pair there is an identification
between curves on the boundary of a knot space and a “slope” r ∈ Q ∪ {∞}. When the context is clear we often do not
make the distinction between a slope and a curve.

Theorem 3.3. Let Σ denote the middle Heegaard surface for the non-trivial torus knot K (p,q). The following are equivalent:

(i) Σ is μ-primitive (i.e., 1/0-primitive).
(ii) Σ is γ -primitive for some s.c.c. γ ⊂ ∂(S3 − N(K )).

(iii) There exist r, s ∈ Z so that |ps − rq| = 1 and either r = 1 or s = 1.
(iv) Σ is isotopic to either the Σi or Σo Heegaard surfaces.

Proof. (i) ⇒ (ii) Set γ = μ. It is a simple closed curve with slope 1
0 .

(iii) ⇒ (iv) If there exist such a pair r, s then there is an (r, s)-curve on the torus T which meets the knot K (p,q) in
a single point. This curve is a tunnel representing the middle splitting. Furthermore since either r = 1 or s = 1, when this
tunnel is pushed into one of the solid tori, depending on whether r = 1 or s = 1, it represents a core there. Hence Σmid is
isotopic to either the Σi or Σo splittings.
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Fig. 3. The disk Dpunct .

Fig. 4. The disk D p/q .

(iv) ⇒ (i) Both the Σi and Σo splittings are μ-primitive (see [6]). If the middle splitting is isotopic to either, it is also
μ-primitive.

(ii) ⇒ (iii) This is the hard case. The argument follows:
Assume that Σ is γ -primitive, then there is a disk-annulus pair, (Dγ , Aγ ) so that Dγ ∩ Aγ is a single point and Dγ ⊂ W ,

Aγ ⊂ V .
Define two compressing disks, one for each of the compression bodies V and W . Consider Dpunct = D × {0}, where D

is the disk from Definition 3.1 (see Fig. 3). The disk Dpunct compresses the genus two handlebody W into the upper and
lower solid tori. Let αp/q be an arc properly embedded in T so that if we shrink D to a point αp/q becomes a (p,q)-curve
on the torus T ′ . Let D p/q = αp/q × [−1,1] be the disk obtained by taking the product of αp/q ⊂ T with the interval [−1,1].
This is a non-separating disk that is disjoint from the knot K (see Fig. 4). Arrange Aγ and Dγ to intersect Dpunct and D p/q

minimally, subject to the condition that they meet in a single point.

Claim 3.4. The annulus Aγ is disjoint from the disk D p/q.

Proof. Assume in contradiction that Aγ ∩ D p/q �= ∅. The intersection cannot contain simple closed curves which are essential
on Aγ because this would imply that the torus knot exterior has compressible boundary. By minimality there are no
inessential such curves. So all components of intersection are arcs. Since D p/q ∩ ∂ X = ∅ these arcs cannot be essential
in Aγ . So Aγ ∩ D p/q is composed of inessential arcs in Aγ .

Consider now an outermost arc of intersection α on Aγ it cuts off a sub-disk E of Aγ − D p/q and a sub-disk E ′ on D p/q .
The disk E ∪ E ′ cannot be boundary parallel in the compression body by minimality. If it is isotopic to an essential non-
separating disk then it is isotopic to D p/q which is the unique such disk. If the parallel region is on the same side as E we
can push E through D p/q to reduce intersection. If the parallel region is on the other side, then E cannot be connected to
the rest of the annulus to form Aγ . If it is isotopic to a non-separating essential disk in the genus two compression body
then it is a band sum of two copies of D p/q . However in this case, as before, E cannot be connected to the rest of the
annulus to form Aγ . �

Consider now the two disks Dγ and Dpunct in W . Assume that they intersect and consider an outermost sub-disk of Dγ

with respect to its intersection with Dpunct . We can choose such a sub-disk, called D ′
γ , that does not contain the point of

intersection with Aγ . This outer sub-disk D ′
γ meets Dpunct in a single arc and since it is essential by minimality it must

be a meridional disk for either the upper Wo or lower W i solid torus. Without loss of generality we will assume that it is
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Fig. 5. A knot of Morimoto, Sakuma and Yokota.

a meridional disk for Wo and represents a 0/1 arc on the level torus T1 = T × {1}. If Dγ does not meet Dpunct then we
will take D ′

γ = Dγ instead, and recall that ∂ Dγ is a closed curve in T1 and has a single point of intersection with Aγ . The
argument for W i and T0 = T × {0} with the slope 1/0 is symmetric.

On the top (or bottom) punctured torus, say T1 (T0) we can identify three essential arcs: aγ a component of ∂ Aγ ∩ T1,
dγ = ∂ D ′

γ ∩ T1 and dp/q = ∂ D p/q ∩ T1. If Dγ is disjoint from Dpunct , then dγ is actually a closed curve. From our preceding
arguments we know that aγ and dγ are disjoint in T1, as are aγ and dp/q . Connect the arcs across the puncture to obtain

closed curves: âγ , d̂γ and d̂p/q . Each pair of the closed curves obtains at most one intersection in the puncture, so we have
that âγ and d̂γ meet at most once, and âγ and d̂p/q meet at most once. Now, the slope of d̂γ is 0/1 (or 1/0), the slope

of d̂p/q is p/q and r/s is the slope of the closed curve âγ .

