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Abstract. In this study we investigate how to identify hidden contexts
from the data in classification tasks. Contexts are artifacts in the data,
which do not predict the class label directly. For instance, in speech recog-
nition task speakers might have different accents, which do not directly
discriminate between the spoken words. Identifying hidden contexts is
considered as data preprocessing task, which can help to build more ac-
curate classifiers, tailored for particular contexts and give an insight into
the data structure. We present three techniques to identify hidden con-
texts, which hide class label information from the input data and parti-
tion it using clustering techniques. We form a collection of performance
measures to ensure that the resulting contexts are valid. We evaluate
the performance of the proposed techniques on thirty real datasets. We
present a case study illustrating how the identified contexts can be used
to build specialized more accurate classifiers.

1 Introduction

In classification tasks some variables directly predict the class label, others can
describe context. Contexts are artifacts in the data, which do not directly predict
the class label, like accent in speech recognition. Taking contexts into the learning
process can help to build more specialized and accurate classifiers [2], solve
sample selection bias [12], concept drift [17] problems.

Context may not necessarily be present in a form of a single variable in the
feature space. To recover hidden contexts the input data can be clustered [5,9,15].
The problem is, that clustering can capture some class label information, which
would shade away the contexts. Consider a diagnostics task, where patient tests
are taken by two pieces of equipment, which are calibrated differently. If we
cluster patient data, the resulting clusters might correspond to ’healthy’ and
’sick’ (which are the classes) or ’sample taken by equipment A’ and ’sample
taken by equipment B’ (which is a context), but likely a mix of both. Thus, to
capture context specific information, we intend to force independence between
contexts and class labels. In addition, capturing noise is undesired, therefore the
resulting contexts need to be non-random and stable.

Context identification has predictive and descriptive goals. Grouping the data
provides an opportunity to achieve more accurate classification employing con-
text handling strategies, as well as better understand the phenomenon behind
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Fig. 1. An example of two contexts.

the data. Context identification can be considered as a preprocessing step in su-
pervised learning, like feature selection, instance selection, or recovering missing
values. We aim for a filter approach, where contexts are generic, not tied with a
particular handling strategy.

In this study we propose three techniques for identifying hidden contexts,
which force independence between the contexts and class labels. The objective
is to output an explicit grouping of the data. We require the grouping to ignore
the class label information. Thus, we aim to hide class discriminatory information
before partitioning. These techniques can be used in different context handling
strategies or for forming new ones.

We analyze the performance of the proposed techniques on thirty real datasets.
We also present a case study, which illustrates one example strategy for handling
the identified contexts in classification.

The paper is organized as follows. Section 2 defines context. Section 3 dis-
cusses related work. In Section 4 we propose three techniques for identifying
hidden contexts. Sections 5 and 6 present experimental evaluation. Section 7
concludes the study.

2 Problem set-up

Consider a classification problem in p-dimensional space. Given a set of instances
with labels (X ∈ X ,y ∈ Y) the task is to produce a classifier h : X → Y. In
this study we define context as a secondary label z of an instance X, which
is independent from the class label y, but can explain the class label better
when used together with the predictive features. That is, p(y|z) = p(y), but
p(y|X∗, z) 6= p(y|X∗), where X∗ ⊆ X. Context might be expressed as a variable
in the feature space (known context) or as a latent variable (unknown context).

Consider as a toy example a task, where a patient is diagnosed ’sick’ or
’healthy’ based on the body temperature. It is known that in the evening people
tend to have higher temperature independently of being sick or healthy. If we
know the context, i.e. whether the temperature was measured in the morning
or in the evening, diagnostic task is easy, as illustrated in Figure 1. However, if
the time is unknown, then diagnosing becomes problematic. The time itself is
independent from the class label, stand alone it does not diagnose.
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Some more examples of context include accent in speech recognition, light in
image recognition, seasonality in sales prediction, weekday in electricity load or
bus travel time prediction, industry crisis in credit scoring.

The context label may be directly observable or hidden, depending on the
application. Hidden context variable z is not explicitly present as a feature x
in the feature space X , but information about it is assumed to be captured in
the feature space X , i.e. z = f(X), X ∈ X . An example of directly observable
context is time. Customer segments in marketing tasks or bankruptcy prediction
represent hidden context. Different segments might have different behavior.

