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Abstract

A secret sharing scheme is non-perfect if some subsets of players that cannot recover the
secret value have partial information about it. The information ratio of a secret sharing
scheme is the ratio between the maximum length of the shares and the length of the secret.
This work is dedicated to the search of bounds on the information ratio of non-perfect secret
sharing schemes and the construction of efficient linear non-perfect secret sharing schemes.
To this end, we extend the known connections between matroids, polymatroids and perfect
secret sharing schemes to the non-perfect case.

In order to study non-perfect secret sharing schemes in all generality, we describe
their structure through their access function, a real function that measures the amount of
information on the secret value that is obtained by each subset of players. We prove that
there exists a secret sharing scheme for every access function.

Uniform access functions, that is, access functions whose values depend only on the
number of players, generalize the threshold access structures. The optimal information
ratio of the uniform access functions with rational values has been determined by Yoshida,
Fujiwara and Fossorier. By using the tools that are described in our work, we provide a
much simpler proof of that result and we extend it to access functions with real values.
Key words. Secret sharing, Non-perfect secret sharing, Access function, Information ratio,
Polymatroid.
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1 Introduction

1.1 Non-Perfect Secret Sharing

A secret sharing scheme is a method to protect a secret value by distributing it into shares
among a set of players in order to prevent both the disclosure and the loss of the secret. Only
information-theoretically secure secret sharing schemes are considered in this paper. A set of
players is qualified if their shares determine the secret value, while the shares of the players in a
forbidden set do not contain any information on the secret value. The access structure (A,B)
of a secret sharing scheme consists of the families A and B of the forbidden and, respectively,
qualified sets of players. A secret sharing scheme is perfect if every subset of players is either
qualified or forbidden.

Secret sharing was independently introduced by Shamir [51] and Blakley [8]. They presented
constructions of perfect threshold secret sharing schemes, in which the qualified sets are those
having at least a certain number of players. In these schemes, the shares have the same length
as the secret, which is optimal for perfect secret sharing schemes [37].

Blakley and Meadows [9] introduced the ramp secret sharing schemes, the first proposed
non-perfect secret sharing schemes. Their main purpose was to improve the efficiency of perfect
threshold schemes by relaxing the security requirements. Namely, the shares can be shortened if
some unqualified sets are allowed to obtain partial information on the secret value. The access
structure of a ramp scheme is described by means of two thresholds t and r. Every set with
at most t players is forbidden, while every set with at least r players is qualified. In the ramp
schemes proposed in [9], the length of every share is 1/(r − t) times the length of the secret,
which is also optimal [44].

The threshold and ramp schemes proposed in those seminal works [8, 9, 51] are linear, that
is, they can be described in terms of linear maps over a finite field [11, 38] or in terms of
linear codes [42, 43]. Because of their efficiency and homomorphic properties, linear perfect
secret sharing schemes play a fundamental role in several areas of cryptography such as secure
multiparty computation [7, 15, 21] and distributed cryptography [24]. In addition to linear
perfect schemes, also linear ramp secret sharing schemes have remarkable applications to secure
multiparty computation [16, 20, 30].

Most of the literature on secret sharing deals with perfect schemes. One of the main lines of
work is the search for bounds on the length of the shares in perfect secret sharing schemes for
general access structures. The main fundamental problems remain unsolved and, in particular,
there is a huge gap between the known upper and lower bounds. The reader is referred to [1]
for a recent survey on this topic. Most of the known lower bounds are derived from bounds
on the information ratio, that is, the ratio between the maximum length of the shares and
the length of the secret. Such bounds can be found by using the entropy function, a method
initiated by Karnin et al. [37] and Capocelli et al. [13]. On the basis of the connections between
information theory, matroid theory, and secret sharing found by Fujishige [31, 32], Brickell and
Davenport [12], and Csirmaz [22], matroids and polymatroids have appeared to be a powerful
tool, as it can be seen from several recent works [2, 4, 5, 40, 41].

Similar questions have been considered for non-perfect secret sharing schemes too, but the
research is much less developed in this direction. In addition to the families of forbidden and
qualified sets, the amount of information on the secret value that is obtained by every set of
players has been taken into account when analyzing those questions. To that end, two equivalent
measures have been introduced, the access hierarchy [39, 45, 49] and the mutual information
function [54]. In this paper, we introduce the access function, which unifies and generalizes those
concepts. Some bounds on the information ratio of non-perfect secret sharing schemes have been
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presented [44, 45]. The extension to the non-perfect case of the connection between ideal perfect
secret sharing schemes and matroids discovered by Brickell and Davenport [12] has attracted
some attention [39, 49]. A thorough analysis of this extension is provided in a recent work [29].
A secret sharing scheme is called uniform if the values of its access function depend only on the
number of players. Uniform non-perfect secret sharing schemes have been analyzed in [53, 54]
and other works. Remarkably, the optimal information ratio of the uniform access functions
with rational values has been determined recently by Yoshida, Fujiwara and Fossorier [54].

1.2 Our Results

Our main purpose is to further extend results and techniques on perfect secret sharing schemes
to the non-perfect case, with a special stress on the search for bounds on the information ratio
by using polymatroids and the construction of efficient linear secret sharing schemes.

Our first step is to choose a suitable way to describe the properties of non-perfect secret sharing
schemes. We introduce the access function of a secret sharing scheme (Definitions 2.2 and 2.3),
which unifies and generalizes previously proposed concepts, such as access hierarchies [39, 45, 49]
and mutual information functions [54]. The access function is defined in terms of the entropy
function and it is a monotone increasing function on the power set of the set of players.
The forbidden and qualified sets are those in which the value of the access function is 0 and,
respectively, 1. For all other sets, the access function measures the relative amount of information
on the secret value given by the shares. A similar concept, fractional access structure, was
introduced in [33], but the partial information on the secret is measured in a different way. The
relation between the two approaches is discussed in Section 1.3.

In contrast to perfect secret sharing schemes, the access function depends on the probability
distribution of the secret value. Because of that, schemes with uniformly distributed secrets are
of special interest. Linear secret sharing schemes have this property. Nevertheless, we need to
consider other probability distributions in the general construction in Section 4.

Our first result deals with a fundamental question. Namely, given a real-valued access
function, does there exist a secret sharing scheme realizing it? By answering this question in the
affirmative in Theorem 4.2, we generalize the result by Ito, Saito and Nishizeki [34], who proved
that there exists a secret sharing scheme for every perfect access structure. Our result is not
entirely obvious since the usual approach of using linear schemes cannot work. Indeed, there are
only countably many linear secret sharing schemes over finite fields, while there are uncountably
many access functions. Therefore, some access functions are inherently non-linear or might
only be realized in the limit by a sequence of linear schemes. Nevertheless, we prove that every
rational-valued access function admits a linear secret sharing scheme. If the access function takes
non-rational values, then our construction requires a non-uniform probability distribution on
the set of possible values of the secret. Similarly to the known general constructions of perfect
secret sharing schemes [6, 34], our general construction is inefficient because the length of the
shares grows exponentially with the number of players.

The main problem we consider in this work is the search for bounds on the information
ratio of secret sharing schemes for general access functions. For the first time, we apply to
non-perfect schemes the polymatroid-based techniques that have been so useful for the perfect
case. The well known connection between perfect secret sharing and polymatroids is extended
to non-perfect schemes in Section 5. Our approach based on access functions appears to be
most suitable for our purposes. This can be seen, for instance, in Proposition 5.5, in which the
characterization by Csirmaz [22, Proposition 2.3] of the compatibility between polymatroids
and access structures is easily extended to non-perfect secret sharing, and also in Theorems 5.7
and 5.9, which generalize the properties of the parameter κ [40]. In addition, the concepts of
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minor and dual of an access structure have a natural extension to access functions, as described
in Section 6. In particular, we generalize in Theorem 6.10 the known results on duality of linear
secret sharing schemes as, for example, the ones in [14, 35]. Moreover, we present in Section 8 a
new definition for ideal non-perfect secret sharing scheme. Even though our new definition is
equivalent to the one proposed in previous works [39, 49], the use of access functions and the
results in [29] make it clear that this is the right way to extend the corresponding concept for
perfect schemes. In particular, the new framework provides a better insight on the connection
between ideal non-perfect schemes and matroids.