If âγ ∩ d̂p/q = ∅, i.e., âγ and d̂p/q are parallel and âγ ∩ d̂γ = {pt} or âγ ∩ d̂γ = ∅, i.e., âγ and d̂γ are parallel and

âγ ∩ d̂p/q = {pt} then |p0 − q1| = 1 (or |p1 − q0| = 1) that is q = 1 (or p = 1) contradicting the fact that T (p,q) is non-

trivial. Similarly they cannot all be parallel. If âγ ∩ d̂γ = {pt} and âγ ∩ d̂p/q = {pt} then |ps − qr| = 1 and |r0 − s1| = 1, i.e.,
s = 1 (or |r1 − s0| = 1, i.e., r = 1). Then conclusion (iii) of Theorem 3.3 holds. �
4. Twisted torus knots

In this section we recall the definition of a special sub-class of twisted torus knots T (7,17, r). This class will play a major
role for the rest of the paper.

Definition 4.1. The knot K ⊂ S3 obtained by taking the (7,17)-torus knot T (7,17) in S3 (embedded on a standard torus
V ⊂ S3), removing a neighborhood of a small unknotted S1 around 2 adjacent strands, which we denote by C , and doing a

1
5m−2 -Dehn surgery, m ∈ Z, along C will be denoted by T (7,17,2,10m − 4). As before, we abbreviate to T (7,17,10m − 4).
(See also [3] and Fig. 5.)

Remark 4.2. All knots in S3 of the form T (p,q, r), r ∈ Z, are tunnel number one knots: Given a twisted torus knot T (p,q, r)
the underlying torus knot T (p,q) has an unknotting tunnel which is an essential arc on the cabling annulus. We can
consider such an arc in the link L(p,q) = T (p,q) ∪ C . Since C can be isotoped into the Heegaard surface so that the slope
determined by the surface on ∂N(C) is 0, then after the surgery on C which gives T (p,q, r), the arc will be an unknotting
tunnel for T (p,q, r). Hence we have a genus two Heegaard splitting (V , W ) for E(T (p,q, r)), where V is the compression
body N(K ∪ t) less a smaller neighborhood of T (p,q, r), and W is the handlebody S3 − int(V ). Since this Heegaard splitting
is induced by the middle Heegaard splitting of the underlying torus knot T (p,q) we call it the middle Heegaard splitting
and denote it by Σmid .

It is a theorem of Morimoto, Sakuma and Yokota (see [11]), that knots Km of the form T (7,17,10m − 4), m ∈ Z, are not
μ-primitive. Or, in other words, they do not have a (1,1)-decomposition (see for example [7]).

Proposition 4.3. The knots Km = T (7,17,10m − 4) are hyperbolic knots for all m ∈ Z.

Proof. By Thurston if a knot is atoroidal (simple) it is either a torus knot or hyperbolic. Non-simple tunnel number one
knots have been classified by Sakuma and Morimoto (see [10]). In particular, all of their unknotting tunnels have been
classified (see Proposition 1.8, Theorems 2.1 and 4.1 of [10]). They all come from a (1,1)-decomposition for the pair (S3, K ).
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So the knots K have a primitive meridian. So do torus knots. But the knots T (7,17,10m − 4) do not have a primitive
meridian as they are tunnel number super additive by [11]. Hence the knots T (7,17,10m − 4) cannot be non-simple and
thus are atoroidal. Since they are also not torus knots they must be hyperbolic. �
4.1. The knots Km = T (7,17,10m − 4) are not γ -primitive

It turns out, as will be discussed in Section 5 below, that in order for the knot exteriors of Km = T (7,17,10m − 4) to
have weakly reducible and non-stabilized non-minimal Heegaard splittings the knots Km must have the additional property
that they are not γ -primitive for all curves γ ⊂ ∂ S3 − N(K ). This is exactly the content of our next theorem:

Theorem 4.4. The knots Km = T (7,17,10m − 4) are not γ -primitive for any curve γ ⊂ ∂ S3 − N(K ) and any m ∈ Z.

Proof. By Morimoto, Sakuma and Yokota (see [11]) the knots Km = T (7,17,10m − 4) are not μ-primitive. Assume that γ is
a simple closed curve on ∂ E(K ) which is not a meridian. Since the knots Km are tunnel number one knots their Heegaard
genus g(S3 − N(Km)) = 2. Hence, if Km are γ -primitive then γ -surgery on Km will give genus two manifolds E(Km)(γ )

with reducible genus two Heegaard splittings. That is g(E(Km)(γ )) � 1. It follows from [2] that since γ �= μ we cannot
obtain S3 by γ -surgery, hence we need only consider the case that g(E(Km)(γ )) = 1. Therefore in order to prove that Km

are not γ -primitive we need to show that we cannot obtain lens spaces by surgery on Km .
Consider the following theorem of Ozsvath and Szabo (see [13]):

Theorem 4.5. If K ⊂ S3 is a knot which admits surgery yielding a lens space, then the Alexander polynomial ΔK (t) of K has the form:

ΔK (t) = (−1)k +
k∑

j=1

(−1)l− j(tn j + t−n j
)

where 0 < n1 < n2 < · · · < nk is some increasing sequence of positive integers.

