10 research outputs found

    On the information ratio of non-perfect secret sharing schemes

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00453-016-0217-9A secret sharing scheme is non-perfect if some subsets of players that cannot recover the secret value have partial information about it. The information ratio of a secret sharing scheme is the ratio between the maximum length of the shares and the length of the secret. This work is dedicated to the search of bounds on the information ratio of non-perfect secret sharing schemes and the construction of efficient linear non-perfect secret sharing schemes. To this end, we extend the known connections between matroids, polymatroids and perfect secret sharing schemes to the non-perfect case. In order to study non-perfect secret sharing schemes in all generality, we describe their structure through their access function, a real function that measures the amount of information on the secret value that is obtained by each subset of players. We prove that there exists a secret sharing scheme for every access function. Uniform access functions, that is, access functions whose values depend only on the number of players, generalize the threshold access structures. The optimal information ratio of the uniform access functions with rational values has been determined by Yoshida, Fujiwara and Fossorier. By using the tools that are described in our work, we provide a much simpler proof of that result and we extend it to access functions with real values.Peer ReviewedPostprint (author's final draft

    On the Information Ratio of Non-Perfect Secret Sharing Schemes

    Get PDF
    A secret sharing scheme is non-perfect if some subsets of players that cannot recover the secret value have partial information about it. The information ratio of a secret sharing scheme is the ratio between the maximum length of the shares and the length of the secret. This work is dedicated to the search of bounds on the information ratio of non-perfect secret sharing schemes and the construction of efficient linear non-perfect secret sharing schemes. To this end, we extend the known connections between matroids, polymatroids and perfect secret sharing schemes to the non-perfect case. In order to study non-perfect secret sharing schemes in all generality, we describe their structure through their access function, a real function that measures the amount of information on the secret value that is obtained by each subset of players. We prove that there exists a secret sharing scheme for every access function. Uniform access functions, that is, access functions whose values depend only on the number of players, generalize the threshold access structures. The optimal information ratio of the uniform access functions with rational values has been determined by Yoshida, Fujiwara and Fossorier. By using the tools that are described in our work, we provide a much simpler proof of that result and we extend it to access functions with real values

    Optimal non-perfect uniform secret sharing schemes

    Get PDF
    A secret sharing scheme is non-perfect if some subsets of participants that cannot recover the secret value have partial information about it. The information ratio of a secret sharing scheme is the ratio between the maximum length of the shares and the length of the secret. This work is dedicated to the search of bounds on the information ratio of non-perfect secret sharing schemes. To this end, we extend the known connections between polymatroids and perfect secret sharing schemes to the non-perfect case. In order to study non-perfect secret sharing schemes in all generality, we describe their structure through their access function, a real function that measures the amount of information that every subset of participants obtains about the secret value. We prove that there exists a secret sharing scheme for every access function. Uniform access functions, that is, the ones whose values depend only on the number of participants, generalize the threshold access structures. Our main result is to determine the optimal information ratio of the uniform access functions. Moreover, we present a construction of linear secret sharing schemes with optimal information ratio for the rational uniform access functions.Peer ReviewedPostprint (author's final draft

    On the Information Ratio of Non-perfect Secret Sharing Schemes

    No full text
    A secret sharing scheme is non-perfect if some subsets of players that cannot recover the secret value have partial information about it. The information ratio of a secret sharing scheme is the ratio between the maximum length of the shares and the length of the secret. This work is dedicated to the search of bounds on the information ratio of non-perfect secret sharing schemes and the construction of efficient linear non-perfect secret sharing schemes. To this end, we extend the known connections between matroids, polymatroids and perfect secret sharing schemes to the non-perfect case. In order to study non-perfect secret sharing schemes in all generality, we describe their structure through their access function, a real function that measures the amount of information on the secret value that is obtained by each subset of players. We prove that there exists a secret sharing scheme for every access function. Uniform access functions, that is, access functions whose values depend only on the number of players, generalize the threshold access structures. The optimal information ratio of the uniform access functions with rational values has been determined by Yoshida, Fujiwara and Fossorier. By using the tools that are described in our work, we provide a much simpler proof of that result and we extend it to access functions with real values

