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Reduction in a Linear Lambda-calculus
with Applications to Operational Semantics

Alex Simpson

LFCS, School of Informatics
University of Edinburgh, UK

Abstract. We study beta-reduction in a linear lambda-calculus derived from
Abramsky’s linear combinatory algebras. Reductions are classified depending
on whether the redex is in the computationally active part of a term (“surface”
reductions) or whether it is suspended within the body of a thunk (“internal”
reductions). If surface reduction is considered on its own then any normalizing
term is strongly normalizing. More generally, if a term can be reduced to surface
normal form by a combined sequence of surface and internal reductions then ev-
ery combined reduction sequence from the term contains only finitely many sur-
face reductions. We apply these results to the operational semantics ofLily , a
second-order linear lambda-calculus with recursion, introduced by Bierman, Pitts
and Russo, for which we give simple proofs that call-by-value, call-by-name and
call-by-need contextual equivalences coincide.

1 Introduction

The languageLily was introduced by Bierman, Pitts and Russo in [3]. It is a typed
lambda-calculus based on a second-order intuitionistic linear type theory with recur-
sion. What makes it interesting from a programming language perspective is that, fol-
lowing ideas of Plotkin [10], the language is able to encode a remarkably rich range of
datatype constructs (eager products, lazy products, coproducts, polymorphism, abstract
types, recursive types, etc.). Furthermore, its linearity makes it potentially useful for
modelling single-threadedness and other state and resource-related concepts, cf. [7].

The main achievement of [3] was to establish direct operational techniques for rea-
soning aboutLily up to contextual equivalence. Such techniques include useful ex-
tensionality properties, and a powerful framework for establishing program equalities
using an adaptation (based on [8]) of Reynolds’ relational parametricity (first introduced
in [11]). In order to get this machinery to work, the authors of [3] need to first establish
one key result aboutLily , a result which pervades all further developments in their
paper. This result, the so-called Strictness Theorem, asserts the (surprising at first sight)
fact that call-by-name and call-by-value operational semantics forLily both give rise
to the same notion of contextual equivalence.

The outline proof of the Strictness Theorem in [3] makes rather heavy use of the
well-stocked armoury of known operational techniques. In particular it uses Howe’s
method [4] to obtain a version of Mason and Talcott’sciu theorem[6]. The starting point
for the research in this paper was the realisation that basic techniques from rewriting
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could be applied to obtain an alternative, self-contained and essentially simple proof of
the Strictness Theorem.

In Sec. 2, we reviewLily and its operational semantics. Then, in Secs. 3 and 4, we
present our alternative proof of the Strictness Theorem. We translateLily into a simple
untyped linear lambda-calculus containing:linear lambda abstractions,λx.M ; non-
linear lambda abstractions,λ!x.M , which require their arguments to be suspended as
“thunks”; andthunksthemselves,!M . We study beta-reduction in this untyped calculus,
making the restriction that, as thunks are considered suspended, reductions should not
take place within a thunk. This restricted relation, which we callsurface reduction,
turns out to be extremely well behaved: as well as the expected confluence property,
it holds that every normalizing term is strongly normalizing. The Strictness Theorem
for Lily follows easily from this latter fact, using straightforward simulations under
surface reduction of call-by-name and call-by-value evaluation forLily .

In Sec. 5, we (temporarily) turn attention away fromLily and take a deeper look
at our untyped linear lambda-calculus and its reduction properties. In order to obtain
a conversion relation between terms that is a congruence, it is necessary to consider
also reductions inside thunks. We call such reductionsinternal reductions, and we call
arbitrary reductions (either surface or internal)combined reductions. As well as the ex-
pected confluence properties (for both internal and combined reductions), we show that
internal reductions can always be postponed until after surface reductions. Further, we
show that if a term reduces (under combined reduction) to a surface normal form then
any sequence of combined reductions contains only finitely many surface reductions.

Next, in Sec. 6, we return toLily and show that the results of Sec. 5 again have
applications to operational semantics. We use them to establish the equivalence of the
call-by-name operational semantics ofLily with an implementation-oriented call-by-
need semantics. Once again, the equivalence of these two semantics had previously
been established by the authors of [3], but with an intricate and lengthy proof (private
communication). Our proof turns out to be relatively straightforward.

Finally, in Sec. 7, we observe that our untyped linear lambda-calculus is exactly
the lambda-calculus counterpart of Abramsky’slinear combinatory algebras, presented
in [1]. This connection makes us believe that the linear lambda-calculus introduced in
this paper is rather natural. Accordingly, it is plausible that the properties of reduction
established in Secs. 3 and 5 may turn out to have other applications, perhaps again in
the area of operational semantics, but possibly more widely.

2 Lily and its Operational Semantics

In this section, we review the languageLily , a typedλ-calculus, based on second-
order intuitionistic linear type theory with recursion, introduced in [3].

The language of types forLily contains just three type constructors: linear func-
tion spaceσ ( τ ; linear “exponentials”!σ, used to type thunks; and universally quan-
tified types∀α. σ, used for polymorphism. Typesσ, τ, . . . are thus built up from type
variablesα, β, . . . , according to the grammar:

σ ::= α | σ ( τ | !τ | ∀α. τ .