The following theorem regarding the Alexander polynomials of twist knots T (p,q,2n) denoted by ΔT (p,q,2n)(t), was
proved by H. Morton in [12]:

Theorem 4.6. Suppose that 0 < s <
q
3 and s ≡ p−1 mod q. Then:

(1) For all n � 2 the coefficient of t ps+2 in ΔT (p,q,2n)(t) is � −2.
(2) For all n � 2 the coefficient of at least one of the terms t ps+1 , t ps+2 , t ps+3 in t2nΔT (p,q,−2n)(t) is ±2.

Since in our case n = 5m − 2 we can apply the theorem for all m �= 0 and conclude that if {p,q} = {7,17} then for s = 5
we have 5 ≡ 7−1 mod 17 hence the coefficient of t37 must be at most −2 which violates Theorem 4.5.

Though it is not in a symmetric form we can see that there are coefficients which are different from +1, −1. Hence by
the above Theorem 4.5 we cannot obtain a lens space by surgery and as a result Km cannot be γ -primitive. �
Example 4.7. Using Hugh Morton’s program for computing, the Alexander polynomial for K1 = T (7,17,6) we have:

ΔK1 (T ) = T 102 − T 101 + T 95 − T 94 + T 88 − T 87 + T 85 − T 84 + T 81 − T 80 + T 78 − T 77 + T 74 − T 73 + T 71 − T 70 + T 68

− T 67 + T 66 − 2T 65 + 3T 64 − 3T 63 + 2T 62 − T 60 + T 59 − 2T 58 + 3T 57 − 3T 56 + 2T 55 − T 53 + T 52 − T 51

+ T 50 − T 49 + 2T 47 − 3T 46 + 3T 45 − 2T 44 + T 43 − T 42 + 2T 40 − 3T 39 + 3T 38 − 2T 37 + T 36 − T 35 + T 34

− T 32 + T 31 − T 29 + T 28 − T 25 + T 24 − T 22 + T 21 − T 18 + T 17 − T 15 + T 14 − T 8 + T 7 − T + 1.

In particular, the coefficient of t37 is −2.

4.2. The knots T (7,17,10m − 4) are not weakly γ -primitive

Theorem 4.8. The knots Km = T (7,17,10m − 4) are not weakly γ -primitive for any simple curve γ on ∂(S3 − N(Km)) and any
m ∈ Z.

Proof. Assume in contradiction that the genus two Heegaard splitting of S3 − (Km) is weakly γ -primitive. Let (A, D) denote
the weak annulus disk pair. Compress the Heegaard surface Σ along the disk D and perform surgery along the annulus A.
We obtain either a torus T and an annulus A or a single annulus A, depending on whether the boundary of the disk
separates Σ or not. Since the knots Km are all hyperbolic their exteriors cannot contain essential annuli and tori. Hence
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Fig. 6. A peripheral annulus with disk scars, handle inside/tube outside, and handle outside/tube inside.

Fig. 7. The link L(p,q).

both A and T (if it exists) are boundary parallel. So on the annulus A we see either one or two scars from the compression
along the disk. The original surface Σ is obtained from A by attaching a 1-handle to A either on the “inside” or “outside”
of A. If the 1-handle is on the “outside” then there is a compressing disk Δ for the annulus A on the “inside” which meets
a meridian in a single point. Hence Δ less a collar is a compressing disk for Σ and this would imply that Km is γ -primitive
in contradiction. If the 1-handle is on the “inside” then Δ is a compressing disk for the annulus A meeting a meridian in
a single point unless it intersects the 1-handle in an essential way. That is the 1-handle is knotted. But this would mean
that Σ is not a Heegaard surface (see Fig. 6). �
4.3. Uniqueness of minimal genus Heegaard splittings

Given a twisted torus knot T (p,q, r) consider the link L(p,q) = T (p,q)∪ C , where C is an unknotted simple closed curve
encircling two strands of T (p,q) as above (see Fig. 7). The reader can check that the curve C is isotopic into the middle
Heegaard surface and that the slope that Σmid determines on ∂N(C) is the 0 slope. Hence 1

s -Dehn filling along C is a Dehn
twist on Σmid and thus the Heegaard surface survives the twisting. On the other hand it seems on first glance that C is not
isotopic into the other two Heegaard surfaces for T (7,17). Hence one might expect that the two other genus two Heegaard
splittings for E(T (p,q)) would be “destroyed” by the 1

s -Dehn filling along C . In fact we prove an even stronger result:

Theorem 4.9. Let Km = T (p,q, r) be a twisted torus knot with (p,q) = (7,17) and r = 10m − 4, m ∈ Z. Then for sufficiently large
m ∈ Z the knot complement S3 − N(Km) has a unique, up to isotopy, genus two Heegaard splitting.