Uniform access functions, that is, the ones that take the same value on sets that have the
same cardinality, generalize the access structures of perfect threshold secret sharing schemes.
We present in Section 7.2 an efficient construction of secret sharing schemes for all rational
uniform access functions and, in Section 7.3, we determine the optimal information ratio of all
uniform access functions. After the publication of the previous version of this work [26], we
became aware that most of those results had been previously presented in previous works [53, 54].
Nevertheless, the connections between secret sharing and polymatroids that are analyzed in the
previous sections provide simpler and clearer statements and proofs for those results. Moreover,
differently to [54], we determine the optimal information ratio of uniform access functions with
non-rational values.

Summarizing, we introduced a new definitional framework for non-perfect secret sharing
schemes, we extended the known polymatroid-based techniques for the search of lower bounds
from perfect to non-perfect secret sharing schemes, we proved that there exists a secret sharing
scheme for every access function, and we presented constructions of secret sharing schemes with
optimal information ratio for uniform access functions. Our constructions (Sections 4 and 7)
deal with both rational and non-rational access functions. For the former ones, construction
techniques are quite simple and produce linear secret sharing schemes. For the latter ones, it is
not possible to find linear constructions and some involved tricks are needed.

1.3 Related Work

The almost-perfect secret sharing schemes introduced in [36] are schemes whose access functions
are close to perfect. The possibility of improving the information ratio by realizing a perfect
access structure with non-perfect secret sharing schemes with close access functions is explored
in that work.

Cascudo, Cramer and Xing [14] consider a related optimization problem in non-perfect secret
sharing. Namely, they present bounds on the size of the shares (instead of the information ratio)
in terms of the gap r − t, where r is the minimum value such that every set with r players is
qualified and t is the maximum value such that every set with t players is forbidden.

Ishai, Kushilevitz and Strulovich [33] introduced the notion of fractional secret sharing, which
is a restriction of non-perfect secret sharing. The security requirements of a fractional secret
sharing scheme are described in terms of its fractional access structure, which is a monotone
decreasing function F : P(P )→ {1, . . . ,m}, where P(P ) is the power set of the set P of players.
Given the shares of the players in a set X ⊆ P , the secret is uniformly distributed over a set
of F (X) possible values. In particular, the secret value is uniformly distributed over a set of
m = F (∅) elements. Observe that F (X) measures the number of guessing attempts, and hence
the amount of work, needed by the players in X to find the secret value. The main results
in [33] are the following: every fractional access structure is realizable, and every uniform (or
symmetric in their terminology) fractional access structure is efficiently realizable.

The main difference between the approaches in [33] and in this paper is that a fractional
access structure fixes the size of the set of possible values of the secret. The following observation
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illustrates this difference. Every fractional access structure determines a unique access function,
but the converse is not true because an access function does not fix the size of the secret, but only
the ratio with the amount of information obtained by the sets of players. Being a more restrictive
concept, the problems related to fractional secret sharing are more difficult. In particular, our
results do not appear to have a direct application to fractional secret sharing. For example,
no optimality result for uniform fractional access structures (an open problem posed in [33,
Section 5]) can be directly obtained from our optimality results on uniform access functions.
Another difference between the two approaches is the limited power of linear secret sharing
schemes when dealing with fractional secret sharing. Indeed, a fractional access structure can be
realized by a linear secret sharing scheme over a field of order q only if all its values are powers
of q.

Our optimality result for uniform access functions (Theorem 7.14) is closely related to a
recent result by Chen and Yeung [17]. They proved that every (1, n− 1)-uniform polymatroid
is almost entropic. By taking into account that κ = ε for the uniform access functions, that
implies the result in Remark 7.12. Nevertheless, the other results in Section 7, namely the value
of the optimal information ratio of all uniform access functions and the optimal construction for
rational uniform access functions cannot be derived from the results in [17].

2 Secret Sharing Schemes and Their Access Functions

We present in this section the main definitions and basic facts about secret sharing and, at
the same time, we introduce a new framework to describe the properties of general (i.e., not
necessarily perfect) secret sharing schemes. In this work we consider the definition of secret
sharing based on Shannon entropy. For a complete introduction to secret sharing, see [1, 47],
and for a textbook on information theory see [19].

We begin by introducing some notation. For a set Q, we notate P(Q) for the power set of Q,
that is, the set of all subsets of Q. We use a compact notation for set unions, that is, we write
XY for X ∪ Y and Xy for X ∪ {y}. In addition, we write X r Y for the set difference and
X r x for X r {x}. Throughout the paper, P and Q stand for finite sets with Q = Ppo for some
po /∈ P . For a vector s = (si)i∈Q, we put sX = (si)i∈X . Given a family (Ei)i∈Q of finite sets, the
product E =

∏
i∈QEi, and a set X ⊆ Q, we notate EX =

∏
i∈X Ei. In addition, for a subset

C ⊆ E, we write CX = {sX : s ∈ C} ⊆ EX . Most of the times, we are going to write so, Eo,
and Co instead of spo , Epo , and Cpo , respectively.

Only discrete random variables are considered in this paper. Given a discrete random
vector S = (Si)i∈Q and a set X ⊆ Q, the Shannon entropy of the random variable SX =
(Si)i∈X is denoted by H(SX). In addition, for such random variables, one can consider the
conditional entropy H(SX |SY ) = H(SXY ) − H(SY ), the mutual information I(SX :SY ) =
H(SX) − H(SX |SY ), and the conditional mutual information I(SX :SY |SZ) = H(SX |SZ) −
H(SX |SY Z).

Definition 2.1 (Secret sharing scheme). Let Q be a finite set of players, let po ∈ Q be a
distinguished player, which is called dealer, and take P = Q r po. A secret sharing scheme
Σ on the set P is a discrete random vector (Si)i∈Q such that H(So) > 0 and H(So|SP ) = 0.
The random variable So corresponds to the secret value, while the random variables (Si)i∈P
correspond to the shares of the secret that are distributed among the players in P .

Definition 2.2 (Access function of a secret sharing scheme). The access function ΦΣ of a secret
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sharing scheme Σ = (Si)i∈Q is the map ΦΣ : P(P )→ [0, 1] defined by

ΦΣ(X) =
I(Spo :SX)

H(Spo)

for every X ⊆ P .

The access function is monotone increasing. In addition, ΦΣ(∅) = 0 and ΦΣ(P ) = 1. The
value ΦΣ(X) measures the amount of information on the secret value that is derived from the
shares of the players in X. If ΦΣ(X) = 1, then I(Spo :SX) = H(Spo), which implies that the
secret value is determined by the shares of the players in X. The random variables Spo and
SX are independent if ΦΣ(X) = 0, that is, the shares of the players in X do not provide any
information on the secret in that situation.

Definition 2.3 (Access function). An access function on a set P is a monotone increasing
function Φ : P(P )→ [0, 1] with Φ(∅) = 0 and Φ(P ) = 1. An access function is said to be perfect
if its only values are 0 and 1. An access function is called rational if it only takes rational values.

Definition 2.4 (Access structure of a secret sharing scheme). Let Σ be a secret sharing scheme
with access function Φ = ΦΣ. A set X ⊆ P is forbidden for Σ if Φ(X) = 0, while it is qualified
for Σ if Φ(X) = 1. The access structure of Σ is the pair (A,B), where A,B ⊆ P(P ) are the
families of the forbidden and the qualified sets for Σ, respectively.

Definition 2.5 (Perfect secret sharing scheme). A secret sharing scheme is perfect if every set
of players is either forbidden or qualified or, equivalently, if its access function is perfect.

Definition 2.6 (Gap and maximum increment). The gap g(Φ) of an access function Φ is defined
as the minimum gap between a forbidden and a qualified set, that is,

g(Φ) = min{|B rA| : Φ(A) = 0, Φ(B) = 1}.

The maximum value Φ(Xy)− Φ(X) for X ⊆ P and y ∈ P is called the maximum increment of
the access function Φ and is denoted by µ(Φ). Obviously, µ(Φ) ≥ 1/g(Φ).

Definition 2.7 (Ramp access function). Given integers t, r, n with 0 ≤ t < r ≤ n, the (t, r, n)-
ramp access function on a set P with |P | = n is defined by: Φ(X) = 0 if |X| ≤ t, and
Φ(X) = (|X| − t)/(r − t) if t < |X| < r, and Φ(X) = 1 if |X| ≥ r.

Definition 2.8 (Uniform access function). An access function Φ on P is uniform if Φ(A) = Φ(B)
for every A,B ⊆ P with |A| = |B|. Uniform secret sharing schemes are those with uniform
access function.

