30 research outputs found

    Modularity of Convergence and Strong Convergence in Infinitary Rewriting

    Full text link
    Properties of Term Rewriting Systems are called modular iff they are preserved under (and reflected by) disjoint union, i.e. when combining two Term Rewriting Systems with disjoint signatures. Convergence is the property of Infinitary Term Rewriting Systems that all reduction sequences converge to a limit. Strong Convergence requires in addition that redex positions in a reduction sequence move arbitrarily deep. In this paper it is shown that both Convergence and Strong Convergence are modular properties of non-collapsing Infinitary Term Rewriting Systems, provided (for convergence) that the term metrics are granular. This generalises known modularity results beyond metric \infty

    Weak convergence and uniform normalization in infinitary rewriting

    Get PDF
    We study infinitary term rewriting systems containing finitely many rules. For these, we show that if a weakly convergent reduction is not strongly convergent, it contains a term that reduces to itself in one step (but the step itself need not be part of the reduction). Using this result, we prove the starkly surprising result that for any orthogonal system with finitely many rules, the system is weakly normalizing under weak convergence if{f} it is strongly normalizing under weak convergence if{f} it is weakly normalizing under strong convergence if{f} it is strongly normalizing under strong convergence. As further corollaries, we derive a number of new results for weakly convergent rewriting: Systems with finitely many rules enjoy unique normal forms, and acyclic orthogonal systems are confluent. Our results suggest that it may be possible to recover some of the positive results for strongly convergent rewriting in the setting of weak convergence, if systems with finitely many rules are considered. Finally, we give a number of counterexamples showing failure of most of the results when infinite sets of rules are allowed

    Termination of Narrowing: Automated Proofs and Modularity Properties

    Full text link
    En 1936 Alan Turing demostro que el halting problem, esto es, el problema de decidir si un programa termina o no, es un problema indecidible para la inmensa mayoria de los lenguajes de programacion. A pesar de ello, la terminacion es un problema tan relevante que en las ultimas decadas un gran numero de tecnicas han sido desarrolladas para demostrar la terminacion de forma automatica de la maxima cantidad posible de programas. Los sistemas de reescritura de terminos proporcionan un marco teorico abstracto perfecto para el estudio de la terminacion de programas. En este marco, la evaluaci on de un t ermino consiste en la aplicacion no determinista de un conjunto de reglas de reescritura. El estrechamiento (narrowing) de terminos es una generalizacion de la reescritura que proporciona un mecanismo de razonamiento automatico. Por ejemplo, dado un conjunto de reglas que denan la suma y la multiplicacion, la reescritura permite calcular expresiones aritmeticas, mientras que el estrechamiento permite resolver ecuaciones con variables. Esta tesis constituye el primer estudio en profundidad de las propiedades de terminacion del estrechamiento. Las contribuciones son las siguientes. En primer lugar, se identican clases de sistemas en las que el estrechamiento tiene un comportamiento bueno, en el sentido de que siempre termina. Muchos metodos de razonamiento automatico, como el analisis de la semantica de lenguajes de programaci on mediante operadores de punto jo, se benefician de esta caracterizacion. En segundo lugar, se introduce un metodo automatico, basado en el marco teorico de pares de dependencia, para demostrar la terminacion del estrechamiento en un sistema particular. Nuestro metodo es, por primera vez, aplicable a cualquier clase de sistemas. En tercer lugar, se propone un nuevo metodo para estudiar la terminacion del estrechamiento desde un termino particular, permitiendo el analisis de la terminacion de lenguajes de programacion. El nuevo metodo generaliza losIborra López, J. (2010). Termination of Narrowing: Automated Proofs and Modularity Properties [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/19251Palanci

    The Role of Term Symmetry in E-Unification and E-Completion

    Get PDF
    A major portion of the work and time involved in completing an incomplete set of reductions using an E-completion procedure such as the one described by Knuth and Bendix [070] or its extension to associative-commutative equational theories as described by Peterson and Stickel [PS81] is spent calculating critical pairs and subsequently testing them for coherence. A pruning technique which removes from consideration those critical pairs that represent redundant or superfluous information, either before, during, or after their calculation, can therefore make a marked difference in the run time and efficiency of an E-completion procedure to which it is applied. The exploitation of term symmetry is one such pruning technique. The calculation of redundant critical pairs can be avoided by detecting the term symmetries that can occur between the subterms of the left-hand side of the major reduction being used, and later between the unifiers of these subterms with the left-hand side of the minor reduction. After calculation, and even after reduction to normal form, the observation of term symmetries can lead to significant savings. The results in this paper were achieved through the development and use of a flexible E-unification algorithm which is currently written to process pairs of terms which may contain any combination of Null-E, C (Commutative), AC (Associative-Commutative) and ACI (Associative-Commutative with Identity) operators. One characteristic of this E-unification algorithm that we have not observed in any other to date is the ability to process a pair of terms which have different ACI top-level operators. In addition, the algorithm is a modular design which is a variation of the Yelick model [Ye85], and is easily extended to process terms containing operators of additional equational theories by simply plugging in a unification module for the new theory

    Anti-Pattern Matching Modulo

    Get PDF
    International audienceNegation is intrinsic to human thinking and most of the time when searching for something, we base our patterns on both positive and negative conditions. In a previous work, we have extended the notion of term to the one of anti-term that may contain complement symbols. Matching such anti-terms against terms has the nice property of being unitary. Here we generalize the syntactic anti-pattern matching to anti-pattern matching modulo an arbitrary equational theory E, and we study the specific and practically very useful case of associativity, possibly with a unity (AU). To this end, based on the syntacticness of associativity, we present a rule-based associative matching algorithm, and we extend it to AU. This algorithm is then used to solve AU anti-pattern matching problems. This allows us to be generic enough so that for instance, the AllDiff standard predicate of constraint programming becomes simply expressible in this framework. AU anti-patterns are implemented in the Tom language and we show some examples of their usage

    Planning for behaviour-based robotic assembly: a logical framework

    Get PDF
    corecore