We first need some lemmas:
An annulus A ⊂ S3 will be called unknotted if the core of A is unknotted as a curve in S3 and the linking number of

the boundary curves of A is 0. If A1 and A2 are unknotted annuli so that ∂ A1 = ∂ A2 then if the torus T ∗ = A1 ∪ A2 is
unknotted in S3, i.e., it bounds two solid tori, then the cores of Ai , i = 1,2, are a meridian curve for one solid torus and
a longitude curve for the other. If T ∗ = A1 ∪ A2 is knotted then it bounds a solid torus on one side and a knot space on the
other and the cores of Ai , i = 1,2, are meridian curves for the solid torus.

Lemma 4.10. The link L(7,17) = T (7,17) ∪ C ⊂ S3 is atoroidal.

Proof. We first claim that S3 − N(L(7,17)) is irreducible. Let S ⊂ S3 − N(L(7,17)) be an essential 2-sphere. The sphere S
does not separate C from T (7,17) since C has linking number 2 with T (7,17). If S does not separate the two components
then obviously it bounds a 3-ball in the component which does not contain C and T (7,17): Doing 1 -surgery on C does not
n
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Fig. 8. The link L(p,q) with the twice punctured disk P .

affect either S or the 3-ball and we obtain the exterior of Km which is irreducible. Hence we have a contradiction to the
existence of an essential S .

Assume now that S3 − N(L(7,17)) contains an essential torus T . It follows from Proposition 4.3 that for infinitely many
1
n -Dehn surgeries on C , n = 5m − 2, m ∈ Z, we obtain a hyperbolic knot Km = T (7,17,10m − 4) whose complement does
not contain essential tori. Hence for those infinitely many surgeries either the torus T compresses or becomes a peripheral
torus for Km .

If T is peripheral in S3 − N(Km), for some m ∈ Z, then the curves C and Km must be on the same side of T : Otherwise T
would be peripheral to the T (7,17) component of L(7,17) and hence would not be essential in S3 − N(L(7,17)). Note that
the curve C and the knot T (7,17) cobound a twice punctured disk P (see Fig. 8). If we choose P to intersect T minimally the
intersection cannot contain trivial curves on P as this would violate either the minimality of the intersection or the choice
of T as essential. Furthermore the intersection P ∩ T cannot be empty: As then T would be contained in the complement
of a regular neighborhood of Km ∪ P ∪ C . However N(Km ∪ P ∪ C) is homeomorphic to N(Km ∪ t), where t is the unknotting
tunnel of Km . Thus the complement is a genus two handlebody which does not contain incompressible tori. It cannot
contain curves which are isotopic to C on P because in this case C can be isotoped onto T where, as T is peripheral, C is
either a meridian of Km or some other curve on T , in which case C is knotted. Both are contradictions. Hence P ∩ T is
a collection of curves each of which are concentric around one or the other of the two components {p1, p2} = ∂ P � C .

Since Km and C are on the same side of T the intersection must be an even number of concentric curves around each
of p1 and p2. If there are two or more concentric curves around the same point consider an innermost such pair. They
bound annuli A1 on T and A2 on P such that the interior of A2 lies “outside” T . Since T is peripheral the “outside” of T
is homeomorphic to the exterior S3 − Km which is hyperbolic by Proposition 4.3. Hence A2 is boundary parallel and there
is an isotopy reducing the intersection between P and T . This contradicts the minimality of the intersection P ∩ T . Hence
P ∩ T = ∅ and this is a contradiction as above.

If T is compressible in S3 − N(Km) then T compresses for infinitely many 1
n -surgeries on C . Since S3 − N(L(7,17)) is

irreducible then so is M ′ = S3 − N(L(7,17)) − N(T ). We can now apply Theorem 2.4.4 of [2], which states that in this case
either the intersection between the slopes Δ( 1

10m−4 , 1
10k−4 ) � 1, m �= k which is clearly false or that M1 the component

of M ′ which contains ∂N(C) is homeomorphic to T 2 × I which is also clearly false since then T would be peripheral to C .
The last possibility is that M1 is a cable space, i.e., it is homeomorphic to the complement of some (p,q)-cable, p,q ∈ Z,
g.d.c.(p,q) = 1, q � 2, about the core of a solid torus. In particular M1 has two boundary components which means that T
separates C from T (7,17). Choose T to minimize the intersection P ∩ T .

The intersection P ∩ T cannot be empty as then T would not separate, and it cannot contain inessential curves on P as
this would violate either the minimality of the intersection or the choice of T as essential.