Γ ; x :σ ` x : σ Γ, x :σ;− ` x : σ

Γ ; ∆, x :σ ` t : τ

Γ ; ∆ ` λx :σ. t : σ ( τ

Γ ; ∆ ` s : σ ( τ Γ ; ∆′ ` t : σ

Γ ; ∆, ∆′ ` s(t) : τ

Γ ;− ` t : τ

Γ ;− ` !t : !τ

Γ ; ∆ ` s : !σ Γ, x :σ; ∆′ ` t : τ
∆ # x :σ

Γ ; ∆, ∆′ ` let !x = s in t : τ

Γ ; ∆ ` t : τ
α /∈ ftv(Γ, ∆)

Γ ; ∆ ` Λα. t : ∀α. τ

Γ ; ∆ ` t : ∀α. τ

Γ ; ∆ ` t(σ) : τ [σ/α]

Γ, x :σ;− ` t : σ

Γ ;− ` rec x :σ. t : σ

Fig. 1.Typing rules forLily .

As usual,α is bound in∀α. τ . We writeftv(σ) for the set of free type variables inσ (and
below apply the same notation to terms and contexts in the evident way). Ifftv(σ) = ∅
thenσ is said to beclosed.

Although simple, the above language of types is remarkably rich. For example,
the other type constructors of intuitionistic linear logic can all be encoded: non-linear
(intuitionistic) function space,σ → τ , using Girard’s!σ ( τ ; tensor,⊗, product,&
and sum,⊕. One can also encode basic ground types (booleans, natural numbers, etc.),
and existentially quantified types∃α. σ, and, due to the recursion operator inLily ,
arbitrary recursive types. These encodings are due to Plotkin [10], see [3] for details.

The term language ofLily is the expected typedλ-calculus associated with the
above types, together with a recursion operator.1 Raw termss, t, . . . are built from term
variablesx, y, . . . according to the grammar:

t ::= x | λx :σ. t | s(t) | !t | let !x = s in t | Λα. t | t(σ) | rec x :σ. t .

Here,x is bound inλx : σ. t, in let !x = s in t2 and inrec x : σ. t, andα is bound in
Λα. t. We write fv(t) for the set of free variables in a termt. We identify terms up to
α-equivalence.

The typing rules forLily are based on Barber and Plotkin’sDILL [2]. We use
Γ,∆, . . . to range over “contexts”, which are finite functions from term variables to
types. We writeΓ#∆ to say that the domains ofΓ and∆ are disjoint. The typing
rules manipulate sequentsΓ ;∆ ` t : σ whereΓ#∆. Here,Γ types the “intuitionistic”
variables appearing in the termt, which have no restriction on how they occur, and
∆ types the “linear” variables, each of which occurs exactly once int, not within the

1 We depart from [3] by building an explicit recursion operator intoLily , instead of incorpo-
rating recursion within thunks. This is an inessential difference.

2 For simplicity, we place an inessential restriction in the typing rules ensuring that the term
let !x = s in t is well typed only whenx does not occur free ins.



s → s′

s(t) → s′(t)

t → t′

t(σ) → t′(σ) (Λα. t)(σ) → t[σ/α]

s → s′

let !x = s in t → let !x = s′ in t
let !x = !s in t → t[s/x] rec x :σ. t → t[rec x :σ. t/x]

t →vl t′

(λx :σ. s)(t) →vl (λx :σ. s)(t′) (λx :σ. s)(v) →vl s[v/x] (λx :σ. s)(t) →nm s[t/x]

Fig. 2.Call-by-value and Call-by-name Evaluation forLily

scope of a! or rec operator. The typing rules are presented in Fig. 1. In them, a comma
always denotes a disjoint union of contexts and a dash denotes the empty context. We
write t : τ to mean that the sequent` t : τ is derivable, whereτ is a closed type (t is
necessarily a closed term).

Following [3], we define two operational semantics forLily , one using a call-by-
value evaluation of function application, and one using call-by-name. In both cases, the
operational semantics reduces terms tovaluesv, . . . , which are terms of the form:

v ::= λx :σ. t | !t | Λα. t .

In contrast to [3], we give the operational semantics in a small-step style. This facilitates
our proofs, but only in an inessential way, the equivalence of big-step and small-step
definitions being anyway easy to establish.

Figure 2 defines two small-step evaluation relationst →vl t′ andt →nm t′ between
Lily terms. The call-by-value (or strict) relationt →vl t′ is inductively defined by the
two specific→vl rules for application together with all rules written using the neutral
→ notation. Similarly, the call-by-name (or non-strict) relationt →nm t′ is defined by
the specific→nm rule for application together with the neutral rules. Note that both
operational semantics are deterministic.

Our interest lies in the operational semantics ofLily programs, i.e. of closed terms
of closed type. It is easily seen that ift : σ and t →vl t′ then t′ : σ (and similar if
t →nm t′). Also, by induction on the structure oft, one sees that ift : σ thent does
not reduce under→vl if and only if t is a value (and similar for→nm). We writet ↓vl

(resp.t ↓nm) for the “termination” property: there exists a valuev such thatt →∗
vl v

(resp.t →∗
nm v), where, as usual,R∗ (resp.R+) denotes the reflexive-transitive (resp.

transitive) closure of the relationR.
The program below shows that sometimes call-by-name evaluation terminates when

call-by-value does not (cf. [3, Example 2.2]).

