
Equivalence of Call-By-Name and Call-By-Need
for Lambda-Calculi with Letrec

Manfred Schmidt-Schauß

Fachbereich Informatik und Mathematik,
Institut für Informatik, Johann Wolfgang Goethe-Universität,

Postfach 11 19 32, D-60054 Frankfurt, Germany,
schauss@ki.informatik.uni-frankfurt.de

Technical Report Frank-25

29. September 2006

Abstract. We develop a proof method to show that in a (deterministic)
lambda calculus with letrec and equipped with contextual equivalence
the call-by-name and the call-by-need evaluation are equivalent, and also
that the unrestricted copy-operation is correct. Given a let-binding x =
t, the copy-operation replaces an occurrence of the variable x by the
expression t, regardless of the form of t. This gives an answer to unre-
solved problems in several papers, it adds a strong method to the tool set
for reasoning about contextual equivalence in higher-order calculi with
letrec, and it enables a class of transformations that can be used as op-
timizations. The method can be used in different kind of lambda calculi
with cyclic sharing. Probably it can also be used in non-deterministic
lambda calculi if the variable x is “deterministic”, i.e., has no interfer-
ence with non-deterministic executions. The main technical idea is to
use a restricted variant of the infinitary lambda-calculus, whose objects
are the expressions that are unrolled w.r.t. let, to define the infinite de-
velopments as a reduction calculus on the infinite trees and showing a
standardization theorem.

1 Introduction

A good semantics that supports all phases from programming, compiling, ver-
ification, optimization to execution is indispensable for the reliable use of a
programming language. Extended lambda calculi are widely used to provide op-
erational semantics for programming languages. In this paper we will make a
contribution to the semantics of non-strict functional programming languages
like Haskell [16] and Clean [17]. An efficient evaluation of programs in these lan-
guages is based on call-by-need evaluation that implements call-by-name evalua-
tion avoiding multiple evaluation of the same expression, for example Haskell has
a call-by-name semantics, but the implementation of evaluation is call-by-need.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hochschulschriftenserver - Universität Frankfurt am Main

https://core.ac.uk/display/14502186?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 M. Schmidt-Schauß

Hence it is important to investigate lambda calculi having a possibility to repre-
sent sharing of subexpressions, which is usually made explicit by let-expressions
and also by recursive let-expressions [6,1,4,5,12]. The calculus in general deter-
mines an evaluation relation and an equivalence of expression. The first is used
for correct and efficient execution, the second for correctness of transformations
and optimizations. There are different technical methods to define equivalence
of expressions for lambda calculi. Equality may be derived directly from the
reduction by the compatible equivalence closure, which is also called conver-
sion equality. Other possibilities are by predefining the equality axioms, or by
defining equality via equality of (finite or infinite) normal forms, or by defining
equality using a notion of information content [2,3], or by defining equality as
observational equality, where expressions are regarded as equal, if they cannot
be distinguished by all permitted observations. The coarsest equality that jus-
tifies correctness of a maximal number of program transformations is in general
provided by contextual equality.

1.1 A Framework for Lambda Calculi

Our view of (deterministic) lambda-calculi, their reduction relation and their
equational theory is as follows:
We assume given the language L of terms, a reduction → of terms (the abstract
reduction machine), the successful results (or values) V as a subset of terms, and
the one-hole contexts C valid in the language L. Convergence (or termination)
of a term t, denoted t⇓ is defined on this basis as t⇓ iff there exists a reduction
sequence from t to some value v: t

∗−→ v. Then observational equality is defined
as contextual equivalence:
s ≤c t iff for all contexts C : C[s]⇓ ⇒ C[t]⇓, and
s ∼c t iff s ≤c t and t ≤c s.
The equality provides us with rigorous criteria for the correctness of transforma-
tions, which can only transform ∼c-equal expressions. In contrast with explicitly
given equality axioms of a lambda calculus, our presentation implicitly defines
the equations through ∼c, and it may be that there is no finite set of equality ax-
ioms for the equality theory. An advantage is that contextual equality is always
the largest possible one. It is also clear that the equivalence ∼c is a congruence,
i.e. s ∼c t implies C[s] ∼c C[t], and that the given reduction has a weak stan-
dardization property for ∼c in the following sense: s ∼c t ⇒ s⇓ ⇔ t⇓. In concrete
calculi, usually values are abstractions and reduction is normal-order reduction.
Since the equality is implicitly given, there are several proof obligations: One is
to show that the given (deterministic) calculus is “internally consistent”, i.e. that
s → t ⇒ s ∼c t. If this is shown, then the following is immediate: the reduction
relation → can be extended to a general reduction relation C−→ by C[s] C−→ C[t] if
s → t for any context C, where C−→ ⊆ ∼c and hence that the reduction relation
C−→ can be used as a partial evaluation. Also full standardization in the following
sense holds: If s

C,∗−−→ t where t is a value, then s ∼c t, and hence s⇓. This property

Equivalence of Call-By-Name and Call-By-Need for Letrec 3

of internal consistency is also the replacement for the Church-Rosser-property:
If s

C,∗−−→ s1 and s
C,∗−−→ s2, then s1 ∼c s2.

The other proof obligation is to exhibit a large set of equalities and correct trans-
formations that hold in the given calculus, i.e. that are correct w.r.t. contextual
equality, and also to provide proof tools for proving these equalities.
The reduction → can be restricted by a minimality principle: Defining a small
number of reduction rules, and also restricting their applicability, such that re-
duction is deterministic for a deterministic lambda calculus. This may support
easy reasoning about the calculus and its equality. It is important to note that
this framework also permits a switch to another reduction relation, perhaps more
efficient or otherwise more convenient, as long as convergence and contextual
equality remains unchanged.
This framework has the potential of unifying the view of lambda-calculi re-
duction strategies insofar as all the variants of strategies in call-by-name and
call-by-need calculi can be compared for their equational theory. Though not
explicitly proved, it appears that in the pure untyped lambda calculus, lots of
added equations or rules like fully lazy reduction or optimal reduction do not
change the equational theory, and can thus be seen as different reduction strate-
gies for essentially the same calculus. We conjecture that the same is true for
call-by-name-based let- or letrec-calculi, which are often extended by different
transforming and optimizing rules like garbage collection, fully-lazy reduction, or
variants in the treatment of let-shuffling, instantiation or copy-reduction. E.g the
strict inclusion of the theory of call-by-need in the theory of call-by-name for a
non-recursive let mentioned in [5] will turn into an equivalence using contextual
equivalence.