Since P ∩ T is minimal and P ∩ M1 �= ∅ we can assume that P ∩ M1 is comprised only of essential annuli in M1. In
particular this implies that P ∩ T contains curves parallel to C and hence C is isotopic into T . Note also that T must be
unknotted in S3 since it compresses to the C side after 1

0 -filling on C and also compresses to the T (7,17) side after 1
0 -filling

on T (7,17). As C itself is an unknot then after the isotopy onto T it must be either a (p,1) or a (1,q) curve with respect
to T . That is, C is a longitude, i.e., it meets a meridian disk for T either on the C side or on the T (7,17) exactly once.
However M1 is a non-trivial cable space hence C cannot meet such a meridian disk on the M1 side. Thus C must meet
a meridian disk for T in a single point on the T (7,17) side. However all the curves of intersection in P ∩ T are parallel and
there is at least one (the innermost curve) which bounds a twice punctured disk meridian disk on the T (7,17) side, hence C
is a meridian there and not a longitude in contradiction. This finishes the proof and we conclude that S3 − N(L(7,17)) is
atoroidal. �



Y. Moriah, E. Sedgwick / Topology and its Applications 156 (2009) 885–896 893
Lemma 4.11. The link L(7,17) = T (7,17) ∪ C ⊂ S3 is an-annular.

Proof. Suppose now that S3 − N(L(7,17)) contains an incompressible annulus A.
As above, the manifold S3 − N(L(7,17)) is not a Seifert fibered space over an annulus with a single exceptional fiber. If it

was then 1
5m−2 -surgery on the boundary component corresponding to C would yield a Seifert fibered space in contradiction

to the fact that Km is hyperbolic by Proposition 4.3.
There are two possible cases, A joins either distinct components of ∂(S3 − N(L(7,17))) or the same one:
If there was an annulus A in S3 − N(L(7,17)) with one boundary component on T (7,17) and the other on C , then a

regular neighborhood N(T (7,17)∪ A ∪C) has a torus boundary component T ′ which is different from ∂N(C) or ∂N(T (7,17)).
The torus T ′ contains a solid torus V on the side away from C and T (7,17) as S3 − N(L(7,17)) is atoroidal by Lemma 4.10.
Hence S3 − N(L(7,17)) is the solid torus V glued to itself along A which is a Seifert fibered space over an annulus with
a single exceptional fiber, in contradiction.

Assume that S3 − N(L(7,17)) contains an annulus A with both boundary components on T (7,17). The boundary of
N(T (7,17) ∪ A) contains two tori T ′ and T ′′ both different from ∂N(T (7,17)). As S3 − N(L(7,17)) is atoroidal each of T ′
and T ′′ either bounds a solid torus or is peripheral. Neither are peripheral into T (7,17) and they cannot both bound solid
tori as C must be somewhere. Hence one, say T ′ , is peripheral into C . This means that there is an annulus between C and
T (7,17), in contradiction. The case where both boundary components of A are on C is identical. �
Corollary 4.12. The link L(7,17) = T (7,17) ∪ C ⊂ S3 is hyperbolic.

Proof. Since S3 − N(L(7,17)) is irreducible, atoroidal and an-annular it follows from Thurston’s hyperbolization theorem
that it is hyperbolic. �
Lemma 4.13. Suppose L = K ∪ C is a two component tunnel number one link in S3 with unknotting tunnel τ . Assume that C is the
unknot in S3 . Then the Heegaard splitting of S3 − N(K ) induced by τ is μ-primitive.

Proof. Since C is unknotted then C ∪ τ is a tunnel for K . Furthermore, the complement of N(K ∪ τ ) is a genus two
handlebody inside the solid torus V = S3 − N(C) so (K ∪ τ ) defines a genus two Heegaard splitting for V . This Heegaard
splitting is standard by Casson–Gordon (see [1]). The tunnel system K ∪ τ is a genus two splitting of the solid torus
S3 − N(C), hence it is stabilized. Thus the genus two compression body (∂C × I) ∪ τ ∪ K contains a non-separating disk D
which meets a disk D ′ for the complementary handlebody in S3 − N(C) once. But, D must be the cocore of K , because it
is the unique non-separating disk in the compression body (∂C × I) ∪ τ ∪ K . Together the meridional annulus D − N(K )

and D ′ demonstrate that K is μ-primitive. �
We are now ready to prove the theorem:

Proof of Theorem 4.9. With the link L = T (7,17) ∪ C there is an associated set of surgeries on C which yield manifolds
containing Heegaard surfaces which are not Heegaard splittings for the link exterior. This set is simple as in Definition 0.5
of [8]: A subset of Z ⊕ Z is very simple if it is a union of a finite subset A ⊂ Z ⊕ Z and a subset of the form α + nβ , n ∈ Z,
where {α,β} is some basis for Z ⊕ Z. A set is simple if it is a finite union of very simple sets.

Let (μ,λ) be the “natural” meridian-longitude pair for H1(∂N(C)). Consider the “line” L0 of surgeries containing the
slopes 1

5m−2 (with respect to (μ,λ)). It is precisely the set of slopes that meet the curve of slope 0 once. The intersection
of L0 with the simple set is contained in some ball unless L0 coincides with one of the lines in the simple set. In this case
it is contained in a ball union L0. Choose m0 ∈ Z bigger in absolute value then the radius of that ball. Set m ∈ Z such that
|m| > m0.

Let Σ be a genus two Heegaard surface which separates S3 − N(Km) into two compression bodies W1 and W2 with
∂N(K ) = ∂−W1. By [8, Theorem 0.1] since L = T (7,17) ∪ C is a hyperbolic link and Km is obtained by surgery on C we can
assume that we can isotope C into Σ .