Example 2.9. A variant of Shamir’s threshold scheme [51] provides a secret sharing scheme
for every ramp access function. This construction was first presented in the seminal work
on non-perfect secret sharing by Blakley and Meadows [9]. Consider integers t, r, n with
0 ≤ t < r ≤ n. Take a finite field K with |K| ≥ n + r − t, and take n + r − t different
elements y1, . . . , yr−t, x1, . . . , xn ∈ K. By choosing uniformly at random a polynomial f ∈ K[X]
with degree at most r − 1, one obtains random variables So = (f(y1), . . . , f(yg)) ∈ Kg and
Si = f(xi) ∈ K for every i = 1, . . . , n. It is not difficult to check that these random variables
define a secret sharing scheme for the (t, r, n)-ramp access function on P = {1, . . . , n}.

The length of the shares is a measure for the efficiency of a secret sharing scheme. We use
the Shannon entropy as an approximation of the shortest binary codification. The information
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ratio σ(Σ) of a secret sharing Σ = (Si)i∈Q is the ratio between the maximum length of the shares
and the length of the secret value, that is,

σ(Σ) =
maxi∈P H(Si)

H(So)
.

The optimal information ratio σ(Φ) of an access function Φ is defined as the infimum of the
information ratios of the secret sharing schemes for Φ.

The following lower bound on the optimal information ratio is a direct consequence of
well-known results about non-perfect secret sharing [44, 45, 49]. An alternative proof for this
result is presented here in Proposition 5.6.

Proposition 2.10. Let Φ be an access function with maximum increment µ(Φ) and gap g(Φ).
Then its optimal information ratio σ(Φ) satisfies σ(Φ) ≥ µ(Φ) ≥ 1/g(Φ).

Remark 2.11. The information ratio of the scheme in Example 2.9 attains the lower bound in
Proposition 2.10. Therefore, the optimal information ratio of the (t, r, n)-ramp access function
is equal to 1/(r − t).

3 Linear Secret Sharing Schemes

Definition 3.1 (Linear secret sharing scheme). Let K be a finite field and let ` be a positive
integer. In a (K, `)-linear secret sharing scheme, the random variables (Si)i∈Q are given by
surjective K-linear maps Si : V → Ei, where the dimension of Eo over the field K is equal to `
and the uniform probability distribution is taken on V .

Most of the secret sharing schemes that have been proposed in the literature are linear. This
is due to their efficiency and also to the fact that many cryptographic applications of secret
sharing require homomorphic properties that are satisfied by linear schemes.

In a K-linear secret sharing scheme (Si)i∈Q, the random variable SX is uniform on its support
for every X ⊆ Q. Because of that, H(SX) = rankSX · log |K|, and hence

I(So :SX) = (rankSo + rankSX − rankSXpo) log |K|. (1)

This implies that the access function of every linear secret sharing scheme is rational. For a
rational access function Φ, we define λ(Φ) as the infimum of the information ratios of the linear
secret sharing schemes for Φ. Clearly, λ(Φ) is an upper bound of σ(Φ).

Remark 3.2. A (K, `)-linear secret sharing scheme with information ratio σ is determined by
linear maps Si : E → Ei with dimEi ≤ max{`, σ`} for every i ∈ Q and dimE ≤

∑
i∈Q dimEi.

Therefore, the computation time for both the distribution phase (computing the shares from the
secret value and some randomness) and the reconstruction phase (partially or totally recovering
the secret value from some shares) is polynomial in log |K|, `, σ, and the number of players.

Definition 3.3 (Least common denominator of a rational access function). The least common
denominator M(Φ) of a rational access function Φ is the least common denominator of the
values of Φ.

Remark 3.4. Let Φ be a rational access function on P and let M = M(Φ) be its least common
denominator. Clearly, ` ≥M for every (K, `)-linear secret sharing scheme for Φ. Therefore, by
Remark 3.2, the efficiency of the linear secret sharing schemes for Φ depends on M(Φ).
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The families of access functions that admit efficient linear secret sharing schemes, that is,
whose computational complexity is polynomial in the number of players, are of special interest.
An example of such a family is given by the ramp access functions

Example 3.5. The secret sharing scheme presented in Example 2.9 is linear. As a consequence,
the (t, r, n)-ramp access function admits a (K, r−t)-linear secret sharing scheme with information
ratio 1/(r − t) for every finite field K with |K| ≥ n+ r − t.

Because of Remark 3.4, the least common denominator should not grow too fast in the
families of access functions admitting efficient linear secret sharing schemes. To keep things
simpler, the search for such families can be restricted to access functions with constant increment.

Definition 3.6. An access function Φ has constant increment if Φ(Xy) − Φ(X) ∈ {0, µ(Φ)}
for every X ⊂ P and y ∈ P . In this situation, Φ is rational and µ(Φ) = 1/k for some positive
integer k.

Linear secret sharing schemes are closely related to linear codes. In order to describe that
connection, we need a more general definition of linear code. Namely, we need to consider
codewords in which every entry is a vector instead of a field element. That is, a K-linear code
will be here a vector subspace C of the K-vector space E =

∏
i∈QEi, where every Ei is a

K-vector space. The codewords of C are of the form (si)i∈Q, where si ∈ Ei for every i ∈ Q. Let
Σ = (Si)i∈Q be a (K, `)-linear secret sharing scheme. The linear maps Si : V → Ei determine a
linear map S : V → E =

∏
i∈QEi. The image C ⊆ E of S is the linear code associated to Σ.

Every codeword (si)i∈Q in C corresponds to a distribution of shares.

4 A Secret Sharing Scheme for Every Access Function

It is well known that every perfect access function admits a secret sharing scheme [6, 34]. We
present in Theorem 4.2 an extension of this result to the general case.

Remark 4.1. Similarly to the construction in [34] for the perfect case, our general construction
is based on a very simple perfect secret sharing scheme for which the only qualified set is the full
set of players. Let G be a finite abelian group (with additive notation). Let To be an arbitrary
random variable with support G. Fix a player q ∈ P and take independent uniform random
variables (Ti)i∈Prq with support G. Finally, take Tq = To −

∑
i∈Prq Ti. It is not difficult to see

that T = (Ti)i∈Q is a perfect secret sharing scheme whose only qualified set is P .

Theorem 4.2. Every access function admits a secret sharing scheme. Moreover, every rational
access function Φ admits a (K,M(Φ))-linear secret sharing scheme for every finite field K.

Proof. Let Φ be an access function on the set of players P . Let M be the smallest positive
integer such that dMΦ(X)e 6= dMΦ(Y )e if Φ(X) 6= Φ(Y ). Consider the sets

• Ω = {dMΦ(X)e : X ⊆ P}r {0} ⊆ {1, . . . ,M}, and

• Ω1 = {dMΦ(X)e : X ⊆ P, MΦ(X) /∈ Z} ⊆ Ω.

We construct in the following a secret sharing scheme Σ = (Si)i∈Q for Φ.
We begin by describing the random variable So corresponding to the secret value. Specifically,

we take So =
∏M

k=1 S
k, where (Sk)1≤k≤M are the independent random variables with entropy

H(Sk) = 1 that are described next. Let F2 be the field with order 2 and let h be the binary
entropy function. If k = dMΦ(X)e ∈ Ω1, take εk = MΦ(X)− (k− 1), which satisfies 0 < εk < 1,
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and take Sk = Sk
0 × Sk

1 , where Sk
0 and Sk

1 are independent random variables with support F2

such that Pr[Sk
0 = 0] = minh−1(εk) and Pr[Sk

1 = 0] = minh−1(1− εk). If k ∈ {1, . . . ,M}r Ω1,
then Sk is a uniform random variable with support F2.

Now, we proceed to describe the random variables corresponding to the shares of the players.
Take k ∈ Ω. Let Ck ⊆ P(P ) be the family of the subsets X ⊆ P with dMΦ(X)e = k that are
minimal with this property. Consider the random variable

T k
o = S1 × · · · × Sk−1 × Ŝk,

where Ŝk = Sk
0 if k ∈ Ω1 and Ŝk = Sk otherwise. Observe that H(T k

o ) = MΦ(X) for every
X ∈ Ck. The support of T k

o is Fm
2 for some integer m ≥ k. For every X ∈ Ck, take the secret

sharing scheme T(X) = (T
(X)
i )i∈Xpo described in Remark 4.1 with T

(X)
o = T k

o and G = Fm
2 . The

random variable T k
o is the same for all schemes T(X) with X ∈ Ck, that is, all these schemes

distribute shares for the same secret value. The other random variables T
(X)
i are instantiated

independently for different sets X. For every player i ∈ P take the family of subsets

Di =
⋃
k∈Ω

{X ∈ Ck : i ∈ X} ⊆ P(P ).