Evaluation of the identified contexts is not straightforward. Different context
handling strategies can lead to different gains or losses in the classification accu-
racies, which are not necessarily due to good or bad context identification. We
require the resulting contexts to be independent from the class labels, valid (not
random grouping of the data) and stable on random subsamples of the same
data. The criteria to measure these aspects are formulated in Section 5.

3 Positioning within related work

Context-awareness is widely used in ubiquitous and pervasive computing to char-
acterize the environmental variables [14]. In machine learning the term usually
characterizes the features that do not determine or influence the class of an ob-
ject directly [2, 15]. A wide body of literature on concept drift considers only
time context [7, 17]. Typically contexts assumed to be known. Mixture models
(see [4]) can be considered as an approach to identify hidden contexts.

Our context identification techniques are novel as they force independency
from the class labels. A need for such approaches was mentioned before in a light
of context handling strategies [16] and multiple classifier systems [3]. Turney [16]
formulated the problem of recovering implicit context information and proposed
two techniques: input data clustering and time sequence (which we leave out of
the scope assuming that the chronological order is unknown). Turney expressed
a concern that clustering might capture class label information and indicated a
need for further research, our work can be seen as a follow up.

A recent work by Dara et al [3] explores the relation between the characteris-
tics of data partitions and final model accuracy in multiple classifier systems. The
work experimentally confirms the benefits of partitions which are not correlated
with the class labels. These results support the motivation of our work.

As a result of their analysis Dara et al [3] propose a semi-randomized par-
titioning strategy to cluster and then swap some instances across the clusters,
which can be seen as a mixture of clustering and boosting. We excluded this strat-
egy from our investigations after preliminary experiments, since even though it
pushes towards independence in class labels within the partitions (which is our
objective as well), due to randomization the procedure of assigning an unseen
instance to one of the partitions can no longer be deterministic.

Extracting hidden context is related to the context handling strategies [16].
The strategies are not limited to building a separate classifier or a combination
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Fig. 2. An illustration of Overlay technique.

for each context. Contextual information can be also used to adjust the input
data, model parameters or model outputs. Analysis of the performance of dif-
ferent handling strategies is out of the cope of this study. The identified and
validated contexts can be used as building blocks to handling strategies.

4 Three techniques for identifying hidden contexts

In this section we present techniques for identifying hidden contexts. Given a
dataset, the task is to allocate the instances into k groups, so that the data
within the groups is related, but the groups are not related to the class labels.

Context identification techniques require two mechanisms: (1) how to group
the training data X into k contexts and (2) how to assign an unseen instance
X 6∈ X to one of the contexts.

Clustering (CLU) of the input data is the baseline technique to identify
hidden contexts, when building local models [5, 9–11]. The procedure is sum-
marized in Figure 4. Clustering captures closeness of the data instances in the
feature space. For classification tasks the feature space is typically formed with an
intention to predict the class labels. If class membership information is strongly
present in the data, clustering is likely to capture it as well.

To overcome this issue we propose Overlay (OVE) technique. To hide the
label information we move the classes on top of each other, as illustrated in
Figure 2, by normalizing each class to zero mean. The technique assumes that
class discriminatory information lies in the class means. We cluster the overlayed
data to extract contexts. Unfortunately, for the incoming new data we cannot
do overlay, because the labels are unknown. We solve this by introducing a su-
pervised context learning. Given the instances X we treat the obtained contexts
z as labels and learn a classifier z = KOVE (X). We use the diagonal linear
discriminant [4] as a classifier KOVE . The procedure is summarized in Figure 4.

Overlay technique is based on the assumption that the class distributions are
symmetric across different contexts, which often might not be true. We generalize
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Fig. 3. An illustration of Projection technique.

Overlay by introducing Projection (PRO) technique, which rotates the data
to hide the class label information. The idea is opposite to Linear Discriminant
Analysis (LDA) [4]. The goal is to find a transformation that minimizes between-
class variance and maximizes within-class variance, see Figure 3.