1.2 Call-by-Name, call-by-Need and Let-Lambda-Calculi

An early and influential comparison between different implementations of
lambda-calculi was Plotkin’s [18] treatment of call-by-value, call-by-name strate-
gies and different abstract machines as implementations, where Plotkin used
contextual equivalence as one of its criteria. It becomes clear that call-by-value
and call-by-name are essentially different. Comparing these strategies with call-
by-need leads as a natural approach to extending the lambda-calculus syntax
by let or letrec. It is well-known that non-recursive let-expressions can be
simulated by an application (see e.g. [6]). However, letrec cannot easily be
translated or simulated in letrec-free calculi. It is also well-known that letrec
has improved sharing properties during reductions (see e.g. [1]), and also allows
in several cases to syntactically detect non-termination, which otherwise would
require a loop-checker for a reduction.
In calculi with sharing an important issue is in which cases an improvement
of sharing is permitted, or the counterpart, which kind of unsharing is permit-
ted, perhaps to enable other program transformations, for example inlining and
common subexpression elimination. Note that in non-deterministic calculi, mod-
ifying sharing is in general not correct, however, there are also several special

4 M. Schmidt-Schauß

cases where it is explicitly required or permitted, but also several cases, where
it is completely unclear to which extent modifying sharing is correct (see e.g.
[14,15]). These are usually very hard questions, for example in the letrec-calculi
in [15,9] proofs of correctness of corresponding program transformations are
missing. In the deterministic letrec-calculus treated in [20], the copy reduc-
tion is proved only correct if the expression is not copied into an abstraction.
The technical problem of showing correctness of the general copy-transformation
is that diagram-based methods do not work. Even the proofs that the special
copy-reduction, where only abstractions or variables are allowed to be copied, is
intricate and requires splitting the reduction and a complex measure on reduc-
tion sequences. A reason for the failure of diagram-based methods is that the
copy-reduction and the let-based reductions interfere, and that the duplication
of subterms prevents to construct well-founded measures on terms and reduction
sequences.
There are several paper investigating the relationship between call-by-name and
call-by-need calculi (e.g. [6,5,12]). Other work on lambda-calculi extended with
letrec is centered around confluence or non-confluence properties of the reduction
relation of the calculi ([4,1]). A proof of the observational equivalence of call-
by-name and a call-by-need calculus with non-recursive let is in [12], which also
mentions at the very end an open question concerning instantiating of non-
values, which can be reformulated as the question, whether a letrec-calculus
with a reduction that allows only to copy values is strong enough to show also
that the equation that allows copying arbitrary expressions holds. As far as
we know, there is no proof for this equality w.r.t. contextual equivalence for a
calculus using recursive let and call-by-need reductions, which is also implicitly
mentioned as unresolved in [5].

1.3 Structure and Result of this Paper

This paper treats a tiny letrec-calculus which is equipped with a normal order
reduction and a contextual semantics as definition of equality of expressions.
First it defines the infinite trees corresponding to the unrolling of expressions
as in the 111-calculus of [10]. Then reduction rules on the infinite trees are
defined, where the basic rule is the beta-rule, and the other rule ∞−→ corresponds
to an infinite development (see also [10]). Then it is shown that termination of
expressions in the call-by-need lambda-calculus, as well as for the call-by-name
calculus is equivalent to termination of beta-reduction on the corresponding
infinite trees. An essential step is the standardization lemma for

∞,∗−−→-reductions
on the infinite trees. Finally, as a corollary we obtain the correctness of the
copy-rule, which holds in both calculi, since they are equivalent. Thus we have
solved an open problem mentioned in [5], the equivalence of a call-by-need letrec-
calculus and a call-by-name letrec-calculus.
Our method could be applied to the letrec-calculi from [6,1,4,5,12], if they adopt
the contextual equivalence as equality, which appears to cover all the desired

Equivalence of Call-By-Name and Call-By-Need for Letrec 5

equalities in these calculi. It could also be applied to the record calculus of
Machkasova and Turbak [11], though there may be other specialized methods
in this calculus, since in this calculus letrec is only allowed at the top level of
expressions. We believe that our method can be extended also to calculi with
constructors, which we leave as future work.

2 Syntax and Reductions of the Functional Core
Language LRλ

2.1 The Language and the Reduction Rules

We define the calculus LRλ consisting of a language L(LRλ) and its reduction
rules, presented in this section, the normal order reduction strategy and contex-
tual equivalence. The syntax for expressions E is as follows:

E ::= V | (E1 E2) | (λ V.E) | (letrec V1 = E1, . . . , Vn = En in E)

where E,Ei are expressions and V, Vi are variables. The expressions (E1 E2),
(λV.E), (letrec V1 = E1, . . . , Vn = En in E) are called application, abstraction,
or letrec-expression, respectively.
All letrec-expressions obey the following conditions: The variables Vi in the
bindings are all distinct. We also assume that the bindings in letrec are com-
mutative, i.e. letrecs with bindings interchanged are considered to be syntac-
tically equivalent. letrec is recursive: I.e., the scope of xj in (letrec x1 =
E1, . . . , xj = Ej , . . . , xn = tn in E) is E and all expressions Ei for i = 1, . . . , n.
This fixes the notions of closed, open expressions and α-renamings. Free and
bound variables in expressions are defined using the usual conventions. Variable
binding primitives are λ and letrec. The set of free variables in an expression t
is denoted as FV (t). For simplicity we use the distinct variable convention: I.e.,
all bound variables in expressions are assumed to be distinct, and free variables
are distinct from bound variables. The reduction rules are assumed to implicitly
rename bound variables in the result by α-renaming if necessary to obey this
convention. Note that this is only necessary for the copy rule (cp) (see below).
We omit parentheses in nested applications: (s1 . . . sn) denotes (. . . (s1 s2) . . . sn)
provided s1 is an expression. The set of closed LRλ-expressions is denoted as
LRλ0.
Sometimes we abbreviate the notation of letrec-expression (letrec x1 =
E1, . . . , xn = En in E), as (letrec Env in E), where Env ≡ {x1 = E1, . . . , xn =
En}. This will also be used freely for parts of the bindings. The set of bound
variables in an environment Env is denoted as LV (Env).
In the following we define different context classes and contexts. To visually
distinguish context classes from individual contexts, we use different text styles.

6 M. Schmidt-Schauß

(lbeta) ((λx.s) r)→ (letrec x = r in s)
(cp-in) (letrec x = s,Env in C[x])→ (letrec x = s,Env in C[s])

where s is an abstraction or a variable
(cp-e) (letrec x = s,Env , y = C[x] in r) → (letrec x = s,Env , y = C[s] in r)

where s is an abstraction or a variable
(llet-in) (letrec Env1 in (letrec Env2 in r))

→ (letrec Env1,Env2 in r)
(llet-e) (letrec Env1, x = (letrec Env2 in sx) in r)

→ (letrec Env1,Env2, x = sx in r)
(lapp) ((letrec Env in t) s)→ (letrec Env in (t s))

Fig. 1. Reduction rules for call-by-need

Definition 2.1. The class C of all contexts is defined as the set of expressions
C from LRλ, where the symbol [·], the hole, is a predefined context that is syn-
tactically treated as an atomic expression, such that [·] occurs exactly once in
C.
Given a term t and a context C, we will write C[t] for the expression constructed
from C by plugging t into the hole, i.e, by replacing [·] in C by t, where this
replacement is meant syntactically, i.e., a variable capture is permitted.