(λf :∀α.α ( ∀α.α. λx :∀α.α. f(x))(rec g :∀α.α ( ∀α.α. g) (1)

This program has type∀α.α ( ∀α.α. An important insight of [3], is that the most
useful notion of contextual equivalence forLily is obtained by only observing termi-



nation for programs of exponential type!τ . The restriction to such observations cor-
responds to observing termination at ground types (such as booleans, naturals, etc.), it
yields desirable extensionality properties for contextual equivalence, and it is crucial to
the correctness of Plotkin’s [10] encodings of datatype constructions inLily .

The key result of [3] that underpins its entire study of contextual equivalence for
Lily is the “Strictness Theorem”.

Theorem 2.1 (Strictness Theorem [3]3). If t : !τ thent ↓vl if and only if t ↓nm.

When termination observations are restricted to exponential types, it follows immedi-
ately from the theorem that both call-by-value and call-by-name operational semantics
induce the same contextual equivalence.

We remark that the Strictness Theorem is stated in the most general form possi-
ble: the result holds for no types other than exponential types, as simple adaptations
of (1) readily show. This suggests that any proof of Theorem 2.1 has to uncover some
crucial property of exponential types. The machinery used in [3] to this end has al-
ready been mentioned in Section 1. In this paper, we shall instead prove Theorem 2.1
using surprisingly elementary techniques from rewriting, translatingLily into a very
simple untyped linearλ-calculus in which (the appropriate notion of)β-reduction sim-
ulates both call-by-value and call-by-name operational semantics. This untyped linear
λ-calculus includes explicit thunks, and it is the treatment of these thunks that will
reflect the all-important behaviour ofLily at exponential type.

3 A Linear Lambda-calculus and Surface Reduction

In this section, we intruduce our untyped linearλ-calculus. Its main ingredients are:
applicationsMN ; linear lambda abstractions,λx.M ; non-linear lambda abstractions,
λ!x.M , which require their arguments to be suspended as thunks; and thunks them-
selves,!M . Formally, raw termsM,N, . . . are built up from variablesx, y, . . . accord-
ing to the grammar:

M ::= x | MN | λx.M | λ!x.M | !M .

The variablex is bound in bothλx.M andλ!x.M . We write≡ for syntactic equality of
terms moduloα-equivalence.

We say thatx is linear in M if x occurs free exactly once inM and, moreover, this
free occurence ofx does not lie within the scope of a! operator inM . A termM is said
to belinear if, in every subterm ofM the formλx.M ′, it holds thatx is linear inM ′.
Henceforth, we consider linear terms only.

In Fig. 3, we define a version ofβ-reduction for our calculus. The important points
are the two types of redex, and that no reduction occurs under the scope of a! operator.
The latter restriction reflects the idea that thunks are suspended computations. We call
the reduction defined in Fig. 3surface reduction. It is easily shown that whenM is
linear andM → N then N is linear. From now on, all similar observations about
linearity will be omitted. All operations we consider will respect the linearity of terms.

3 The theorem as stated here is easily shown to be equivalent to the original [3, Theorem 2.3].



(λx.M)(N) → M [N/x] (λ!x.M)(!N) → M [N/x]

M → M ′

MN → M ′N

N → N ′

MN → MN ′

M → M ′

λx.M → λx.M ′

M → M ′

λ!x.M → λ!x.M ′

Fig. 3.Surface Reduction

A term is said to be insurface normal formif there is no surface reduction from the
term. Trivially, any term!M is in surface normal form. Areduction sequencefrom M
is a finite or infinite sequenceM ≡ M0 → M1 → M2 → . . . . A completedreduction
sequence is a reduction sequence that is either infinite or is finite with the last term in
the sequence in surface normal form.

The linearity restriction on terms combines with the disallowance of reduction within
thunks to ensure that the basic well-behavedness properties of surface reduction are
almost trivial to establish. The main, though very simple, results of this section are
Corollaries 3.3 and 3.4 below. (Only the latter is used in the proof of Theorem 2.1.)

Lemma 3.1.

1. If M → M ′ thenM [N/x] → M ′ [N/x].
2. If N → N ′ andx is linear inM thenM [N/x] → M [N ′/x].

Proposition 3.2. If M → L andM → L′ then eitherL ≡ L′ or there existsN such
thatL → N andL′ → N .

Proof. By induction on the structure ofM , considering all possible cases forM → L
andM → L′. We consider only the two redex cases.

If M ≡ (λx.M1)(M2) → M1[M2/x] ≡ L andL 6≡ L′ then eitherL′ ≡ (λx.L′
1)(M2)

whereM1 → L′
1 or L′ ≡ (λx.M1)(L′

2) whereM2 → L′
2. In the first case, we have

L → L′
1[M2/x], by Lemma 3.1.1, and alsoL′ → L′

1[M2/x]. In the second, we have
L → M1[L′

2/x], by Lemma 3.1.2, and alsoL′ → M1[L′
2/x].