We seek to find a transformation w to obtain a projection x̆ = w′X. Within-
class ci covariance is s2i =

∑
yj=ci

(Xj − µi)(Xj − µi)
′, where µi is the class

mean. The total within class covariance is Ss := s21 +s22 + . . .+s2c . Between-class
covariance is Sb := 1

c

∑c
i=1(µi−µ)(µi−µ)′, where µ is the mean of all the data.

In LDA Fisher criterion J(w) = w′Sbw
w′Ssw

is maximized. We minimize it. The

problem transforms into eigenvalue decomposition S−1s Sbw = λw. We choose
the eigenvector w corresponding to the smallest eigenvalue minλ. To determine
contexts z, we transform the training data into 1D space x̆ = w′X and simply
split the range of values into k equal intervals (like slicing a loaf of bread). An
unseen instance X is transformed into 1D x̆ = wX and assigned a context, based
on the interval, to which it falls into. The procedure is presented in Figure 4.

In addition to Overlay and Projection, we explore Feature underselection
(FUS) technique, which discards the features, that are the most correlated with
the class label, and clusters the remaining features. It is described in Figure 4.

All the presented techniques assume that k is given. In the case study (Sec-
tion 6) we will show, how k can be determined using the stability criterion.

5 Experimental Evaluation

The goal of the experiments is to compare the introduced techniques in terms
of the desired properties: not to capture the class labels, at the same time con-
trolling, that the resulting partitions are valid and stable.
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Clustering (CLU)
input: dataset X; number of contexts k.
output: context labels z; the rule for assigning unseen instancesz = KCLU (X).

1. Cluster the dataset to obtain contexts z = clust(X, k), where clust(., k) is any
distance based clustering algorithm.

2. Fix the rule for unseen instances KCLU (X) : z = arg mini=1..k dist(X,Ci), where
C1, . . . , Ck ∈ X are the resulting cluster centers and dist() is a distance function
corresponding to the chosen clustering algorithm.

Overlay (OVE)
input: labeled dataset (X,y); number of contexts k.
output: context z; rule for unseen instances z = KOVE (X).

1. Split X into c groups: Xj ∈ Xi if yj = i,∀X ∈ X, c is the number of classes.
2. Shift each class to zero mean: for i = 1 . . . c X̂i = Xi − µi, where µi is the mean

of class ci.
3. Overlay the classes X̂ = {X̂1 ∪ . . . ∪ X̂c}.
4. Cluster X̂ to obtain the contexts z = clust(X̂, k).
5. Learn a classifier z = KOVE (X) using X as input data and z as labels.

Projection (PRO)
input: labeled dataset (X,y); number of contexts k.
output: context z; rule for unseen instances z = KPRO(X).

1. Find a transformation vector w, corresponding to the smallest eigenvalue minλ
in S−1

s Sbw = λw, where Ss is within-class covariance and Sb is between-class
covariance.

2. Transform into 1D space: x̆ = w′X.
3. For j = 1 . . . k find the intervals rj = x̆min + q(j− 1), where q = (x̆max− x̆min)/k.
4. Find context labels z = j|x̆ ∈ rj , ∀x̆ ∈ x̆.
5. Fix the rule KPRO(X) : z = j|x̆ ∈ rj , x̆ = w′X.

Feature underselection (FUS)
input: labeled dataset (X,y); a number of contexts k; number of features to select m.
output: context z; rule for unseen instances z = KFUS (X).

1. For i = 1 . . . p find ρi = corr(xi,y), where p is the dimensionality, xi is the ith

dimension of the data.
2. Sort correlations: |ρi1| ≤ |ρi2| ≤ . . . ≤ |ρip|.
3. Pick m dimensions, the least correlated with class labels: X̃ = (xi1xi2 . . .xim)′.
4. Cluster X̃ to obtain the contexts z = clust(X̃, k).
5. Fix the rule KFUS (X) : z = arg mini=1..k dist(X̃, C̃i), where X̃ = (xi1xi2 . . . xim)′

and C̃1, . . . , C̃k ∈ X̃ .

Fig. 4. Techniques for finding hidden contexts.
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5.1 Evaluation criteria

To measure the three desired characteristics (independence from the class labels,
validity and stability) we adopt metrics commonly used in clustering evaluation.