Definition 2.2. A value is an abstraction. We denote values by the letters
v, w. A weak head normal form (WHNF) is either a value, or an expression
(letrec Env in v), where v is a value.

The reduction rules below are defined more liberally than necessary for the
normal order reduction, in order to permit an easy use as transformations.

Definition 2.3 (Reduction Rules of the Calculus LRλ). The (base) reduc-
tion rules for the calculus and language LRλ are defined in figure 1. The union
of (llet-in) and (llet-e) is called (llet), the union of (cp-in) and (cp-e) is called
(cp), and the union of (llet) and (lapp) is called (lll).
Reductions (and transformations) are denoted using an arrow with super and/or
subscripts: e.g. llet−−→. To explicitly state the context in which a particular reduc-
tion is executed we annotate the reduction arrow with the context in which the
reduction takes place. If no confusion arises, we omit the context at the arrow.
The redex of a reduction is the term as given on the left side of a reduction rule.
We will also speak of the inner redex, which is the variable position which is
replaced by a (cp). Otherwise it is the same as the redex. Transitive closure of
reductions is denoted by a +, reflexive transitive closure by a ∗. E.g. ∗−→ is the
reflexive, transitive closure of →. If necessary, we attach more information to
the arrow.

Equivalence of Call-By-Name and Call-By-Need for Letrec 7

(lbeta) ((λx.s)S r)→ (letrec x = r in s)
(cp-in) (letrec x = sS ,Env in C[xV])→ (letrec x = s,Env in C[s])

where s is an abstraction or a variable
(cp-e) (letrec x = sS ,Env , y = C[xV] in r) → (letrec x = s,Env , y = C[s] in r)

where s is an abstraction or a variable
(llet-in) (letrec Env1 in (letrec Env2 in r)S)

→ (letrec Env1,Env2 in r)
(llet-e) (letrec Env1, x = (letrec Env2 in sx)S in r)

→ (letrec Env1,Env2, x = sx in r)
(lapp) ((letrec Env in t)S s)→ (letrec Env in (t s))

Fig. 2. Normal Order Reduction rules

2.2 The Unwind Algorithm

Searching for a maximal reduction context can be seen as an algorithm walking
over the term structure. In implementations of functional programming this is
usually called “unwind”.
The following labeling algorithm will detect the position to which a reduction
rule will be applied according to normal order. It uses four labels: S, T, S ∨T, V ,
where T means reduction of the top term, S means reduction of a subterm,
S ∨ T matches T as well as S, and V labels already visited subexpressions. The
algorithm does not look into S-labeled letrec-expressions. We also denote the
fresh V only in the result of the unwind-steps, and do not indicate the already
existing V -labels. For a term s the labeling algorithm starts with sT , where no
subexpression in s is labeled. The rules of the labeling algorithm are:

(letrec Env in t)T → (letrec Env in tS)V

(s t)S∨T → (sS t)V

(letrec x = s,Env in C[xS]) → (letrec x = sS ,Env in C[xV])
if s was not labeled V

(letrec x = s, y = C[xS],Env in t) → (letrec x = sS , y = C[xV],Env in t)
if s was not labeled V and if C[x] 6= x

This algorithm terminates. For example for (letrec x = x in x)T it will stop
with (letrec x = xS in x).

Definition 2.4 (Normal Order Reduction). A normal order reduction is
defined as the reduction at the position of the final label S, or one position higher
up, or copying the term from the final position to the position before, as indicated
in figure 2. A normal-order reduction step is denoted as n−→.

Lemma 2.5. Normal order reduction is unique.

Definition 2.6. A normal order reduction sequence is called an (normal-order)
evaluation if the last term is a WHNF. Otherwise, i.e. if the normal order re-
duction sequence is non-terminating, or if the last term is not a WHNF, but has

8 M. Schmidt-Schauß

no further normal order reduction, then we say that it is a failing normal order
reduction sequence.
For a term t, we write t⇓ iff there is an evaluation starting from t. We call
this the evaluation of t and denote it as nor(t). If t⇓, we also say that t is
terminating. Otherwise, if there is no evaluation of t, we write t⇑.

Definition 2.7 (contextual preorder and equivalence). Let s, t be terms.
Then:

s ≤c t iff ∀C[·] : C[s]⇓ ⇒ C[t]⇓
s ∼c t iff s ≤c t ∧ t ≤c s

3 Reductions on Trees

In the following we use “expression” for finite expressions including letrec, and
“tree” for the finite or infinite trees, which are only built from applications,
abstractions and variables.
The infinite tree corresponding to an expression is intended to be the letrec-
unfolding of the expression with the extra condition that cyclic variable chains
lead to nontermination, represented by the symbol ⊥. This corresponds to the
infinite trees in the 111-variant of the calculus in [10]. A rigorous definition is
as follows, where we use the explicit binary application operator @, since it is
easier to explain, but stick to the common notation in examples.

Definition 3.1. Given an expression t, the infinite tree IT (t) of t is defined by
giving an algorithm to compute for every position p the label of the infinite tree
at position p.
The computed label for the position ε is as follows:

C[(@ s t)|ε] 7→ @
C[x|ε] 7→ x if x is a free or a lambda-bound variable
C[(λx.s)|ε] 7→ λx

If the position ε hits the same (let-bound) variable twice, then the result is ⊥.
For the other cases, we proceed as follows:

C[(λx.s)|1.p] → C[λx.(s|p)]
C[(@ s t)|1.p] → C[(@ s|p t)]
C[(@ s t)|2.p] → C[(@ s t|p)]
C[(letrec Env in r)|p] → C[(letrec Env in r|p)]
C1[(letrec x = s,Env in C2[x|p])] → C1[(letrec x = s|p,Env in C2[x])]
C1[(letrec x = s, y = C2[x|p],Env in r)] → C1[(letrec x = s|p, y = C2[x],Env in r)]

In all cases not mentioned above, the result is undefined (and also not necessary).
The equivalence of trees is syntactic, where α-equal trees are assumed to be equiv-
alent. If IT (s) = IT (t) for two expressions s, t, then we write s =∞ t.

Example 3.2. The expression letrec x = x, y = (λz.z) x y in y has the
corresponding tree ((λz.z) ⊥ ((λz.z) ⊥ ((λz.z) ⊥ . . .))).

Equivalence of Call-By-Name and Call-By-Need for Letrec 9

Definition 3.3. Reduction contexts R for (infinite) trees are defined by R ::=
[·] | (@ R E).