If M ≡ (λ!x.M1)(!M2) → M1[M2/x] ≡ L andL 6≡ L′ thenL′ ≡ (λ!x.L′
1)(!M2)

whereM1 → L′
1. ThusL → L′

1[M2/x], by Lemma 3.1.1, and alsoL′ → L′
1[M2/x].

ut

Corollary 3.3 (Confluence).If M →∗ M1 andM →∗ M2 then there existsN such
thatM1 →∗ N andM2 →∗ N .

Corollary 3.4 (Uniform normalization). If M →∗ V is ak-step reduction sequence,
whereV is in surface normal form, then every reduction sequence fromM has at mostk
steps, and every completed reduction sequence has exactlyk steps and terminates with
V . In particular, if a term is normalizing under surface reduction then it is strongly
normalizing.



4 Proof of the Strictness Theorem

The proof is based on a simple translation ofLily into the untyped linearλ-calculus
of Sec. 3. The translation uses an untyped recursion construct, defined by:

µx.M =def (λ!x.M [x(!x) / x])( ! λ!x.M [x(!x) / x]) .

Observe thatµx.M → M [(µx.M)/x].
To every raw termt of Lily , we define a raw termt∗, in the grammar from Sec. 3,

by induction on the structure oft. In the definition, we make use of a distinguished
variableu, used as a dummy translation for types.

x∗ =def x (let !x = s in t)∗ =def (λ!x.t∗)(s∗)
(λx :σ. t)∗ =def λx.t∗ (Λα. t)∗ =def λ!w.t∗ w /∈ fv(t∗)

(s(t))∗ =def s∗ t∗ (t(σ))∗ =def t∗(!u)
(!t)∗ =def ! t∗ (rec x :σ. t)∗ =def µx.t∗ .

The four lemmas below are straightforward.

Lemma 4.1. (s[t/x])∗ ≡ s∗[t∗/x].

Lemma 4.2. If Γ ;∆ ` t : σ then the raw termt∗ is linear.

Lemma 4.3. If t1 →vl t2 thent∗1 → t2
∗.

Lemma 4.4. If t1 →nm t2 thent∗1 → t2
∗.

Corollary 4.5. If t : !τ then the following are equivalent:

1. t ↓vl ,
2. t ↓nm ,
3. t∗ is surface normalizing.

Proof. To show that 1 implies 3, suppose thatt ↓vl . Then there existsv with v : !τ such
thatt →∗

vl v. As v : !τ , it holds thatv ≡ !t′. By Lemma 4.3,t∗ →∗ (!t′)∗ ≡ !(t′∗). But
!(t′∗) is in surface normal form, hencet∗ is surface normalizing.

For the converse, supposet 6↓vl. Then there exists an infinite sequence of call-by-
value evaluation stepst ≡ t0 →vl t1 →vl t2 →vl . . . . Whence, by Lemma 4.3,t∗ has
an infinite surface reduction sequence. Thus, by Corollary 3.4,t∗ is not normalizing
under surface reduction.

The equivalence of 2 and 3 is shown in the same way, using Lemma 4.4. ut

Theorem 2.1 is immediate from the corollary. Note that the point that fails forLily
programst : σ of arbitrary type is that it is not in general the case thatt ↓vl (or t ↓nm)
implies thatt∗ is surface normalizing, because, apart from at exponential type,Lily
values do not necessarily translate to surface normal forms, indeed not even to surface
normalizing terms (for example,λx :σ. rec y :τ. y).

It is worth remarking that the techniques of this section can similarly be used to
show that variant operational semantics forLily , in which evaluation takes place under
Λ- and/orλ-abstractions, also give rise to the same contextual equivalence.



M → M ′

!M 99K !M ′

M 99K M ′

MN 99K M ′N

N 99K N ′

MN 99K MN ′

M 99K M ′

λx.M 99K λx.M ′

M 99K M ′

λ!x.M 99K λ!x.M ′

M 99K M ′

!M 99K !M ′

Fig. 4. Internal Reduction

5 Internal and Combined Reduction

In this section, we undertake a deeper study of reduction in our untyped linearλ-
calculus. While surface reduction is computationally motivated, the disallowance of
reduction inside thunks means that the conversion relation induced by surface reduction
is not a congruence. To obtain a conversion relation that is a congruence, it is necessary
to consider reduction inside thunks.

We implement reduction inside thunks usinginternal reduction, M 99K M ′, de-
fined in Figure 4.Combined reductionM ⇒ M ′ is defined by:M ⇒ M ′ if M → M ′

or M 99K M ′. Note that it is possible that bothM → M ′ andM 99K M ′ (for ex-
ample,Ω(!Ω) → Ω(!Ω) andΩ(!Ω) 99K Ω(!Ω), whereΩ =def µx. x, using the
notation of Section 4). Accordingly, when we consider mixed reduction sequences con-
taining both surface and internal reductions, we shall assume that each step comes with
a distinguished status (as surface or internal).

The main technical effort of this section will go into the proof of Propositions 5.1
and 5.2 below.

Proposition 5.1 (Confluence).