For measuring independence between the labels and the identified con-
texts, we employ Normalized Mutual Information (NMI), which is widely used
to assess clustering performance [18]. It evaluates the purity of clusters with re-
spect to class labels. For the context identification task low NMI is desired. For
two random variables y and z NMI (y, z) = I(y, z)/

√
H(y)H(z), where I(y, z)

is the mutual information, H(x) and H(z) are the respective entropies. Note,
that NMI ∈ [0, 1] and NMI(y,y) = 1. Given the context assignments z and
the respective class labels y, the NMI is estimated [18] as

NMI (y, z) =
Σk

l=1Σ
c
h=1Nlh log nNlh

nln̂h√
(Σk

l=1nl log nl

n )(Σc
h=1n̂h log n̂h

n )
, (1)

where nl is the number of data instances contained in the cluster Cl (1 ≤ l ≤ k),
n̂h is the number of instances belonging to the class h (1 ≤ h ≤ c), Nlh is the
number of instances that are in the intersection between the cluster Cl and the
class h, and n is the total number of instances.

Measuring validity. If we optimized only NMI, assigning instances to con-
texts at random would be the optimal solution. To control that the identified
contexts are not random, we require the identified context labels to be learnable
from the data. We use the Naive Bayes (NB) classifier. VAL(z|X) is the error
rate of NB using 10 fold cross validation, the smaller the better. We normalize it
w.r.t. random assignment of contexts NVAL(z|X) = VAL(z|X)/VAL(φ(k)|X),
where φ(k) is a set of contexts (k) assigned at random, thus NVAL ∈ [0, 1].

Measuring stability. In addition to independence and validity we want to
minimize the chance of overfitting the training data, which we measure using
the stability index for clustering proposed in [13]. The dataset X is at random
split into two sets of equal size {Xu ∪ Xv} = X. Each subset is clustered us-
ing the same clustering algorithm u = clustu(Xu), v = clustv(Xv), clustu()
and clustv() denotes fixed parameterizations resulting after clustering (e.g. clus-
ter centers in k-means). Then the fixed clustv() is applied to the subset Xu

to obtain alternative cluster assignment ù = clustv(Xu). If clustering is stable,
given a correct permutation u∗ = map(u) of cluster labels ù and u∗ should be
the same. The (in)stability index is the share of different cluster assignments
STA(u, ù) = 1

nΣ
n
i=11(ui = map(ùi)), where 1() = 1 if true, otherwise 0. The

smaller (in)stability (STA) the better. We normalize STA w.r.t. to random as-
signment to get NSTA ∈ [0, 1].

5.2 Datasets and experimental protocol

We test the techniques on thirty real classification datasets, which are diverse in
size, dimensionality, number of classes and the underlying problems they repre-
sent. The characteristics are summarized in Table 1. We do not expect all of the
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Table 1. Datasets: N - size, d - dimensionality, y - number of classes.

dataset N d y dataset N d y dataset N d y

balance1 625 4 3 shuttle21 14500 9 7 wis. cancer1 569 30 2
blood1 748 4 2 shuttle11 43500 9 7 luxembourgh4 1901 31 2

mammographic1 961 5 2 vowels1 990 10 11 king-rock-pawn1 3196 36 2
car1 1728 6 4 page blocks1 5473 10 5 connect-41 67557 42 3

elec2 [6] 44235 7 2 magic1 19020 10 2 marketing(c) [8] 8993 48 2
chess4 503 8 2 marketing(d) [8] 8993 13 2 brazil3 50000 49 2
pima1 768 8 2 adult1 32561 14 2 spam [8] 4601 57 2

nursery1 12960 8 5 australian1 690 15 2 ozone81 2534 72 2
tic-tac-toe1 958 9 2 vehicles1 846 18 4 ozone11 2536 72 2

contraceptive1 1473 9 3 german1 1000 24 2 user12 1500 100 2

datasets to have distinct underlying contexts and we do not know the true num-
ber of contexts. Thus, we use the stability measure in the evaluation to indicate
whether the found contexts are persistent in the data.

In the experiments we fix the number of contexts to k = 3 for all the datasets
(no specific reason). Feature underselection technique requires to specify the
number of features, we choose m = 5 for all the datasets. We normalize the
feature values of the input features to fall in the interval [0,1], add 1% random
noise and transform the data according to its principal components. Noise does
not distort class discriminatory information, neither it influences the allocation
of contexts. Noise and principal component rotation are needed to prevent ill
posed covariance matrixes of some high dimensional datasets.