By Theorem 5.1 and Remark 5.3 of [14] the curve C is a core of W1 or W2 or the surface Σ − N(C) is either incompress-
ible or Σ − N(C) compresses to an essential surface. Since Σ is of genus two the latter case would imply that the essential
surface is an annulus. This contradicts the fact that Km is hyperbolic. In the incompressible case the slope of ∂(Σ − N(C))

determines some line L in the simple set containing the slope 1
5m−2 . But the slope 1

5m−2 is in the line L0. Hence by the
choice of m, the lines L and L0 coincide. Thus we conclude that the slope of ∂(Σ − N(C)) is 0. We now have two cases:

(i) The curve C is not isotopic to a core in either compression body, i.e., as above Σ − N(C) is essential and furthermore
∂(Σ − N(C)) is of slope 0 on C .

(ii) The surface Σ is a Heegaard surface for S3 − L, i.e., C is a core in (a) W1 or (b) W2.

(I) Assume that the curve C is a core in W1 (i.e., case (ii)(a)). In this case we satisfy the conditions of Lemma 4.13. We
conclude that Km is μ-primitive which is a contradiction.

(II) Assume that we are in case (i) or case (ii)(b). The pair of pants P in S3 − N(Km) which is bounded by the curve C
also has slope 0 with respect to C . In these cases the following conditions on C , P and Σ can be satisfied:
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(1) There is an embedded annulus AC between Σ and C meeting ∂N(C) in a curve of slope 0.
(2) Every curve in the intersection P ∩ Σ is essential in both surfaces.

If C is a core in W2 then the existence of AC is obvious and condition (2) is satisfied by Lemma 6 of [18] which
guarantees that a strongly irreducible Heegaard surface can be isotoped to meet a properly embedded incompressible surface
in essential curves in both.

In case (i) the surfaces Σ − N(C) and P are essential so condition (2) is automatically satisfied. If we push C slightly
into W1 or W2 we satisfy condition (1) because Σ − N(C) has slope 0 on ∂N(C).

Choose P and C to minimize the intersection with Σ subject to satisfying conditions (1) and (2). Thus we can assume
that P ∩ Σ is composed of simple closed curves and no arcs. We can assume further that the intersection P ∩ (Σ − N(C))

does not contain curves isotopic to C . The curve C is isotopic to an innermost such curve which satisfies conditions (1)
and (2) so that the resulting P has fewer intersections with Σ − N(C). We deduce therefore, that we only have simple
closed curves concentric around p1 or p2 the boundary components of P which are not equal to C .

If there are two or more such concentric curves around p1 or p2 then there is a pair such that together they cobound
an incompressible annulus A ⊂ P . An innermost such annulus is contained in the handlebody W2 and is therefore bound-
ary compressible. Let ∂ A = {α1,α2}, with α1 being the interior curve on P , it bounds a vertical annulus in W1 whose
other boundary curve is a meridian for Km . If A is boundary parallel then either it can be eliminated, thus reducing the
intersection, or C is contained in the solid torus determined by the boundary parallelism. In this case C is parallel, using
condition (1), on Σ to α2 and hence to α1 and thus to a meridian of Km .

Assume that A is not boundary parallel (the boundary compressing disk D for A may meet C ). Now boundary com-
pressing A in Σ gives an essential disk for Σ disjoint from α1. Hence the knot Km is weakly γ -primitive. This contradicts
Theorem 4.8.

We are left with the possibility that around each of p1 and p2 there is at most one curve of intersection of
(Σ − N(C)) ∩ P . Since Σ separates and both punctures are in W1 there must be a single curve of intersection around
each puncture.

We conclude therefore that there are exactly two curves of intersection, α1 around p1 and α2 around p2. This implies
that there is an incompressible pair of pants P ′ ⊂ P properly embedded in W2 − N(C) so that ∂ P ′ = {α1,α2, C}. Choose AC

that minimizes the intersection P ′ ∩ AC . There are no arcs of intersection with end points on C as both AC and P ′ have
slope 0. There are no inessential arcs of intersection on P ′ with end points on α1 or α2. As all the arcs of intersection are
inessential on AC we can cut and paste to create another AC with fewer intersections. Hence all arcs are essential in P ′ .
Choose an outermost arc β in AC . Boundary compress P ′ along that outermost sub-disk in AC . If the arc β joins α1 to α2
then the intersection of P and Σ is reduced by one. If β joins α1 to itself then boundary compressing will initially increase
the number of curves in P ∩ Σ but create a concentric annulus which can be eliminated as above. This reduces the total
number of curves of intersection.

So we conclude that there are no concentric (α type) curves around p1 or p2. Using the annulus AC push the curve C
onto Σ . That is P ∩ Σ = C .

An application of the following lemma finishes the proof of the theorem:

Lemma 4.14. If P ∩ (Σ − N(C)) = ∅ then Σ is isotopic to the middle Heegaard splitting Σmid of S3 − N(Km).