Lemma 3.4. Let s, t be expressions and C be a context. Then s =∞ t ⇒
C[s] =∞ C[t].

Proof. For closed s, t this is obvious. In the general case, there may be occur-
rences of free variables in s, t. Consider the computation of the labels of the
infinite trees in the case that there is a free variable x in s, t that is bound
in C. Also in this case the label will be the same for C[s] and C[t], since the
computation within s, t results in the same tree labels.

Lemma 3.5. Let s, t be expressions and s → t by a rule (cp) or (lll). Then
IT (s) = IT (t).

Proof. This is obvious, since the (cp)-rule and all (lll)-rules commute with the
label computation.

Definition 3.6. (betaTr) is the only reduction rule on trees. It is also allowed
in any context.

(betaTr) ((λx.s) r) → s[r/x]

If the reduction rule is applied within an R-context, we call it an R-reduction on
trees. A sequence of R-reductions of T that terminates with a value tree is called
evaluation. If T has an evaluation, then we also say T converges and denote this
as T⇓.

Note that (betaTr) as a reduction may modify infinitely many positions, since
there may be infinitely many positions of the variable x. E.g. a top-level (betaTr)
of IT ((λx.(letrec z = (z x) in z)) r) = (λx.((. . . (. . . x) x) x)) r modifies the
infinite number of positions labeled with x. Further note that (betaTr) does not
overlap with itself, where we usually ignore overlaps within the meta-variables
s, r.

Definition 3.7. A tree of the form λx.s is called a value.

Lemma 3.8. Let s be an expression and let IT (s) be a value tree. Then s⇓.

Proof. A normal order reduction of s can only be a (cp) or an (lll) reduction,
which follows by induction on the structure of s and a case analysis. The same ar-
gument shows that if no more normal reductions are possible, then s is a WHNF.
Since neither (cp) nor (lll)-reductions modify the corresponding infinite tree, all
reductions of the normal order reduction can only be (cp) or (lll)-reductions.
This will terminate, since (cp) and (lll)-reductions strictly reduce the number of
steps of the unwind-algorithm.

10 M. Schmidt-Schauß

We will use a variant of infinite developments [8,10] as a reduction on trees that
may reduce infinitely many redexes in one step. In order to define it, we require
the notion of labeled reduction for trees. Labelled reduction is used to identify
correspondences of positions during a reduction step. It will be used in two
variants, the joining variant for the inheritance of positions during reductions
and the consuming one for a reduction that is similar to a development: Some
redexes are marked at the start of the reduction process, and all the labeled
redexes have to be reduced.

Definition 3.9 (labeled reduction of trees). First we define joining labeled
reduction for sets of labels.
Let S be a tree and assume there are sets of labels at certain positions of S. We
can assume that every position is labeled, perhaps with an empty set. Let T be

a tree with S
(betaTR)−−−−−−→ T , and assume that the reduction is S = C[(λx.r) s] →

C[r[s/x]]. Then the labels in the result are as follows:

– label sets within C are unchanged.
– label sets properly within s are copied to all occurrences of s in the result.
– the label sets of the new occurrences of s in C[r[s/x]] are as follows: For every

occurrence of x in r if r 6= x it can be written as follows: C[(λx.D[xA]) sB] →
C[(Dρ)[sA∪B] with ρ := [s/x].

– The label set of r[s/x] for r 6= x is computed as follows: ((λx.rA)B sC)D →
r[s/x]A∪B∪D. If r = x, then ((λx.xA)B sC)D → r[s/x]A∪B∪C∪D.

The consuming labeled reduction is similar to the joining variant, but the labels
at the reduced redex are consumed, and thus removed. The inheritance is the same
as for the trivial cases, however, the label of the reduct of the redex is computed
differently: ((λx.rA)B sC)D → r[s/x]A∪B if r 6= x, and ((λx.xA)B sC)D →
r[s/x]A∪B∪C , if r = x.
We will use the consuming labeled reduction below for one label †. In the case of
only one label-value it is usually assumed that empty sets mean no label, and a
non-empty set, which must be a singleton in this case, means that the position
is labeled.

We define a reduction relation between two infinite trees, which corresponds to
the relation defined by outside-in infinitary developments in [10] where we use
the variant, that if a subtree has an infinite sequence of reductions at top level,
then the reduction of this subtree results in ⊥. Note that confluence of reduction
within the 111-infinitary calculus (see also Theorem 5.2 of [4]) cannot be used
here, since the calculi are different, and since the standardization cannot be
derived from confluence.

Definition 3.10. For trees S, T , we define a reduction S
∞−→ T as follows.

First, we mark a possibly infinite subset of all (betaTr)-redexes in S, say with
a †, where we use consuming labeled reduction for the inheritance of labels. The
reduction constructs a new infinite tree top-down as follows, where A is the
currently considered subtree.

Equivalence of Call-By-Name and Call-By-Need for Letrec 11

– If A is not marked with a †, then the reduction proceeds with the direct
subtrees of A.

– If A is marked with a †, then the (betaTr)-reduction is applied to A. After
the reduction, the label of A will again be inspected and the same procedure
is applied. If for the subtree A the reduction does not terminate at the top
level of A, then the result of the reduction of subtree A is ⊥.

The result is the recursively defined (infinite) tree.
We write T⇓(∞) if T

∞,∗−−→ T ′, where T ′ is a value tree.

The reduction S
∀,∞−−−→ T is defined as the S

∞−→ T -reduction, if all (betaTr)-
redexes in S are labeled with †.

Note that even for only two marked redexes, it is possible that after the first
reduction, infinitely many redexes are labeled.

Example 3.11. We give two examples for a ∞−→-reduction:

– t = (λz.letrec y = λu.u, x = (z (y y) x) in x). The infinite tree IT (t)
is like an infinite list, descending to the right, with elements ((λu.u) λu.u).
The infinite reduction may label any subset of these redexes, even infinitely
many, and then reduce them by (betaTr).

– t = (letrec x = λy.x (λu.u) in x) has the infinite tree
(λy.(λy.(λy. . . .) (λu.u) (λu.u)) (λu.u)) which, depending on the labeling,
may reduce to itself, or, if all redexes are labeled, it will reduce to ⊥, i.e.,
t
∀,∞−−−→ ⊥.

3.1 Standardization of Tree Reduction

Lemma 3.12. For all trees S, R, T : if S
∞−→ R where the set of redex positions

is MR, and S
∞−→ T , where the the set of redex positions is MS, and MS ⊆ MR,

then also T
∞−→ R. A special case is that S

∀,∞−−−→ R, and S
∞−→ T imply that

T
∞−→ R.

