1,490 research outputs found

    A heuristic-based approach to code-smell detection

    Get PDF
    Encapsulation and data hiding are central tenets of the object oriented paradigm. Deciding what data and behaviour to form into a class and where to draw the line between its public and private details can make the difference between a class that is an understandable, flexible and reusable abstraction and one which is not. This decision is a difficult one and may easily result in poor encapsulation which can then have serious implications for a number of system qualities. It is often hard to identify such encapsulation problems within large software systems until they cause a maintenance problem (which is usually too late) and attempting to perform such analysis manually can also be tedious and error prone. Two of the common encapsulation problems that can arise as a consequence of this decomposition process are data classes and god classes. Typically, these two problems occur together – data classes are lacking in functionality that has typically been sucked into an over-complicated and domineering god class. This paper describes the architecture of a tool which automatically detects data and god classes that has been developed as a plug-in for the Eclipse IDE. The technique has been evaluated in a controlled study on two large open source systems which compare the tool results to similar work by Marinescu, who employs a metrics-based approach to detecting such features. The study provides some valuable insights into the strengths and weaknesses of the two approache

    A Domain-Specific Language and Editor for Parallel Particle Methods

    Full text link
    Domain-specific languages (DSLs) are of increasing importance in scientific high-performance computing to reduce development costs, raise the level of abstraction and, thus, ease scientific programming. However, designing and implementing DSLs is not an easy task, as it requires knowledge of the application domain and experience in language engineering and compilers. Consequently, many DSLs follow a weak approach using macros or text generators, which lack many of the features that make a DSL a comfortable for programmers. Some of these features---e.g., syntax highlighting, type inference, error reporting, and code completion---are easily provided by language workbenches, which combine language engineering techniques and tools in a common ecosystem. In this paper, we present the Parallel Particle-Mesh Environment (PPME), a DSL and development environment for numerical simulations based on particle methods and hybrid particle-mesh methods. PPME uses the meta programming system (MPS), a projectional language workbench. PPME is the successor of the Parallel Particle-Mesh Language (PPML), a Fortran-based DSL that used conventional implementation strategies. We analyze and compare both languages and demonstrate how the programmer's experience can be improved using static analyses and projectional editing. Furthermore, we present an explicit domain model for particle abstractions and the first formal type system for particle methods.Comment: Submitted to ACM Transactions on Mathematical Software on Dec. 25, 201

    Implicit Incremental Model Analyses and Transformations

    Get PDF
    When models of a system change, analyses based on them have to be reevaluated in order for the results to stay meaningful. In many cases, the time to get updated analysis results is critical. This thesis proposes multiple, combinable approaches and a new formalism based on category theory for implicitly incremental model analyses and transformations. The advantages of the implementation are validated using seven case studies, partially drawn from the Transformation Tool Contest (TTC)

    Configurable Software Performance Completions through Higher-Order Model Transformations

    Get PDF
    Chillies is a novel approach for variable model transformations closing the gap between abstract architecture models, used for performance prediction, and required low-level details. We enable variability of transformations using chain of generators based on the Higher-Order Transformation (HOT). HOTs target different goals, such as template instantiation or transformation composition. In addition, we discuss state-dependent behavior in prediction models and quality of model transformations

    On the Unification of Megamodels

    Get PDF
    Through the more and more widespread application of model-driven engineering (MDE) and the increasing diversity in applied modeling paradigms within single projects, there is an increasing need to capture not only models in isolation but also their relations.This paper is a survey on techniques capturing such relations, such as megamodels or macromodels, based on existing scientific literature. Therefore, we consider various definitions of these techniques. We further examine characteristics of the different techniques.We will propose a unified core definition of a megamodel that captures the core properties of megamodels and which can be extended to the needs of the different applications of megamodels.Finally, we give an outlook on arising application areas for megamodels