1. If M 99K∗ M1 andM 99K∗ M2 then there existsN such thatM1 99K∗ N and
M2 99K∗ N .

2. If M ⇒∗ M1 and M ⇒∗ M2 then there existsN such thatM1 ⇒∗ N and
M2 ⇒∗ N .

By the proposition, the conversion relation defined byM =β M ′ if there existsN such
thatM ⇒∗ N andM ′ ⇒∗ N is an equivalence relation. It is, moreover, a congruence.
Thus surface and internal reduction together provide an oriented decomposition of the
naturalβ-conversion between terms of the untyped linear calculus. The next result ex-
hibits natural structure within this decomposition.

Proposition 5.2 (Internal Postponement).If M ⇒∗ N , by a reduction sequence con-
tainingk surface reductions, then there existsL such thatM →∗ L 99K∗ N , where the
surface reduction sequenceM →∗ L contains at leastk reductions.

The proofs of the two propositions above make use of the (standard) technology
of parallel reduction relations. Before giving these, we apply Proposition 5.2 to derive
further properties of and interactions between surface, internal and combined reduction.
The main result of the section is Theorem 5.5 below.



x 6 6⇒x

M 6 6⇒M ′ N 6 6⇒N ′

(λx.M)(N) 6 6⇒M ′[N ′/x]

M 6 6⇒M ′ N 6 6⇒N ′

(λ!x.M)(!N) 6 6⇒M ′[N ′/x]

M 6 6⇒M ′ N 6 6⇒N ′

MN 6 6⇒M ′N ′

M 6 6⇒M ′

λx.M 6 6⇒λx.M ′

M 6 6⇒M ′

λ!x.M 6 6⇒λ!x.M ′

M 6 6⇒M ′

!M 6 6⇒ !M ′

Fig. 5.Parallel Combined Reduction

x 6 699K x

M 6 699K M ′ N 6 699K N ′

MN 6 699K M ′N ′

M 6 699K M ′

λx.M 6 699K λx.M ′

M 6 699K M ′

λ!x.M 6 699K λ!x.M ′

M 6 6⇒M ′

!M 6 699K !M ′

Fig. 6.Parallel Internal Reduction

Lemma 5.3. If M → N andM 99K M ′ then there existsN ′ such thatM ′ → N ′.

Proof. By induction on the derivation ofM → N . We consider one case.
SupposeM ≡ (λ!x.M1)(!M2) → M1[M2/x] ≡ N . EitherM ′ ≡ (λ!x.M ′

1)(!M2)
whereM1 99K M ′

1, or M ′ ≡ (λ!x.M1)(!M ′
2) whereM2 ⇒ M ′

2. In the first case,
M ′ → M ′

1[M2/x]. In the second,M ′ → M1[M ′
2/x]. ut

Corollary 5.4. If V is in suface normal form then:

1. V 99K N impliesN is in surface normal form.
2. M 99K V impliesM is in surface normal form.

Proof. Statement 1 follows from Proposition 5.2, and statement 2 from Lemma 5.3.ut

Theorem 5.5. If M ⇒∗ V , whereV is in surface normal form, then each infinite⇒
reduction sequence fromM contains only finitely many→ reductions.

Proof. By Proposition 5.2, there existsU such thatM →∗ U 99K∗ V . By Corol-
lary 5.4.2,U is in surface normal form. Letk be the number of reductions in the se-
quenceM →∗ U . We show that every⇒ reduction sequence fromM contains at most
k surface reductions. Consider any reduction sequenceM ⇒∗ N with l surface reduc-
tions. By Proposition 5.2, there existsL such thatM →∗ L with at leastl reductions.
But, by Corollary 3.4, any→ reduction sequence fromM has at mostk reductions.
Thus indeedl ≤ k. ut

We now turn to the proofs of Propositions 5.1 and 5.2, which use the parallel ver-
sions of combined and internal reduction defined in Figs. 5 and 6 respectively.



Lemma 5.6.

1. M 6 6⇒M andM 6 699K M .
2. If M ⇒ M ′ thenM 6 6⇒M ′. Conversely, ifM 6 6⇒M ′ thenM ⇒∗ M ′.
3. If M 99K M ′ thenM 6 699K M ′. Conversely, ifM 6 699K M ′ thenM 99K∗ M ′.
4. If M 6 699K M ′ thenM 6 6⇒M ′.

Lemma 5.7.

1. If M 6 6⇒M ′ andN 6 6⇒N ′ thenM [N/x] 6 6⇒M ′[N ′/x].
2. If M 6 699K M ′ andN 6 699K N ′ thenM [N/x] 6 699K M ′[N ′/x].

Lemma 5.8.

1. If M 6 6⇒M1 andM 6 6⇒M2 then there existsN such thatM1 6 6⇒N andM2 6 6⇒N .
2. If M 6 699K M1 andM 6 699K M2 then there existsN such thatM1 6 699K N andM2 6 699K N .

Proof. The proof, which is by induction on the structure ofM , is a routine analysis of
all possible cases, cf. [9]. ut

Proposition 5.1 is a straightforward consequence the last lemma.
The remaining lemmas are directed towards the proof of Proposition 5.2.

Sub-lemma 5.9. If M 6 699K M ′, N 6 6⇒N ′ andN →∗ N ′′ 6 699K N ′ then there existsL such
thatM [N/x] →∗ L 6 699K M ′[N ′/x].