    On the information ratio of non-perfect secret sharing schemes

    No full text
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00453-016-0217-9A secret sharing scheme is non-perfect if some subsets of players that cannot recover the secret value have partial information about it. The information ratio of a secret sharing scheme is the ratio between the maximum length of the shares and the length of the secret. This work is dedicated to the search of bounds on the information ratio of non-perfect secret sharing schemes and the construction of efficient linear non-perfect secret sharing schemes. To this end, we extend the known connections between matroids, polymatroids and perfect secret sharing schemes to the non-perfect case. In order to study non-perfect secret sharing schemes in all generality, we describe their structure through their access function, a real function that measures the amount of information on the secret value that is obtained by each subset of players. We prove that there exists a secret sharing scheme for every access function. Uniform access functions, that is, access functions whose values depend only on the number of players, generalize the threshold access structures. The optimal information ratio of the uniform access functions with rational values has been determined by Yoshida, Fujiwara and Fossorier. By using the tools that are described in our work, we provide a much simpler proof of that result and we extend it to access functions with real values.Peer Reviewe

    RESCUE: Evaluation of a Fragmented Secret Share System in Distributed-Cloud Architecture

    Get PDF
    Scaling big data infrastructure using multi-cloud environment has led to the demand for highly secure, resilient and reliable data sharing method. Several variants of secret sharing scheme have been proposed but there remains a gap in knowledge on the evaluation of these methods in relation to scalability, resilience and key management as volume of files generated increase and cloud outages persist. In line with these, this thesis presents an evaluation of a method that combines data fragmentation with Shamir’s secret sharing scheme known as Fragmented Secret Share System (FSSS). It applies data fragmentation using a calculated optimum fragment size and encrypts each fragment using a 256-bit AES key length before dispersal to cloudlets, the encryption key is managed using secret sharing methods as used in cryptography.Four experiments were performed to measure the scalability, resilience and reliability in key management. The first and second experiments evaluated scalability using defined fragment blocks and an optimum fragment size. These fragment types were used to break file of varied sizes into fragments, and then encrypted and dispersed to the cloud, and recovered when required. Both were used in combination of different secret sharing policies for key management. The third experiment tested file recovery during cloud failures, while the fourth experiment focused on efficient key management.The contributions of this thesis are of two ways: development of evaluation frameworks to measure scalability and resilience of data sharing methods; and the provision of information on relationships between file sizes and share policies combinations. While the first aimed at providing platform to measure scalability from the point of continuous production as file size and volume increase, and resilience as the potential to continue operation despite cloud outages; the second provides experimental frameworks on the effects of file sizes and share policies on overall system performance.The results of evaluation of FSSS with similar methods showed that the fragmentation method has less overhead costs irrespective of file sizes and the share policy combination. That the inherent challenges in secret sharing scheme can only be solved through alternative means such as combining secret sharing with other data fragmentation method. In all, the system is less of any erasure coding technique, making it difficult to detect corrupt or lost fragment during file recovery