We empirically explore and compare five techniques: OVE, PRO, FUS, CLU
and RAN. CLU is an ordinary clustering, which we use as the baseline method.
Overlay (OVE), Projection (PRO) and Feature underselection (FUS) are the
three context identification techniques introduced in this paper. RAN is a bench-
mark partitioning technique (sanity check), which assigns contexts uniformly at
random. In this study we use k-means as the base clustering technique.

5.3 Results

Table 2 presents the results aggregated into three groups based on the dimen-
sionality of the datasets: small (up to 10 features), medium (10-19 features) and
large (more than 20 features) and all together. The results are plotted in Fig-
ure 5, where each dot represent one dataset. The figure shows that in terms of
not capturing class labels (NMI) Overlay and Projection are doing well, while
Feature underselection and the baseline Clustering are doing not that well. High
NMI is consistent with higher validity, where Clustering outperforming the oth-
ers, as presented in Table 2.

1 UCI Irvine Machine Learning Repository http://archive.ics.uci.edu/ml/
2 Katakis http://mlkd.csd.auth.gr/concept_drift.html
3 PAKDD 2009 competition http://sede.neurotech.com.br:443/PAKDD2009/
4 Žliobaitė collection http://sites.google.com/site/zliobaite/resources-1
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Table 2. Summary of context identification results (the best in bold).

CLU OVE PRO FUS RAN CLU OVE PRO FUS RAN

all
NMI 0.12 0.02 0.05 0.03 0

small
NMI 0.13 0.02 0.06 0.05 0

val. 0.12 0.18 0.18 0.16 1 val. 0.05 0.11 0.15 0.08 1
stab. 0.36 0.38 0.59 0.53 1 stab. 0.43 0.45 0.63 0.49 1

large
NMI 0.09 0.01 0.01 0.01 0

med
NMI 0.13 0.05 0.11 0.03 0

val. 0.19 0.26 0.25 0.27 1 val. 0.11 0.17 0.11 0.14 1
sta. 0.32 0.37 0.50 0.67 1 sta. 0.29 0.28 0.68 0.38 1
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Fig. 5. Context identification results.

For all the techniques the validity deteriorates with increase in dimension-
ality. It can be expected, challenges of measuring distance in high dimensional
space has been widely acknowledged [1]. FUS technique demonstrates the worst
validity in high dimensional space. It can be explained by relatively low number
of the selected features (we fixed m = 5).

Clustering has the best validity and stability, but captures a part of class
discriminatory information, as expected, especially in low dimensional tasks.
Projection has fine independence, good validity but it is rather unstable. This
is mostly due to slicing of the resulting 1D projection. Likely, the resulting cut
points might be not optimal and induce instability.

Feature underselection has surprisingly low stability as well as mediocre va-
lidity in high dimensional tasks. This is explainable by a fixed number of features
m in our experiments (for comparability across datasets). In high dimensional
spaces the selected features make rather small share of all features and are thus
more likely to represent noise rather than context or predictive information.
Good news is that for designing individual context handling strategies that can
be resolved by manipulating m value.

Overlay has good independence and stability, while not so good but accept-
able validity. This is due to supervised learning procedure to assign context to
unseen instances. It introduces extra uncertainty, while the other techniques can
identify context for an unseen instance directly.

To sum, all three techniques avoid capturing class label information well and
show similar validity; in terms of stability, Overlay technique is preferable.
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Fig. 6. Determining the number of contexts for adult data.

6 Case study

The following case study illustrates how context information can be used to
benefit the final classification. We present it as a proof of concept rather than an
attempt to select the most accurate context handling strategy. The case study
focuses on determining the number of contexts (k) from the data and building
one local classifier for each context.

We use adult dataset (alphabetically). We consider it suitable because of two
reasons: the task (predicting income of a person) intuitively is context dependent
and the dataset is relatively large (> 30 th. instances).