Proof. The unknotted curve C ⊂ S3 bounds a disk Δ ⊂ S3 which contains the pair of pants P so that C = ∂Δ ⊂ ∂ P . The
disk Δ is a compressing disk for the solid torus V = S3 − N(C). If we cut V along Δ we obtain a 2-tangle (B, T ) with two
marked disks Δ1 and Δ2 each containing two points corresponding to Km ∩ Δ.

Let Σ be a genus two Heegaard splitting for S3 − N(Km). We can assume by the above discussion that the curve C is
contained in Σ as a non-separating curve. Thus cutting V along Δ induces a cutting of Σ along C . Hence the tangle (B, T )

contains the twice punctured torus Σ − N(C) so that ∂(Σ − N(C)) = ∂Δ1 ∪ ∂Δ2.
The pair of pants P is boundary compressible in V , as the only non-boundary compressible surfaces in a compression

body are vertical annuli and disks. After boundary compressing P we get two vertical annuli with boundary curves C1
and C2 on Σ . These vertical annuli are contained in respective disks δ1 and δ2 in the component of B − (Σ − N(C)) which
contain the strings t1, t2 of T . Note that δi ∩ ti is a single point for each i = 1,2. The set of curves {C, C1, C2} determines
a pair of pants decomposition P1, P2 for Σ .

Claim 4.15. The pair of pants P i , i = 1,2, is isotopic in B − N(T ) to Δi − N(T ), i = 1,2.

Proof. From the construction it follows immediately that one of the pair of pants, say P2, is isotopic in B − N(T ) to P and
in particular to Δ2 − N(T ).

Consider Δ1 ∪ (P1 ∪ δ1 ∪ δ2) ⊂ B . It is a four times punctured 2-sphere Ŝ ⊂ (S3, Km). The sphere Ŝ decomposes Km into
two 2-tangles (B1, T1) and (B2, T2) where Km = T1 + T2. Since Km is a tunnel number one knot it follows from [15] that
Km is doubly prime so it does not contain a Conway sphere and hence Ŝ is compressible in S3 − N(Km) and in particular it
is compressible in either (B1, T1) or (B2, T2). Note that the compressing disk must separate the strings. This implies by [20]
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that at least one of the tangles, say (B1, T1), is a rational tangle. If the compressing disk for Ŝ meets Δ1 in a single arc, i.e.,
(B1, T1), is an integer tangle in the terminology of [19], we are done as then we can use the compression disk to guide the
isotopy between (P1 ∪ δ1 ∪ δ2) and P . So assume it does not, i.e., the rational tangle is not an integer tangle.

Note that Km can be decomposed into a non-trivial sum of two 2-tangles as above if and only the underlying torus
knot T (7,17) can. Now consider the cabling annulus A ⊂ S3 − N(T (7,17)). When we remove N(C) from S3 − N(T (7,17))

to obtain S3 − N(L(7,17) A is punctured twice. Denote this twice punctured annulus by Â. The intersection P ∩ Â consists
of three arcs one an essential arc of A and the other two arcs run between ∂ A and ∂N(C).

When we cut the solid torus V = S3 − N(C) along P , Â is cut as well. The result is a disk A′ = Â − P . Note that A′ ⊂ B .
Note also that there are sub-arcs of ∂ A′ that are on the two strands of the tangle T ⊂ B .

If we choose A that minimizes the intersection Ŝ ∩ A then the intersection Ŝ ∩ A′ cannot contain simple closed curves.
This follows since A does not contain simple closed curves which are homologous to a sum of meridians of T (7,17) and
inessential simple closed curves on A ∩ Ŝ also bound disks on Ŝ and hence can be eliminated since B is irreducible. Thus
Ŝ ∩ A is a collection of arcs and hence A′ � Ŝ is a collection of disk components.

As the curves C1 and C2 are meridional curves and Ŝ is embedded, it follows that of all the arcs in Ŝ ∩ A′ exactly two
arcs, one on P1 and one on Δ1, run between the two different meridional curves on P1 and Δ1, respectively. Hence one
of the above disk components, say A′′ , is contained in (B1, T1) and runs between the strands of T1. This is a contradiction
as since T1 is a non-integer rational tangle (B1, T1) cannot contain such a disk A′′ . It follows that T1 is an integer tangle
and P1 is isotopic into P . �

We claim, however, that in fact Pi , i = 1,2, is isotopic in B − N(T ) to Δi − N(T ), i = 1,2, respectively. As if say, P1 is
isotopic to Δ2 then the two pairs of pants P1 and P2 are parallel in the rational tangle (B2, T2), as above, which must
contain P2 as a sub-disk. Hence Σ would be a genus two surface determining a handlebody component which contains
two meridional curves as cores. If this surface is a Heegaard surface then the fundamental group of E(T (7,17)) can be
generated by two elements represented by meridians. This contradicts the classification of generating systems of these
groups (see [6]).