S

MR,∞
��

MS ,∞ // T

∞
xxp p p p p p p S

∀,∞
��

∞ // T

∞
xxp p p p p p p

R R

Proof. The argument is that we can mark the (betaTr)-redexes in S that are not

reduced in S
MS ,∞−−−−→ T . This can be detected by a consuming labeled reduction,

where the MR-redexes are labeled. Then reduce all these labeled redexes in the
reduction T

∞−→ R.

Definition 3.13. We call a set M of positions prefix-closed, iff for every p ∈ M ,
and prefix q of p, also q ∈ M . If M is a finite prefix-closed set of positions of the
tree T , and for every p ∈ M , we have T|p 6= ⊥, then we say M is admissible,
and also call this set FAPC-set of positions of T .

12 M. Schmidt-Schauß

In the following we use sets of positions in terms.

Lemma 3.14. Let S, T be trees with S
∞−→ T , and let MT be an FAPC-set of

positions of T . Then the set of positions MS which are mapped by joining labeled
reduction to positions in MT is also an FAPC-set of positions of S.

Proof. First we analyze the transport of positions by the reduction S
∞−→ T

using joining labeled reduction For the reduction S
∞−→ T , there are some †-

labeled positions in S, which are exactly the redexes that are to be reduced.
We determine the new position(s) in T of every position from S. This has to be
done by looking at the construction of the results of the reduction as explained in
Definition 3.10. We will use joining labeled reduction to trace the positions. At
the start of the construction, we assume that all S-positions are labeled with a
singleton set, containing their position. The definition implies that after a single
(betaTr)-reduction, the set of labels at every position remains a finite set. If
for a subtree A the top-reduction does not terminate, then this subtree will be
⊥ in the resulting tree, hence only finitely many reductions for A have to be
considered. The construction will then proceed with the direct subtrees of A,
which guarantees that every position in T either has finitely many ancestors in
S, or is ⊥. It is obvious that there are no positions in MS pointing to ⊥.
Now we can simply reverse the mapping. For the set MT , we define the set MS as
the set of all positions of S that are in the label set of any position in MT . This
set is finite, since there are no positions of ⊥ in MT , there is also no position of
⊥ in MS . The set MS is prefix-closed, since the mapping behaves monotone, i.e.
if p is a position in S, q is a prefix of p, then for every position p′ in T that is
derived from p, there is a position q′ in T derived from q such that q′ is a prefix
of p′.

Lemma 3.15. Let S be a tree, and let RED be the reduction S = S0
∞−→ S1

∞−→
S2

∞−→ . . .
∞−→ Sn = S′, where S′ is a value. Then the set M0 of all positions of

S that are mapped by RED to the top position of S′ is an FAPC-set of S.

Proof. We perform induction on the number of ∞−→-reductions in the sequence
S = S0

∞−→ S1
∞−→ S2

∞−→ . . .
∞−→ Sn = S′. If the sequence has no reductions,

then the lemma holds, since M = {ε} consists only of the top position of S′. In
the induction step, we can assume that the lemma holds already for the reduction
sequence S1

∞−→ S2
∞−→ . . .

∞−→ Sn = S′, and then we can apply Lemma 3.14 to
the reduction step S0

∞−→ S1, which shows the Lemma.

Corollary 3.16. Let S be a tree, and let RED be the reduction S = S0
∞−→

S1
∞−→ S2

∞−→ . . .
∞−→ Sn = S′, where S′ is a value. If a position p from S is not

mapped by RED to the top position of S′, then all positions q of S such that p
is a prefix of q, are also not mapped to the top position of S′.

Lemma 3.17. Let S0, S1, S2 be trees, such that M2 is an FAPC-set of S2, let

S1
(betaTr)−−−−−→ S2 be a reduction at position p1, let M1 be all positions of S1 that are

mapped to positions in M2, let p1 ∈ M1, and let S0
M0,∞−−−−→ S1, where no position

Equivalence of Call-By-Name and Call-By-Need for Letrec 13

of M0 is mapped to some position in M1. Then S0
(betaTr)−−−−−→ S′

0

M ′
0,∞−−−−→ S2, and

there is no position in M ′
0 that is mapped to some position in M2.

S0
M0,∞ //

(betaTr)

���
�
� S1

(betaTr)

��
S′

0

M ′
0,∞ //___ S2

Proof. Let C be a multicontext that has holes at p1, the position of the redex

of the S1
(betaTr)−−−−−→ S2-reduction, and further finitely many holes, such that all

positions of M0 are below a hole of C. Then the following diagram shows the
given and the derived reductions:

C[s1, . . . , sn, ((λx.s) r)]
M0,∞//

(betaTr)

���
�
�

C[s′1, . . . , s
′
n, ((λx.s′) r′)]

(betaTr)

��
C[s1, . . . , sn, s[r/x]]

M ′
0,∞ //_____ C[s′1, . . . , s

′
n, s′[r′/x]]

The diagram shows how to construct the required reductions.

Lemma 3.18. Let S be a tree with S⇓(∞). Then there is a finite reduction

S
(betaTr),∗−−−−−−−→ S′, such that S′ is a value tree.

Proof. Let RED be the reduction from S to a value tree S′. Lemma 3.15 shows
that the set of all positions in S that are mapped by RED to the top position
of S′ is an FAPC-set.
We use induction on the length of the reduction RED to show the claim. If the
reduction has length 0, then it is obvious. Otherwise, in the induction case, we

have S
∞−→ S1

(betaTr),∗−−−−−−−→ S′′, where S′′ is a value. Lemma 3.15 shows that the set
M0 of positions from S that are mapped to the top level of S′′ is an FAPC-set.

We split the reduction S
∞−→ S1 into S

(betaTr),∗−−−−−−−→ S0,1
∞−→ S1, such that

S
(betaTr),∗−−−−−−−→ S0,1 are all the top level reductions, and the first reduction in

the definition of S0,1
∞−→ S1 is not at top level. Let M0,1 be the FAPC-set

of all positions that are mapped by S0,1
∞−→ S1 to M1. By induction on the

depth of positions in M0,1, and since we can split into reduction sequences at
independent positions, it is easy to show that there is a reduction sequence

S0,1
(betaTr),∗−−−−−−−→ S1,1

∞−→ S1, such that no †-labeled position in S1,1 is mapped by
S1,1

∞−→ S1 to M1.

Now induction on the length of the reduction S1
(betaTr),∗−−−−−−−→ S′′ and using Lemma

3.17 shows that the reduction S1,1
∞−→ S1 can be shifted to the end of the

reduction until we obtain a reduction S
(betaTr),∗−−−−−−−→ S′′′, where S′′′ is a value.

14 M. Schmidt-Schauß

Now we show that a reduction of a tree to a value can be done by reducing
finitely many redexes in reduction position. Note that the following proof and
the method can be transferred to the untyped lambda calculus (on finite expres-
sions).