We evaluate the accuracies using six base classifiers: decision tree (CART),
logistic regression, Naive Bayes, linear discriminant (LDA), neural network (with
4 hidden layers), 1-nearest neighbor (1NN), and a collection. Collection means
that the most accurate base classifier is selected from a pool of all but neural
network (as it performs well on its own). We run 10-fold cross validation.

We run four context identification techniques (CLU, OVE, PRO, FUS) using
different number of contexts k = 2 . . . 8. The resulting stabilities are presented
in Figure 6. Several strategies show the best stability at two contexts, then at
four and seven. This tendency is also visible from the two principal components
in the same figure. We choose to analyze k = 4 for this case study, since it is
more interesting because of a larger distinction from single context. For a full
picture, we also report the ranking of the techniques at k = 2 and k = 7.

How do we know that there are variable contexts at all? It can be concluded
from the stability test and the plot of principal components. If there were no
distinct contexts, the stability would be bad and the data in the principal com-
ponent plot would be mixed.

Set up. The simplest context handling strategy is to build one local classifier
for each context. We test how it works using the context labels identified by our
techniques. For comparison we include a random split into contexts (RAN) and
no split into contexts (ALL), which we use as baselines. We also add to the
tests an ensemble (ENS) of CLU, OVE, PRO, FUS and RAN, which makes
classification decision using simple majority voting.
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Table 3. Errors of local classifiers.

CLU OVE PRO FUS RAN ALL ENS

cart tree 19.62− 19.66− 19.60− 20.03− 20.44◦ 19.70 16.73•
log. reg. 16.51• 16.82• 17.43− 17.23• 17.45− 17.46 16.72•
n. bayes 19.28− 18.32• 19.02• 18.70• 19.31− 19.31 18.76•
LDA 21.62• 22.57• 22.30• 22.56• 23.28− 23.35 21.64•
neural n. 15.18• 15.79− 15.29• 15.83− 15.58• 15.91 15.06•
kNN 20.51− 20.62◦ 20.51− 20.54− 21.61◦ 20.50 20.47−
collection 19.86◦ 17.10• 18.71◦ 17.46− 17.52− 17.43 16.62•
mean 18.94 18.70 18.98 18.91 19.32 19.10 18.00

The testing errors are provided in Table 3. For the final evaluation, we average
over the errors of different classifiers. Statistical significance is tested using a
paired t-test. Symbol ’•’ means the technique is significantly better than the
baseline (ALL). symbol ’◦’ means the technique is significantly worse than the
baseline. Symbol ’−’ means no statistical difference.

In terms of accuracy CLU performs not bad, NMI score shows that it captures
not so much class label information on this data. Interestingly, RAN sometimes
outperforms ALL. It can be seen as a variant of boosting, though suffering from
small training sample. OVE and FUS performs on average better than CLU, it
is mainly due to bad performance of CLU on the last test (collection).

We find that an ensemble (ENS) is the best in terms of accuracy. It is sup-
ported by experiments with different number of contexts. The rankings are:
k = 2 ENS≺PRO≺FUS≺OVE≺ALL≺CLU≺RAN;
k = 4 ENS≺OVE≺FUS≺CLU≺PRO≺ALL≺RAN;
k = 7 ENS≺PRO≺ALL≺OVE≺FUS≺RAN≺CLU.

The scope of the study is to analyze context identification rather than explore
context handling strategies. Thus, we explore in depth only selection strategy and
do not claim that it is the best. We report it as an illustration, complementary
to the proposed identification techniques. It demonstrates, how the accuracy can
be improved having no domain knowledge about underlying contexts, starting
from identification of the number of contexts to training the actual classifiers.

7 Conclusion

Context identification techniques can be considered as a preprocessing step in
classification, aimed to improve the accuracy, as well as contribute to under-
standing of the data. We require the contexts to be independent from the class
labels, valid (non random) and stable.

We proposed three techniques for identifying hidden contexts from the data,
directed not to capture class discriminatory information. The experiments on
thirty datasets indicate that all the three techniques avoid capturing class label
information pretty well and show similar validity; in terms of stability Over-
lay technique is preferable. The case study illustrates the benefits of context
identification when used with classifier selection strategy.
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Our study opens a range of follow up research opportunities for context
handling strategies in static and dynamic (concept drift, discrimination aware
learning) settings.
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