79,758 research outputs found

    Identifying hidden contexts

    Get PDF
    In this study we investigate how to identify hidden contexts from the data in classification tasks. Contexts are artifacts in the data, which do not predict the class label directly. For instance, in speech recognition task speakers might have different accents, which do not directly discriminate between the spoken words. Identifying hidden contexts is considered as data preprocessing task, which can help to build more accurate classifiers, tailored for particular contexts and give an insight into the data structure. We present three techniques to identify hidden contexts, which hide class label information from the input data and partition it using clustering techniques. We form a collection of performance measures to ensure that the resulting contexts are valid. We evaluate the performance of the proposed techniques on thirty real datasets. We present a case study illustrating how the identified contexts can be used to build specialized more accurate classifiers

    Certified Algorithms: Worst-Case Analysis and Beyond

    Get PDF
    In this paper, we introduce the notion of a certified algorithm. Certified algorithms provide worst-case and beyond-worst-case performance guarantees. First, a ?-certified algorithm is also a ?-approximation algorithm - it finds a ?-approximation no matter what the input is. Second, it exactly solves ?-perturbation-resilient instances (?-perturbation-resilient instances model real-life instances). Additionally, certified algorithms have a number of other desirable properties: they solve both maximization and minimization versions of a problem (e.g. Max Cut and Min Uncut), solve weakly perturbation-resilient instances, and solve optimization problems with hard constraints. In the paper, we define certified algorithms, describe their properties, present a framework for designing certified algorithms, provide examples of certified algorithms for Max Cut/Min Uncut, Minimum Multiway Cut, k-medians and k-means. We also present some negative results

    A Study of NK Landscapes' Basins and Local Optima Networks

    Get PDF
    We propose a network characterization of combinatorial fitness landscapes by adapting the notion of inherent networks proposed for energy surfaces (Doye, 2002). We use the well-known family of NKNK landscapes as an example. In our case the inherent network is the graph where the vertices are all the local maxima and edges mean basin adjacency between two maxima. We exhaustively extract such networks on representative small NK landscape instances, and show that they are 'small-worlds'. However, the maxima graphs are not random, since their clustering coefficients are much larger than those of corresponding random graphs. Furthermore, the degree distributions are close to exponential instead of Poissonian. We also describe the nature of the basins of attraction and their relationship with the local maxima network.Comment: best paper nominatio

    Clustering in Hilbert space of a quantum optimization problem

    Full text link
    The solution space of many classical optimization problems breaks up into clusters which are extensively distant from one another in the Hamming metric. Here, we show that an analogous quantum clustering phenomenon takes place in the ground state subspace of a certain quantum optimization problem. This involves extending the notion of clustering to Hilbert space, where the classical Hamming distance is not immediately useful. Quantum clusters correspond to macroscopically distinct subspaces of the full quantum ground state space which grow with the system size. We explicitly demonstrate that such clusters arise in the solution space of random quantum satisfiability (3-QSAT) at its satisfiability transition. We estimate both the number of these clusters and their internal entropy. The former are given by the number of hardcore dimer coverings of the core of the interaction graph, while the latter is related to the underconstrained degrees of freedom not touched by the dimers. We additionally provide new numerical evidence suggesting that the 3-QSAT satisfiability transition may coincide with the product satisfiability transition, which would imply the absence of an intermediate entangled satisfiable phase.Comment: 11 pages, 6 figure
    corecore