Proof. By a straightforward induction on the derivation ofM 6 699K M ′. ut

Lemma 5.10. If M 6 6⇒M ′ then there existsL such thatM →∗ L 6 699K M ′.

Proof. By induction on the derivation ofM 6 6⇒M ′. The most interesting case is when
M ≡ (λ!x.M1)(!M2) 6 6⇒M ′

1[M
′
2/x] ≡ M ′, whereM1 6 6⇒M ′

1 andM2 6 6⇒M ′
2. Then,

by induction hypothesis, there existL1, L2 such thatM1 →∗ L1 6 699K M ′
1 andM2 →∗

L2 6 699K M ′
2. By Sub-lemma 5.9, there existsL such thatL1[M2/x] →∗ L 6 699K M ′

1[M
′
2/x].

ThusM ≡ (λ!x.M1)(!M2) → M1[M2/x] →∗ L1[M2/x] →∗ L 6 699K M ′
1[M

′
2/x] ≡

M ′, as required. ut

Lemma 5.11. If M 6 699K L → N then there existsL′ such thatM → L′ 6 6⇒N .

Proof. By induction on the derivation ofL → N . We consider two cases.
If L ≡ (λ!x.L1)(!L2) → L1[L2/x] ≡ N , thenM ≡ (λ!x.M1)(!M2) where

M1 6 699K L1 and M2 6 6⇒L2. Thus M → M1[M2/x] and, by Lemmas 5.6 and 5.7,
we have thatM1[M2/x] 6 6⇒L1[L2/x] ≡ N . Hence the result holds withL′ =def

M1[M2/x].
If L ≡ L1L2 → N1L2 ≡ N , whereL1 → N1, thenM ≡ M1M2 whereM1 6 699K L1

andM2 6 699K L2. By induction hypothesis, there existsL′
1 such thatM1 → L′

1 6 6⇒N1.
ThusM → L′

1M2 6 6⇒N1L2, hence the result holds withL′ =def L′
1M2. ut



Proof (of Proposition 5.2).We have a reduction sequenceM ⇒∗ N , possibly consist-
ing of both→ and99K rewrites. This can equally well be viewed as a sequence of→
and 6 699K rewrites. We begin by associating a complexity measure to any such reduction
sequence of→ and 6 699K rewrites. To do this, first assign to to each6 699K rewrite in the se-
quence the number of→ rewrites that occur to the right of it. We thus obtain a sequence
of numbers, one for each6 699K rewrite, which we write in ascending order (equivalently,
we write in sequence starting with the rightmost6 699K rewrite and working leftwards).
For example, the rewrite sequence

M ≡ M0 6 699K M1 6 699K M2 → M3 → M4 6 699K M5 → M6 6 699K M7 ≡ N

gets assigned the sequence0, 1, 3, 3. This sequence is our complexity measure.
Now take the sequence of→ and 6 699K rewrites reducingM to N . If this sequence

does not contain a subsequenceMi 6 699K Mi+1 → Mi+2, then we haveM →∗ M ′ 6 699K ∗N ,
and henceM →∗ M ′ 99K∗ N as required.

Otherwise, select a two-step subsequenceMi 6 699K Mi+1 → Mi+2. Using Lemma 5.11
followed by 5.10, replace this with a sequenceMi → M ′ →∗ M ′′ 6 699K Mi+2. One thus
obtains a new reduction sequence fromM to N containing the same number of6 699K
rewrites and at least as many→ rewrites (possibly more). However, because the iden-
tified 6 699K rewrite is shifted to the right, the complexity measure of the new sequence
is below that of the original in the lexicographic ordering. Thus by repeatedly selecting
two-step subsequences, we repeatedly reduce the complexity measure until we obtain a
reduction sequenceM →∗ M ′ 6 699K ∗N containing at least as many surface rewrites as
the original sequence. ThereforeM →∗ M ′ 99K∗ N , as required. ut

6 Call-by-need Operational Semantics forLily

In the Lily expressionslet !x = s in t and rec x : σ. t, the variablex may occur
zero, one or several times int. Because of this, the natural implementation mechanism
is call-by-need, whereby the evaluation of the terms substituted for such variables is
shared. (In contrast, in an application(λx :σ. t)(s), the variablex occurs exactly once
in t, and there is no call for sharing.) An operational semantics implementing such a
call-by-need evaluation strategy is presented in [3], and the authors have proved that
the call-by-need semantics does not affect the notion of contextual equivalence (private
communication). In this section, we outline a straightforward proof of this result.

Again, rather than using the big-step operational semantics of [3], which is based
on [5, 12], it is convenient for our purposes to use a small-step version, following [13].
We useS, . . . to range overvariable/frame stacks, which are sequences of items of two
forms: (i) 〈F 〉, whereF is an “evaluation frame”,

F ::= (−)(t) | let !x = (−) in t | (−)(σ) ;

(ii) or 〈x〉, for a variablex. We useH to range overheaps, which are finite sequences
of assignments of the form[x 7→ t], with all variablesx distinct.

