5,528 research outputs found

    Design of a Fast Digital Double Relaxation Oscillation SQUID

    Get PDF
    A fast digital Double Relaxation Oscillation SQUID (DROS) with a relaxation oscillation frequency of 100 MHz has been developed. The digital DROS incorporates a DROS and a superconducting up-down counter that supplies the feedback flux. The major advantage of a DROS is that the relaxation oscillations generate an on-chip clock signal and therefore, no external clock is required. In order to maximize the slew rate without compromising the sensitivity, the quantization unit of the feedback flux was adapted to the flux noise of the DROS. This resulted in a designed flux slew rate of 5·106 ¿0/s. We will discuss the design optimization, numerical simulations, the layout and some experimental results of the digital DRO

    Variant X-Tree Clock Distribution Network and Its Performance Evaluations

    Get PDF

    Modeling Solder Ball Array Interconnects for Power Module Optimization

    Get PDF
    PowerSynth is a software platform that can co-optimize power modules utilizing a 2D topology and wire bond interconnects. The novel 3D architectures being proposed at the University of Arkansas utilize solder ball interconnects instead of wire bonds. Therefore, they currently cannot be optimized using PowerSynth. This paper examines methods to accurately model the parasitic inductance of solder balls and ball grid arrays so they may be implemented into software for optimization. Proposed mathematical models are validated against ANSYS Electromagnetics Suite simulations. A comparison of the simulated data shows that mathematical models are well suited for implementation into optimization software platforms. Experimental measurements proved to be inconclusive and necessitate future work

    Statistical Power Supply Dynamic Noise Prediction in Hierarchical Power Grid and Package Networks

    Get PDF
    One of the most crucial high performance systems-on-chip design challenge is to front their power supply noise sufferance due to high frequencies, huge number of functional blocks and technology scaling down. Marking a difference from traditional post physical-design static voltage drop analysis, /a priori dynamic voltage drop/evaluation is the focus of this work. It takes into account transient currents and on-chip and package /RLC/ parasitics while exploring the power grid design solution space: Design countermeasures can be thus early defined and long post physical-design verification cycles can be shortened. As shown by an extensive set of results, a carefully extracted and modular grid library assures realistic evaluation of parasitics impact on noise and facilitates the power network construction; furthermore statistical analysis guarantees a correct current envelope evaluation and Spice simulations endorse reliable result

    Accurate a priori signal integrity estimation using a multilevel dynamic interconnect model for deep submicron VLSI design.

    Get PDF
    A multilevel dynamic interconnect model was derived for accurate a priori signal integrity estimates. Cross-talk and delay estimations over interconnects in deep submicron technology were analyzed systematically using this model. Good accuracy and excellent time-efficiency were found compared with electromagnetic simulations. We aim to build a dynamic interconnect library with this model to facilitate the interconnect issues for future VLSI design

    SQUID developments for the gravitational wave antenna MiniGRAIL

    Get PDF
    We designed two different sensor SQUIDs for the readout of the resonant mass gravitational wave detector MiniGRAIL. Both designs have integrated input inductors in the order of 1.5 muH and are planned for operation in the mK temperature range. Cooling fins were added to the shunt resistors. The fabricated SQUIDs show a behavior that differs from standard DC-SQUIDs. We were able to operate a design with a parallel configuration of washers at reasonable sensitivities. The flux noise saturated to a value of 0.84 muPhi0/radicHz below a temperature of 200 mK. The equivalent noise referred to the current through the input coil is 155 fA/radicHz and the energy resolution yields 62 h

    Voltage-current and voltage-flux characteristics of asymmetric high TC DC SQUIDs

    Full text link
    We report measurements of transfer functions and flux shifts of 20 on-chip high TC_C DC SQUIDs half of which were made purposely geometrically asymmetric. All of these SQUIDs were fabricated using standard high TC_C thin film technology and they were single layer ones, having 140 nm thickness of YBa2_2Cu3_3O7x_{7-x} film deposited by laser ablation onto MgO bicrystal substrates with 240^0 misorientation angle. For every SQUID the parameters of its intrinsic asymmetry, i. e., the density of critical current and resistivity of every junction, were measured directly and independently. We showed that the main reason for the on-chip spreading of SQUIDs' voltage-current and voltage-flux characteristics was the intrinsic asymmetry. We found that for SQUIDs with a relative large inductance (L>120L>120 pH) both the voltage modulation and the transfer function were not very sensitive to the junctions asymmetry, whereas SQUIDs with smaller inductance (L6575L\simeq 65-75 pH) were more sensitive. The results obtained in the paper are important for the implementation in the sensitive instruments based on high TC_C SQUID arrays and gratings.Comment: 11 pages, 4 tables, 17 figures This version is substantially modified. The Introduction and Section 2 are completely rewritten, while experimental part is mainly the same as in previous versio

    Brownian refrigeration by hybrid tunnel junctions

    Get PDF
    Voltage fluctuations generated in a hot resistor can cause extraction of heat from a colder normal metal electrode of a hybrid tunnel junction between a normal metal and a superconductor. We extend the analysis presented in [Phys. Rev. Lett. 98, 210604 (2007)] of this heat rectifying system, bearing resemblance to a Maxwell's demon. Explicit analytic calculations show that the entropy of the total system is always increasing. We then consider a single electron transistor configuration with two hybrid junctions in series, and show how the cooling is influenced by charging effects. We analyze also the cooling effect from nonequilibrium fluctuations instead of thermal noise, focusing on the shot noise generated in another tunnel junction. We conclude by discussing limitations for an experimental observation of the effect.Comment: 16 pages, 16 figure
    corecore