Finally, the random variable Si corresponding to the share of a player i ∈ P is defined by

Si =
∏

X∈Di

T
(X)
i .

That is, the share of every player is composed of sub-shares from the schemes T(X) corresponding
to the sets X ⊆ P such that i ∈ X and X ∈ Ck for some k ∈ Ω.

Clearly, H(T k
o |SY ) = 0 for every subset Y ⊆ P with k = dMΦ(Y )e. On the other hand,

it is not difficult to prove that the shares of the players in Y do not provide any information
about the other components of the secret value, and hence I(So :SY ) = H(T k

o ) = MΦ(Y ). Since
H(So) = M , this implies that the scheme Σ = (Si)i∈Q has access function Φ.

Some modifications in the previous construction are needed to prove the second part of the
theorem. If Φ is rational, take M = M(Φ), the least common denominator of Φ. The set Ω is
defined analogously but in this case Ω1 = ∅. Given a finite field K, take So =

∏M
k=1 S

k, where
(Sk)1≤k≤M are independent random variables and each Sk is a uniform random variable with
support K. At this point, a (K,M)-linear secret sharing scheme with access function Φ can be
constructed by using the same steps as in the previous construction.

The above construction is not efficient because the information ratio is exponential in the
number of players. The construction can be refined in order to slightly decrease the information
ratio but, even for the perfect case, no constructions are known in which the information ratio is
not exponential.

5 Polymatroids and Secret Sharing

On the basis of the connection between Shannon entropy and polymatroids that was discovered
by Fujishige [31, 32] and is described here in Theorem 5.3, lower bounds on the information
ratio of perfect secret sharing schemes can be obtained by using linear programming [22, 40, 48].
Nevertheless, several limitations on this approach have been found [5, 22, 41]. In this section,
we discuss the extension of this method to non-perfect secret sharing.

9



We begin by introducing a notation that will be useful to simplify the presentation of our
results. For a function F : P(Q)→ R and subsets X,Y, Z ⊆ Q, we notate

∆F (Y :Z|X) = F (XY ) + F (XZ)− F (XY Z)− F (X) (2)

and ∆F (Y :Z) = ∆F (Y :Z|∅).

Definition 5.1. A polymatroid is a pair S = (Q, f) formed by a finite set Q, the ground set ,
and a rank function f : P(Q)→ R satisfying the following properties.

• f(∅) = 0.

• f is monotone increasing : if X ⊆ Y ⊆ Q, then f(X) ≤ f(Y ).

• f is submodular : f(X ∪ Y ) + f(X ∩ Y ) ≤ f(X) + f(Y ) for every X,Y ⊆ Q.

The following characterization of rank functions of polymatroids is a straightforward conse-
quence of [50, Theorem 44.1].

Proposition 5.2. A map f : P(Q)→ R is the rank function of a polymatroid with ground set
Q if and only if f(∅) = 0 and ∆f (y :z|X) ≥ 0 for every X ⊆ Q and y, z ∈ QrX.

Theorem 5.3 (Fujishige [31, 32]). If (Si)i∈Q is a random vector, then the map h : P(Q)→ R
defined by h(X) = H(SX) is the rank function of a polymatroid with ground set Q.

The notation introduced in (2) is motivated by the connection between polymatroids and
the Shannon entropy described in the previous theorem. Indeed, for every X,Y, Z ⊆ Q, the
conditional mutual information I(SY :SZ |SX) is equal to ∆h(Y :Z|X).

Since secret sharing schemes are given by random vectors, a connection between secret sharing
and polymatroids arises from Theorem 5.3. Specifically, associated to every secret sharing scheme
Σ = (Si)i∈Q there is the polymatroid (Q, h) given by h(X) = H(SX) for every X ⊆ Q. The
access function ΦΣ of Σ is determined by this polymatroid. Indeed, ΦΣ(X) = ∆h(po :X)/h(po)
for every X ⊆ P . This motivates the following definition.

Definition 5.4. Let Φ be an access function on P and let S = (Q, f) be a polymatroid. Then
S is a Φ-polymatroid if

Φ(X) =
∆f (po :X)

f(po)

for every X ⊆ P .

We say that a polymatroid (Q, f) is normalized if f(po) = 1. A polymatroid S = (P, f)
is compatible with the access function Φ if S can be extended to a normalized Φ-polymatroid
S ′ = (Q, f). The following is a generalization of a result by Csirmaz [22, Proposition 2.3] on
perfect secret sharing.

Proposition 5.5. A polymatroid S = (P, f) is compatible with an access function Φ on P if
and only if ∆f (y :z|X) ≥ ∆Φ(y :z|X) for every X ⊆ P and y, z ∈ P rX.

Proof. Extend the rank function f of S to P(Q) by taking f(Xpo) = f(X) + 1−Φ(X) for every
X ⊆ P . This is the only possible extension of f that can produce a normalized Φ-polymatroid.
Therefore, S is compatible with Φ if and only if (Q, f) is a polymatroid. By Proposition 5.2,
(Q, f) is a polymatroid if and only if ∆f (y :z|X) ≥ 0 for every X ⊆ Q and y, z ∈ QrX. Since
(P, f) is a polymatroid, (Q, f) is a polymatroid if and only if the following conditions are satisfied.
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1. ∆f (y :z|Xpo) ≥ 0 for every X ⊆ P and y, z ∈ P rX.

2. ∆f (po :z|X) ≥ 0 for every X ⊆ P and z ∈ QrX.

The second condition is always satisfied because Φ is monotone increasing and the first one is
equivalent to the condition in the statement.

On the basis of the connection between secret sharing and polymatroids, we introduce in
this section the parameter κ(Φ), which provides a lower bound on the optimal information ratio
σ(Φ). It is a straightforward generalization of the corresponding parameter for perfect secret
sharing that was introduced in [40].

For a polymatroid S = (Q, f) we define

σo(S) =
maxx∈P f(x)

f(po)
.

Observe that σ(Σ) = σo(S) if S is the polymatroid associated to a secret sharing scheme Σ. In
addition, we define

κ(Φ) = inf{σo(S) : S is a Φ-polymatroid}.
Obviously,

κ(Φ) = inf{σo(S) : S is a normalized Φ-polymatroid}. (3)

Since every secret sharing scheme with access function Φ determines a Φ-polymatroid, we
have that κ(Φ) ≤ σ(Φ). The following lower bound on κ(Φ) is a refinement of the result in
Proposition 2.10.

Proposition 5.6. κ(Φ) ≥ µ(Φ) ≥ 1/g(Φ) for every access function Φ.

Proof. Let (Q, f) be a normalized Φ-polymatroid. By Proposition 5.5,

f(y) ≥ f(Xy)− f(X) = ∆f (y :y|X) ≥ ∆Φ(y :y|X) = Φ(Xy)− Φ(X)

for every X ⊆ P and y ∈ P rX.

It is clear from Propositions 5.2 and 5.5 and (3) that the value of κ(Φ) can be computed by
solving a linear programming problem in which the unknowns are the values f(X) for X ⊆ P
and the constraints are ∆f (y :z|X) ≥ max{0,∆Φ(y :z|X)} for every X ⊆ P and y, z ∈ P rX.
As a consequence, the infimum in (3) is a minimum and, moreover, κ(Φ) has a rational value if
Φ is a rational access function. This linear programming approach has been used in [22, 28, 48]
and many other works to find lower bounds on the optimal information ratio of perfect secret
sharing schemes, but important limitations to this method have been found [5, 22, 41]. The first
of those limitation results [22, Theorem 3.5] can be generalized to the non-perfect case by using
the same idea in the proof.

Theorem 5.7. Let Φ be an access function on a set of n players. Then κ(Φ) ≤ nµ(Φ).