Lemma 3.19. Let S0
(betaTr)−−−−−→ S1

R,(betaTr),∗−−−−−−−−→ S′, where S′ is a value. Then

S0⇓, i.e. there is also an evaluation S0
R,(betaTr),∗−−−−−−−−→ S′′, where S′′ is a value.

Proof. The proof is by analyzing the trace of the positions using joining labeled
reduction. The problem is that the diagram for the overlapping case

C[(λx.r)s]
(betaTr)//

R
���
�
�

C[(λx.r)s′]

R
��

C[r[s/x]]
(betaTr),∗//___ C[r[s′/x]]

is only valid, if the number of occurrences of the variable x in r is finite. Assume
that there is an FAPC-set M of C[r[s′/x]] of positions that are mapped to the top
level position of a value by an evaluation starting from C[r[s′/x]]. Using Lemma
3.14, we see that it is sufficient to reduce only a finite number of occurrences of
s to s′ within r[s/x] in order to reach some value tree. Hence the diagram w.r.t.
M is

C[(λx.r)s]
(betaTr) //

R
���
�
�

C[(λx.r)s′]

R
��

C[r[s/x]]
(betaTr),∗ //___ · ∞,M ′

//___ C[r[s′/x]]

where the positions in M ′ will not be mapped to the final top position of a

value. Similar as in the proof of Lemma 3.18, the reduction · ∞,M ′

−−−−→ C[r[s′/x]]
can be shifted along the evaluation to the end. This will motivate the following
notion. We will call the positions that will be mapped by a reduction to the
top of the final value tree as relevant, the other positions as irrelevant, where
we assume that the reduction is clear from the context. An application of the
diagram is always accompanied by a shift of the irrelevant reduction to the end,

which means to modify the whole evaluation S0
(betaTr)−−−−−→ S1

R,(betaTr),∗−−−−−−−−→ S′,
which is only different from the former one at irrelevant positions in the trees
There is another (trivial) diagram

C[((λx.r)s), t] //

R
���
�
�

C[((λx.r)s), t′]

R
��

C[r[s/x], t] //____ C[r[s/x], t′]

which means simply a commutation of reductions.

Equivalence of Call-By-Name and Call-By-Need for Letrec 15

Now we construct a measure for reduction sequences that is derived by starting

with the reduction S0
(betaTr)−−−−−→ S1

R,(betaTr),∗−−−−−−−−→ S′, applying the diagrams, which
will result in reduction sequences that are a mixture of R− and non-R-(betaTr)-
reductions.
For every position p of S0 that is relevant w.r.t. the reduction above, the set
Trace(p,RED) contains all relevant traces of p, where a trace is a sequence
p, p1, . . . , pn, such that pi is a relevant position in Si, and pi+1 is a successor of
pi. An annotated trace is a trace, where the form of inheritance is also annotated:
p

a1−→ p1, . . . ,
an−−→ pn, where ai ∈ {inst, red, trans}, where trans means that the

position is the same and not influenced by the (betaTr)-reduction, red means
that it is exactly the position of the (betaTr)-reduction, and inst means that the
position was in the argument of the redex of the (betaTr)-reduction. We only use
the fingerprint of traces, which is the sequence of inst, red occurring in a trace.
Two fingerprints are compared lexicographically as strings, where inst < red.
The whole reduction is measured by a pair µ = (µ1, µ2), where µ1 is the multiset
of all fingerprints of (relevant) traces, and µ2 is the number of R-reductions after
the rightmost non-R-reduction in the reduction, and we use the lexicographic
ordering on µ.
First of all, this is a well-founded measure, see [7] for the multiset-part. We have
to show that the diagram application strictly reduces this measure. The trivial
commuting diagram leaves the fingerprints as they are, since the positions of
reduction are independent, and the trans-reductions are ignored in the finger-
prints of traces. The hard part is to treat the overlapping diagram. There are
several cases for a position p w.r.t. the redex ((λx.r) s).

– p is independent of the position of the redexes, or a prefix of the position of
the redex. Then the trace remains unchanged by the diagram application.

– p is within r. Then the fingerprint of the trace is unchanged.
– p is within s, but not within the redex in s. Then the fingerprint part is inst

for all traces and unchanged. Also the number of traces is the same.
– p is within the redex in s. Then the fingerprints 〈 red, inst, rest 〉 are changed

into 〈 inst, red, rest 〉. and there is a one-to-one correspondence, since exactly
the relevant positions are reduced, and the traces are only considered for
relevant positions. At least one fingerprint will be replaced by a strictly
smaller one, since only trace with relevant positions are considered.

Since the measure is well-founded and strictly decreased in every step, the
diagram-application is able to shift the non-R-reductions to the right, until an
evaluation is reached.

Lemma 3.20. Let S be a tree, such that S
(betaTr),∗−−−−−−−→ S′, where S′ is a value

tree. Then there is also an R-reduction to a value tree, i.e., S⇓.

Proof. This follows by induction on the length of the reduction using Lemma
3.19.

The lemmas in this subsection imply now:

16 M. Schmidt-Schauß

Theorem 3.21 (Standardization for tree-reduction). Let S be a tree.
Then S⇓(∞) implies S⇓.

3.2 Call-by-Need Convergence Implies Infinite Tree Convergence

Lemma 3.22. If s
lbeta−−−→ t for two expressions s, t, then IT (s) ∞−→ IT (t).

Proof. We label every redex of IT (t) that is derived from the redex of s
lbeta−−−→ t.

This is easy by comparing the positions in the infinite tree before and after
the reductions. If the redex is ((λx.s′) r′) and s′ is not a variable, then the
lemma is obvious. The only nontrivial case is that the subexpression is of the
form (letrec Env , y2 = y1, y1 = ((λx.y2) r′) in s′), and after the (lbeta)-
reduction, and perhaps some (lll)-reductions, y2 is in a cyclic chain of variables
like (letrec Env , y2 = y1, y1 = y2, x = r′ in s′). In this case the tree-reduction
of the redex corresponding y1 does not terminate, and hence the result will be
⊥.

Proposition 3.23. Let t be an expression. Then t⇓ ⇒ IT (t)⇓.

Proof. That IT (t)⇓(∞) holds follows from Lemma 3.22 by induction on the
length of evaluation of t, from Lemma 3.5 and from the fact that a WHNF has a
value tree as corresponding infinite tree. Then Theorem 3.21 shows that T⇓(∞)
implies also T⇓.

3.3 Infinite Tree Convergence Implies Call-by-Need Convergence

Now we show the harder part of the desired equivalence in a series of Lemmas.

Lemma 3.24. The forking diagrams for trees between an R-reduction and an
∞−→-reduction are as follows:

· ∞ //

R
��

·

R
���
�
� · ∞ //

R
��

·

· ∞ //___ · ·
∞

@@�
�

�
�

Proof. This follows by checking the overlaps with R-reductions.