    Cryptographic Techniques for Securing Data in the Cloud

    Get PDF
    El paradigma de la computació al núvol proporciona accés remot a potents infraestructures a cost reduït. Tot i que l’adopció del núvol ofereix nombrosos beneficis, la migració de dades sol requerir un alt nivell de confiança en el proveïdor de serveis i introdueix problemes de privacitat. En aquesta tesi es dissenyen tècniques per a permetre a usuaris del núvol protegir un conjunt de dades externalitzades. Les solucions proposades emanen del projecte H2020 de la Comissió Europea “CLARUS: User-Centered Privacy and Security in the Cloud”. Els problemes explorats són la cerca sobre dades xifrades, la delegació de càlculs d’interpolació, els esquemes de compartició de secrets i la partició de dades. Primerament, s’estudia el problema de la cerca sobre dades xifrades mitjançant els esquemes de xifrat cercable simètric (SSE), i es desenvolupen tècniques que permeten consultes per rangs dos-dimensionals a SSE. També es tracta el mateix problema utilitzant esquemes de xifrat cercable de clau pública (PEKS), i es presenten esquemes PEKS que permeten consultes conjuntives i de subconjunt. En aquesta tesi també s’aborda la delegació privada de computacions Kriging. Kriging és un algoritme d’interpolació espaial dissenyat per a aplicacions geo-estadístiques. Es descriu un mètode per a delegar interpolacions Kriging de forma privada utilitzant xifrat homomòrfic. Els esquemes de compartició de secrets són una primitiva fonamental en criptografia, utilitzada a diverses solucions orientades al núvol. Una de les mesures d’eficiència relacionades més importants és la taxa d’informació òptima. Atès que calcular aquesta taxa és generalment difícil, s’obtenen propietats que faciliten la seva descripció. Finalment, es tracta el camp de la partició de dades per a la protecció de la privacitat. Aquesta tècnica protegeix la privacitat de les dades emmagatzemant diversos fragments a diferents ubicacions. Aquí s’analitza aquest problema des d’un punt de vista combinatori, fitant el nombre de fragments i proposant diversos algoritmes.El paradigma de la computación en la nube proporciona acceso remoto a potentes infraestructuras a coste reducido. Aunque la adopción de la nube ofrece numerosos beneficios, la migración de datos suele requerir un alto nivel de confianza en el proveedor de servicios e introduce problemas de privacidad. En esta tesis se diseñan técnicas para permitir a usuarios de la nube proteger un conjunto de datos externalizados. Las soluciones propuestas emanan del proyecto H2020 de la Comisión Europea “CLARUS: User-Centered Privacy and Security in the Cloud”. Los problemas explorados son la búsqueda sobre datos cifrados, la delegación de cálculos de interpolación, los esquemas de compartición de secretos y la partición de datos. Primeramente, se estudia el problema de la búsqueda sobre datos cifrados mediante los esquemas de cifrado simétrico buscable (SSE), y se desarrollan técnicas para permitir consultas por rangos dos-dimensionales en SSE. También se trata el mismo problema utilizando esquemas de cifrado buscable de llave pública (PEKS), y se presentan esquemas que permiten consultas conyuntivas y de subconjunto. Adicionalmente, se aborda la delegación privada de computaciones Kriging. Kriging es un algoritmo de interpolación espacial diseñado para aplicaciones geo-estadísticas. Se describe un método para delegar interpolaciones Kriging privadamente utilizando técnicas de cifrado homomórfico. Los esquemas de compartición de secretos son una primitiva fundamental en criptografía, utilizada en varias soluciones orientadas a la nube. Una de las medidas de eficiencia más importantes es la tasa de información óptima. Dado que calcular esta tasa es generalmente difícil, se obtienen propiedades que facilitan su descripción. Por último, se trata el campo de la partición de datos para la protección de la privacidad. Esta técnica protege la privacidad de los datos almacenando varios fragmentos en distintas ubicaciones. Analizamos este problema desde un punto de vista combinatorio, acotando el número de fragmentos y proponiendo varios algoritmos.The cloud computing paradigm provides users with remote access to scalable and powerful infrastructures at a very low cost. While the adoption of cloud computing yields a wide array of benefits, the act of migrating to the cloud usually requires a high level of trust in the cloud service provider and introduces several security and privacy concerns. This thesis aims at designing user-centered techniques to secure an outsourced data set in cloud computing. The proposed solutions stem from the European Commission H2020 project “CLARUS: User-Centered Privacy and Security in the Cloud”. The explored problems are searching over encrypted data, outsourcing Kriging interpolation computations, secret sharing and data splitting. Firstly, the problem of searching over encrypted data is studied using symmetric searchable encryption (SSE) schemes, and techniques are developed to enable efficient two-dimensional range queries in SSE. This problem is also studied through public key encryption with keyword search (PEKS) schemes, efficient PEKS schemes achieving conjunctive and subset queries are proposed. This thesis also aims at securely outsourcing Kriging computations. Kriging is a spatial interpolation algorithm designed for geo-statistical applications. A method to privately outsource Kriging interpolation is presented, based in homomorphic encryption. Secret sharing is a fundamental primitive in cryptography, used in many cloud-oriented techniques. One of the most important efficiency measures in secret sharing is the optimal information ratio. Since computing the optimal information ratio of an access structure is generally hard, properties are obtained to facilitate its description. Finally, this thesis tackles the privacy-preserving data splitting technique, which aims at protecting data privacy by storing different fragments of data at different locations. Here, the data splitting problem is analyzed from a combinatorial point of view, bounding the number of fragments and proposing various algorithms to split the data

    Optimal non-perfect uniform secret sharing schemes

    No full text
    A secret sharing scheme is non-perfect if some subsets of participants that cannot recover the secret value have partial information about it. The information ratio of a secret sharing scheme is the ratio between the maximum length of the shares and the length of the secret. This work is dedicated to the search of bounds on the information ratio of non-perfect secret sharing schemes. To this end, we extend the known connections between polymatroids and perfect secret sharing schemes to the non-perfect case. In order to study non-perfect secret sharing schemes in all generality, we describe their structure through their access function, a real function that measures the amount of information that every subset of participants obtains about the secret value. We prove that there exists a secret sharing scheme for every access function. Uniform access functions, that is, the ones whose values depend only on the number of participants, generalize the threshold access structures. Our main result is to determine the optimal information ratio of the uniform access functions. Moreover, we present a construction of linear secret sharing schemes with optimal information ratio for the rational uniform access functions.Peer Reviewe
    corecore