Proof. Take a real number µ with 1/n ≤ µ ≤ 1 and a set P with |P | = n. The result is proved
by presenting a polymatroid (P, f) that is compatible with all access functions Φ on P with
maximum increment µ and satisfies f(x) = nµ for every x ∈ P . Consider the map f : P(P )→ R
defined by

f(X) = µ (n+ (n− 1) + · · ·+ (n−m+ 1))

for every X ⊆ P with |X| = m. Let Φ be an access function on P with µ(Φ) = µ. Then

∆f (y :z|X) = µ ≥ max{0,∆Φ(y :z|X)}

for every X ⊆ P and y, z ∈ P rX. By Propositions 5.2 and 5.5, this proves that (P, f) is a
polymatroid that is compatible with the access function Φ.
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The upper bound in Theorem 5.7 seems to imply that κ(Φ) is in general much smaller than
σ(Φ). Nevertheless, similarly to the perfect case, this is still an open problem. Actually, the best
known general lower bound on the information ratio of perfect secret sharing schemes, which
was presented by Csirmaz [22, Theorem 3.2], is obtained from the parameter κ. Theorem 5.9
generalizes this result to the non-perfect case.

Lemma 5.8. Consider sets P, P ′ with P ⊆ P ′, and the integers n, k such that |P | = n and
|P ′| = n+ k − 1. Let Φ be a perfect access function on P . Then there exists an access function
Φ′ on P ′ such that µ(Φ′) = 1/k and κ(Φ′) = κ(Φ)/k.

Proof. Take P ′′ = P ′ r P and consider the access function Φ′ on P ′ defined by

Φ′(X) =
1

k
(Φ(X ∩ P ) + |X ∩ P ′′|)

for every X ⊆ P ′. Obviously, µ(Φ′) = 1/k. Let (P, f) be a polymatroid compatible with Φ.
Then the polymatroid (P ′, f ′) defined by

f ′(X) =
1

k
(f(X ∩ P ) + |X ∩ P ′′|)

for every X ⊆ P ′ is compatible with Φ′. Clearly, this implies that κ(Φ′) ≤ κ(Φ)/k. On the
other hand, if (P ′, f ′) is a polymatroid compatible with Φ′, then the polymatroid (P, f) with
f(X) = kf ′(X) for every X ⊆ P is compatible with Φ. Therefore, κ(Φ) ≤ kκ(Φ′).

Theorem 5.9. For every positive integer k and for infinitely many positive integers n, there exists
an access function Φn on a set of size n+k−1 satisfying µ(Φn) = 1/k and κ(Φn) ≥ n/(2k log n).

Proof. As a consequence of [22, Theorem 3.2], for every positive integer n there exists a perfect
access function Φn on n players with κ(Φn) ≥ n/(2 log n). Then apply Lemma 5.8.

6 Duality and Minors

The operations of deletion and contraction, which are related to puncturing and shortening in
codes, produce minors of matroids and polymatroids. Duality is also a fundamental concept in
both matroid theory and coding theory. These concepts play an important role in perfect secret
sharing too [35, 40]. In this section, we describe their extension to the non-perfect case.

Definition 6.1 (Minor of an access function). Let Φ be an access function on a set P . Let Z1

and Z2 be disjoint subsets of P with Φ(P r Z1) = 1 and Φ(Z2) = 0. Then the access function
(Φ \ Z1)/Z2 on P r (Z1 ∪ Z2) defined by [(Φ \ Z1)/Z2](X) = Φ(X ∪ Z2) is said to be a minor of
Φ. We notate Φ \ Z for (Φ \ Z)/∅ and Φ/Z for (Φ \ ∅)/Z.

Minors of access functions are related to the situation in which some players leave a secret
sharing scheme, maybe revealing their shares. Let Σ = (Si)i∈Q be a secret sharing scheme on
P with access function Φ. Clearly, if the players in Z ⊆ P with Φ(P r Z) = 1 leave without
revealing their shares, a new scheme with access function Φ \ Z is obtained. Intuitively, the
situation in which the players in Z ⊆ P with Φ(Z) = 0 leave the scheme revealing their shares
should produce a secret sharing scheme with access function is Φ/Z. Nevertheless, this is not
true in general, but only for linear schemes and other schemes satisfying some special conditions.

The loss of some shares may prevent the reconstruction of the secret. The loss of information
on the secret value if some shares are missing is measured by the dual access function.
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Definition 6.2 (Dual access function). The dual Φ∗ of an access function Φ on P is defined by
Φ∗(X) = 1− Φ(P rX) for every X ⊆ P . Clearly, Φ∗ is an access function on P and Φ∗∗ = Φ.

The two operations that are used to determine the minors of an access function are dual of
each other.

Proposition 6.3. (Φ/Z)∗ = Φ∗ \ Z and (Φ \ Z)∗ = Φ∗/Z.

Example 6.4. Let Φ be the (t, r, n)-ramp access function on a set P . Then Φ∗ is the (n− r, n−
t, n)-ramp access function on P . Suppose that 1 < t < r < n and take p ∈ P . Then Φ \ {p} and
Φ/{p}, are ramp access functions on P r p with parameters (t, r, n− 1) and (t− 1, r − 1, n− 1),
respectively.

The following result is a consequence of the previous discussion. In the perfect case, it applies
to the optimal information ratio σ(Φ) too [40].

Proposition 6.5. If Φ is a rational access function and Φ′ is a minor of Φ, then λ(Φ′) ≤ λ(Φ).

For a polymatroid S = (Q, f) and a set Z ⊆ Q, we consider the polymatroids S \ Z =
(QrZ, f \Z) and S/Z = (QrZ, f/Z) with (f \Z)(X) = f(X) and (f/Z)(X) = f(X∪Z)−f(Z)
for every X ⊆ Qr Z. Every polymatroid of the form (S \ Z1)/Z2 is a minor of S.

Proposition 6.6. If Φ′ is a minor of Φ, then κ(Φ′) ≤ κ(Φ).

Proof. Let S be a normalized Φ-polymatroid and take disjoint sets Z1, Z2 ⊆ P with Φ(PrZ1) = 1
and Φ(Z2) = 0. It is easy to check that S ′ = (S\Z1)/Z2 is a normalized ((Φ\Z1)/Z2)-polymatroid
with σpo(S ′) ≤ σpo(S).

The parameters λ and κ for perfect secret sharing are invariant by duality, as it was proved
in [35] and [40], respectively. We extend these results to the non-perfect case. The relation
between σ(Φ) and σ(Φ∗) is an open problem, even for perfect access functions. Similarly to the
corresponding result for perfect secret sharing, the proof of Proposition 6.7 is based on duality
in polymatroids. The reader is addressed to [50, Chapter 44.6f] or [40] for more information on
this topic.

Proposition 6.7. κ(Φ) = κ(Φ∗) for every access function Φ.

Proof. Let Φ be an access function on P . Since Φ∗∗ = Φ, it is enough to prove that κ(Φ∗) ≤ κ(Φ).
We affirm that, for every normalized Φ-polymatroid S = (Q, f), there exists a normalized Φ∗-
polymatroid S∗ with σpo(S∗) ≤ σpo(S). Indeed, consider the dual polymatroid S∗ = (Q, f∗)
defined by

f∗(X) = f(QrX)− f(Q) +
∑
x∈X

f(x)

for every X ⊆ Q. Since f(Q) = f(P ), we have that f∗({po}) = f({po}) = 1. For every X ⊆ P ,

∆f∗(po :X) = 1 + f∗(X)− f∗(Xpo) = f(QrX)− f(P rX) = 1−∆f (po :P rX),

and hence S∗ is a normalized Φ∗-polymatroid. In addition, f∗(x) = f(Qrx)−f(Q)+f(x) ≤ f(x)
for every x ∈ P .

We prove next that, from any given (K, `)-linear secret sharing scheme Σ with access function
Φ, one can construct a (K, `)-linear secret sharing scheme Σ∗, which is called the dual of Σ,
that has access function Φ∗ and the same information ratio as Σ. This result is based on the
connection between linear secret sharing schemes and linear codes that is described in Section 3.

Let Σ = (Si)i∈Q be a (K, `)-linear secret sharing scheme determined by K linear maps
Si : V → Ei and let C ⊆ E =

∏
i∈QEi be the linear code associated to Σ. The notation

introduced at the beginning of Section 2 is broadly used in the following.
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Lemma 6.8. For a set X ⊆ P , consider the subspace C ′ ⊆ C formed by the codewords s ∈ C
with sX = 0. Then ΦΣ(X) = 1− dimC ′o/ dimEo.

Proof. By (1), ΦΣ(X) = (rankSo + rankSX − rankSXpo)/ rankSo. On one hand, rankSo =
dimEo. On the other hand, C ′o = So(kerSX), and hence dimC ′o = dim kerSX − dim kerSXpo =
rankSXpo − rankSX .