The call-by-need evaluation relation is defined in Fig. 7. It implements a single-step
relation of the form(S, t,H) →nd (S′, t′,H ′). Roughly, this is interpreted as saying



1. (S, s(t), H) →nd (S 〈(−)(t)〉, s, H)

2. (S, let !x = s in t, H) →nd (S 〈let !x = (−) in t〉, s, H)

3. (S, t(σ), H) →nd (S 〈(−)(σ)〉, t, H)

4.∗ (S, rec x :σ. t, H) →nd (S 〈x〉, t, [x 7→ t ]H)

5.∗ (S 〈(−)(t)〉, λx :σ. s, H) →nd (S, s[t/x], H)

6.∗ (S 〈let !x = (−) in t〉, !s, H) →nd (S, t, [x 7→ s]H)

7.∗ (S 〈(−)(σ)〉, Λα. t, H) →nd (S, t[σ/α], H)

8.∗ (S, x, H) →nd (S 〈x〉, H(x), H)

9. (S 〈x〉, v, H) →nd (S, v, H[v/x])

∗ active reductions, see Appendix A.

Fig. 7.Call-by-need Evaluation forLily

that theLily term built up fromt using the nested evaluation frames inS evaluates in
a single step to the term built fromt′ using the frames inS′. In Fig. 7, when we write
[x 7→ t]H, we assume thatx is not in the domain ofH. We treat heapsH as functions,
writing H(x) for the value assigned tox, and writingH[v/x] for the heap obtained
from H by replacing the existing term assigned tox (which is assumed to be in the
domain ofH) with v.

The call-by-need evaluation of aLily programt : σ starts off with the config-
uration (ε, t, ε) (whereε is the empty sequence) and then proceeds deterministically
according to the rules in Fig. 7. Either an infinite sequence of→nd reductions results,
or the evaluation terminates in a configuration of the form(ε, v, H) for some (possibly
open) valuev. If the latter case holds, we writet ↓nd. The main result of this section
states that, for programs of arbitrary type, the call-by-need semantics terminates if and
only if the call-by-name semantics does.

Theorem 6.1. If t : σ thent ↓nd if and only if t ↓nm.

The sharing of recursion implemented in Fig. 7, introduces cycles into the heap, and
this makes it hard to give a direct operational proof of the equivalence of call-by-name
and call-by-need, see [12] for discussion. This difficulty has, in fact, been overcome by
the authors of [3], but their proof is highly involved (private communication).

We give a significantly simpler proof that call-by-name and call-by-need coincide.
First, we define an almost trivial translation ofLily into itself, which serves the pur-
pose of “padding out” the call-by-name semantics (sic) for the purpose of facilitating
its comparison with the call-by-need semantics. The remaining step is to prove that the
“almost trivial” translation really is trivial. For this last step, we again translate into the
untyped linearλ-calculus of Sec. 3, this time applying Theorem 5.5.

The almost trivial translation fromLily to itself, is the identity everywhere, except
for the translation of thunks, which are padded with a dummy recursion, acting as delay.

(!s)† =def !(rec z :τ. s†) z /∈ fv(s) .



Here, we are translating well-typed termsΓ ;∆ ` t : σ, to well-typed termsΓ ;∆ `
t† : σ, and the typeτ introduced above is determined by this requirement.

Lemma 6.2. If t : σ thent ↓nd if and only ift† ↓nm.

To prove Lemma 6.2, one shows that the call-by-name evaluation oft† simulates the
call-by-need evaluation oft. Crucially, the padding of thunks ensures that rule 8 of
Fig. 7 always corresponds to a→nm reduction for the term generated fromt† by in-
serting it in the context determined byF and substituting, for each variablex with
associated heap assignment[x 7→ s], a termrec x :σ. s0, wheres0 is the term originally
assigned tox when it was first added to the heap. More details are given in Appendix A.

Theorem 6.1 now follows from the lemma below, which is an easy application of
Theorem 5.5.

Lemma 6.3. If t : σ thent ↓nm if and only ift† ↓nm.

Proof. We give another translation fromLily into our untyped linearλ-calculus.

x‡ =def x (let !x = s in t)‡ =def (λ!x.t‡)(s‡)

(λx :σ. t)‡ =def !(λ!x.t‡) (Λα. t)‡ =def ! t‡

(s(t))‡ =def (λ!w.w(!t‡))(s‡) (t(σ))‡ =def (λ!z.z)(t‡)

(!t)‡ =def ! t‡ (rec x :σ. t)‡ =def µx. t‡

It is easily established that, fort : σ we have thatt ↓nm if and only if t‡ is surface
normalizing. However, we have(t†)‡ 99K∗ t‡. Therefore, by Theorem 5.5,t‡ is surface
normalizing if and only if(t†)‡ is. Thus indeedt ↓nm if and only if t† ↓nm. ut

More generally, a similar application of Theorem 5.5 shows that call-by-name termina-
tion is preserved by the congruence relation onLily terms generated by the call-by-
name reductions. In other words, the natural “conversion relation” onLily terms is
correct with respect to contextual equivalence. Of course, the use of rewriting methods
for establishing such simple results goes back to [9].

7 Linear Combinatory Algebras

The aim of this short final section is to demonstrate that our untyped linearλ-calculus
is theλ-calculus counterpart of Abramsky’slinear combinatory algebras, see [1]. This
gives some evidence that our calculus arises reasonably naturally, independently of is
applications to operational semantics.