Lemma 3.25. Let T be a tree such that there is an R-evaluation of length n,
and let S be a tree with T

∞−→ S. Then S has an R-evaluation of length ≤ n.

Proof. Follows from Lemma 3.24 by induction.

Lemma 3.26. Let t be a term and let T := IT (t)
(betaTr)−−−−−→ T ′ be an R-

reduction. Then there is an expression t′, a reduction t
n,∗−−→ t′ using (lll) and

Equivalence of Call-By-Name and Call-By-Need for Letrec 17

(cp)-reductions, an expression t′′ with t′
n,lbeta−−−−→ t′′, such that there is a reduction

T ′ ∞−→ IT (t′′).

t
IT(·) //

n,(cp)∨(lll),∗
���
�
� T

R,betaTr

��
t′

IT(·)
77nnnnnnnn

n,lbeta

���
�
� T ′

∞
���
�
�

t′′
IT(·) //______ IT (t′′)

Proof. The expressions t′, t′′ are constructed as follows: t′ is the resulting term
from a maximal normal-order reduction of t consisting only of (cp) and (lll)-
reductions. Then IT (t) = IT (t′) by Lemma 3.5. The unique normal-order

(lbeta)-redex in t′ must correspond to T
R,(betaTr)−−−−−−−→ T ′ and is used for the reduc-

tion t′
n,lbeta−−−−→ t′′. Note that the (lbeta)-redex in t′ may correspond to infinitely

many redexes in T . Lemma 3.22 shows that there is a reduction T
∞−→ IT (t′′),

and Lemma 3.12 shows that also T ′ ∞−→ IT (t′′).

Proposition 3.27. Let t be an expression such that IT (t)⇓. Then t⇓.

Proof. The precondition IT (t)⇓ and Theorem 3.21 imply that there is an R-
evaluation of T to a value tree. The base case, where no R-reductions are neces-

sary is treated in Lemma 3.8. In the general case, let T
(betaTr)−−−−−→ T ′ be the unique

first R-reduction of a single redex. Lemma 3.26 shows that there are expressions

t′, t′′ with t
n,(cp)∨(lll),∗−−−−−−−−→ t′

n,lbeta−−−−→ t′′, and T ′ ∞−→ IT (s). Lemma 3.25 shows that
the number of R-reductions of IT (s) to a value tree is strictly smaller than the
number of R-reductions of T to a value. Hence we can use induction on this
length and obtain a normal-order reduction of t to a WHNF.

The main theorem is that termination is equivalent for a term and its corre-
sponding infinite tree.

Theorem 3.28. Let t be an expression. Then t⇓ iff IT (t)⇓.

Proof. One direction follows follows from Proposition 3.23. The other direction
follows from Proposition 3.27.

Definition 3.29. Let the generalized copy rule be:
(gcp) C1[letrec x = r . . . C2[x] . . .] → C1[letrec x = r . . . C2[r] . . .]

This is just like the rule (cp), but all terms can be copied, not only abstractions.
Obviously the following holds:

Lemma 3.30. If s
gcp−−→ t, then IT (s) = IT (t)

Theorem 3.31. Let s, t be expressions with s
gcp−−→ t Then s ∼c t.

Proof. Lemma 3.4 shows that it is sufficient to show equivalence of termination
of s, t. Lemma 3.30 implies IT (s) = IT (t). Hence equivalence of termination
follows from Theorem 3.28.

18 M. Schmidt-Schauß

4 Relation Between Call-By-Name and Call-By-Need

Definition 4.1. The call-by-name reduction is defined by changing the call-by-
need reduction: Instead of applying a normal-order (lbeta)-reduction, apply the
rule

(beta) ((λx.s) r) → s[r/x]

to the same redex.
Accordingly, we write the normal-order call-by-name reduction as name−−−→, and
denote convergence of a term t as t⇓(name).

Note that
n,a−−→ is the same as

name,a−−−−−→ only for a ∈ {(lll), (cp)}.
We give an example showing that the call-by-name evaluation and the call-by-
need evaluation may have essentially different infinite tree evaluations.

Example 4.2. We start with the term (letrec z = (λx.(λy.x)) (z z) in z z).
The call-by-need normal order reduction is as follows:

lbeta−−−→ (letrec z = (letrec x = z z in λy.x) in z z)
lll−→ (letrec z = λy.x, x = z z in z z)
cp−→ (letrec z = λy.x, x = z z in (λy.x) z)
lbeta−−−→ (letrec z = λy.x, x = z z in (letrec y = z in x))
lll−→ (letrec z = λy.x, x = z z, y = z in x)
cp−→ (letrec z = λy.x, x = (λy′.x) z, y = z in x)
lbeta−−−→ (letrec z = λy.x, x = (letrec y′ = z in x), y = z in x)
lll−→ (letrec z = λy.x, x = x, y′ = z, y = z in x)

Thus it fails.
The call-by-name normal order reduction is as follows, and loops.

beta−−→ (letrec z = (λy.(z z)) in z z)
cp−→ (letrec z = (λy.(z z)) in (λy.(z z)) z)
beta−−→ (letrec z = (λy.(z z)) in (z z))
. . .

Thus the call-by-name and call-by-need reductions have a different trace of infi-
nite trees, hence an easy correspondence proof of the reductions is not possible.

4.1 Call-by-Name Convergence Implies Infinite Tree Convergence

Lemma 4.3. If s
beta−−→ t for two expressions s, t, then IT (s) ∞−→ IT (t).

Proof. This is easy by comparing the positions in the infinite tree before and
after the reductions.

Proposition 4.4. Let t be an expression. Then t⇓(name) ⇒ IT (t)⇓.

Equivalence of Call-By-Name and Call-By-Need for Letrec 19

Proof. This follows from Lemma 4.3 by induction on the length of the call-by-
name evaluation of t, from Lemma 3.5 using the standardization theorem 3.21
and from the fact that a WHNF has a value tree as corresponding infinite tree.

4.2 Infinite Tree Convergence Implies Call-by-Name Convergence

Now we show the desired implication also for call-by-name.

Lemma 4.5. Let t be a term and let T := IT (t)
(betaTr)−−−−−→ T ′ be an R-reduction.