Fixing a scalar product in every space Ei, we can consider the orthogonal complement of C,
that is, the vector subspace C⊥ ⊆ E formed by all vectors w ∈ E such that w ·s =

∑
i∈Qwi ·si = 0

for every s ∈ C. Then C⊥ is called the dual code of C.

Lemma 6.9. The dual code C⊥ defines a (K, `)-linear secret sharing scheme Σ∗ whose infor-
mation ratio satisfies σ(Σ∗) ≤ σ(Σ).

Proof. To simplify the notation, put D = C⊥. Clearly, it is enough to prove that Do = Eo and
dimDP = dimD. Suppose that Do ( Eo. Then there exists a nonzero vector so ∈ Eo such that
so · v = 0 for every v ∈ Do, and hence the vector (so, 0) ∈ Eo × EP is in C = D⊥. Since P is a
qualified set of Σ, this is a contradiction by Lemma 6.8. Suppose now that dimDP < dimD.
This implies that there exists a vector ŝ ∈ D with ŝo 6= 0 and ŝP = 0. Therefore, ŝo ∈ (Co)

⊥,
and hence Co 6= Eo, a contradiction again.

The (K, `)-linear secret sharing scheme Σ∗ defined by the dual code C⊥ is called the dual of
Σ. The following result generalizes the known results on duality in linear secret sharing. Its
proof is based on the one for [14, Theorem 3.24].

Theorem 6.10. If Σ is a linear secret sharing scheme with access function Φ, then the access
function of the dual scheme Σ∗ is Φ∗.

Proof. Let Φ′ be the access function of Σ∗. Consider X ⊆ P and Y = P rX. Let C ′′ ⊆ C⊥ be
the subspace formed by the codewords w ∈ C⊥ with wX = 0. Consider also C ′ ⊆ C formed by
the codewords s ∈ C with sY = 0. It is enough to prove (C ′′o )⊥ = C ′o, because, by Lemma 6.8,
this implies that

Φ′(X) =
dimEo − dimC ′′o

dimEo
=

dimC ′o
dimEo

= 1− Φ(Y ) = Φ∗(X).

If w ∈ C ′′ and s ∈ C ′, then 0 = s · w = so · wo + sX · wX + sY · wY = so · wo. Therefore,
C ′o ⊆ (C ′′o )⊥. Consider so ∈ Eo r C ′o. Then (so, 0) ∈ EY po is not in CY po , and hence there
exists (wo, wY ) ∈ (CY po)⊥ such that (so, 0) · (wo, wY ) = so ·wo 6= 0. Extend (wo, wY ) to a vector
w = (wo, wX , wY ) ∈ E by taking wX = 0. Clearly, w ∈ C⊥, and hence w ∈ C ′′ and wo ∈ C ′′o .
Therefore, so /∈ (C ′′o )⊥.

Corollary 6.11. λ(Φ) = λ(Φ∗) for every rational access function Φ.

7 Uniform Secret Sharing Schemes

Uniform access functions generalize the perfect threshold access structures. It is well known
that these access structures admit a linear secret sharing scheme with optimal information ratio,
namely Shamir’s secret sharing scheme [51]. This fundamental result was generalized by Yoshida,
Fujiwara and Fossorier [54] by determining the optimal information ratio of all rational uniform
access functions. By using the results in the previous sections, we present a much simpler
proof of the result in [54], which is restated here in Theorem 7.9. Moreover, we extend it to
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non-rational access functions in Theorem 7.14. In particular, we present a construction of linear
secret sharing schemes with optimal information ratio for all rational uniform access functions.
Nevertheless, these optimal schemes may not be efficient. A construction of efficient linear secret
sharing schemes for every rational uniform access functions is presented in Section 7.2. A similar
construction was presented in [53].

7.1 Concatenating Secret Sharing Schemes

We analyze here a simple way to combine secret sharing schemes. A similar technique was used
in [53, 54]. For each j = 1, . . . ,m consider a positive integer qj and a secret sharing scheme

Σj = (Sj
i )i∈Q with access function Φj . A secret sharing scheme Σ =

∏m
j=1 Σ

qj
j is obtained by

concatenating m secret sharing schemes, each consisting of qj instances of Σj . That is, Σ =

(Si)i∈Q with Si = (S1
i )q1 × · · · × (Sm

i )qm for every i ∈ Q. Observe that H(SX) =
∑m

j=1 qjH(Sj
X)

for every X ⊆ Q. Because of that, the access function Φ of Σ is given by

Φ(X) =
I(So :SX)

H(So)
=

∑m
j=1 qjI(Sj

o :Sj
X)∑m

k=1 qkH(Sk
o )

for every X ⊆ Q. Therefore,

Φ =

m∑
j=1

ρjΦ
j ,

where, for every j = 1, . . . ,m,

ρj =
qjH(Sj

o)∑m
k=1 qkH(Sk

o )
.

That is, Φ is a convex combination of the access functions Φ1, . . . ,Φm. Moreover, if σj is the
information ratio of Σj , then the information ratio σ of Σ satisfies σ ≤

∑m
j=1 ρjσj . Indeed,

σ = max
i∈P

∑m
j=1 qjH(Sj

i )∑m
k=1 qkH(Sk

o )
≤
∑m

j=1 qjσjH(Sj
o)∑m

k=1 qkH(Sk
o )

=

m∑
j=1

ρjσj . (4)

If there is a player in P that holds the largest share in all schemes Σj , then the inequality in (4)
holds with equality. Clearly, if Σj is a (K, `j)-linear secret sharing scheme for j = 1, . . . ,m, then
the concatenation Σ =

∏m
j=1 Σ

qj
j is a (K, `)-linear secret sharing scheme with ` =

∑m
j=1 qj`j .

This leads to the following result, which will be used in our construction of optimal secret sharing
schemes for rational uniform access functions.

Proposition 7.1. For j = 1, . . . ,m, let Φj be an access function on P that admits a (K, `j)-
linear secret sharing scheme with information ratio σj. Let ρ1, . . . , ρn be rational numbers with
0 < ρj < 1 and

∑m
j=1 ρj = 1. Let N be a positive integer such that Nρj is integer for every

j = 1, . . . ,m. Then the access function Φ =
∑m

j=1 ρjΦ
j admits a (K, `)-linear secret sharing

scheme with information ratio σ ≤
∑m

j=1 ρjσj and ` = N`1 · · · `m.

Proof. For j = 1, . . . ,m, take qj = LNρj/`j , where L = `1 · · · `m. Then

qj`j
q1`1 + · · ·+ qm`m

= ρj .

The concatenation scheme Σ =
∏m

j=1 Σ
qj
j satisfies the required properties.
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7.2 Efficient Uniform Secret Sharing Schemes

A uniform access function Φ on a set P with |P | = n is determined by the values

0 = Φ0 ≤ Φ1 ≤ · · · ≤ Φn = 1,

where Φ(X) = Φi for every X ⊆ P with |X| = i. Therefore, a uniform access function is
determined by its increment vector

Φ′ = (Φ′1, . . . ,Φ
′
n),

where Φ′i = Φi − Φi−1. Observe that Φ′i ≥ 0 and
∑n

i=1 Φ′i = 1. We use the convention Φ′n+1 = 0.

Proposition 7.2. Every (rational) uniform access function is a (rational) convex combination
of perfect ramp access functions.

Proof. Let Φ be a uniform access function on a set P of n players. For i = 1, . . . , n, let Ψi be
the (i− 1, i, n)-ramp access function on P . Clearly, Φ =

∑n
i=1 Φ′iΨ

i.

Similarly to the perfect case, every rational uniform access function admits a linear secret
sharing scheme with information ratio equal to 1.

Corollary 7.3. Let Φ be a rational uniform access function on a set P of n players and let
M = M(Φ) be the least common denominator of Φ. Then, for every finite field K with |K| ≥ n+1,
the access function Φ admits a (K,M)-linear secret sharing scheme with information ratio equal
to 1.

Proof. Combine Remark 2.11 and Propositions 7.1 and 7.2.

Remark 7.4. By Remark 3.2, the efficiency of this linear scheme depends on the least common
denominator of the access function. Specifically, the computation time for both the distribution
phase and the reconstruction phase is polynomial in log |K|, M(Φ) and n.

7.3 Uniform Secret Sharing Schemes with Optimal Information Ratio

We present here a construction of optimal linear secret sharing schemes for all rational uniform
access functions. Nevertheless, the schemes that are obtained in this way are in general less
efficient than the ones in Section 7.2. This is due to the size of the secret value.