Definition 7.1. A !-applicative structureis an algebra(A, ·, !) where· is a binary oper-
ation on the setA and! is a unary operation.

As is standard, we usually omit the “application” operation ‘·’, using a simple juxtapo-
sitionxy for x · y. Application associates to the left (i.e.xyz = (xy)z).



Definition 7.2 ([1]). A linear combinatory algebrais a !-applicative structure(A, ·, !)
in which there exist elementsI,B,C,K,W,D, δ, F ∈ A satisfying:

Ix = x Wx(!y) = x(!y)(!y)
Bxyz = x(yz) D(!x) = x

Cxyz = xzy δ(!x) = !!x
Kx(!y) = x F(!x)(!y) =!(xy) .

The main result of this section asserts that linear combinatory algebras are char-
acterized by a form of combinatory completeness in which the forms of implicitλ-
abstraction available correspond to the two formsλx.M andλ!x.M of our untyped lin-
earλ-calculus. Moreover, the equalities associated with the implicit abstractions agree
with the two redex forms in Fig. 3.

A !-applicative polynomialover a setA is a syntactic expression built up using
elements ofA as constants, variablesx, y, . . . , and operator symbols ‘·’, and ‘!’. Any !-
applicative structure(A, ·, !) induces an evident equality relation between polynomials.

We say that a variablex is linear in a !-applicative polynomiale, if it occurs exactly
once, and not within the scope of a ‘!’-operator symbol. We writevars(e) for the set of
variables occurring ine, andlinvars(e) for the set of variables that are linear ine.

Theorem 7.3 (Linear combinatory completeness).For any !-applicative structure
(A, ·, !), the following are equivalent.

1. (A, ·, !) is a linear combinatory algebra.
2. For any!-applicative polynomiale overA,

(a) if x ∈ linvars(e) then there exists a polynomialλ∗x. e with vars(λ∗x. e) =
vars(e) − {x} and linvars(λ∗x. e) = linvars(e) − {x} such that the equality
(λ∗x. e)(x) = e holds;

(b) there exists a polynomialλ!∗x. e with vars(λ!∗x. e) = vars(e) − {x} and
linvars(λ!∗x. e) = linvars(e)− {x} such that(λ!∗x. e)(!x) = e.

It follows easily from the theorem that the closed linear terms of our untypedλ-calculus,
considered modulo=β (see Sec. 5), themselves form a linear combinatory algebra.
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A Outline proof of Lemma 6.2

The main technical lemma we need is Lemma A.1 below. This concerns configurations
(S, t,H) arrived at by a sequence(ε, s, ε) →∗

nd (S, t,H) for some programs : σ. Given
such a sequence, and any termt′ with fv(t′) contained in the domain ofH, (the termt is
one such), we definet′[H] as follows. IfH = ε thent′[H] =def t. If H = [x 7→ u]H ′

thent′[H] =def (t′[(rec x :σ′. u0)/x])[H ′], whereu0 is the first value assigned tox in
a heap occuring along the sequence(ε, s, ε) →∗

nd (S, t,H), andσ′ is the appropriate
type. Heret′[H] is an abuse of notation since the value does not solely depend onH. In
fact, for any two heapsH1, H2 occurring in the sequence(ε, s, ε) →∗

nd (S, t,H) and
containingfv(t′), it holds thatt′[H1] ≡ t′[H2]. Also, for any termt′ we define[S]t′ as
follows. If S = ε then[S]t′ =def t′. If S = S′ 〈(−)(s′)〉 then[S]t′ =def [S′](t′(s)). If
S = S′ 〈let !x = − in s′〉 then[S]t′ =def [S′](let !x = t′ in s′). If S = S′ 〈(−)(σ′)〉
then [S]t′ =def [S′](t′(σ′)). If S = S′ 〈x〉 then [S]t′ =def [S′]t′. Finally, we call
reductions number 4–8, in Fig. 7,active, and the otherspassive.

Lemma A.1. Supposes : σ and(ε, s, ε) →∗
nd (S, t,H).

1. If x is declared inH then(x[H])† →+
nm ((H(x))[H])†.

2. If S = S0 〈x〉S1 then(x[H])† →+
nm (([S1]t)[H])†.

3. If (S, t, H) →nd (S′, t′, H ′), whereS = S0 S1 andS′ = S0 S′
1, then it holds that

(([S1]t)[H])† →∗
nm (([S′

1]t
′)[H ′])†. Moreover, if the call-by-need reduction step is

active then the call-by-name sequence contains at least one reduction.

All three statements are proved simultaneously, by induction on the length of the reduc-
tion sequence(ε, s, ε) →∗

nd (S, t,H). For space reasons, we omit the details.

Proof (of Lemma 6.2).If t ↓nd then it follows easily from Lemma A.1.3 thatt† ↓nm.
If t 6↓nd then there exists an infinite→nd reduction sequence from(ε, t, ε). Because
the four passive reductions either strictly reduce the size of the term component in
a configuration, or retain the same term and reduce the size of the stack, the infinite
sequence cannot contain infinitely many consecutive passive reductions. Therefore, it
must contain infinitely many active reductions. Thus, again by Lemma A.1.3,t† has an
infinite→nm reduction sequence. So indeedt† 6↓nm. ut


