130,996 research outputs found

    Behavioral Equivalences for Higher-Order Languages with Probabilities

    Get PDF
    Higher-order languages, whose paradigmatic example is the lambda-calculus, are languages with powerful operators that are capable of manipulating and exchanging programs themselves. This thesis studies behavioral equivalences for programs with higher-order and probabilistic features. Behavioral equivalence is formalized as a contextual, or testing, equivalence, and two main lines of research are pursued in the thesis. The first part of the thesis focuses on contextual equivalence as a way of investigating the expressiveness of different languages. The discriminating powers offered by higher-order concurrent languages (Higher-Order pi-calculi) are compared with those offered by higher-order sequential languages (Ă  la lambda-calculus) and by first-order concurrent languages (Ă  la CCS). The comparison is carried out by examining the contextual equivalences induced by the languages on two classes of first-order processes, namely nondeterministic and probabilistic processes. As a result, the spectrum of the discriminating powers of several varieties of higher-order and first-order languages is obtained, both in a nondeterministic and in a probabilistic setting. The second part of the thesis is devoted to proof techniques for contextual equivalence in probabilistic lambda-calculi. Bisimulation-based proof techniques are studied, with particular focus on deriving bisimulations that are fully abstract for contextual equivalence (i.e., coincide with it). As a first result, full abstraction of applicative bisimilarity and similarity are proved for a call-by-value probabilistic lambda-calculus with a parallel disjunction operator. Applicative bisimulations are however known not to scale to richer languages. Hence, more robust notions of bisimulations for probabilistic calculi are considered, in the form of environmental bisimulations. Environmental bisimulations are defined for pure call-by-name and call-by-value probabilistic lambda-calculi, and for a (call-by-value) probabilistic lambda-calculus extended with references (i.e., a store). In each case, full abstraction results are derived

    Equivalence of call-by-name and call-by-need for lambda-calculi with letrec

    Get PDF
    We develop a proof method to show that in a (deterministic) lambda calculus with letrec and equipped with contextual equivalence the call-by-name and the call-by-need evaluation are equivalent, and also that the unrestricted copy-operation is correct. Given a let-binding x = t, the copy-operation replaces an occurrence of the variable x by the expression t, regardless of the form of t. This gives an answer to unresolved problems in several papers, it adds a strong method to the tool set for reasoning about contextual equivalence in higher-order calculi with letrec, and it enables a class of transformations that can be used as optimizations. The method can be used in different kind of lambda calculi with cyclic sharing. Probably it can also be used in non-deterministic lambda calculi if the variable x is "deterministic", i.e., has no interference with non-deterministic executions. The main technical idea is to use a restricted variant of the infinitary lambda-calculus, whose objects are the expressions that are unrolled w.r.t. let, to define the infinite developments as a reduction calculus on the infinite trees and showing a standardization theorem

    Simulation in the Call-by-Need Lambda-Calculus with Letrec, Case, Constructors, and Seq

    Full text link
    This paper shows equivalence of several versions of applicative similarity and contextual approximation, and hence also of applicative bisimilarity and contextual equivalence, in LR, the deterministic call-by-need lambda calculus with letrec extended by data constructors, case-expressions and Haskell's seq-operator. LR models an untyped version of the core language of Haskell. The use of bisimilarities simplifies equivalence proofs in calculi and opens a way for more convenient correctness proofs for program transformations. The proof is by a fully abstract and surjective transfer into a call-by-name calculus, which is an extension of Abramsky's lazy lambda calculus. In the latter calculus equivalence of our similarities and contextual approximation can be shown by Howe's method. Similarity is transferred back to LR on the basis of an inductively defined similarity. The translation from the call-by-need letrec calculus into the extended call-by-name lambda calculus is the composition of two translations. The first translation replaces the call-by-need strategy by a call-by-name strategy and its correctness is shown by exploiting infinite trees which emerge by unfolding the letrec expressions. The second translation encodes letrec-expressions by using multi-fixpoint combinators and its correctness is shown syntactically by comparing reductions of both calculi. A further result of this paper is an isomorphism between the mentioned calculi, which is also an identity on letrec-free expressions.Comment: 50 pages, 11 figure

    Distilling Abstract Machines (Long Version)

    Full text link
    It is well-known that many environment-based abstract machines can be seen as strategies in lambda calculi with explicit substitutions (ES). Recently, graphical syntaxes and linear logic led to the linear substitution calculus (LSC), a new approach to ES that is halfway between big-step calculi and traditional calculi with ES. This paper studies the relationship between the LSC and environment-based abstract machines. While traditional calculi with ES simulate abstract machines, the LSC rather distills them: some transitions are simulated while others vanish, as they map to a notion of structural congruence. The distillation process unveils that abstract machines in fact implement weak linear head reduction, a notion of evaluation having a central role in the theory of linear logic. We show that such a pattern applies uniformly in call-by-name, call-by-value, and call-by-need, catching many machines in the literature. We start by distilling the KAM, the CEK, and the ZINC, and then provide simplified versions of the SECD, the lazy KAM, and Sestoft's machine. Along the way we also introduce some new machines with global environments. Moreover, we show that distillation preserves the time complexity of the executions, i.e. the LSC is a complexity-preserving abstraction of abstract machines.Comment: 63 page

    Trustworthy Refactoring via Decomposition and Schemes: A Complex Case Study

    Get PDF
    Widely used complex code refactoring tools lack a solid reasoning about the correctness of the transformations they implement, whilst interest in proven correct refactoring is ever increasing as only formal verification can provide true confidence in applying tool-automated refactoring to industrial-scale code. By using our strategic rewriting based refactoring specification language, we present the decomposition of a complex transformation into smaller steps that can be expressed as instances of refactoring schemes, then we demonstrate the semi-automatic formal verification of the components based on a theoretical understanding of the semantics of the programming language. The extensible and verifiable refactoring definitions can be executed in our interpreter built on top of a static analyser framework.Comment: In Proceedings VPT 2017, arXiv:1708.0688

    Trees from Functions as Processes

    Get PDF
    Levy-Longo Trees and Bohm Trees are the best known tree structures on the {\lambda}-calculus. We give general conditions under which an encoding of the {\lambda}-calculus into the {\pi}-calculus is sound and complete with respect to such trees. We apply these conditions to various encodings of the call-by-name {\lambda}-calculus, showing how the two kinds of tree can be obtained by varying the behavioural equivalence adopted in the {\pi}-calculus and/or the encoding

    Correctness of copy in calculi with letrec, case, constructors and por

    Get PDF
    This paper extends the internal frank report 28 as follows: It is shown that for a call-by-need lambda calculus LRCCP-Lambda extending the calculus LRCC-Lambda by por, i.e in a lambda-calculus with letrec, case, constructors, seq and por, copying can be done without restrictions, and also that call-by-need and call-by-name strategies are equivalent w.r.t. contextual equivalence

    On Probabilistic Applicative Bisimulation and Call-by-Value λ\lambda-Calculi (Long Version)

    Get PDF
    Probabilistic applicative bisimulation is a recently introduced coinductive methodology for program equivalence in a probabilistic, higher-order, setting. In this paper, the technique is applied to a typed, call-by-value, lambda-calculus. Surprisingly, the obtained relation coincides with context equivalence, contrary to what happens when call-by-name evaluation is considered. Even more surprisingly, full-abstraction only holds in a symmetric setting.Comment: 30 page
    • 

    corecore