Hence there is a unique way to tube two copies of P so that the resulting surface is disjoint from Δ. Thus the construc-
tion of any twice punctured torus in (B, T ) is unique up to isotopy in B − N(T ) and are all isotopic to the twice punctured
torus since Σmid − N(C). Thus Σ is isotopic to Σmid and the proof of the lemma is complete. �

This finishes the proof of the theorem. �
In order to prove the uniqueness of the minimal Heegaard splitting in case (I), we used the fact that Km =

T (7,17,2,10m − 4) is not μ-primitive. D. Heath and H.-J. Song prove in [4] that the pretzel knot P (−2,3,7) has four
non-isotopic tunnels. It is well known that it is μ-primitive. Hence the following conjecture seems plausible:

Conjecture 4.16. All knot exteriors E(K ), where K = T (p,q,2, r) and K is not μ-primitive, have a unique (minimal) genus two
Heegaard splitting.

5. Boundary stabilization and reducibility

In this section we show how the results above can be put together to obtain candidates for manifolds with a non-minimal
genus, weakly reducible and non-stabilized Heegaard splittings.

It is a generally accepted rule amongst those doing research on Heegaard splittings that Heegaard splittings of small
genus are easier to handle than those of large genus. Furthermore since we are dealing with questions of reducibility there is
an advantage to dealing with Heegaard splittings of manifolds with boundary. Having a boundary implies that the Heegaard
splitting is composed from either one or two compression bodies. The possibilities for disks inside compression bodies are
more restricted then those for handlebodies of the same genus, hence deciding whether a reducing pair of disks exists or
not might be more tractable.

Since we are trying to prove a negative, i.e., that a Heegaard splitting is not stabilized, we are forced into a proof by
contradiction. Hence the argument can be expected to follow, more or less, the following theme:

Let M be a 3-manifold of genus g . Assume that M has a weakly reducible Heegaard splitting which is stabilized of genus
g + n, n � 1. Destabilize it to obtain an irreducible Heegaard splitting and somehow obtain a contradiction. If we can find
a manifold which has a unique minimal Heegaard splitting and a weakly reducible Heegaard splitting of genus g + 1 we
would have the additional option of getting a contradiction by showing that the surface we obtain after the destabilization
cannot possibly be isotopic to the unique minimal genus Heegaard surface.

To sum up, we are looking for preferably, a tunnel number one knot K ⊂ S3 so that E(K ) has a genus three weakly
reducible Heegaard splitting and a unique genus two Heegaard splitting. An obvious place to look for weakly reducible
Heegaard splittings is Heegaard splittings which are amalgamated.

Consider now the exterior E(Km) for a knot Km = T (7,17,10m − 4). It has a unique minimal Heegaard splitting (V , W ),
where V is the compression body, of genus two. Boundary stabilize (V , W ) by amalgamating (V , W ) with the standard
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genus two Heegaard splitting of a collar of ∂−V , which is just T 2 × I (see [17]). This operation is defined and discussed
in detail in [9, Definitions 2.2 and 2.3]. We obtain a weakly reducible genus three Heegaard splitting for E(Km). By Theo-
rem 4.6 of [9] if a Heegaard splitting of a knot exterior E(K ) is γ -primitive for any curve γ ⊂ ∂ E(K ) then the boundary
stabilized Heegaard splitting is a stabilization, i.e., the boundary stabilized Heegaard splitting contains a reducing pair of
disks. However, Km is not μ-primitive by [11] and not γ -primitive (γ �= μ) by Theorem 4.4. Hence the obvious ways for the
boundary stabilized Heegaard splitting (V ′, W ′) of E(Km) to be stabilized fail. We state:

Conjecture 5.1. The boundary stabilized genus three Heegaard splitting (V ′, W ′) of the unique minimal genus two Heegaard splitting
(V , W ) of E(Km), where Km = T (7,17,2,10m − 4), is non-stabilized.

Remark 5.2. If we assume in contradiction that (V ′, W ′) is indeed stabilized, then the surface Σ ′′ obtained by destabilizing
the Heegaard surface Σ ′ = ∂+V ′ = ∂+W ′ is ambient isotopic to the Heegaard surface Σ = ∂+V = ∂+W .

There is an additional benefit for proving Conjecture 5.1:
It is a well-known theorem of Casson–Gordon (see [1]) that if a closed irreducible orientable 3-manifold has a weakly

reducible Heegaard splitting then it is Haken. It is a natural question whether this theorem can be extended to manifolds
with boundary. In [16] the second author gave the first examples of manifolds with three or more boundary components
which have weakly reducible and non-stabilized minimal genus Heegaard splittings so that when the Heegaard surface is
weakly reduced the surface obtained is non-essential. This result was improved by the authors, in [9], to manifolds with
just two boundary components. It is still an open question if such an example exists for manifolds with a single boundary
component.

Thus, Conjecture 5.1 would rule out the possible extension of the Casson–Gordon theorem [1] to manifolds with a single
boundary component as follows:

Since (V ′, W ′) is of genus three and is weakly reducible, then after weakly reducing we can obtain either an essential
2-sphere or an essential torus. We cannot have an essential 2-sphere in a knot space as they are K (π1,1)’s. Since E(Km) is
hyperbolic by Proposition 4.3 any incompressible torus must be boundary parallel. This rules out the possible extension of
a “Casson–Gordon” theorem to manifolds with a single boundary component.
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