We begin by introducing a new parameter that is a lower bound on κ(Φ) for uniform access
functions. For a uniform access function Φ and for i = 1, . . . , n, we notate δi(Φ) = Φ′i − Φ′i+1.

Definition 7.5. For a uniform access function Φ on n players, we define

ε(Φ) =
n∑

i=1

max{0,Φ′i − Φ′i+1} =
n∑

i=1

max{0, δi(Φ)}

Example 7.6. Let Φ be the (t, r, n)-ramp access function, which is uniform and has maximum
increment µ = 1/(r−t). The increment vector Φ′ is given by Φ′i = 0 if 1 ≤ i ≤ t or r+1 ≤ i ≤ n+1,
and Φ′i = µ if t+ 1 ≤ i ≤ r. Therefore, ε(Φ) = µ.

Proposition 7.7. Let Φ be a uniform access function. Then µ(Φ) ≤ ε(Φ) ≤ κ(Φ).
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Proof. Take n = |P |. Since ε(Φ) ≥
∑n

i=j(Φ
′
i − Φ′i+1) = Φ′j − Φ′n+1 = Φ′j for every j = 1, . . . , n,

the first inequality holds. For the second inequality, we prove that ε(Φ) ≤ f(x) for every x ∈ P
if (P, f) is a polymatroid compatible with Φ. Indeed, take an arbitrary ordering (x1, . . . , xn) of
the elements in P . Then

f(xn) =

n∑
i=1

∆f (xi :xn|x1 . . . xi−1) ≥
n∑

i=1

max{0,∆Φ(xi :xn|x1 . . . xi−1)} = ε(Φ).

Here, the equalities are derived by straightforward calculations and the inequality is a consequence
of Propositions 5.2 and 5.5.

We proved in 7.2 that every uniform access function is a convex combination of ramp access
functions. The next proposition is a refinement of that result that makes it possible to find an
optimal secret sharing scheme for every rational uniform access function.

Proposition 7.8. Let Φ be a uniform access function on a set P . Then there exist ramp access
functions Φ1, . . . ,Φm on P and positive real numbers ρ1, . . . , ρm with

∑m
j=1 ρi = 1 such that

Φ = ρ1Φ1 + · · ·+ ρmΦm

and ε(Φ) = ρ1ε(Φ
1) + · · ·+ ρmε(Φ

m). Moreover, if Φ is rational, then the values ρ1, . . . , ρm are
rational.

Proof. We use induction on the gap g = g(Φ). If g = 1, then Φ is a ramp access function and
the result obviously holds. Suppose that g > 1. Take n = |P |. Let t be the maximum index
with Φt = 0 and r the minimum one with Φr = 1. Then g = r − t and Φ′i = 0 if 1 ≤ i ≤ t or
r + 1 ≤ i ≤ n+ 1, while Φ′t+1,Φ

′
r > 0. Let ` be the smallest integer satisfying t+ 1 ≤ ` ≤ r and

Φ′` = min{Φ′t+1, . . . ,Φ
′
r}. We distinguish two cases.

Case 1: Φ′` = 0. Then t + 1 < ` < r and 0 < Φ` < 1. Take ρ = Φ` and consider the uniform
access functions Ψ1 and Ψ2 defined by

Ψ1
i = min

{
Φi

Φ`
, 1

}
, Ψ2

i = max

{
Φi − Φ`

1− Φ`
, 0

}
for every i = 0, 1, . . . , n. Clearly, Φ = ρΨ1 + (1− ρ)Ψ2. Since Φ′` = Φ` − Φ`−1 = 0, we have that
Ψ1

i = 1 if i ≥ `− 1. In addition, Ψ2
i = 0 if i ≤ `. Therefore,

ε(Φ) = ρ
`−1∑
i=1

max{0, δi(Ψ1)}+ (1− ρ)
n∑

i=`+1

max{0, δi(Ψ2)}

= ρε(Ψ1) + (1− ρ)ε(Ψ2).

Since g(Ψ1) ≤ `− t < g(Φ) and g(Ψ2) ≤ r − ` < g(Φ) the theorem holds for Φ by the induction
hypothesis.
Case 2: Φ′` > 0. Let Ψ1 be the (t, r, n)-ramp access function on P and take ρ = gΦ′`. If ρ = 1,
then Φ = Ψ1 and the proof is concluded. Suppose that ρ < 1 and take

Ψ2 =
Φ− ρΨ1

1− ρ
.

Observe that Ψ2
0 = 0 and Ψ2

n = 1. We claim that (Ψ2)′i ≥ 0 for every i = 1, . . . , n, and hence
Ψ2 is a uniform access function on P . Indeed, (Ψ2)′i = 0 if 1 ≤ i ≤ t or r + 1 ≤ i ≤ n, and
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(Ψ2)′i = (Φ′i − ρ(Ψ1)′i)/(1 − ρ) = (Φ′i − Φ′`)/(1 − ρ) ≥ 0 if t + 1 ≤ i ≤ r. Since Ψ1 is a ramp
access function, δt(Ψ

1) = −1/g and δr(Ψ
1) = 1/g, and δi(Ψ

1) = 0 if i 6= r, t. So the three values
δi(Φ), δi(Ψ

1) and δi(Ψ
2) are non-positive for i = t and are non-negative for i = r. Therefore,

Φ = ρΨ1 + (1 − ρ)Ψ2 and ε(Φ) = ρε(Ψ1) + (1 − ρ)ε(Ψ2). The proof is concluded by checking
that Ψ2 is a convex combination of ramp access functions in the required conditions. Observe
that (Ψ2)′` = 0. If ` = t+ 1 or ` = r, then g(Ψ2) < g(Φ) and the result holds by the induction
hypothesis. Finally, we can reduce to Case 1 if t+ 1 < ` < r.

Theorem 7.9. Let Φ be a rational uniform access function on a set of players P . For every
finite field K with |K| ≥ |P |+ g(Φ), there exists a K-linear secret sharing scheme with access
function Φ and information ratio σ = ε(Φ). As a consequence, every rational uniform access
function admits a linear secret sharing scheme with optimal information ratio.

Proof. Combine Proposition 7.8 with Remark 2.11 and Proposition 7.1.

Corollary 7.10. For every rational uniform access function Φ, ε(Φ) = κ(Φ) = σ(Φ) = λ(Φ).

The fact that κ(Φ) = σ(Φ) for a rational uniform access function Φ, proved in Corollary 7.10,
can also be derived from [17]. The result was obtained independently by means of different
techniques. However, the computation of the explicit optimal information ratio, and the
construction of the optimal scheme was an open problem.

The results presented in Theorem 7.9 and Corollary 7.10 deal with rational access functions.
For some non-rational access functions, we can also apply the techniques used in the proof of
Proposition 7.8 and construct optimal schemes, as we can see in the following example.

Example 7.11. Let Φ be a uniform access function on a set P of size 3 with Φ0 = Φ1 = 0,
Φ2 = log 5/(2 log 5 + log 7), and Φ3 = 1. Observe that ε(Φ) = 1− Φ2. Let Σ1 be a (F5, 2)-linear
secret sharing scheme for the (1, 3, 3)-ramp access function with information ratio σ(Σ1) = 1/2.
Let Σ2 be a (F7, 1)-linear secret sharing scheme for the (2, 3, 3)-ramp access function with
information ratio σ(Σ2) = 1. The access function of the concatenation of Σ1 and Σ2 is Φ, and its
information ratio is (log 5 + log 7)/(2 log 5 + log 7) = 1− Φ2. Therefore, we have found a secret
sharing scheme with optimal information ratio for the access function Φ.

We do not have a general method to construct a scheme with optimal information ratio for
every uniform access function but, as it is demonstrated in the following remark, we can find
secret sharing schemes whose parameters are arbitrarily close to the required ones.

Remark 7.12. For every non-rational uniform access function Φ on a set P with n players, there
is a sequence of rational uniform access functions (Φk)k∈N such that limk→∞

∑n
i=0 |Φi −Φk

i | = 0.
Since limk→∞ ε(Φ

k) = ε(Φ) and ε(Φk) = σ(Φk), there is a sequence of linear secret sharing
schemes (Σk)k∈N satisfying lim Φ(Σk) = Φ and limσ(Σk) = ε(Φ).

Nevertheless, this is not enough to prove our main result, Theorem 7.14. Instead, the
following proposition is needed.

Proposition 7.13. For every uniform access function Φ, there exists a sequence of secret
sharing schemes (Σk)k∈N realizing Φ whose information ratios σ(Σk) converge to ε(Φ) as k tends
to infinity.