    Assessing and improving the quality of model transformations

    Get PDF
    Software is pervading our society more and more and is becoming increasingly complex. At the same time, software quality demands remain at the same, high level. Model-driven engineering (MDE) is a software engineering paradigm that aims at dealing with this increasing software complexity and improving productivity and quality. Models play a pivotal role in MDE. The purpose of using models is to raise the level of abstraction at which software is developed to a level where concepts of the domain in which the software has to be applied, i.e., the target domain, can be expressed e??ectively. For that purpose, domain-speci??c languages (DSLs) are employed. A DSL is a language with a narrow focus, i.e., it is aimed at providing abstractions speci??c to the target domain. This makes that the application of models developed using DSLs is typically restricted to describing concepts existing in that target domain. Reuse of models such that they can be applied for di??erent purposes, e.g., analysis and code generation, is one of the challenges that should be solved by applying MDE. Therefore, model transformations are typically applied to transform domain-speci??c models to other (equivalent) models suitable for di??erent purposes. A model transformation is a mapping from a set of source models to a set of target models de??ned as a set of transformation rules. MDE is gradually being adopted by industry. Since MDE is becoming more and more important, model transformations are becoming more prominent as well. Model transformations are in many ways similar to traditional software artifacts. Therefore, they need to adhere to similar quality standards as well. The central research question discoursed in this thesis is therefore as follows. How can the quality of model transformations be assessed and improved, in particular with respect to development and maintenance? Recall that model transformations facilitate reuse of models in a software development process. We have developed a model transformation that enables reuse of analysis models for code generation. The semantic domains of the source and target language of this model transformation are so far apart that straightforward transformation is impossible, i.e., a semantic gap has to be bridged. To deal with model transformations that have to bridge a semantic gap, the semantics of the source and target language as well as possible additional requirements should be well understood. When bridging a semantic gap is not straightforward, we recommend to address a simpli??ed version of the source metamodel ??rst. Finally, the requirements on the transformation may, if possible, be relaxed to enable automated model transformation. Model transformations that need to transform between models in di??erent semantic domains are expected to be more complex than those that merely transform syntax. The complexity of a model transformation has consequences for its quality. Quality, in general, is a subjective concept. Therefore, quality can be de??ned in di??erent ways. We de??ned it in the context of model transformation. A model transformation can either be considered as a transformation de??nition or as the process of transforming a source model to a target model. Accordingly, model transformation quality can be de??ned in two di??erent ways. The quality of the de??nition is referred to as its internal quality. The quality of the process of transforming a source model to a target model is referred to as its external quality. There are also two ways to assess the quality of a model transformation (both internal and external). It can be assessed directly, i.e., by performing measurements on the transformation de??nition, or indirectly, i.e., by performing measurements in the environment of the model transformation. We mainly focused on direct assessment of internal quality. However, we also addressed external quality and indirect assessment. Given this de??nition of quality in the context of model transformations, techniques can be developed to assess it. Software metrics have been proposed for measuring various kinds of software artifacts. However, hardly any research has been performed on applying metrics for assessing the quality of model transformations. For four model transformation formalisms with di??fferent characteristics, viz., for ASF+SDF, ATL, Xtend, and QVTO, we de??ned sets of metrics for measuring model transformations developed with these formalisms. While these metric sets can be used to indicate bad smells in the code of model transformations, they cannot be used for assessing quality yet. A relation has to be established between the metric sets and attributes of model transformation quality. For two of the aforementioned metric sets, viz., the ones for ASF+SDF and for ATL, we conducted an empirical study aiming at establishing such a relation. From these empirical studies we learned what metrics serve as predictors for di??erent quality attributes of model transformations. Metrics can be used to quickly acquire insights into the characteristics of a model transformation. These insights enable increasing the overall quality of model transformations and thereby also their maintainability. To support maintenance, and also development in a traditional software engineering process, visualization techniques are often employed. For model transformations this appears as a feasible approach as well. Currently, however, there are few visualization techniques available tailored towards analyzing model transformations. One of the most time-consuming processes during software maintenance is acquiring understanding of the software. We expect that this holds for model transformations as well. Therefore, we presented two complementary visualization techniques for facilitating model transformation comprehension. The ??rst-technique is aimed at visualizing the dependencies between the components of a model transformation. The second technique is aimed at analyzing the coverage of the source and target metamodels by a model transformation. The development of the metric sets, and in particular the empirical studies, have led to insights considering the development of model transformations. Also, the proposed visualization techniques are aimed at facilitating the development of model transformations. We applied the insights acquired from the development of the metric sets as well as the visualization techniques in the development of a chain of model transformations that bridges a number of semantic gaps. We chose to solve this transformational problem not with one model transformation, but with a number of smaller model transformations. This should lead to smaller transformations, which are more understandable. The language on which the model transformations are de??ned, was subject to evolution. In particular the coverage visualization proved to be bene??cial for the co-evolution of the model transformations. Summarizing, we de??ned quality in the context of model transformations and addressed the necessity for a methodology to assess it. Therefore, we de??ned metric sets and performed empirical studies to validate whether they serve as predictors for model transformation quality. We also proposed a number of visualizations to increase model transformation comprehension. The acquired insights from developing the metric sets and the empirical studies, as well as the visualization tools, proved to be bene??cial for developing model transformations

    Role-Modeling in Round-Trip Engineering for Megamodels

    Get PDF
    Software is becoming more and more part of our daily life and makes it easier, e.g., in the areas of communication and infrastructure. Model-driven software development forms the basis for the development of software through the use and combination of different models, which serve as central artifacts in the software development process. In this respect, model-driven software development comprises the process from requirement analysis through design to software implementation. This set of models with their relationships to each other forms a so-called megamodel. Due to the overlapping of the models, inconsistencies occur between the models, which must be removed. Therefore, round-trip engineering is a mechanism for synchronizing models and is the foundation for ensuring consistency between models. Most of the current approaches in this area, however, work with outdated batch-oriented transformation mechanisms, which no longer meet the requirements of more complex, long-living, and ever-changing software. In addition, the creation of megamodels is time-consuming and complex, and they represent unmanageable constructs for a single user. The aim of this thesis is to create a megamodel by means of easy-to-learn mechanisms and to achieve its consistency by removing redundancy on the one hand and by incrementally managing consistency relationships on the other hand. In addition, views must be created on the parts of the megamodel to extract them across internal model boundaries. To achieve these goals, the role concept of Kühn in 2014 is used in the context of model-driven software development, which was developed in the Research Training Group 'Role-based Software Infrastructures for continuous-context-sensitive Systems.' A contribution of this work is a role-based single underlying model approach, which enables the generation of views on heterogeneous models. Besides, an approach for the synchronization of different models has been developed, which enables the role-based single underlying model approach to be extended by new models. The combination of these two approaches creates a runtime-adaptive megamodel approach that can be used in model-driven software development. The resulting approaches will be evaluated based on an example from the literature, which covers all areas of the work. In addition, the model synchronization approach will be evaluated in connection with the Transformation Tool Contest Case from 2019
    • …
    corecore