Then there is an expression t′, a reduction t
n,∗−−→ t′ using (lll) and (cp)-

reductions, an expression t′′ with t′
name,beta−−−−−−−→ t′′, such that there is a reduction

T ′ ∞−→ IT (t′′).

t
IT(·) //

n,(cp)∨(lll),∗
���
�
� T

R,betaTr

��
t′

IT(·)
77nnnnnnnn

n,beta

���
�
� T ′

∞
���
�
�

t′′
IT(·) //______ IT (t′′)

Proof. The expressions t′, t′′ are constructed as follows: t′ is the resulting
term from a maximal normal-order reduction consisting only of (cp) and (lll)-
reductions. Then IT (t) = IT (t′) by Lemma 3.5. The unique normal-order

(beta)-redex in t′ corresponding to T
(betaTr)−−−−−→ T ′ is used for the reduction

t′
name,beta−−−−−−−→ t′′. Note that the (beta)-redex in t′ may correspond to infinitely

many redexes in T . Lemma 4.3 shows that there is a reduction T
∞−→ IT (t′′),

and Lemma 3.12 shows that also T ′ ∞−→ IT (t′′).

Proposition 4.6. Let t be an expression such that IT (t)⇓. Then t⇓(name).

Proof. The precondition IT (t)⇓ means that there is an R-evaluation of T to
a value tree. The base case, where no R-reductions are necessary is treated

in Lemma 3.8. In the general case, let T
(betaTr)−−−−−→ T ′ be the unique first R-

reduction of a single redex. Lemma 4.5 shows that there are expressions t′, t′′

with t
n,(cp)∨(lll),∗−−−−−−−−→ t′

name,beta−−−−−−−→ t′′, and T ′ ∞−→ IT (t′′). Lemma 3.25 shows that
the number of R-reductions of IT (t′′) to a value tree is strictly smaller than the
number of R-reductions of T to a value. Hence we can use induction on this
length and obtain a call-by-name normal-order reduction of t to a WHNF.

The main theorem is that call-by-name termination is equivalent for a term and
its corresponding infinite tree.

Theorem 4.7. Let t be an expression. Then t⇓(name) iff IT (t)⇓.

20 M. Schmidt-Schauß

Proof. One direction follows follows from Proposition 4.4. the other direction
from Proposition 4.6.

Theorem 4.8. The contextual preorders for call-by-need and call-by-name are
equivalent in a letrec-calculus.

Proof. This follows from Theorems 3.28 and 4.7.

5 Conclusion

We showed equivalence of call-by-name and call-by-need for a tiny determin-
istic letrec-calculus and also the correctness of an unrestricted copy-reduction
in both calculi. The method is by defining a calculus on the unrolled infinite
tree, and carefully analyzing the reduction, and showing that only finitely many
normal-order beta-reductions are necessary to reduce an infinite tree to a value.
We expect that the method scales up to extended letrec-calculi, for example ex-
tended by constructors and case-expressions. For non-deterministic calculi like
[14,13,19] the method can perhaps also be used to show correctness of the copy-
reduction for deterministic subexpressions, which appears to be a hard obstacle
for other methods, however, the method has to be adapted to the needs of non-
deterministic calculi, in particular, the infinite trees will be significantly different,
since in this case they also include letrec-expressions.

Acknowledgement

I thank David Sabel for reading and correcting drafts of this paper.

References

1. Zena M. Ariola and Stefan Blom. Cyclic lambda calculi. In TACS, pages 77–106,
1997. Sendai, Japan.

2. Zena M. Ariola and Stefan Blom. Skew confluence and the lambda calculus with
letrec. Annals of Pure and Applied Logic, 117:95–168, 2002.

3. Zena M. Ariola and Stefan Blom. Skew and omega-skew confluence and abstract
Böhm semantics. In Aart Middeldorp, Vincent van Oostrom, Femke van Raams-
donk, and Roel C. de Vrijer, editors, Processes, Terms and Cycles, volume 3838 of
Lecture Notes in Computer Science, pages 368–403. Springer, 2005.

4. Zena M. Ariola and Jan Willem Klop. Lambda calculus with explicit recursion.
Information and Computation, 139(2):154–233, 1997.

5. Z.M. Ariola and M Felleisen. The call-by-need lambda calculus. J. functional
programming, 7(3):265–301, 1997.

6. Z.M. Ariola, M. Felleisen, J. Maraist, M. Odersky, and P. Wadler. A call-by-need
lambda calculus. In Principles of Programming Languages, pages 233–246, San
Francisco, California, 1995. ACM Press.

7. Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

Equivalence of Call-By-Name and Call-By-Need for Letrec 21

8. H.P. Barendregt. The Lambda Calculus. Its Syntax and Semantics. North-Holland,
Amsterdam, New York, 1984.

9. K. Claessen and D. Sands. Observable sharing for functional circuit description. In
P.S. Thiagarajan and R. Yap, editors, Advances in Computing Science ASIAN’99;
5th Asian Computing Science Conference, volume 1742 of Lecture Notes in Com-
puter Science, pages 62–73. Springer-Verlag, 1999.

10. Richard Kennaway, Jan Willem Klop, M. Ronan Sleep, and Fer-Jan de Vries. In-
finitary lambda calculus. Theor. Comput. Sci, 175(1):93–125, 1997.

11. Elena Machkasova and Franklyn A. Turbak. A calculus for link-time compilation.
In ESOP’2000, 2000.

12. John Maraist, Martin Odersky, and Philip Wadler. The call-by-need lambda cal-
culus. J. of Functional programming, 8:275–317, 1998.

13. A.K.D. Moran. Call-by-name, call-by-need, and McCarthys Amb. PhD thesis,
Dept. of Comp. Science, Chalmers university, Sweden, 1998.

14. Andrew K.D. Moran, David Sands, and Magnus Carlsson. Erratic fudgets: A
semantic theory for an embedded coordination language. In Coordination ’99,
volume 1594 of Lecture Notes in Computer Science, pages 85–102. Springer-Verlag,
1999.

15. Andrew K.D. Moran, David Sands, and Magnus Carlsson. Erratic fudgets: A
semantic theory for an embedded coordination language. Sci. Comput. Program.,
46(1-2):99–135, 2003.

16. Simon Peyton Jones. Haskell 98 Language and Libraries. Cambridge University
Press, 2003. www.haskell.org.

17. R. Plasmeijer and M. van Eekelen. The concurrent Clean language report: Version
1.3 and 2.0. Technical report, Dept. of Computer Science, University of Nijmegen,
2003. http://www.cs.kun.nl/~clean/.

18. Gordon D. Plotkin. Call-by-name, call-by-value, and the lambda-calculus. Theo-
retical Computer Science, 1:125–159, 1975.

19. David Sabel and Manfred Schmidt-Schauß. A call-by-need lambda-calculus with
locally bottom-avoiding choice: Context lemma and correctness of transformations.
Frank report 24, Institut für Informatik. J.W.Goethe-Universität Frankfurt am
Main, January 2006.

20. Manfred Schmidt-Schauß, Marko Schütz, and David Sabel. A complete proof of
the safety of Nöcker’s strictness analysis. Technical Report Frank-20, Institut für
Informatik. J.W.Goethe-University, 2005.

	Equivalence of Call-By-Name and Call-By-Need for Lambda-Calculi with Letrec