Proof. By Theorem 7.9, the result is obvious for rational access functions. Let Φ be a non-rational
uniform access function on a set P with n players. By Proposition 7.8, there exist ramp access
functions Φ1, . . . ,Φm on P and positive real numbers ρ1, . . . , ρm with

∑m
j=1 ρi = 1 such that
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Φ = ρ1Φ1 + · · · + ρmΦm and ε(Φ) = ρ1ε(Φ
1) + · · · + ρmε(Φ

m). For every j = 1, . . . ,m, there
exists a sequence of rational numbers (ρjk)k∈N with limk→∞ ρjk = ρj and ρjk ≤ ρj for every
k ∈ N. For every k ∈ N, consider αk =

∑m
j=1 ρjk and the uniform access functions

Ψk =
ρ1k

αk
Φ1 + · · ·+ ρmk

αk
Φm and Υk =

ρ1 − ρ1k

1− αk
Φ1 + · · ·+ ρm − ρmk

1− αk
Φm.

Let s be a positive integer with 2s ≥ n+ g(Φ) and let K be the finite field with order 2s. Since
Ψk is rational and g(Ψk) ≤ g(Φ), by Theorem 7.9 there exists a (K, `k)-linear secret sharing
scheme Σk

1 = (Sk
i )i∈Q with access function Ψk and information ratio

σ(Σk
1) =

m∑
j=1

ρjk
αk

ε(Φj) = ε(Ψk).

Observe that H(Sk
po) = s`k. Moreover, we can take `k large enough such that ds`kΥk

i e 6=
ds`kΥk

i+1e for every 0 ≤ i ≤ n−1 with Υk
i 6= Υk

i+1. From the proof of Theorem 4.2, there exists a
secret sharing scheme Σk

2 = (T k
i )i∈Q with access function Υk and H(T k

po) = s`k. The information

ratio of Σk
2 is upper bounded by a quantity νn that only depends on the number n of players.

Take positive integers qk and q′k such that 1 + qk/q
′
k = 1/αk. Let Σk be the concatenation of qk

copies of Σk
1 and q′k copies of Σk

2. Then the access function of Σk is αkΨk + (1− αk)Υk = Φ and
its information ratio satisfies ε(Φ) ≤ σ(Σk) ≤ αkε(Ψ

k) + (1− αk)νn. The proof is concluded by
taking into account that lim ε(Ψk) = ε(Φ) and limαk = 1.

Theorem 7.14. The optimal information ratio of every uniform access function Φ is equal to
ε(Φ).

Proof. Straightforward from Proposition 7.13.

Corollary 7.15. For every uniform access function Φ, ε(Φ) = κ(Φ) = σ(Φ).

8 Ideal Secret Sharing Schemes

In an ideal perfect secret sharing scheme, the length of every share equals a basic lower bound,
namely the length of the secret. Brickell and Davenport [12] proved that every ideal perfect
secret sharing scheme determines a matroid. As a consequence, its access structure is a port of
that matroid. Moreover, the optimal information ratio of every perfect access structure that is
not a matroid port is at least 3/2 [40].

This section deals with the extension to the non-perfect case of those results on ideal secret
sharing schemes. The existing definition of ideal (non-perfect) secret sharing scheme [39, 49] is
motivated by the connection with matroids, but it is not as natural as the one for the perfect
case. This is argued in a recent work [29], in which the connection between non-perfect secret
sharing and matroids is thoroughly analyzed. The framework introduced in this paper provides
a more satisfactory definition of ideal secret sharing scheme.

Definition 8.1. A secret sharing scheme Σ = (Si)i∈Q is ideal if its access function Φ has
constant increment µ and H(Sy) = µH(So) for every y ∈ P . An access function is called ideal if
it admits an ideal secret sharing scheme.

As in the perfect case, all shares in an ideal secret sharing scheme have the same length, equal
to a basic lower bound. Indeed, if the access function has constant increment, then the length of
each share is at least the maximum increment (here, we naturally assume that all players are
significant in the access function). As a consequence of the results in this section, our definition
of ideal secret sharing scheme is equivalent to the one proposed in previous works [39, 49].
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Example 8.2. Every (K, `)-linear secret sharing scheme Σ = (Si)i∈Q with rankSi = 1 for every
i ∈ P is ideal. In particular, the ramp secret sharing schemes in Example 2.9 are of this form,
and hence they are ideal.

A weaker sufficient condition for a secret sharing scheme to be ideal is obtained as a
consequence of the results in [29]. An access structure is connected if every player is in a minimal
qualified set and in a minimal non-forbidden set.

Theorem 8.3. A secret sharing scheme Σ = (Sx)x∈Q with access function Φ and connected
access structure (A,B) is ideal if and only if there exists a real number ν with 0 < ν ≤ 1 such
that

• Φ(Ay) ∈ {0, ν} for every A ∈ A and y ∈ P ,

• Φ(B r y) ∈ {1− ν, 1} for every B ∈ B and y ∈ B, and

• H(Sy) = νH(So) for every y ∈ P .

The rest of the section is dedicated to explore the connection between ideal secret sharing
schemes and matroids. Basically, we rewrite the results in [29] in terms of access functions. A
matroid M = (Q, r) is an integer polymatroid such that r(x) ∈ {0, 1} for every x ∈ Q. The
reader is referred to [46, 50, 52] for textbooks on matroid theory.

Definition 8.4. Let P, Po be a pair of nonempty, disjoint sets and M = (P ∪ Po, r) a matroid
such that r(Po) = |Po| and ∆r(Po :P ) = r(Po). The generalized port of the matroid M at the
set Po is the access function Φ on P defined by

Φ(X) =
∆r(Po :X)

r(Po)
=

∆r(Po :X)

|Po|

for every X ⊆ P . Generalized matroid ports with |Po| = 1 are perfect and they are called
matroid ports.

Theorem 8.5 ([29]). The access function of every ideal secret sharing scheme is a generalized
matroid port.

Proposition 8.6 ([29]). If Φ is a generalized matroid port, then Φ has constant increment and
κ(Φ) = µ(Φ) = 1/g(Φ).

Corollary 8.7. If Φ is an ideal access function, then σ(Φ) = µ(Φ) = 1/g(Φ).

Example 8.8. By Proposition 8.6, a uniform access function is a generalized matroid port if
and only if it is a ramp access function. Hence, the ideal uniform access functions are precisely
the ramp ones.

Remark 8.9. Both classes of ideal linear secret sharing schemes and of generalized matroid
ports are closed by duality.

9 Conclusion and Open Problems

In this work we present a new framework, based on the concept of access function, for the
analysis of non-perfect secret sharing schemes. We prove that every access function admits a
secret sharing scheme. By extending the polymatroid technique to non-perfect secret sharing
schemes, we pursue the search for bounds on the information ratio. In a subsequent work [27],
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our framework has been used to extend the results in [40] to the non-perfect case, providing
lower bounds on the information ratio for access functions that are not generalized matroid
ports.

Determining the optimal information ratio for general access functions appeared to be
extremely difficult even for the particular case of perfect access structures, which has been
extensively studied. One of the main open problems is to find superpolynomial lower bounds.
By Proposition 5.7, this is not possible by using the polymatroid technique, which is based
only on the Shannon information inequalities. Better lower bounds could be found by using
non-Shannon information inequalities, but limitations on this approach for perfect secret sharing
schemes have been found [5, 41].

Explicit superpolynomial lower bounds on the information ratio [2] and also explicit expo-
nential lower bounds on the length of the shares [18] have been found for perfect linear secret
sharing schemes. The extension of these results to non-perfect secret sharing schemes is worth
considering.

In several scenarios, the access function provides too many details about the structure of the
scheme. Optimization questions should be considered also when only lower and upper bounds
on the access function are given. Recently, different works presented non-perfect secret sharing
schemes that are more efficient than ramp secret sharing schemes and can substitute them in
some of these scenarios [25].

Due to the difficulty of finding general bounds, a number of works have considered this
problem for particular families of perfect access structures. Recent examples are [3, 23, 28].
We determined the optimal information ratio for a family of non-perfect access functions, the
uniform ones. Surely, the techniques that are introduced in this paper will be useful to analyze
other families of access functions. However, as we saw for uniform access functions, secret sharing
schemes with optimal information ratio are not necessarily the most efficient ones. This leads to
the search of bounds on the length of the shares instead of the information ratio. This line of
work has been initiated already in [10, 14].
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